
© 2007 Intel Corporation

Multicore: The Software View

James Cownie
Principal Engineer

SSG/DPD/PAT

12
th

 E
M

EA
 A

ca
de

m
ic

 F
or

um

EMEA Academic Forum ’07 2

* Other names and brands may be
claimed as the property of others

The Software View (Summary)

y Hardware technology
- past
- future

y Software we will need
y What Intel is doing about it

- Now
- In the future

12
th

 E
M

EA
 A

ca
de

m
ic

 F
or

um

EMEA Academic Forum ’07 3

* Other names and brands may be
claimed as the property of others

Technology Past
Intel CPU Trends(sources:
Intel, Wikipedia, K.
Olukotun)

386

Pentium

Montecito

• Moore’s law is
alive and well so far.

• But performance
per core is no longer
increasing with it.

Graph © Herb Sutter, used
with permission

12
th

 E
M

EA
 A

ca
de

m
ic

 F
or

um

EMEA Academic Forum ’07 4

* Other names and brands may be
claimed as the property of others

107

105

103

109

FORECASTFORECAST Source: Intel

32 Billion
Transistors

Technology Future
12

th
 E

M
EA

 A
ca

de
m

ic
 F

or
um

EMEA Academic Forum ’07 5

* Other names and brands may be
claimed as the property of others

What Now?

y How can we use all those transistors?
- Clearly we can’t design each one

>at 1 man-minute per transistor 32 billion would take ~278,000 man-
years of effort.

- We can’t push clock speed because of the power wall
- Increased cache helps, but not enough

y We have to replicate components
- Multiple cores on the same chip
- Integrate more functions

y BUT this is a manufacturing imperative, it’s not what us poor
programmers are asking for; we just want an infinitely fast
single processor

12
th

 E
M

EA
 A

ca
de

m
ic

 F
or

um

EMEA Academic Forum ’07 6

* Other names and brands may be
claimed as the property of others

What future chips might look like:
From a few large cores to many lightweight cores

PentiumPentium®®
processorprocessor

PentiumPentium®® processor processor
era era chips optimizedchips optimized
for for raw speedraw speed on on
single threads. single threads.
Pipelined, out of order Pipelined, out of order
execution. execution.

TodayToday’’s chips use s chips use
cores which balance cores which balance
single threaded and single threaded and
multimulti--threaded threaded
performance performance

CoreCore CoreCore

55--10 years: 10 years: 10s10s--
100s100s of of energy energy
efficientefficient, IA cores , IA cores
optimized foroptimized for
multithreadingmultithreading

Optimized for speedOptimized for speed Optimized for performance/wattOptimized for performance/watt

CacheCache CacheCache

SharedShared
CacheCache

LocalLocal
CacheCache

StreamlinedStreamlined
IA CoreIA Core

12
th

 E
M

EA
 A

ca
de

m
ic

 F
or

um

EMEA Academic Forum ’07 7

* Other names and brands may be
claimed as the property of others

Learning and Travel
• Surround yourself with sights and sounds of far-away places
• Practice new languages and customs

Telepresence & Collaboration
• As if you are in the same place with family and
friends—without the travel
• Appointments with doctors, teachers, leaders
• Develop and perform art with those far away

Health
• Virtual health worker monitors and assists elders/patients
living alone
• Real-time realistic 3D visualization of body systems
• Effects of changes in diet, exercise and disease on body

Entertainment
• Watch yourself star in a movie or game
• Hold and interact with objects in the virtual world
• Control with speech and gesture
• Immersive: 3D, interactive

Personal Media Creation and Management
• Search for and edit photos and videos based on
image; no need to tag the images
• Easily create videos with animation

Source: electronic visualization lab University of Illinois

What can we do with these processors?

Source;
http://vhp.med.umich.edu/Sur
gical-Simulation.jpg

Source: Steven K. Feiner, Columbia
University

12
th

 E
M

EA
 A

ca
de

m
ic

 F
or

um

EMEA Academic Forum ’07 8

* Other names and brands may be
claimed as the property of others

Where are we now?
y Most code is written in sequential languages

- C/C++
- MRTE languages
- Scripting languages

y We have
- Threads
- Locks
- OpenMP
- Lots of programmers who have never written a parallel program,

and don’t want to.

Where do we need to be?
y Parallel programming must be simple
y Everyone writes scalable parallel codes without thinking

about it.

12
th

 E
M

EA
 A

ca
de

m
ic

 F
or

um

EMEA Academic Forum ’07 9

* Other names and brands may be
claimed as the property of others

What makes parallel programming hard?

y Identifying parallelism
y Shared state
y Requirement for non-local reasoning

- Data races
- Locks
- Thread interaction

y Lack of language support

How can we address these problems?
y Tools
y Better programming models and languages
y Application specific libraries which hide the

parallelism

12
th

 E
M

EA
 A

ca
de

m
ic

 F
or

um

EMEA Academic Forum ’07 10

* Other names and brands may be
claimed as the property of others

What is Intel already doing?

y Support for existing programming models
y Tools

- Compilers
- Intel® Thread Checker
- Intel® Thread Profiler
- Math Kernel Library, Integrated Performance Primitives, …

y Ways to express parallelism
- OpenMP*

- Intel® Threading Building Blocks

12
th

 E
M

EA
 A

ca
de

m
ic

 F
or

um

EMEA Academic Forum ’07 11

* Other names and brands may be
claimed as the property of others

Intel® Thread Checker
Create Threads Faster

y Detect data races even if they did not
occur in a particular run.
y View errors in the context of the

source code.
y Powerful sorting and filtering.
y Can be used in automated regression

testing.
y Uses dynamic binary instrumentation

to log read and write accesses to
memory (see Moshe’s PIN
presentation!)

12
th

 E
M

EA
 A

ca
de

m
ic

 F
or

um

EMEA Academic Forum ’07 12

* Other names and brands may be
claimed as the property of others

Thread Checker Display
12

th
 E

M
EA

 A
ca

de
m

ic
 F

or
um

EMEA Academic Forum ’07 13

* Other names and brands may be
claimed as the property of others

Intel® Thread Profiler
Optimize Threads Faster

y Features & Benefits
- Observe the synchronization behavior of

your program
- View application concurrency level to

ensure core utilization
- Identify where thread and

synchronization related overhead impacts
performance

- Understand the distribution of work to
threads

- Understand when threads are active and
inactive

- Estimate the performance potential of
different design choices

- Detect lock contention
- Perform critical path analysis

12
th

 E
M

EA
 A

ca
de

m
ic

 F
or

um

EMEA Academic Forum ’07 14

* Other names and brands may be
claimed as the property of others

Thread Profiler display
12

th
 E

M
EA

 A
ca

de
m

ic
 F

or
um

EMEA Academic Forum ’07 15

* Other names and brands may be
claimed as the property of others

Intel® Threading Building Blocks

y C++ Template library for expressing parallelism
y Can be used with standards conforming C++

compilers (not restricted to the Intel compiler)
y Raises the level at which parallelism is

expressed above threads
y Emphasizes scalable, data parallel

programming
- Solutions based on functional decomposition

usually do not scale.

12
th

 E
M

EA
 A

ca
de

m
ic

 F
or

um

EMEA Academic Forum ’07 16

* Other names and brands may be
claimed as the property of others

Intel® Threading Building Blocks

y You specify task patterns instead of threads
- Library maps user-defined logical tasks onto physical

threads, efficiently using cache and balancing load
- Full support for nested parallelism

y Targets threading for robust performance
- Designed to provide portable scalable performance

for computationally intense portions of shrink-
wrapped applications.

y Compatible with other threading packages
- Designed for CPU bound computation, not I/O bound

or real-time.
- Library can be used in concert with other threading

packages such as native threads and OpenMP.
y Emphasizes scalable, data parallel programming

- Solutions based on functional decomposition usually
do not scale.

12
th

 E
M

EA
 A

ca
de

m
ic

 F
or

um

EMEA Academic Forum ’07 17

* Other names and brands may be
claimed as the property of others

TBB Family Tree
Chare Kernel

small tasks

Cilk
space efficient scheduler

cache-oblivious algorithms

OpenMP*
fork/join

tasks
JSR-166
(FJTask)

containers

OpenMP taskqueue
while & recursion

Intel® TBB

STL
generic

programming

STAPL
recursive ranges

Threaded-C
continuation tasks

task stealing

ECMA .NET*
parallel iteration classes

Libraries

1988

2001

2006

1995

Languages

Pragmas

*Other names and brands may be claimed as the property of others

12
th

 E
M

EA
 A

ca
de

m
ic

 F
or

um

EMEA Academic Forum ’07 18

* Other names and brands may be
claimed as the property of others

TBB Performance
12

th
 E

M
EA

 A
ca

de
m

ic
 F

or
um

EMEA Academic Forum ’07 19

* Other names and brands may be
claimed as the property of others

What is Intel doing for the future?

y Better tools
- to locate parallelism.
- to express parallelism.
- to validate parallel codes.

y Support for new programming models
- Transactional memory
- Data-parallel programming

y BUT we need more so…12
th

 E
M

EA
 A

ca
de

m
ic

 F
or

um

EMEA Academic Forum ’07 20

* Other names and brands may be
claimed as the property of others

You tell us!
y This is the Academic Forum, so you tell us.
y What are the solutions?
y Where are the new language ideas?
y Can you design a statically checked race-free

language which is useful?
y Can naïve users really use functional languages?
y Any language which talks about threads is too low

level for most users. So how do we raise the
language level?
y Should we be doing message passing inside the

node?
- It’s the only demonstrated way to achieve high scalability.
- Do we really need to bring back Occam? ☺

12
th

 E
M

EA
 A

ca
de

m
ic

 F
or

um

EMEA Academic Forum ’07 21

* Other names and brands may be
claimed as the property of others

12
th

 E
M

EA
 A

ca
de

m
ic

 F
or

um

EMEA Academic Forum ’07 22

* Other names and brands may be
claimed as the property of others

Backup
12

th
 E

M
EA

 A
ca

de
m

ic
 F

or
um

EMEA Academic Forum ’07 23

* Other names and brands may be
claimed as the property of others

Intel Threading Tools URLs
y Intel® Threading Building Blocks

- Try 30-day evaluation copy
>Linux, Mac, Windows

- Documentation can be downloaded for free
>Getting Started Guide, Tutorial, Reference

y Thread Checker – finds threading errors like
conditions
y Thread Profiler – finds threading performance

problems

http://www.intel.com/software/products/threading

http://www.intel.com/software/products/tbb

12
th

 E
M

EA
 A

ca
de

m
ic

 F
or

um

http://www.intel.com/software/products/threading/tp
http://www.intel.com/software/products/tbb

	Multicore: The Software View
	The Software View (Summary)
	Technology Past
	What Now?
	What future chips might look like:�From a few large cores to many lightweight cores
	What can we do with these processors?
	Where are we now?
	What makes parallel programming hard?
	What is Intel already doing?
	Intel® Thread Checker �Create Threads Faster
	Thread Checker Display
	Intel® Thread Profiler �Optimize Threads Faster
	Thread Profiler display
	Intel® Threading Building Blocks
	Intel® Threading Building Blocks
	TBB Family Tree
	TBB Performance
	What is Intel doing for the future?
	You tell us!
	Backup
	Intel Threading Tools URLs

