
Intel® 80331 I/O Processor
Application Accelerator Unit D-0 Addendum

January, 2005

Document Number: 304496001US

2 January, 2005 Document Number: 304496001US

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum

Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Intel® internal code names are subject to change.

THIS SPECIFICATION, THE Intel® 80331 I/O Processor IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY
WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE
ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

Intel disclaims all liability, including liability for infringement of any proprietary rights, relating to use of information in this specification. No license,
express or implied, by estoppel or otherwise, to any intellectual property rights is granted herein.

Copyright © Intel Corporation, 2005

AlertVIEW, i960, AnyPoint, AppChoice, BoardWatch, BunnyPeople, CablePort, Celeron, Chips, Commerce Cart, CT Connect, CT Media, Dialogic,
DM3, EtherExpress, ETOX, FlashFile, GatherRound, i386, i486, iCat, iCOMP, Insight960, InstantIP, Intel, Intel logo, Intel386, Intel486, Intel740,
IntelDX2, IntelDX4, IntelSX2, Intel ChatPad, Intel Create&Share, Intel Dot.Station, Intel GigaBlade, Intel InBusiness, Intel Inside, Intel Inside logo, Intel
NetBurst, Intel NetStructure, Intel Play, Intel Play logo, Intel Pocket Concert, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel TeamStation,
Intel WebOutfitter, Intel Xeon, Intel XScale, Itanium, JobAnalyst, LANDesk, LanRover, MCS, MMX, MMX logo, NetPort, NetportExpress, Optimizer
logo, OverDrive, Paragon, PC Dads, PC Parents, Pentium, Pentium II Xeon, Pentium III Xeon, Performance at Your Command, ProShare,
RemoteExpress, Screamline, Shiva, SmartDie, Solutions960, Sound Mark, StorageExpress, The Computer Inside, The Journey Inside, This Way In,
TokenExpress, Trillium, Vivonic, and VTune are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and
other countries.

*Other names and brands may be claimed as the property of others.

Document Number: 304496001US January, 2005 3

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Contents

Contents
1 Application Accelerator Unit ..9

1.1 Overview...9
1.2 Theory of Operation..10
1.3 Hardware-Assist XOR Unit ...12

1.3.1 Data Transfer ...12
1.3.2 Chain Descriptors ..13

1.3.2.1 Principle / Four-Source Descriptor Format ..14
1.3.2.2 Eight-Source Descriptor Format ..15
1.3.2.3 Sixteen-Source Descriptor Format...16
1.3.2.4 Thirty-two-Source Descriptor Format ...18
1.3.2.5 Dual-XOR-Transfer Descriptor Format ..22
1.3.2.6 P+Q Three-Source Descriptor Format ...24
1.3.2.7 P+Q Six-Source Descriptor Format ...25
1.3.2.8 P+Q Twelve-Source Descriptor Format ...26
1.3.2.9 P+Q Sixteen-Source Descriptor Format ..28

1.3.3 Descriptor Summary ..33
1.3.4 Descriptor Chaining ...35

1.4 AA Descriptor Processing...36
1.4.1 Scatter Gather Transfers ...38
1.4.2 Synchronizing a Program to Chained Operation ...38
1.4.3 Appending to The End of a Chain..40

1.5 AA Operations ..41
1.5.1 AA Addressing ...42
1.5.2 XOR Operation ..43
1.5.3 XOR Operation with P+Q RAID-6 Mode..46
1.5.4 Dual-XOR Operation..50
1.5.5 Zero Result Buffer Check ..55
1.5.6 Zero Result Buffer Check with P+Q RAID-6 ...56
1.5.7 Memory Block Fill Operation..57

1.6 Programming Model State Diagram ...58
1.7 Application Accelerator Priority ...59
1.8 Packing and Unpacking ..60

1.8.1 64-bit Unaligned Data Transfers ..60
1.9 Programming the Application Accelerator ..61

1.9.1 Application Accelerator Initialization ..62
1.9.2 Suspending and Resuming the Application Accelerator ..62
1.9.3 Appending Descriptor for XOR Operations..63
1.9.4 Appending Descriptor for Dual XOR Operations ...64
1.9.5 Appending Descriptor for Memory Block Fill Operations64
1.9.6 Appending Descriptor for Zero Result Buffer Check..65

1.10 Interrupts...66
1.11 Error Conditions..67
1.12 Power-up/Default Status...68
1.13 Register Definitions...68

1.13.1 Accelerator Control Register - ACR...69
1.13.2 Accelerator Status Register - ASR...70
1.13.3 Accelerator Descriptor Address

4 January, 2005 Document Number: 304496001US

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Contents

Register - ADAR .. 71
1.13.4 Accelerator Next Descriptor Address

Register - ANDAR.. 72
1.13.5 Data / Source Address Register1 - D/SAR1/PQSAR1 ..73
1.13.6 Source Address Registers 2..32 - SAR2..32 ... 74
1.13.7 P+Q RAID-6 Source Address Registers 2..16 -

PQSAR2..16 .. 76
1.13.8 P+Q RAID-6 Galois Field Multiplier Registers 1..5

- GFMR1..5 ..77
1.13.9 Destination Address Register - DAR ... 79
1.13.10 Accelerator Byte Count Register - ABCR .. 80
1.13.11 Accelerator Descriptor Control Register - ADCR... 81
1.13.12 Extended Descriptor Control Register 0 - EDCR0...85
1.13.13 Extended Descriptor Control Register 1 - EDCR1...87
1.13.14 Extended Descriptor Control Register 2 - EDCR2...89

Document Number: 304496001US January, 2005 5

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Contents

Figures
1 Application Accelerator Block Diagram...10
2 Principle / Four Source Descriptor Format ...14
3 Chain Descriptor Format for Eight Source Addresses (XOR Function)15
4 Chain Descriptor Format for Sixteen Source Addresses (XOR Function)16
5 Chain Descriptor Format for Thirty Two Source Addresses (XOR Function)19
6 Chain Descriptor Format for Dual-XOR-transfer...22
7 P+Q Base Chain Descriptor Format ...24
8 P+Q Chain Descriptor Format for Six Source Addresses (XOR Function).................................25
9 P+Q Chain Descriptor Format for Twelve Source Addresses (XOR Function)26
10 P+Q Chain Descriptor Format for Sixteen Source Addresses (XOR Function)..........................29
11 XOR Chaining Operation ..35
12 Example of Gather Chaining for Four Source Blocks ...36
13 Synchronizing to Chained AA Operation ..39
14 The Bit-wise XOR Algorithm ...43
15 Hardware Assist XOR Unit ...44
16 The Bit-wise XOR Algorithm including the P+Q RAID-6 Mode...46
17 GF Multiply Function...47
18 Galois Field Logarithm Transformation Table...47
19 Galois Field Inverse Logarithm Transformation table ...48
20 P+Q RAID-6 Generation Equation..49
21 The Bit-wise Dual-XOR Algorithm ..51
22 An example of Zero Result Buffer Check ...55
23 An example of Zero Result Buffer Check with P+Q RAID-6 ...56
24 Example of a Memory Block Fill Operation...57
25 Application Accelerator Programming Model State Diagram..58
26 Optimization of an Unaligned Data Transfer...60
27 Pseudo Code: Application Accelerator Initialization ...62
28 Pseudo Code: Application Accelerator Chain Resume Initialization...62
29 Pseudo Code: Suspend Application Accelerator ..62
30 Pseudo Code: XOR Transfer Operation ...63
31 Pseudo Code: Dual XOR Transfer Operation...64
32 Pseudo Code: Memory Block Fill Operation...64
33 Pseudo Code: Zero Result Buffer Check Operation...65

6 January, 2005 Document Number: 304496001US

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Contents

Tables
1 Register Description ...12
2 Descriptor Summary ...33
3 AA Operation and Command Combination Summary.. 41
4 Typical AA Operation and Addressing Summary ... 42
5 AA Interrupts...66
6 Application Accelerator Unit Registers ...68
7 Accelerator Control Register - ACR.. 69
8 Accelerator Status Register - ASR ... 70
9 Accelerator Descriptor Address Register - ADAR ..71
10 Accelerator Next Descriptor Address Register - ANDAR ... 72
11 Data / Source Address Register - SAR1/PQSAR1... 73
12 Source Address Register2..32 - SAR2..32 ... 75
13 P+Q RAID-6 Source Address Registers 2..16 - PQSAR2..16 .. 76
14 Galois Field Multiplier Registers 1..5 - GFMR1..5 ..77
15 Destination Address Register - DAR .. 79
16 Accelerator Byte Count Register - ABCR ... 80
17 Accelerator Descriptor Control Register - ADCR.. 81
18 Extended Descriptor Control Register 0 - EDCR0..85
19 Extended Descriptor Control Register 1 - EDCR1..87
20 Extended Descriptor Control Register 2 - EDCR2..89

Document Number: 304496001US January, 2005 7

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Contents

Revision History

Date Revision Description

January 2005 001 Initial Developer Web Site Release.

8 January, 2005 Document Number: 304496001US

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Contents

This Page Left Intentionally Blank

Document Number: 304496001US January, 2005 9

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Overview

Application Accelerator Unit 1

This chapter describes the integrated Application Accelerator (AA) Unit. The operation modes,
setup, external interface, and implementation of the AA unit are detailed in this chapter.

1.1 Overview

The Application Accelerator provides low-latency, high-throughput data transfer capability
between the AA unit and Intel® 80331 I/O processor (80331) local memory. It executes data
transfers to and from 80331 local memory, checks for all-zero result across local memory blocks,
performs memory block fills, and provides the necessary programming interface. The Application
Accelerator performs the following functions:

• Transfers data (read) from memory controller.

• Performs an optional boolean operation (XOR) on read data.

• Transfers data (write) to memory controller or PCI.

• Checks for All-zero result across local memory blocks.

• Performs memory block fills.

• Optional Dual-XOR for RAID-6 application single strip write.

• Optional Galois Field (GF) Multiply calculation for P+Q RAID-6 in conjunction with XOR
operations.

The AA unit features:

• 1Kbyte/512-byte store queue.

• Utilization of the 80331 memory controller Interface.

• 232 addressing range on the 80331 local memory interface.

• Hardware support for unaligned data transfers for the internal bus.

• Fully programmable from the Intel XScale® core.

• Support for automatic data chaining for gathering and scattering of data blocks.

• Support for writing a constant value to a memory block (block fill).

• Support for writing descriptor status to local memory.

• Hardware to perform Galois Field (GF) Multiply function on the Source Data Streams during
an XOR operation, when enabled.

10 January, 2005 Document Number: 304496001US

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Theory of Operation

1.2 Theory of Operation
The Application Accelerator is a master on the internal bus and performs data transfers to and from
local memory. It does not interface to the PCI bus. AA uses direct addressing for memory
controller.

The AA implements XOR algorithm in hardware. It performs XOR operation on multiple blocks of
source (incoming) data and stores result back in 80331 local memory. The source and destination
addresses are specified through chain descriptors resident in 80331 local memory. A Dual-XOR
operation is also supported for optimized processing of two different, but related XOR operations
in a single operation. The AA can also check for all-zero result across local memory blocks or fill a
memory block with arbitrary data. Figure 1 shows a block diagram of the AA unit. The AA can
also perform memory-to-memory transfers of data blocks controlled by 80331 memory controller
unit.

AA programming interface is accessible from the internal bus through a memory-mapped register
interface. Data for XOR operation is configured by writing source addresses, destination address,
number of bytes to transfer, and various control information into a local memory chain descriptor.
Chain descriptors are described in detail in Section 1.3.2, “Chain Descriptors” on page 13.

The AA unit contains a hardware data packing and unpacking unit. This unit enables data transfers
from and to unaligned addresses in 80331 local memory. All combinations of unaligned data are
supported with the packing and unpacking unit. Data is held internally in the AA until ready to be
stored back to local memory. This is done using a 1KByte/512Byte holding queue. Data to be
written back to 80331 local memory can either be aligned or unaligned.

Each chain descriptor contains necessary information for initiating an XOR operation on blocks of
data specified by the source addresses. The AA unit supports chaining. Chain descriptors that
specify the source data to be XORed can be linked together in 80331 local memory to form a
linked list.

Figure 1. Application Accelerator Block Diagram

64-bit

 Data Queue

Application Accelerator Unit

Packing/
Unpacking

Unit

Accelerator Control Register

Control Registers

Accelerator Status Register

Accelerator Descriptor Address Register

Accelerator Next Descriptor Address Register

Accelerator Byte Count Register

Internal

Boolean

I/O Processor Data / Local Source Address Register1

I/O Processor Local Destination Address Register

I/O Processor
Bus Interface

Bus Interface
Unit

Accelerator Descriptor Control Register

I/O Processor Local Source Address Register2..32

 Data

Extended Descriptor Control Register 0

Extended Descriptor Control Register 1
Extended Descriptor Control Register 2

Unit

Bus

Document Number: 304496001US January, 2005 11

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Theory of Operation

Similar to XOR operations, AA can be programed to compute parity across multiple memory
blocks specified by chain descriptors. In addition, AA is also used for memory block fills. A
Dual-XOR operation is available for use when calculating two parity blocks for a RAID-6 single
strip write.

In conjunction with the XOR and Dual-XOR operations, a GF Multiply calculation can be applied to
source data in support of P+Q RAID-6. The AA will perform a GF Multiply between source data and
a control byte for each source before the XOR operation when enabled. P+Q RAID-6 is enabled
through an enable bit in the Section 1.13.1, “Accelerator Control Register - ACR” (bit 3).

12 January, 2005 Document Number: 304496001US

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Hardware-Assist XOR Unit

1.3 Hardware-Assist XOR Unit

The AAU implements the XOR algorithm in hardware. It performs the XOR operation on multiple
blocks of source (incoming) data and stores the result back in 80331 local memory.

• The process of reading source data, executing the XOR algorithm, and storing the XOR data
will hereafter is referred to as XOR-transfer.

• The operation of two XOR-transfers defined in a single descriptor will hereafter be referred to
as Dual-XOR transfer.

• The process of reading or writing data will hereafter is referred to as data transfer.

Source and destination addresses specified through chain descriptors resident in 80331 local
memory.

1.3.1 Data Transfer

All transfers are configured and initiated through a set of memory-mapped registers and one or
more chain descriptors located in local memory. A transfer is defined by the source address,
destination address, number of bytes to transfer, and control values. These values are loaded in the
chain descriptor before a transfer begins. Table 1 describes the registers that need to be configured
for any operation.

When P+Q RAID-6 is enabled, the GF Multiplier bytes also act as control values in the data
transfer.

Table 1. Register Description

Register Abbreviation Description

Accelerator Control Register ACR Application Accelerator Control Word

Accelerator Status Register ASR Application Accelerator Status Word

Accelerator Descriptor Address Register ADAR Address of Current Chain Descriptor

Accelerator Next Descriptor Address Register ANDAR Address of Next Chain Descriptor

Data / Source Address Register1 D/SAR1 Data to be written or Local memory addresses of source data

Source Address Register 2..32 SAR2.. SAR32 Local memory addresses of source data

P+Q RAID-6 Source Address Register 2..16 PQSAR2..
PQSAR16

Local memory addresses of source data when operating in
P+Q RAID-6 mode

P+Q RAID-6 GF Multiplier Register 1..5,D GFMR1.. GFMR5,
GFMRD

P+Q RAID-6 GF Multiplier bytes
when operating in P+Q RAID-6 mode

Destination Address Register DAR Address of result data

Accelerator Byte Count Register ABCR Number of Bytes to transfer

Data Register DR Data to be written to the destination

Accelerator Descriptor Control Register ADCR Chain Descriptor Control Word

Document Number: 304496001US January, 2005 13

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Hardware-Assist XOR Unit

1.3.2 Chain Descriptors

All transfers are controlled by chain descriptors located in local memory. A chain descriptor
contains the necessary information to complete one transfer. A single transfer has only one chain
descriptor in memory. Chain descriptors can be linked together to form more complex operations.

Warning: Chain descriptors can only be located in DDR SDRAM memory in order for the AAU to function
properly. Location of the chain descriptors anywhere else (e.g., either on the Peripheral Bus or on
PCI) is not supported and the results would be unpredictable.

To perform a transfer, one or more chain descriptors must first be written to 80331 local memory.
The words of a descriptor are contiguous in local memory. Descriptors can be different sizes, each
dependent on the number of sources being addressed by the operation. The sizes supported by the
Application Accelerator are four, eight, sixteen and thirty-two sources. The alignment of the
descriptor in local memory is dependent on the descriptor size and is defined for each in the
following sections. Not all sources must be used in a given descriptor.

Descriptor formats for P+Q RAID-6 enabled operation are defined separately. When P+Q RAID-6
is enabled, only the P+Q RAID-6 descriptor formats are valid.

14 January, 2005 Document Number: 304496001US

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Hardware-Assist XOR Unit

1.3.2.1 Principle / Four-Source Descriptor Format

Figure 2 shows the format of an individual chain descriptor. This four-source descriptor is the smallest
supported descriptor. The four-source descriptor requires eight contiguous words in 80331 local
memory and is required to be aligned on an 8-word boundary. All eight words are required.

Each word in the chain descriptor is analogous to control register values. Bit definitions for the
words in the chain descriptor are the same as for the control registers.

• First word is local memory address of next chain descriptor. A value of zero specifies the end of the
chain. This value is loaded into the Accelerator Next Descriptor Address Register. Because chain
descriptors must be aligned on a minimum 8-word boundary, the unit may ignore bits 04:00 of this
address.

• Second word is address of the first block of data resident in local memory, or immediate data when
performing a Memory Block Fill. This value is loaded into the Data / Source Address Register 1.

• Third word is the address of the second block of data resident in local memory. This address is
driven on the internal bus. This value is loaded into the Source Address Register 2.

• Fourth word is the address of the third block of data resident in local memory. This address is
driven on the internal bus. This value is loaded into the Source Address Register 3.

• Fifth word is the address of the fourth block of data resident in local memory. This address is
driven on the internal bus. This value is loaded into the Source Address Register 4.

• Sixth word is the destination address where data is stored in local memory or PCI. This address is
driven on the internal bus. This value is loaded into the Destination Address Register.

• Seventh word is the Byte Count value. This value specifies the number of bytes of data in the
current chain descriptor. This value is loaded into the Accelerator Byte Count Register.

• Eighth word is the Descriptor Control Word. This word configures the Application Accelerator for
one operation. This value is loaded into the Accelerator Descriptor Control Register.

There are no data alignment requirements for any source addresses or destination address. However,
maximum performance is obtained from aligned transfers, especially small transfers. See Section 1.4.

Refer to Section 1.13 for additional description on the control registers.

Figure 2. Principle / Four Source Descriptor Format

Next Descriptor Address (NDA)

Immediate Data or Source Address for first block of data

Destination Address

Address of Next Chain Descriptor

Source Address for second block of data

Source Address for fourth block of data

Source Address for third block of data

Description

Byte Count (BC)

Descriptor Control (DC)

Number of bytes

Descriptor Control

 Source Address (D/SAR1)

 Source Address (SAR2)

Source Address (SAR3)

Source Address (SAR4)

Destination Address (DAR)

Chain Descriptor in Local Memory

Document Number: 304496001US January, 2005 15

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Hardware-Assist XOR Unit

1.3.2.2 Eight-Source Descriptor Format

To perform an XOR-transfer with up to eight source blocks of data, a special chain descriptor needs
to be configured:

• The first part is the four-source descriptor (referred to as the principal-descriptor) containing
the address of the first 4 source data blocks along with other information.

• The second part (mini-descriptor) contains 4, DWORDs containing the address of the
additional four (SAR5 - SAR8) source data blocks. The mini-descriptor is written to a
contiguous address immediately following the principal descriptor.

To perform a transfer, both parts (principal and mini-descriptor) must be written to local memory.
Figure 3 shows the format of this eight-source descriptor. The eight-source descriptor requires
twelve contiguous words in local memory and is required to be aligned on an 16-word boundary.
All twelve words are required.

• The first eight words are defined in the four-source descriptor definition. See Section 1.3.2.1,
“Principle / Four-Source Descriptor Format” for the definition of these words.

• The ninth word (1st word of mini-descriptor) is the address of the fifth block of data resident in
local memory. This address is driven on the internal bus. This value is loaded into SAR5.

• The tenth word (2nd word of mini-descriptor) is the address of the sixth block of data resident in
local memory. This address is driven on the internal bus. This value is loaded into SAR6.

• The eleventh word (3rd word of mini-descriptor) is the address of the seventh block of data resident
in local memory. This address is driven on the internal bus. This value is loaded SAR7.

• The twelfth word (4th word of mini-descriptor) is the address of the eighth block of data
resident in local memory. This address is driven on the internal bus. This value is loaded into
SAR 8.

Figure 3. Chain Descriptor Format for Eight Source Addresses (XOR Function)

Next Descriptor Address (NDA)

Source Address for first block of data

Destination Address of XOR-ed data

Address of Next Chain Descriptor

Source Address for second block of data

Source Address for fourth block of data

Source Address for third block of data

Description

Byte Count (BC)

Descriptor Control (DC)

Number of bytes to XOR

Descriptor Control

Source Address for sixth data block

Source Address for fifth data block

Source Address for seventh data block

Source Address for eighth data block

 Source Address (D/SAR1)

 Source Address (SAR2)

 Source Address (SAR3)

 Source Address (SAR4)

 Destination Address (DAR)

 Source Address (SAR5)

 Source Address (SAR6)

 Source Address (SAR7)

 Source Address (SAR8)

Chain Descriptor in I/O Processor Memory

16 January, 2005 Document Number: 304496001US

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Hardware-Assist XOR Unit

1.3.2.3 Sixteen-Source Descriptor Format

To perform an XOR-transfer with up to sixteen source blocks of data, a special chain descriptor
needs to be configured:

• The first part (principal-descriptor) contains the address of the first 4 source data blocks along
with other information.

• The second part (mini-descriptor) contains four, DWORDs containing the address of the
additional four (SAR5 - SAR8) source data blocks. The mini-descriptor is written to a
contiguous address immediately following the principal descriptor.

• The third part (extended-descriptor 0) contains nine, DWORDs containing the address of the
additional eight (SAR9 - SAR16) source data blocks and the command/control for these data
blocks. The extended-descriptor 0 is written to a contiguous address immediately following
the mini descriptor.

To perform a transfer, all three parts (principal descriptor, mini-descriptor and extended-descriptor
0) must be written to local memory. Figure 4 shows the format of this configuration. Every
descriptor requires twenty one contiguous words in local memory and is required to be aligned on
an 32-word boundary. All twenty one words are required.

Figure 4. Chain Descriptor Format for Sixteen Source Addresses (XOR Function)

Next Descriptor Address (NDA)

Source Address for first block of data

Destination Address of XOR-ed data

Address of Next Chain Descriptor

Source Address for second block of data

Source Address for fourth block of data

Source Address for third block of data

Description

Byte Count (BC)

Descriptor Control (DC)

Number of bytes to XOR

Descriptor Control

Source Address for sixth data block

Source Address for fifth data block

Source Address for seventh data block

Source Address for eighth data block

 Source Address (D/SAR1)

 Source Address (SAR2)

 Source Address (SAR3)

 Source Address (SAR4)

 Destination Address (DAR)

 Source Address (SAR5)

 Source Address (SAR6)

 Source Address (SAR7)

 Source Address (SAR8)

Chain Descriptor in Intel XScale® Core Memory

Extended Descriptor Control 0 (EDC0)

 Source Address (SAR9)

 Source Address (SAR10)

 Source Address (SAR11)

 Source Address (SAR12)

 Source Address (SAR13)

 Source Address (SAR14)

 Source Address (SAR15)

 Source Address (SAR16)

Source Address for ninth block of data

Source Address for thirteenth block of data

Extended Descriptor 0 control

Source Address for tenth block of data

Source Address for twelfth block of data

Source Address for eleventh block of data

Source Address for fourteenth block of data

Source Address for fifteenth block of data

Source Address for sixteenth block of data

Document Number: 304496001US January, 2005 17

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Hardware-Assist XOR Unit

• The first eight words are defined in the four-source descriptor definition. See Section 1.3.2.1,
“Principle / Four-Source Descriptor Format” for the definition of these words.

• Words nine through twelve are defined in the eight-source descriptor definition. See Section
1.3.2.2, “Eight-Source Descriptor Format” for the definition of these words.

• The thirteenth word (1st word of extended-descriptor 0) is the Extended Descriptor Control
Word 0. This word configures the Application Accelerator for one operation. The value is
loaded into the Extended Descriptor Control Register 0.

• The fourteenth word (2nd word of extended-descriptor 0) is the address of the ninth block of
data resident in local memory. This address is driven on the internal bus. This value is loaded
into SAR 9.

• The fifteenth word (3rd word of extended-descriptor 0) is the address of the tenth block of data
resident in local memory. This address is driven on the internal bus. This value is loaded into
SAR 10.

• The sixteenth word (4th word of extended-descriptor 0) is the address of the eleventh block of
data resident in local memory. This address is driven on the internal bus. This value is loaded
into SAR 11.

• The seventeenth word (5th word of extended-descriptor 0) is the address of the twelfth block
of data resident in local memory. This address is driven on the internal bus. This value is
loaded into SAR 12.

• The eighteenth word (6th word of extended-descriptor 0) is the address of the thirteenth block
of data resident in local memory. This address is driven on the internal bus. This value is
loaded into SAR 13.

• The nineteenth word (7th word of extended-descriptor 0) is the address of the fourteenth block
of data resident in local memory. This address is driven on the internal bus. This value is
loaded into SAR 14.

• The twentieth word (8th word of extended-descriptor 0) is the address of the fifteenth block of
data resident in local memory. This address is driven on the internal bus. This value is loaded
into SAR 15.

• The twenty first word (9th word of extended-descriptor 0) is the address of the sixteenth block
of data resident in local memory. This address is driven on the internal bus. This value is
loaded into SAR 16.

18 January, 2005 Document Number: 304496001US

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Hardware-Assist XOR Unit

1.3.2.4 Thirty-two-Source Descriptor Format

To perform an XOR-transfer with up to thirty two source blocks of data, a special chain descriptor
needs to be configured:

• The first part (principal-descriptor) contains the address of the first 4 source data blocks along
with other information.

• The second part (mini-descriptor) contains four, DWORDs containing the address of the
additional four (SAR5 - SAR8) source data blocks. The mini-descriptor is written to a
contiguous address immediately following the principal descriptor.

• The third part (extended-descriptor 0) contains nine, DWORDs containing the address of the
additional eight (SAR9 - SAR16) source data blocks and the command/control for these data
blocks. The extended-descriptor 0 is written to a contiguous address immediately following
the mini descriptor.

• The fourth part (extended-descriptor 1) contains nine, DWORDs containing the address of the
additional eight (SAR17 - SAR24) source data blocks and the command/control for these data
blocks. The extended-descriptor 1 is written to a contiguous address immediately following
extended-descriptor 0.

• The fifth part (extended-descriptor 2) contains nine, DWORDs containing the address of the
additional eight (SAR25 - SAR32) source data blocks and the command/control for these data
blocks. The extended-descriptor 2 is written to a contiguous address immediately following
extended-descriptor 1.

To perform a transfer, all five parts (principal descriptor, mini-descriptor, extended-descriptor 0,
extended-descriptor 1, and extended-descriptor 2) must be written to local memory. Figure 5 shows
the format of this configuration. The full descriptor requires thirty nine contiguous words in local
memory and is required to be aligned on an 64-word boundary. All thirty nine words are required.

Document Number: 304496001US January, 2005 19

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Hardware-Assist XOR Unit

Figure 5. Chain Descriptor Format for Thirty Two Source Addresses (XOR Function)

Next Descriptor Address (NDA)

Source Address for first block of data

Destination Address of XOR-ed data

Address of Next Chain Descriptor

Source Address for second block of data

Source Address for fourth block of data

Source Address for third block of data

Description

Byte Count (BC)

Descriptor Control (DC)

Number of bytes to XOR

Descriptor Control

Source Address for sixth data block

Source Address for fifth data block

Source Address for seventh data block

Source Address for eighth data block

 Source Address (D/SAR1)

 Source Address (SAR2)

 Source Address (SAR3)

 Source Address (SAR4)

 Destination Address (DAR)

 Source Address (SAR5)

 Source Address (SAR6)

 Source Address (SAR7)

 Source Address (SAR8)

Chain Descriptor in I/O Processor Memory

Extended Descriptor Control 0 (EDC0)

 Source Address (SAR9)

 Source Address (SAR10)

 Source Address (SAR11)

 Source Address (SAR12)

 Source Address (SAR13)

 Source Address (SAR14)

 Source Address (SAR15)

 Source Address (SAR16)

Source Address for ninth block of data

Source Address for thirteenth block of data

Extended Descriptor 0 control

Source Address for tenth block of data

Source Address for twelfth block of data

Source Address for eleventh block of data

Source Address for fourteenth block of data

Source Address for fifteenth block of data

Source Address for sixteenth block of data

Source Address for seventeenth block of data

Source Address for twenty first block of data

Extended Descriptor 1 control

Source Address for eighteenth block of data

Source Address for twentieth block of data

Source Address for nineteenth block of data

Source Address for twenty second block of data

Source Address for twenty third block of data

Source Address for twenty fourth block of data

Extended Descriptor Control 1 (EDC1)

 Source Address (SAR17)

 Source Address (SAR19)

 Source Address (SAR20)

 Source Address (SAR21)

 Source Address (SAR23)

 Source Address (SAR24)

 Source Address (SAR22)

 Source Address (SAR18)

Extended Descriptor Control 2 (EDC2)

 Source Address (SAR25)

 Source Address (SAR26)

 Source Address (SAR27)

 Source Address (SAR28)

 Source Address (SAR29)

 Source Address (SAR30)
 Source Address (SAR31)

 Source Address (SAR32)

Source Address for twenty fifth block of data

Source Address for twenty ninth block of data

Extended Descriptor 2 control

Source Address for twenty sixth block of data

Source Address for twenty eighth block of data

Source Address for twenty seventh block of data

Source Address for thirtieth block of data

Source Address for thirty first block of data

Source Address for thirty second block of data

20 January, 2005 Document Number: 304496001US

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Hardware-Assist XOR Unit

• The first eight words are defined in the Four-source descriptor definition. See Section 1.3.2.1,
“Principle / Four-Source Descriptor Format” for the definition of these words.

• Words nine through twelve are defined in the Eight-source descriptor definition. See Section
1.3.2.2, “Eight-Source Descriptor Format” for the definition of these words.

• Words thirteen through twenty-one are defined in the Sixteen-source descriptor definition. See
Section 1.3.2.3, “Sixteen-Source Descriptor Format” for the definition of these words.

• The twenty second word (1st word of extended-descriptor 1) is the Extended Descriptor
Control Word 1. This word configures the Application Accelerator for one operation. The
value is loaded into the Extended Descriptor Control Register 1.

• The twenty third word (2nd word of extended-descriptor 1) is the address of the seventeenth
block of data resident in local memory. This address is driven on the internal bus. This value is
loaded into SAR17.

• The twenty fourth word (3rd word of extended-descriptor 1) is the address of the eighteenth
block of data resident in local memory. This address is driven on the internal bus. This value is
loaded into SAR 18.

• The twenty fifth word (4th word of extended-descriptor 1) is the address of the nineteenth
block of data resident in local memory. This address is driven on the internal bus. This value is
loaded into SAR 19.

• The twenty sixth word (5th word of extended-descriptor 1) is the address of the twentieth
block of data resident in local memory. This address is driven on the internal bus. This value is
loaded into SAR 20.

• The twenty seventh word (6th word of extended-descriptor 1) is the address of the twenty first
block of data resident in local memory. This address is driven on the internal bus. This value is
loaded into SAR 21.

• The twenty eighth word (7th word of extended-descriptor 1) is the address of the twenty
second block of data resident in local memory. This address is driven on the internal bus. This
value is loaded into SAR 22.

• The twenty ninth word (8th word of extended-descriptor 1) is the address of the twenty third
block of data resident in local memory. This address is driven on the internal bus. This value is
loaded into SAR 23.

• The thirtieth word (9th word of extended-descriptor 1) is the address of the twenty fourth
block of data resident in local memory. This address is driven on the internal bus. This value is
loaded into SAR 24.

• The thirty first word (1st word of extended-descriptor 2) is the Extended Descriptor Control
Word 2. This word configures the Application Accelerator for one operation. The value is
loaded into the Extended Descriptor Control Register 2.

• The thirty second word (2nd word of extended-descriptor 2) is the address of the twenty fifth
block of data resident in local memory. This address is driven on the internal bus. This value is
loaded into SAR 25.

• The thirty third word (3rd word of extended-descriptor 2) is the address of the twenty sixth
block of data resident in local memory. This address is driven on the internal bus. This value is
loaded into SAR 26.

• The thirty fourth word (4th word of extended-descriptor 2) is the address of the twenty seventh
block of data resident in local memory. This address is driven on the internal bus. This value is
loaded into SAR 27.

Document Number: 304496001US January, 2005 21

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Hardware-Assist XOR Unit

• The thirty fifth word (5th word of extended-descriptor 2) is the address of the twenty eighth
block of data resident in local memory. This address is driven on the internal bus. This value is
loaded into SAR 28.

• The thirty sixth word (6th word of extended-descriptor 2) is the address of the twenty ninth
block of data resident in local memory. This address is driven on the internal bus. This value is
loaded into SAR 29.

• The thirty seventh word (7th word of extended-descriptor 2) is the address of the thirtieth
block of data resident in local memory. This address is driven on the internal bus. This value is
loaded into SAR 30.

• The thirty eighth word (8th word of extended-descriptor 2) is the address of the thirty first
block of data resident in local memory. This address is driven on the internal bus. This value is
loaded into SAR 31.

• The thirty ninth word (9th word of extended-descriptor 2) is the address of the thirty second
block of data resident in local memory. This address is driven on the internal bus. This value is
loaded into SAR 32.

22 January, 2005 Document Number: 304496001US

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Hardware-Assist XOR Unit

1.3.2.5 Dual-XOR-Transfer Descriptor Format

To perform a Dual-XOR-transfer, a special chain descriptor needs to be configured:

• The descriptor contains addresses for 4 source data blocks and 2 destination data buffers along
with other information.

• This descriptor format is only valid when the Dual-XOR-transfer Enable bit (bit 27) in the
Descriptor Control word is set.

• The format is based on the Eight Source Descriptor for XOR-transfers, and the control
registers of the corresponding words take on a different meaning when processing this
descriptor.

Figure 6 shows the format of this Dual-XOR-transfer descriptor. The Dual-XOR-transfer
descriptor requires nine contiguous words in local memory and is required to be aligned on an
16-word boundary. All nine words are required.

Each word in the chain descriptor is analogous to control register values. Bit definitions for the
words in the chain descriptor are the same as for the control registers.

• First word is local memory address of next chain descriptor. A value of zero specifies the end of the
chain. This value is loaded into the Accelerator Next Descriptor Address Register. Because chain
descriptors must be aligned on a minimum 8-word boundary, the unit may ignore bits 04:00 of this
address.

• Second word is the address of the first block of data resident in local memory. This address will be
driven on the internal bus. This value is loaded into the Data / Source Address Register 1 (SAR1).

• Third word is the address of the second block of data resident in local memory. This address will be
driven on the internal bus. This value is loaded into the Source Address Register 2 (SAR2)

• Fourth word is the address of the third block of data resident in local memory. This address
will be driven on the internal bus. This source is referred to as the Horizontal source, and is
associated with the Horizontal Destination for the Dual-XOR-transfer. This value is loaded
into the Horizontal Source Address Register (SAR3/SAR_H).

• Fifth word is the address of the fourth block of data resident in local memory. This address will
be driven on the internal bus. This source is referred to as the Diagonal source, and is
associated with the Diagonal Destination for the Dual-XOR-transfer. This value is loaded into
the Diagonal Source Address Register 4 (SAR4/SAR_D).

Figure 6. Chain Descriptor Format for Dual-XOR-transfer

Next Descriptor Address (NDA)

Source Address for first block of data

Destination Address of Horizontal XOR-ed data

Address of Next Chain Descriptor

Source Address for second block of data

Source Address for Diagonal data

Source Address for Horizontal data

Description

Byte Count (BC)

Descriptor Control (DC)

Number of bytes to XOR

Descriptor Control

Destination Address for Diagonal XOR-ed data

 Source Address (SAR1)

 Source Address (SAR2)

Horizontal Source Address (SAR_H)

Diagonal Source Address (SAR_D)

 Horizontal Destination Address (DAR_H)

Diagonal Destination Address (DAR_D)

Chain Descriptor in I/O Processor Memory

Document Number: 304496001US January, 2005 23

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Hardware-Assist XOR Unit

• Sixth word is the destination address where the first XOR result will be stored in local memory.
This address will be driven on the internal bus. This destination is referred to as the Horizontal
Destination, and is associated with the Horizontal Source for the Dual-XOR-transfer. This value
is loaded into the Destination Address Register (DAR/DAR_H).

• Seventh word is the Byte Count value. This value specifies the number of bytes of data in the
current chain descriptor. This value is loaded into the Accelerator Byte Count Register.

• Eighth word is the Descriptor Control Word. This word configures the Application Accelerator for
one operation. This value is loaded into the Accelerator Descriptor Control Register.

• The ninth word is the destination address where the second XOR result will be stored in local
memory. This address will be driven on the internal bus. This destination is referred to as the
Diagonal Destination, and is associated with the Diagonal Source for the Dual-XOR-transfer.
This value is loaded into the Diagonal Destination Address Register (SAR5/DAR_D).

There are no data alignment requirements for any source addresses. While the destinations addresses
(Horizontal and Diagonal) also have no data alignment requirements relative to memory, the alignment
of the Horizontal and Diagonal destination addresses must match (relative to 16 Byte address).

Refer to Section 1.13 for additional description on the control registers.

24 January, 2005 Document Number: 304496001US

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Hardware-Assist XOR Unit

1.3.2.6 P+Q Three-Source Descriptor Format

Figure 7 shows the format of an individual chain descriptor when P+Q RAID-6 is enabled. This
three-source descriptor is the smallest supported descriptor for P+Q RAID-6 operations. The
three-source descriptor requires eight contiguous words in 80331 local memory and is required to
be aligned on an 8-word boundary. All eight words are required.

Each word in the chain descriptor is analogous to control register values. Bit definitions for the
words in the chain descriptor are the same as for the control registers.

• First word is local memory address of next chain descriptor. A value of zero specifies end of chain.
Value is loaded into the Accelerator Next Descriptor Address Register. Because chain descriptors
must be aligned on a minimum 8-word boundary, unit may ignore bits 04:00 of this address.

• Second word is address of the first block of data resident in local memory, or immediate data when
performing a Memory Block Fill. This value is loaded into the Data / P+Q RAID-6 Source Address
Register 1 (D/PQSAR1).

• Third word is address of second block of data resident in local memory. This address is driven on
the internal bus. This value is loaded into the P+Q RAID-6 Source Address Register 2 (PQSAR2).

• Fourth word is address of third block of data resident in local memory and is driven on the
internal bus. This value is loaded into P+Q RAID-6 Source Address Register 3 (PQSAR3).

• Fifth word contains Data Multiplier Values (DMLTx) for source addresses 1 through 3. These
bytes are used as control input for GF Multiply of corresponding source. The respective byte
will be driven to the GF Multiply when source data is being fetched. The lowest order byte of
this word contains the data multiplier for source address 1, the second byte for source address
2, the third byte for source address 3, and the highest order byte is not used and is reserved.
This value is loaded into the P+Q RAID-6 GF Multiply Multiplier Register 1 (GFMR1).

• Sixth word is the destination address where data will be stored in local memory. This address will
be driven on the internal bus. This value is loaded into the Destination Address Register.

• Seventh word is the Byte Count value. This value specifies the number of bytes of data in the
current chain descriptor. This value is loaded into the Accelerator Byte Count Register.

• Eighth word is the Descriptor Control Word. This word configures the Application Accelerator for
one operation. This value is loaded into the Accelerator Descriptor Control Register.

There are no data alignment requirements for any source addresses or destination address. However,
maximum performance is obtained from aligned transfers, especially small transfers. See Section 1.4.

Refer to Section 1.13 for additional description on the control registers.

Figure 7. P+Q Base Chain Descriptor Format

Next Descriptor Address (NDA)

Immediate Data or Source Address for first block of data

Destination Address

Address of Next Chain Descriptor

Source Address for second block of data

Data Multiplier Values for Sources 1 through 3

Source Address for third block of data

Description

Byte Count (BC)

Descriptor Control (DC)

Number of bytes

Descriptor Control

 Source Address (D/PQSAR1)

 Source Address (PQSAR2)

Source Address (PQSAR3)

Data Multiplier Values (PQMR1)

Destination Address (DAR)

Chain Descriptor in Local Memory

Document Number: 304496001US January, 2005 25

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Hardware-Assist XOR Unit

1.3.2.7 P+Q Six-Source Descriptor Format

To perform an P+Q RAID-6 XOR-transfer with up to six source blocks of data, a special chain
descriptor needs to be configured:

• First part: three-source descriptor (referred to as principal-descriptor) containing source
address and data multiplier values of first 3 source data blocks along with other information.

• Second part: (mini-descriptor) contains 4 DWORDs containing the address of the additional
three source data blocks and Data Multiplier values. The mini-descriptor is written to a
contiguous address immediately following the principal descriptor.

To perform a transfer, both parts (principal and mini-descriptor) must be written to local memory.
Figure 8 shows the format of this eight-source descriptor. The six-source descriptor requires twelve
contiguous words in local memory and is required to be aligned on an 16-word boundary. All
twelve words are required.

• The first eight words are defined in the three-source descriptor definition. See Section 1.3.2.1
for the definition of these words.

• The ninth word (1st word of mini-descriptor) is the address of the fourth block of data resident
in local memory. This address will be driven on the internal bus. This value is loaded into
PQSAR4.

• The tenth word (2nd word of mini-descriptor) is the address of the fifth block of data resident in
local memory. This address will be driven on the internal bus. This value is loaded into PQSAR5.

• The eleventh word (3rd word of mini-descriptor) is the address of the sixth block of data resident in
local memory. This address will be driven on the internal bus. This value is loaded PQSAR6

• The twelfth word contains the Data Multiplier Values (DMLT) for source addresses 4 through
6. These bytes are used as the control input for the GF Multiply of the corresponding source.
The respective byte will be driven to the GF Multiply when source data is being fetched. The
lowest order byte of this word contains the data multiplier for source address 4, the second
byte for source address 5, the third byte for source address 6, and the highest order byte is not
used and is reserved. This value is loaded into the P+Q RAID-6 GF Multiply Multiplier
Register 2 (GFMR2).

Figure 8. P+Q Chain Descriptor Format for Six Source Addresses (XOR Function)

Next Descriptor Address (NDA)

Source Address for first block of data

Destination Address of XOR-ed data

Address of Next Chain Descriptor

Source Address for second block of data

Data Multiplier Values for Sources 1 through 3

Source Address for third block of data

Description

Byte Count (BC)

Descriptor Control (DC)

Number of bytes to XOR

Descriptor Control

Source Address for fifth data block

Source Address for fourth data block

Source Address for sixth data block

Data Multiplier Values for Sources 4 through 6

 Source Address (PQSAR1)

 Source Address (PQSAR2)

 Source Address (PQSAR3)

Data Multiplier Values (GFMR1)

 Destination Address (DAR)

 Source Address (PQSAR4)

 Source Address (PQSAR5)

 Source Address (PQSAR6)

Data Multiplier Values (GFMR2)

Chain Descriptor in I/O Processor Memory

26 January, 2005 Document Number: 304496001US

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Hardware-Assist XOR Unit

1.3.2.8 P+Q Twelve-Source Descriptor Format

To perform an XOR-transfer with a GF Multiply data multiplier on up to twelve source blocks of
data, a special chain descriptor needs to be configured:

• The first part (principal-descriptor) contains the address of the first 3 source data blocks and
data multiplier values along with other information.

• The second part (mini-descriptor) contains four, DWORDs containing the address of the
additional three source data blocks and data multiplier values. The mini-descriptor is written to
a contiguous address immediately following the principal descriptor.

• The third part (extended-descriptor 0) contains nine, DWORDs containing the address of the
additional six source data blocks and data multiplier values. The extended-descriptor 0 is
written to a contiguous address immediately following the mini descriptor.

To perform a transfer, all three parts (principal descriptor, mini-descriptor and extended-descriptor
0) must be written to local memory. Figure 9 shows the format of this configuration. Every
descriptor requires twenty one contiguous words in local memory and is required to be aligned on
an 32-word boundary. All twenty one words are required.

Figure 9. P+Q Chain Descriptor Format for Twelve Source Addresses (XOR Function)

Next Descriptor Address (NDA)

Source Address for first block of data

Destination Address of XOR-ed data

Address of Next Chain Descriptor

Source Address for second block of data

Data Multiplier Values for Sources 1 through 3

Source Address for third block of data

Description

Byte Count (BC)

Descriptor Control (DC)

Number of bytes to XOR

Descriptor Control

Source Address for fifth data block

Source Address for fourth data block

Source Address for sixth data block

Data Multiplier Values for Sources 4 through 6

 Source Address (D/PQSAR1)

 Source Address (PQSAR2)

 Source Address (PQSAR3)

 Data Multiplier Values (GFMR1)

 Destination Address (DAR)

 Source Address (PQSAR4)

 Source Address (PQSAR5)

 Source Address (PQSAR6)

Data Multiplier Values (GFMR2

Chain Descriptor in Intel XScale® Core Memory

Extended Descriptor Control 0 (EDC0)

 Source Address (PQSAR7)

 Source Address (PQSA8)R

 Source Address (PQSAR9)

Data Multiplier Values (GFMR3)

 Source Address (PQSAR10)

 Source Address (PQSAR11)

 Source Address (PQSAR12)

Data Multiplier Values (GFMR4)

Source Address for seventh block of data

Source Address for tenth block of data

Extended Descriptor 0 control

Source Address for eighth block of data

Data Multiplier Values for Sources 7 through 9

Source Address for ninth block of data

Source Address for eleventh block of data

Source Address for twelfth block of data

Data Multiplier Values for Sources 10 through 12

Document Number: 304496001US January, 2005 27

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Hardware-Assist XOR Unit

• The first eight words are defined in the three-source descriptor definition. See Section 1.3.2.6,
“P+Q Three-Source Descriptor Format” for the definition of these words.

• Words nine through twelve are defined in the six-source descriptor definition. See Section
1.3.2.7, “P+Q Six-Source Descriptor Format” for the definition of these words.

• The thirteenth word (1st word of extended-descriptor 0) is the Extended Descriptor Control
Word 0. This word configures the Application Accelerator for one operation. The value is
loaded into the Extended Descriptor Control Register 0.

• The fourteenth word (2nd word of extended-descriptor 0) is the address of the seventh block of
data resident in local memory. This address will be driven on the internal bus. This value is
loaded into PQSAR7.

• The fifteenth word (3rd word of extended-descriptor 0) is the address of the eighth block of
data resident in local memory. This address will be driven on the internal bus. This value is
loaded into PQSAR8.

• The sixteenth word (4th word of extended-descriptor 0) is the address of the ninth block of
data resident in local memory. This address will be driven on the internal bus. This value is
loaded into PQSAR9.

• The seventeenth word (5th word of extended-descriptor 0) contains the Data Multiplier Values
(DMLTx) for source addresses 7 through 9. These bytes are used as the control input for the
TDIfn of the corresponding source. The respective byte will be driven to the GF Multiply when
source data is being fetched. The lowest order byte of this word contains the data multiplier for
source address 7, the second byte for source address 8, the third byte for source address 9, and
the highest order byte is not used and is reserved. This value is loaded into the P+Q RAID-6
GF Multiply Multiplier Register 3 (GFMR3).

• The eighteenth word (6th word of extended-descriptor 0) is the address of the tenth block of
data resident in local memory. This address will be driven on the internal bus. This value is
loaded into PQSAR10.

• The nineteenth word (7th word of extended-descriptor 0) is the address of the eleventh block
of data resident in local memory. This address will be driven on the internal bus. This value is
loaded into PQSAR11.

• The twentieth word (8th word of extended-descriptor 0) is the address of the twelfth block of
data resident in local memory. This address will be driven on the internal bus. This value is
loaded into PQSAR12.

• The twenty first word (9th word of extended-descriptor 0) contains the Data Multiplier Values
(DMLTx) for source addresses 10 through 12. These bytes are used as the control input for the
GF Multiply of the corresponding source. The respective byte will be driven to the GF Multiply
when source data is being fetched. The lowest order byte of this word contains the data
multiplier for source address 10, the second byte for source address 11, the third byte for
source address 12, and the highest order byte is not used and is reserved. This value is loaded
into the P+Q RAID-6 GF Multiply Multiplier Register 4 (GFMR4).

28 January, 2005 Document Number: 304496001US

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Hardware-Assist XOR Unit

1.3.2.9 P+Q Sixteen-Source Descriptor Format

To perform an P+Q RAID-6 XOR-transfer with up to sixteen source blocks of data, a special chain
descriptor needs to be configured:

• The first part (principal-descriptor) contains the address of the first 3 source data blocks
(PQSAR1 - PQSAR3) and data multiplier values along with other information.

• The second part (mini-descriptor) contains four, DWORDs containing the address of the
additional three (PQSAR4 - PQSAR6) source data blocks and data multiplier values. The
mini-descriptor is written to a contiguous address immediately following the principal
descriptor.

• The third part (extended-descriptor 0) contains nine, DWORDs containing the address of the
additional six (PQSAR7 - PQSAR12) source data blocks and data multiplier values. The
extended-descriptor 0 is written to a contiguous address immediately following the mini
descriptor.

• The fourth part (extended-descriptor 1) contains nine, DWORDs containing the address of the
additional four (PQSAR13 - PQSAR16) source data blocks and data multiplier values along
with the command/control for these data blocks. The extended-descriptor 1 is written to a
contiguous address immediately following extended-descriptor 0.

Document Number: 304496001US January, 2005 29

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Hardware-Assist XOR Unit

To perform a transfer, all four parts (principal descriptor, mini-descriptor, extended-descriptor 0,
and extended-descriptor 1) must be written to local memory. Figure 10 shows the format of this
configuration. The full descriptor requires twenty-seven contiguous words in local memory and is
required to be aligned on an 32-word boundary. All twenty-seven words are required.

Figure 10. P+Q Chain Descriptor Format for Sixteen Source Addresses (XOR Function)

Next Descriptor Address (NDA)

Source Address for first block of data

Destination Address of XOR-ed data

Address of Next Chain Descriptor

Source Address for second block of data

Data Multiplier Values for Sources 1 through 3

Source Address for third block of data

Description

Byte Count (BC)

Descriptor Control (DC)

Number of bytes to XOR

Descriptor Control

Source Address for fifth data block

Source Address for fourth data block

Source Address for sixth data block

Data Multiplier Values for Sources 4 through 6

 Source Address (D/PQSAR1)

 Source Address (PQSAR2)

 Source Address (PQSAR3)

 Data Multiplier Values (GFMR1)

 Destination Address (DAR)

 Source Address (PQSAR4)

 Source Address (PQSAR5)

 Source Address (PQSAR6)

 Data Multiplier Values (GFMR2)

Chain Descriptor in I/O Processor Memory

Extended Descriptor Control 0 (EDC0)

 Source Address (PQSAR7)

 Source Address (PQSAR8)

 Source Address (PQSAR9)

 Data Multiplier Values (GFMR3)

 Source Address (PQSAR10)

 Source Address (PQSAR11)

 Source Address (PQSAR12)

 Data Multiplier Values (GFMR4)

Source Address for seventh block of data

Source Address for tenth block of data

Extended Descriptor 0 control

Source Address for eighth block of data

Data Multiplier Values for Sources 4 through 9

Source Address for ninth block of data

Source Address for eleventh block of data

Source Address for twelfth block of data

Data Multiplier Values for Sources 10 through 12

Source Address for thirteenth block of data

Data Multiplier Values for Sources 13 through 16

Reserved - not used

Source Address for fourteenth block of data

Source Address for sixteenth block of data

Source Address for fifteenth block of data

Reserved

 Source Address (PQSAR13)

 Source Address (PQSAR15)

 Source Address (PQSAR16)

 Data Multiplier Values (GFMR5)

 Source Address (PQSAR14)

30 January, 2005 Document Number: 304496001US

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Hardware-Assist XOR Unit

• The first eight words are defined in the three-source descriptor definition. See Section 1.3.2.6,
“P+Q Three-Source Descriptor Format” for the definition of these words.

• Words nine through twelve are defined in the six-source descriptor definition. See Section
1.3.2.7, “P+Q Six-Source Descriptor Format” for the definition of these words.

• Words thirteen through twenty-one are defined in the Twelve-source descriptor definition. See
Section 1.3.2.8, “P+Q Twelve-Source Descriptor Format” for the definition of these words.

• The twenty second word (1st word of extended-descriptor 1) is reserved and not used by the
AA in the processing of this descriptor.

• The twenty third word (2nd word of extended-descriptor 1) is the address of the thirteenth
block of data resident in local memory. This address will be driven on the internal bus. This
value is loaded into PQSAR12.

• The twenty fourth word (3rd word of extended-descriptor 1) is the address of the fourteenth
block of data resident in local memory. This address will be driven on the internal bus. This
value is loaded into PQSAR12.

• The twenty fifth word (4th word of extended-descriptor 1) is the address of the fifteenth block
of data resident in local memory. This address will be driven on the internal bus. This value is
loaded into PQSAR12.

• The twenty sixth word (5th word of extended-descriptor 1) is the address of the sixteenth block
of data resident in local memory. This address will be driven on the internal bus. This value is
loaded into PQSAR12.

• The twenty seventh word (6th word of extended-descriptor 1) contains the Data Multiplier
Values (DMLTx) for source addresses 13 through 16. These bytes are used as the control input
for the GF Multiply of the corresponding source. The respective byte will be driven to the GF
Multiply when source data is being fetched. The lowest order byte of this word contains the
data multiplier for source address 13, the second byte for source address 14, the third byte for
source address 15, and the highest order byte for source address 16. This value is loaded into
the P+Q RAID-6 GF Multiply Multiplier Register 5 (GFMR5).

Note: The highest order byte (bits[31:24]) is unused in other Data Multiplier words GFMR[4:1], but is
defined in GFMR5.

Document Number: 304496001US January, 2005 31

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Hardware-Assist XOR Unit

1.3.3 Descriptor Summary

Table 2 summarizes the content of the descriptors defined in previous sections.

Table 2. Descriptor Summary (Sheet 1 of 2)

R
eg

is
te

r
A

d
d

re
ss

4-
S

o
u

rc
e

X
O

R

8-
S

o
u

rc
e

X
O

R

16
-S

o
u

rc
e

X
O

R

32
-S

o
u

rc
e

X
O

R

D
u

al
 X

O
R

P
+Q

 3
-S

o
u

rc
e

P
+Q

 6
-S

o
u

rc
e

P
+

Q
 1

2-
S

o
u

rc
e

P
+

Q
 1

6-
S

o
u

rc
e

FFFF
E80Ch NDA NDA NDA NDA NDA NDA NDA NDA NDA

FFFF
E810h SAR1 SAR1 SAR1 SAR1 SAR1 SAR1 SAR1 SAR1 SAR1

FFFF
E814h SAR2 SAR2 SAR2 SAR2 SAR2 SAR2 SAR2 SAR2 SAR2

FFFF
E818h SAR3 SAR3 SAR3 SAR3 SAR_H SAR3 SAR3 SAR3 SAR3

FFFF
E81Ch SAR4 SAR4 SAR4 SAR4 SAR_D GFMR1 GFMR1 GFMR1 GFMR1

FFFF
E820h DAR DAR DAR DAR DAR_H DAR DAR DAR DAR

FFFF
E824h BC BC BC BC BC BC BC BC BC

FFFF
E828h DC DC DC DC DC DC DC DC DC

FFFF
E82Ch SAR5 SAR5 SAR5 DAR_D SAR4 SAR4 SAR4

FFFF
E830h SAR6 SAR6 SAR6 SAR5 SAR5 SAR5

FFFF
E834h SAR7 SAR7 SAR7 SAR6 SAR6 SAR6

FFFF
E838h SAR8 SAR8 SAR8 GFMR2 GFMR2 GFMR2

FFFF
E83Ch EDCR0 EDCR0 EDCR0 EDCR0

FFFF
E840h SAR9 SAR9 SAR7 SAR7

FFFF
E844h SAR10 SAR10 SAR8 SAR8

FFFF
E848h SAR11 SAR11 SAR9 SAR9

FFFF
E84Ch SAR12 SAR12 GFMR3 GFMR3

FFFF
E850h SAR13 SAR13 SAR10 SAR10

FFFF
E854h SAR14 SAR14 SAR11 SAR11

FFFF
E858h SAR15 SAR15 SAR12 SAR12

FFFF
E85Ch SAR16 SAR16 GFMR4 GFMR4

32 January, 2005 Document Number: 304496001US

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Hardware-Assist XOR Unit

FFFF
E860h EDCR1 rsvd

FFFF
E864h SAR17 SAR13

FFFF
E868h SAR18 SAR14

FFFF
E86Ch SAR19 SAR15

FFFF
E870h SAR20 SAR16

FFFF
E874h SAR21 GFMR5

FFFF
E878h SAR22

FFFF
E87Ch SAR23

FFFF
E880h SAR24

FFFF
E884h EDCR2

FFFF
E888h SAR25

FFFF
E88Ch SAR26

FFFF
E890h SAR27

FFFF
E894h SAR28

FFFF
E898h SAR29

FFFF
E89Ch SAR30

FFFF
E8A0h SAR31

FFFF
E8A4h SAR32

Table 2. Descriptor Summary (Sheet 2 of 2)
R

eg
is

te
r

A
d

d
re

ss

4-
S

o
u

rc
e

X
O

R

8-
S

o
u

rc
e

X
O

R

16
-S

o
u

rc
e

X
O

R

32
-S

o
u

rc
e

X
O

R

D
u

al
 X

O
R

P
+Q

 3
-S

o
u

rc
e

P
+Q

 6
-S

o
u

rc
e

P
+Q

 1
2-

S
o

u
rc

e

P
+Q

 1
6-

S
o

u
rc

e

Document Number: 304496001US January, 2005 33

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Hardware-Assist XOR Unit

1.3.4 Descriptor Chaining

To perform an AA operation, a series of chain descriptors can be built in local memory to operate
on multiple blocks of source data resident in local memory. The result can then be stored back in
local memory. An application can build multiple chain descriptors to operate on many blocks of
data which have different source addresses within the local memory.

When multiple chain descriptors are built in local memory, the application can link each of these
chain descriptors using the Next Descriptor Address in the chain descriptor. This address logically
links the chain descriptors together. This allows the application to build a list of transfers which
may not require the processor until all transfers are complete. Figure 11 shows an example of a
linked-list of transfers using only four-source descriptors specified in external memory.

Figure 11. XOR Chaining Operation

Next Descriptor Address (NDA)

Descriptor Address Register Accelerator Control Register

Linked Descriptors In Local Memory

Buffer Transfers

First Chain Descriptor
XOR

Operation

End of Chain
(Null Value Detected)

Byte Count (BC)
Descriptor Control (DC)

Next Descriptor Address (NDA)

Byte Count (BC)
Descriptor Control (DC)

Next Descriptor Address (NDA)

Byte Count (BC)
Descriptor Control (DC)

...

Second Chain Descriptor
XOR

Operation

Nth Chain Descriptor
XOR

Operation

 Source Address (D/SAR1)
 Source Address (SAR2)
 Source Address (SAR3)
 Source Address (SAR4)

 Destination Address (DAR)

 Source Address (D/SAR1)
 Source Address (SAR2)
 Source Address (SAR3)
 Source Address (SAR4)

 Destination Address (DAR)

 Source Address (D/SAR1)
 Source Address (SAR2)
 Source Address (SAR3)
 Source Address (SAR4)

 Destination Address (DAR)

34 January, 2005 Document Number: 304496001US

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
AA Descriptor Processing

1.4 AA Descriptor Processing

An AA operation is initiated by building one or more chain descriptors in Intel XScale® core local
memory (ARM* architecture compliant). Figure 12 shows the format of a principal descriptor.

The following describes the steps for initiating a new AA operation:

1. The AA must be inactive prior to starting an AA operation. This can be checked by software
by reading the Accelerator Active bit in the Accelerator Status Register. When this bit is clear,
the unit is inactive. When this bit is set, the unit is currently active.

2. The ASR must be cleared of all error conditions.

3. The software writes the address of the first chain descriptor to the Accelerator Next Descriptor
Address Register (ANDAR).

4. The software sets the Accelerator Enable bit in the Accelerator Control Register (ACR).
Because this is the start of a new AA operation and not the resumption of a previous operation,
the Chain Resume bit in the ACR should be clear.

5. The AA operation starts by reading the ANDAR chain descriptor address. The AA loads the
chain descriptor values into the ADAR and begins data transfer. The Accelerator Descriptor
Address Register (ADAR) contains the address of the chain descriptor just read and ANDAR
now contains the Next Descriptor Address from the chain descriptor just read.

The last AA chain list descriptor has zero in the next descriptor address field specifying the last
chain descriptor. A NULL value notifies AA not to read additional chain descriptors from memory.

Once an AA operation is active, it can be temporarily suspended by clearing the Accelerator
Enable bit in the ACR. Note that this does not abort the AA operation. The unit resumes the
process when the Accelerator Enable bit is set.

When descriptors are read from external memory, bus latency and memory speed affect chaining
latency. Chaining latency is defined as the time required for the AA to access the next chain
descriptor plus the time required to set up the next AA operation.

Figure 12. Example of Gather Chaining for Four Source Blocks

source buffers

D/SAR1 = Source Address Register 1
NDA = Next Descriptor Address

SAR2 = Source Address Register 2

.

.

.

.

.

.

.

.

.

1Kbyte Store Buffer

D/SAR1

SAR3 = Source Address Register 3

End of Chain
Null Value Detected

SAR2 SAR3 SAR4 DARNDA DCBC

D/SAR1 SAR2 SAR3 SAR4 DARNDA DCBC

D/SAR1 SAR2 SAR3 SAR4 DARNDA DCBC

D/SAR1 SAR2 SAR3 SAR4 DARNDA DCBC

DAR = Destination Address Register
SAR4 = Source Address Register 4

DC = Descriptor Control
BC = Byte Count

Document Number: 304496001US January, 2005 35

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
AA Descriptor Processing

1.4.1 Scatter Gather Transfers

The Application Accelerator can be used to perform typical scatter gather transfers. This consists
of programming the chain descriptors to gather data which may be located in non-contiguous
blocks of memory. The chain descriptor specifies the destination location such that once all data
has been processed, the data is contiguous in memory. Figure 12 shows how the destination
pointers can gather data.

1.4.2 Synchronizing a Program to Chained Operation

Any operation involving the AA can be synchronized to a program executing on the Intel XScale®
core through the use of processor interrupts. The AA generates an interrupt to the Intel XScale®
core under certain conditions. They are:

1. [Interrupt and Continue] The AA completes processing a chain descriptor and the Accelerator
Next Descriptor Address Register (ANDAR) is non-zero. When the Interrupt Enable bit
within the Accelerator Descriptor Control Register (ADCR) is set, an interrupt is generated to
the Intel XScale® core. This interrupt is for synchronization purposes. The AA sets the End Of
Transfer Interrupt flag in the Accelerator Status Register (ASR). Since it is not the last chain
descriptor in the list, the AA starts to process the next chain descriptor without requiring any
processor interaction.

2. [End of Chain] The AA completes processing a chain descriptor and the Accelerator Next
Descriptor Address Register is zero specifying the end of the chain. When the Interrupt
Enable bit within the ADCR is set, an interrupt is generated to the Intel XScale® core. The AA
sets the End Of Chain Interrupt flag in the ASR.

3. [Error] An error condition occurs (refer to Section 1.11, “Error Conditions” on page 61 for
Application Accelerator error conditions) during a transfer. The AA halts operation on the
current chain descriptor and not proceed to the next chain descriptor.

Each chain descriptor can independently set the Interrupt Enable bit in the Descriptor Control
word. This bit enables an independent interrupt once a chain descriptor is processed. This bit can
be set or clear within each chain descriptor. Control of interrupt generation within each descriptor
aids in synchronization of the executing software with AA operation.

Figure 13 shows two examples of program synchronization. The left column shows program
synchronization based on individual chain descriptors. Descriptor 1A generated an interrupt to the
processor, while descriptor 2A did not because the Interrupt Enable bit was clear. The last

36 January, 2005 Document Number: 304496001US

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
AA Descriptor Processing

descriptor nA, generated an interrupt to signify the end of the chain has been reached. The right
column in Figure 13 shows an example where the interrupt was generated only on the last
descriptor signifying the end of chain.

Figure 13. Synchronizing to Chained AA Operation

Descriptor 1B

Descriptor 2A

Descriptor 2B

.

.

.

.

.

.

Descriptor 1A

chain descriptorschain descriptors

RET

interrupt procedure

.

.

.

RET

interrupt procedure

Descriptor nB

.

.

.

RET

interrupt procedure

Descriptor nA

.

.

.

Independent Interrupt after Completing any Descriptor Interrupt after Completing Last Descriptor

No Interrupt on this Descriptor

Optional interrupt
generated to

Document Number: 304496001US January, 2005 37

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
AA Descriptor Processing

1.4.3 Appending to The End of a Chain

Once the AA has started processing a chain of descriptors, application software may need to
append a chain descriptor to the current chain without interrupting the transfer in progress. The
mechanism used for performing this action is controlled by the Chain Resume bit in the
Accelerator Control Register (ACR).

The AA reads the subsequent chain descriptor each time it completes the current chain descriptor
and the Accelerator Next Descriptor Address Register (ANDAR) is non-zero. ANDAR always
contains the address of the next chain descriptor to be read and the Accelerator Descriptor Address
Register (ADAR) always contains the address of the current chain descriptor.

The procedure for appending chains requires the software to find the last chain descriptor in the
current chain and change the Next Descriptor Address in that descriptor to the address of the new
chain to be appended. The software then sets the Chain Resume bit in the ACR. It does not matter
when the unit is active or not.

The AA examines the Chain Resume bit of the ACR when the unit is idle or upon completion of a
chain of transfers. When this bit is set, the AA re-reads the Next Descriptor Address of the current
chain descriptor and loads it into ANDAR. The address of the current chain descriptor is contained
in ADAR. The AA clears the Chain Resume bit and then examines ANDAR. When ANDAR is not
zero, the AA reads the chain descriptor using this new address and begins a new operation. When
ANDAR is zero, the AA remains or returns to idle.

There are three cases to consider:

1. The AA completes an AA operation and it is not the last descriptor in the chain. In this case,
the AA clears the Chain Resume bit and reads the next chain descriptor. The appended
descriptor is read when the AA reaches the end of the original chain.

2. The channel completes an AA transfer and it is the last descriptor in the chain. In this case, the
AA examines the state of the Chain Resume bit. When the bit is set, the AA re-reads the
current descriptor to get the address of the appended chain descriptor. When the bit is clear, the
AA returns to idle.

3. The AA is idle. In this case, the AA examines the state of the Chain Resume bit when the ACR
is written. When the bit is set, the AA re-reads the last descriptor from the most-recent chain to
get the next descriptor address of the appended chain descriptor.

38 January, 2005 Document Number: 304496001US

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
AA Operations

1.5 AA Operations

The AA can be configured on a per descriptor basis through the Descriptor Control Word to
perform three distinct operations:

1. In an XOR operation, the AA generates a parity data stream in local memory that is
comprised of the XOR of up to 32 distinct data streams (i.e., SAR1..32) on a per byte basis. All
of the source data streams and the parity data stream can be up to 16 MB long.

2. In a Dual XOR operation, the AA will generate two parity data streams in local memory. The
two parity data streams are the Horizontal and Diagonal parities for XOR based RAID-6 Each
parity stream is comprised of the XOR of 2 common data streams (SAR1 and SAR2) and 1
distinct data streams (SAR_H, and SAR_D) respectively on a per byte basis. All of the source
data streams and the parity data stream can be up to 16 MB long.

3. Perform a Memory Block Fill of up to 16 MB of local memory with a 32-bit constant
(DATA/SAR1).

4. With the Zero Result Buffer Check, the AA confirms that the XOR of all the bytes of source
data results in 00H for the entire byte count. All the source data streams can be up to 16 MB
long. The results of the check is written back to the Descriptor Control Word in local memory.

Note: P+Q RAID-6 operation is controlled for the entire AA, and is applicable to all descriptors
processed, not on a per-descriptor basis.

Table 3 documents the combination of AA operations, modes and Descriptor Control features
which are valid. The typical application usage of each combination is provided. Combinations of
descriptor control features not listed are not valid.

Table 3. AA Operation and Command Combination Summary

Descriptor Control Feature AA
Operation
(Source

Command)

Application Usage DescriptionZero-Result
Check Dual-XOR

Destination
Write

Enable

0 0 1
XOR

Typical usage for RAID Applications, up to 32
sources for RAID-3, RAID-5 and 2D-XOR RAID-6.

(up to16 sources for P+Q RAID-6)

Block Filla Memory Block fill with constant data

0 1 1 XOR Two parity calculation for single strip write I/O in
2D-XOR RAID-6

1 0 0 XOR
Parity Scrub for RAID array w/o saving check

buffer (typical use). Can be used in conjunction
with P+Q RAID-6 mode.

1 0 1 XOR
Parity Scrub for RAID array with check buffer

saved to memory (not typical use). Can be used in
conjunction with P+Q RAID-6 mode.

x x x Direct Filla
First Source moved into result buffer (not XORed

with current contents)

Normal use for RAID applications

a. Specified only in Block 1 Command of Accelerator Descriptor Control.

Document Number: 304496001US January, 2005 39

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
AA Operations

1.5.1 AA Addressing

All source address operated on by the AA must be local memory addresses. The destination
address may be either a local memory address, or a PCI address mapped through the ATU
outbound memory windows. Table 4 summarizes the application usage of the AA operations for
the valid destination addressing options.

The following sections describes the AA operations in detail.

Table 4. Typical AA Operation and Addressing Summary

Descriptor Control
Featurea AA

Operation
(Source

Command)

Destinationb
Address Application Usage Description

Zero-Result
Check Dual-XOR

0 0 XOR PCI RAID Application Degraded Read

0 0
XOR Local Typical usage for RAID Applications

Block Fillc Local Memory Block fill with constant data

0 1 XOR Local Two parity calculation for single strip write I/O in
2D-XOR RAID-6

1 0 XOR Local
Parity Scrub for RAID array with check buffer
saved to memory. Can be used in conjunction

with P+Q RAID-6 mode.

a. Destination Write Enable set for all cases listed. Cases with DWE clear are not listed.
b. All AA sources must be local memory addresses.
c. Specified only in Block 1 Command of Accelerator Descriptor Control.

40 January, 2005 Document Number: 304496001US

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
AA Operations

1.5.2 XOR Operation

Figure 14 describes the XOR algorithm implementation. In this illustrative example, there are four
blocks of source data to be XOR-ed. The intermediate result is kept by the store queue in the AA
before being written back to local memory. The source data is located at addresses A000 0400H,
A000 0800H, A000 0C00H and A000 1000H respectively.

All data transfers needed for this operation are controlled by chain descriptors located in local
memory. The Application Accelerator as a master on the internal bus initiates data transfer. The
algorithm is implemented such that as data is read from local memory, the boolean unit executes
the XOR operation on incoming data.

Figure 14. The Bit-wise XOR Algorithm

A000 0400HBlock 1

MSB LSB

A000 0800H

A000 0C00H

A000 1000H

bitwise-XOR

(64-bit wide)

bitwise-XOR

(64-bit wide)

bitwise-XOR

(64-bit wide)

1K byte

byte 1byte 8

1024 bytes
bytes 1-8

1024 bytes
bytes 1-8

1024 bytes
bytes 1-8

bytes 1-8
1024 bytes

Block 2

Block 3

Block 4

...

SAR3 = A000 0C00H

DAR = B000 0400H

SAR4 = A000 1000H

SAR2 = A000 0800H
D/SAR1 = A000 0400H

ABCR = 0000 0400H
ADCR = 8000 049FH

Control Register Values

B000 0400H

128-Deep
Store Queue

 Local Memory

Document Number: 304496001US January, 2005 41

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
AA Operations

The XOR algorithm and methodology followed once a chain descriptor has been configured is
detailed below:

1. The Application Accelerator as a master on the bus initiates data transfer from the address
pointed at by the First Source Address Register (SAR1). The total number of bytes to
XOR-transfer is specified by the Byte Count (BC) field in the chain descriptor.

a. When the Direct Fill command is selected for SAR1, this is designated as the first block of
data in the current XOR operation, and the data is transferred directly to the store queue.
The number of bytes transferred to the store queue is 1KByte/512Bytes (based on bit 2 of
the Accelerator Control Register).

b. When the XOR command is selected for SAR1, the boolean unit performs the XOR
operation on the data currently existing in the store queue with the data being transferred
from memory (see steps 3-7 for SAR2). This may be done to XOR more than 32 blocks of
data together with a byte count of 1KByte or less.

Note: When the Byte Count Register contains a value greater than the buffer size, the AA completes the
XOR-transfer operation on the first buffer of data obtained from each Source Register (D/SAR1,
SAR2- SAR4), then proceeds with the next buffer of data. This process is repeated until the BCR
contains a zero value.

2. The Application Accelerator transfers the first eight bytes of data from the address pointed at
by the Second Source Address Register (SAR2).

3. The boolean unit performs the bit-wise XOR algorithm on the input operands. The input
operands are the first eight bytes of data read from D/SAR1 (bytes 1-8) which are stored in the
queue and the first eight bytes of data just read from SAR2 (bytes 1-8).

Figure 15. Hardware Assist XOR Unit

New Data
XORed

bytes 1 - 8
bytes 9-16

bytes 1017-1024

Byte 1 = Byte 1 ⊕ Byte 1 ⊕ Byte 1 ⊕ Byte 1
Block 1

Byte 1024 = Byte 1024 ⊕ Byte 1024 ⊕ Byte 1024 ⊕ Byte 1024

Block 1

Block 2 Block 3 Block 4

Block 2 Block 3 Block 4

data

...

Each existing bit is XORed with new data
and stored back to the same bit location

42 January, 2005 Document Number: 304496001US

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
AA Operations

4. The XOR-ed result is transferred to the store queue and stored in the first eight bytes
(bytes 1-8) overwriting previously stored data.

5. The Application Accelerator transfers the next eight bytes of data (bytes 9-16) from address
pointed at by the Second Source Address Register (SAR2).

6. The boolean unit performs the bit-wise XOR algorithm on the input operands. The input
operands are the next eight bytes of data read from D/SAR1 (bytes 9-16 stored in the queue)
and the eight bytes of data read from SAR2 in Step-5.

7. Step-5 and Step-6 (Data transfer and XOR) are repeated until all data pointed at by SAR1 is
XOR-ed with the corresponding data pointed at by SAR2. The store queue now contains a
buffer full of XOR-ed data, the source addresses for which were specified in SAR1 and SAR2.

8. Steps 1-7 are repeated once again. The first input to the XOR unit is the data held in the store
queue and the second input is the data pointed at by SAR3.

9. The above steps are repeated once more. The first input to the XOR unit is the data held in the
store queue and the second input is the data pointed at by SAR4.

10. Once Steps 1-9 are completed, the XOR operation is complete for the first full buffer of the
current chain descriptor. When the Destination Write Enable Bit in the Accelerator Descriptor
Control Register (ADCR) is set, the data in the store queue is written to local memory at the
address pointed to by the Destination Address Register (DAR). When the Destination Write
Enable Bit in the ADCR is not set, the data is not written to local memory and is held in the
queue. Steps 1-9 are repeated until all the bytes of data have undergone the XOR-transfer
operation.

Note: The Destination Write Enable bit should be SET when Descriptor Byte Count is larger than the AA
buffer size. When the ABCR register contains a value greater than the buffer size and the
ADCR.dwe bit is cleared, the AAU only reads the first buffer of data and performs the specified
function. It does not read the remaining bytes specified in the ABCR. Furthermore, the AAU
proceeds to process the next chain descriptor when it is specified.

Document Number: 304496001US January, 2005 43

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
AA Operations

1.5.3 XOR Operation with P+Q RAID-6 Mode

Figure 16 describes the XOR with P+Q RAID-6 mode implementation. In this illustrative example,
there are three blocks of source data to have a P+Q RAID-6 mode function performed on them
followed by the an XOR function. The intermediate result is kept by the XOR store queue in the
AA before being written back to local memory. The source data is located at addresses A000
0400H, A000 0800H, A000 0C00H and A000 1000H respectively.

All data transfers needed for this operation are controlled by chain descriptors located in local
memory. The Application DMA as a master on the internal bus initiates a data transfer. The
algorithm is implemented such that as data is read from local memory, the boolean unit executes
the XOR operation on incoming data.

Note: Two descriptors are required for P+Q RAID-6 modes, one for each check value. Each descriptor
would be processed as illustrated in Figure 16.

Figure 16. The Bit-wise XOR Algorithm including the P+Q RAID-6 Mode

A000 0400HBlock 1

MSB LSB

A000 0800H

A000 0C00H

bitwise-XOR

(64-bit wide)

bitwise-XOR

(64-bit wide)

1K byte

byte 1byte 8

1024 bytes
bytes 1-8

1024 bytes
bytes 1-8

bytes 1-8
1024 bytes

Block 2

Block 3

...

PQSAR3 = A000 0C00H

DAR = B000 0400H

GFMR1 = 0033 2211H

PQSAR2 = A000 0800H
PQSAR1 = A000 0400H

ABCR = 0000 0400H
ADCR = 8000 009FH

Control Register ValuesB000 0400H

128-Deep
Store Queue

 Local Memory

GF Multiply

DMLT1=11

GF Multiply

DMLT2=22

GF Multiply

DMLT3=33

44 January, 2005 Document Number: 304496001US

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
AA Operations

The GF Multiply function is shown in Figure 17 for 8-bits of data. This function is replicated
across each byte lane of the data path, where the G(j) input is the same for each byte lane for a
given source.

Figure 17. GF Multiply Function

gfloggflog

gfiloggfilog

GF Multiply

gfloggflog

8

8

8

G(j)

D(j)

D(j) G(j)MOD(255) MOD(255)
ADDerADDer

A(j) =

gfloggflog

gfiloggfilog

GF MultiplyGF Multiply

gfloggflog

8

8

8

G(j)

D(j)

D(j) G(j)MOD(255) MOD(255)
ADDerADDer

A(j) =

Document Number: 304496001US January, 2005 45

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
AA Operations

The blocks for gflog and gfilog are the Galois Field Logarithm and Inverse Logarithm
transformations respectively. These transformations for 8-bit words are provided in Figure 18 and
Figure 19, with the upper nibble used to index the rows, and the lower nibble used to index the
columns. These are based on the primitive polynomial listed in Equation 1.

Equation 1. Galois Field Primitive Polynomial (0x11D)

X8 + X4 + X3 + X2 + 1

Figure 18. Galois Field Logarithm Transformation Table

Figure 19. Galois Field Inverse Logarithm Transformation table

0 1 2 3 4 5 6 7 8 9 a b c d e f
 0 -- 00 01 19 02 32 1a c6 03 df 33 ee 1b 68 c7 4b
 1 04 64 e0 0e 34 8d ef 81 1c c1 69 f8 c8 08 4c 71
 2 05 8a 65 2f e1 24 0f 21 35 93 8e da f0 12 82 45
 3 1d b5 c2 7d 6a 27 f9 b9 c9 9a 09 78 4d e4 72 a6
 4 06 bf 8b 62 66 dd 30 fd e2 98 25 b3 10 91 22 88
 5 36 d0 94 ce 8f 96 db bd f1 d2 13 5c 83 38 46 40
 6 1e 42 b6 a3 c3 48 7e 6e 6b 3a 28 54 fa 85 ba 3d
 7 ca 5e 9b 9f 0a 15 79 2b 4e d4 e5 ac 73 f3 a7 57
 8 07 70 c0 f7 8c 80 63 0d 67 4a de ed 31 c5 fe 18
 9 e3 a5 99 77 26 b8 b4 7c 11 44 92 d9 23 20 89 2e
 a 37 3f d1 5b 95 bc cf cd 90 87 97 b2 dc fc be 61
 b f2 56 d3 ab 14 2a 5d 9e 84 3c 39 53 47 6d 41 a2
 c 1f 2d 43 d8 b7 7b a4 76 c4 17 49 ec 7f 0c 6f f6
 d 6c a1 3b 52 29 9d 55 aa fb 60 86 b1 bb cc 3e 5a
 e cb 59 5f b0 9c a9 a0 51 0b f5 16 eb 7a 75 2c d7
 f 4f ae d5 e9 e6 e7 ad e8 74 d6 f4 ea a8 50 58 af

x

Table of gflog(2^8): gflog(xy)

gflog(xy)
y

0 1 2 3 4 5 6 7 8 9 a b c d e f
 0 01 02 04 08 10 20 40 80 1d 3a 74 e8 cd 87 13 26
 1 4c 98 2d 5a b4 75 ea c9 8f 03 06 0c 18 30 60 c0
 2 9d 27 4e 9c 25 4a 94 35 6a d4 b5 77 ee c1 9f 23
 3 46 8c 05 0a 14 28 50 a0 5d ba 69 d2 b9 6f de a1
 4 5f be 61 c2 99 2f 5e bc 65 ca 89 0f 1e 3c 78 f0
 5 fd e7 d3 bb 6b d6 b1 7f fe e1 df a3 5b b6 71 e2
 6 d9 af 43 86 11 22 44 88 0d 1a 34 68 d0 bd 67 ce
 7 81 1f 3e 7c f8 ed c7 93 3b 76 ec c5 97 33 66 cc
 8 85 17 2e 5c b8 6d da a9 4f 9e 21 42 84 15 2a 54
 9 a8 4d 9a 29 52 a4 55 aa 49 92 39 72 e4 d5 b7 73
 a e6 d1 bf 63 c6 91 3f 7e fc e5 d7 b3 7b f6 f1 ff
 b e3 db ab 4b 96 31 62 c4 95 37 6e dc a5 57 ae 41
 c 82 19 32 64 c8 8d 07 0e 1c 38 70 e0 dd a7 53 a6
 d 51 a2 59 b2 79 f2 f9 ef c3 9b 2b 56 ac 45 8a 09
 e 12 24 48 90 3d 7a f4 f5 f7 f3 fb eb cb 8b 0b 16
 f 2c 58 b0 7d fa e9 cf 83 1b 36 6c d8 ad 47 8e --

x

Table of gfilog(2^8): gfilog(xy)

gfilog(xy)
y

46 January, 2005 Document Number: 304496001US

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
AA Operations

1.5.4 Dual-XOR Operation

The Dual-XOR operation can be used in RAID-6 applications when a single strip write requires
updating of two parity blocks. For this use, the two parity blocks are based on the same data being
updated, and this operation performs the calculation of both updated parity blocks. In the
illustrative Dual-XOR example in Figure 20, there are four blocks of source data to be XOR-ed.
Two sources are used for both updated parity results, and there is one unique source for each parity
result. The intermediate results are kept in store queues in the AA before being written back to
local memory.

The two common source data blocks are located at addresses A000 0400H, A000 0800H. The
Horizontal data source is located at address A000 0C00H and the Diagonal data source is located at
address A000 1000H. The Horizontal and Diagonal destination addresses are located at addresses
B000 0400H and B000 0800H respectively.

All data transfers needed for this operation are controlled by chain descriptors located in local
memory. The Application Accelerator as a master on the internal bus initiates data transfer. The
algorithm is implemented such that as data is read from local memory, the boolean unit executes
the XOR operation on incoming data.

Note: Dual_XOR operation is intended for use with single strip write I/Os to RAID-6 arrays. To generate
two check values for a full stripe of data in a RAID-6 array, XOR operations defined by separate
descriptors for each check value must be used. See Section 1.5.2, “XOR Operation” on page 40 for
details.

Document Number: 304496001US January, 2005 47

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
AA Operations

Figure 20. The Bit-wise Dual-XOR Algorithm

A000 0400HBlock 1

MSB LSB

A000 0800H

A000 0C00H

A000 1000H

bitwise-XOR

(64-bit wide)

bitwise-XOR

(64-bit wide)

bitwise-XOR

(64-bit wide)

1K byte

byte 1byte 8

1024 bytes
bytes 1-8

1024 bytes
bytes 1-8

1024 bytes
bytes 1-8

bytes 1-8
1024 bytes

Block 2

Horizontal

Diagonal

...

SAR3/SAR_H = A000 0C00H

DAR/DAR_H = B000 0400H

SAR4/SAR_D = A000 1000H

SAR2 = A000 0800H
D/SAR1 = A000 0400H

ABCR = 0000 0400H
ADCR = 8A00 049FH

Control Register Values

B000 0400H

128-Deep
Store Queues

 Local Memory

SAR5/DAR_D = B000 0800H

byte 1byte 8

...B000 0800H

Source

Source

Horizontal
Result

Diagonal
Result

bitwise-XOR

(64-bit wide)

48 January, 2005 Document Number: 304496001US

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
AA Operations

The XOR algorithm and methodology followed once a chain descriptor has been configured is
similar to that described for the basic XOR transfer. The steps followed by the AA when processing
a Dual-XOR-transfer are detailed below:

1. The Application Accelerator as a master on the bus initiates data transfer from the address
pointed at by the First Source Address Register (SAR1). The total number of bytes to
XOR-transfer is specified by the Byte Count (BC) field in the chain descriptor.

Note: The Direct Fill command must be selected for SAR1, designating it as the first block of data in the
current Dual XOR operation, resulting in data being transferred directly to the horizontal and
diagonal store queues. The number of bytes transferred to the store queues is 1KByte/512Bytes
(based on bit 2 of the Accelerator Control Register).

Note: If the Byte Count Register contains a value greater than the buffer size, the AA completes the
XOR-transfer operation on the first buffer (store queue size) of data obtained from each Source
Register (SAR1, SAR2, SAR_H, SAR_D), then proceeds with the next buffer of data. This process
is repeated until the BCR contains a zero value.

2. The Application Accelerator transfers the first eight bytes of data from the address pointed at
by the Second Source Address Register (SAR2).

a. The XOR command must be selected for SAR2, so that the boolean unit performs the
XOR operation on the data currently existing in the two store queues (SAR1) with the
data being transferred from memory (SAR2).

3. The boolean unit performs the bit-wise XOR algorithm on the input operands. The input
operands are the first eight bytes of data read from SAR1 (bytes 1-8) which are stored in the
store queues and the first eight bytes of data just read from SAR2 (bytes 1-8).

4. The XOR-ed result is transferred to both store queues and stored in the first eight bytes
(bytes 1-8) overwriting previously stored data.

5. The Application Accelerator transfers the next eight bytes of data (bytes 9-16) from address
pointed at by the Second Source Address Register (SAR2).

6. The boolean unit performs the bit-wise XOR algorithm on the input operands. The input
operands are the next eight bytes of data read from SAR1 (bytes 9-16 stored in the queue) and
the eight bytes of data read from SAR2 in Step-5.

7. Step-5 and Step-6 (Data transfer and XOR) are repeated until all data pointed at by SAR1 is
XOR-ed with the corresponding data pointed at by SAR2. The two store queues now both
contain a buffer full of XOR-ed data, the source addresses for which were specified in SAR1
and SAR2.

8. Steps 2-7 are repeated with the Horizontal Source address used for the next source data with
the following exceptions

a. Only the Horizontal Store Queue is overwritten with the new XOR-ed result.

b. Upon completion, the Horizontal Store Queue holds the bit-wise XOR of Source 1
(SAR1), Source 2 (SAR2) and the Horizontal Source (SAR_H).

c. The Diagonal Store Queue remains unchanged.

9. Once Step 8 is completed, the XOR operation is complete for the first full buffer of the
Horizontal XOR operation. The Destination Write Enable Bit in the Accelerator Descriptor
Control Register (ADCR) must be set. The data in the horizontal store queue is written to local
memory at the address pointed to by the Horizontal Destination Address Register (DAR_H).

Document Number: 304496001US January, 2005 49

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
AA Operations

10. Steps 2-7 are then repeated with the Diagonal Source address used for the next source data
with the following exceptions

a. Only the Diagonal Store Queue is overwritten with the new XOR-ed result.

b. Upon completion, the Diagonal Store Queue holds the bit-wise XOR of Source 1 (SAR1),
Source 2 (SAR2) and the Diagonal Source (SAR_D).

c. The Horizontal Store Queue remains unchanged.

11. Once Step 10 is completed, the XOR operation is complete for the first full buffer of the
Diagonal XOR operation. The Destination Write Enable Bit in the Accelerator Descriptor
Control Register (ADCR) must be set. The data in the diagonal store queue is written to local
memory at the address pointed to by the Diagonal Destination Address Register (DAR_D).

12. Steps 1-11 are repeated until all the bytes of data have undergone the Dual-XOR-transfer
operation.

50 January, 2005 Document Number: 304496001US

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
AA Operations

1.5.5 Zero Result Buffer Check

The AA can be used to verify parity across memory blocks specified by the SARx registers. XOR
operation descriptors are used to specify the memory blocks on which the AA performs the Zero
Result Buffer Check. Figure 21 illustrates a Zero Result Buffer Check performed by the AA. After
processing all source data, the AA updates the Transfer Complete and Result Buffer Not Zero bit of
the eighth word of the descriptor (ADCR) pointed to by the ADAR in local memory.

Figure 21. An Example of Zero Result Buffer Check

A000 0400HBlock 1

MSB LSB

A000 0800H

A000 0C00H

A000 1000H

bitwise-XOR

(64-bit wide)

bitwise-XOR

(64-bit wide)

bitwise-XOR

(64-bit wide)

1024 bytes

1024 bytes

1024 bytes

1024 bytes

Block 2

Block 3

Block 4

SAR3 = A000 0C00H
SAR4 = A000 1000H

SAR2 = A000 0800H
D/SAR1 = A000 0400H

ABCR = 0000 0400H
ADCR = 4000 049FH

Control Register Values

I/O Processor Local Memory

NOTE: Typically, the user clears the
Data Write Enable in the DC
when the Zero Result Buffer
Check operation is enabled.

byte 1byte 8

...

Byte 1..8 Checked for 00H with result indicated when not 00H

Document Number: 304496001US January, 2005 51

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
AA Operations

1.5.6 Zero Result Buffer Check with P+Q RAID-6

The AA can be used to verify check values for P+Q RAID-6 implementations. P+Q XOR
operation descriptors are used to specify the memory blocks on which the AA performs the Zero
Result Buffer Check. Figure 22 illustrates a P+Q RAID-6 Zero Result Buffer Check performed by
the AA. After processing all source data, the AA updates the Transfer Complete and Result Buffer
Not Zero bit of the eighth word of the descriptor (ADCR) pointed to by the ADAR in local
memory. If the Destination Write Enable bit is set, the result buffer is also stored to the memory
location pointed to by the DAR.

Figure 22. An example of Zero Result Buffer Check with P+Q RAID-6

A000 0400H
Block 1

MSB LSB

A000 0800H

A000 0C00H

A000 1000H

bitwise-XOR

(64-bit wide)

bitwise-XOR

(64-bit wide)

bitwise-XOR

(64-bit wide)

1024 bytes

1024 bytes

1024 bytes

1024 bytes

Block 2

Block 3

Block 4

PQSAR3 = A000 0C00H
GFMR1 = 0033 2211H

PQSAR2 = A000 0800H
PQSAR1 = A000 0400H

ABCR = 0000 0400H
ADCR = 4200 049FH

Control Register Values

I/O Processor Local Memory

byte 1byte 8

...

Byte 1..8 Checked for 00H with result indicated when not 00H

GF Multiply

DMLT1=11H

GF Multiply

DMLT2=22H

GF Multiply

DMLT3=33H

GF Multiply

DMLT4=44H

PQSAR4 = A000 1000H
PQSAR5 = 0000 0000H
PQSAR6 = 0000 0000H
GFMR2 = 0000 0044FH

DAR = 0000 0000H

NOTE: Typically, the user clears the Data Write Enable in the
DC when the Zero Result Buffer Check operation is
enabled. This example illustrates this usage with the
DAR not programmed (0000 0000H).

52 January, 2005 Document Number: 304496001US

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
AA Operations

1.5.7 Memory Block Fill Operation

The AA can be used to write a constant value to a memory block in the 80331 local memory. As
with XOR operations, descriptors are used to specify the memory blocks to which the AA writes
the data contained in the Data / Source Address Register1. All memory block fill operations are
controlled by chain descriptors located in the Intel XScale® core local memory. Figure 23
illustrates a Block Fill Operation to an arbitrary destination address.

Figure 23. Example of a Memory Block Fill Operation

value

XX

Bus operation

byte store@ 40010307
DWORD store@ 40010308
DWORD store@ 40010310

DESTINATION

ACR

D/SAR1

D/AR

ABCR

ADCR

Programmed Values

0000 0001H

A581 BCE6H

4001 0307H

0000 0014H

8000 0004H

4001 0300H

4001 0308H

4001 0310H64-bit Destination bus

LSBMemory

(Internal bus)

A5

A5 81 BC E6 A5 81 BC E6

81 BC E6

MSB

A5 81 BC E6 A5

81 BC E6 4001 0318H

3-byte store@ 40010318

Document Number: 304496001US January, 2005 53

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Programming Model State Diagram

1.6 Programming Model State Diagram

The AA programming model diagram is shown in Figure 24. Error condition states are not shown.

Figure 24. Application Accelerator Programming Model State Diagram

Reset

Read NDA from

ABORT == 0 &&

Read descriptor
ANDAR == 0 ||

XOR TRANSFER/

Transfer Complete &&

IB
 e

rr
or

 ||

ANDAR == 0 &&

BUFFER CHECK

IDLE
STATE

READ DESCRIPTOR
STATE

READ NDA
STATE

AA Active = 0
AA Enable == 1 &&

Chain Resume == 0 &&

Tra
nsfe

r C
om

plete &
&

ANDAR !=
 0

A
N

D
A

R
 =

=
 0

 &
&

Chain Resume == 1 &&

ANDAR != 0 && !Internal Bus error

ABORT == 0
&&

AA E
nab

le =
= 1

&&

Chain R
es

um
e == 1 &

&

current descriptor

at ANDAR
Chain Resume = 0

at ADAR
and load ANDAR
Chain Resume = 0

ANDAR != 0

ANDAR == 0
Internal Bus error

Internal B
us e

rro
r

!In
ternal B

us e
rro

r

C
ha

in
 R

es
um

e
==

 0
 &

&
Tr

an
sf

er
 C

om
pl

et
e

!IB error

MEMORY BLOCK FILL/
ZERO RESULT

STATE

AA Active = 1

54 January, 2005 Document Number: 304496001US

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Application Accelerator Priority

1.7 Application Accelerator Priority

The internal bus arbitration logic determines which internal bus master has access to the 80331
internal bus. The Application Accelerator has an independent Bus Request/Grant signal pair to the
internal bus arbitration logic. The “Arbitration Unit” in the Intel® 80331 I/O Processor
Developer’s Manual, describes in detail the priority scheme between all of the bus masters on the
internal bus.

In addition, the internal bus arbitration unit has a Multi-Transaction timer (Section 13.4.3,
“Multi-Transaction Timer Register 2 - MTTR2” on page 656, in the Intel® 80331 I/O Processor
Developer’s Manual) that affects the throughput of the AA. The default value for MTT2 of
152 clocks was chosen to ensure that once an internal bus agent (in this case the AA) is granted the
internal bus that it is guaranteed an opportunity to burst data into DDR SDRAM memory. However,
when the bus is busy the AA loses grant before the burst is completed. This means that the AA is able
to complete only one burst for each arbitration cycle.

Alternatively, the user may wish to increase the value of MTT2 to guarantee that two or more
bursts are able to complete within an arbitration cycle.

For example, assuming 1 Kbyte bursts and a 64-bit memory subsystem, an MTT2 setting of
192 clocks would be sufficient to support two 1 Kbyte bursts for an AA single arbitration cycle.

Warning: Increasing the MTT2 value may also increase the latency to peripheral memory mapped registers
or PCI addresses for the Intel XScale® core on the average. Before changing the MTT2 value, it’s
imperative that the overall impact to the performance of the application is considered.

Document Number: 304496001US January, 2005 55

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Packing and Unpacking

1.8 Packing and Unpacking

The Application Accelerator contains a hardware data packing and unpacking unit to support data
transfers between unaligned source and destination addresses. Source and destination addresses can
either be unaligned or aligned on natural boundaries. The packing unit optimizes data transfers to and
from 32 and 64-bit memory. It reformats data words for the correct bus data width. When the read
data needs to be packed or unpacked, the data is held internally and does not need to be re-read.

Aligned data transfers fall on natural boundaries. For example; DWORDs are aligned on 8-byte
boundaries and words are aligned on 4-byte boundaries. Data transfers take place in two instances:

• The source and destination addresses are both aligned.

• All or some source addresses are unaligned and the destination address is aligned or unaligned.

1.8.1 64-bit Unaligned Data Transfers

Figure 26 illustrates a data transfer between unaligned 64-bit, source and destination addresses.

Figure 25. Optimization of an Unaligned Data Transfer

byte number

10

Bus operation

DWORD load@ A0000200
DWORD load@ A0000208
DWORD load@ A0000210

byte store@ 40010307
DWORD store@ 40010308
DWORD store@ 40010310

SOURCE DESTINATION

ACR

SAR1

DAR

ABCR

ADCR

Programmed Values

0000 0001H

A000 0201H

4001 0307H

0000 0014H

8000 000EH

ADDRESS

A000 0200H

A000 0208H

A000 0210H

4001 0300H

4001 0308H

4001 0310H64-bit Destination bus

LSBMemory

(Internal bus)

1

9 8 7 6 5 4 3 2

12 11 10

12 11 10 9 8

7 6 5 4 3 2 1

MSB

64-bit Source bus
(Internal Bus)

AA performs a
Data Block Transfer

20 19 18 17 16

15 14 13

17 16 15 14 13

20 19 18 4001 0318H

3-byte store@ 40010318

56 January, 2005 Document Number: 304496001US

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Programming the Application Accelerator

1.9 Programming the Application Accelerator

The operations for Application Accelerator software falls into the following categories:

An example for each category is shown in the following sections as pseudo code flow.

The AA control register provides independent control each time the AA is configured. This
provides the greatest flexibility to the applications programmer.

The most efficient method for operating the AA is to use the Chain Resume capability described in
Section 1.3.4, “Descriptor Chaining”. To use of the Chain Resume capability for appending
descriptors to chains in normal operation, an initial AA descriptor must be executed. This
initialization step is described in Section 1.9.1, “Application Accelerator Initialization”. The
example AA operations provided later in this section use the Chain Resume capability as follows:

1.9.1 Application Accelerator Initialization

The AA is designed to have independent control of the interrupts, enables, and control. The
initialization consists of virtually no overhead as shown in Figure 27.

The following example illustrates how AA initialization S/W prepares the AA for descriptor Chain
Resume operation. Initializing the AA for chaining requires an initial descriptor be created and
executed. This descriptor is then the start of the chain, and future descriptors are appended to this
descriptor to create the chain. This descriptor is a NULL descriptor, requiring no source or
destination data buffers be allocated. To start an operation, software simply sets the AA Enable bit
in the “Accelerator Control Register - ACR” (see in the Intel® 80331 I/O Processor Developer’s
Manual) as shown in Figure 27.

• AA initialization

• Suspend AA

• Appending Descriptors

• Resume AA Operation

• Store Descriptor in Local Memory

• Append Descriptor to Chain

• Resume AA Operation

Figure 26. Pseudo Code: Application Accelerator Initialization

ACR = 0x0000 0000 ; Disable the application accelerator

Call setup_accelerator

Figure 27. Pseudo Code: Application Accelerator Chain Resume Initialization

; Set up descriptor in Intel XScale® core local memory at address d

d.nda = 0 /* No chaining */

d.D/SAR1 = 0x0000 0000/* Source address of Data Block 1 */

d.SAR2 = 0x0000 0000/* Source address of Data Block 2 */

d.SAR3 = 0x0000 0000/* Source address of Data Block 3 */

d.SAR4 = 0x0000 0000/* Source address of Data Block 4 */

d.DAR = 0x0000 0000/* Destination address of XOR-ed data */

d.ABCR = 0x0 /* Byte Count of zero */

d.ADCR = 0x000 0000/* Null Descriptor, No Interrupt*/

; Start operation

ANDAR = &d ; Setup descriptor address

ACR = 0x0000 0001 ; Set AA Enable bit

Document Number: 304496001US January, 2005 57

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Programming the Application Accelerator

1.9.2 Suspending and Resuming the Application Accelerator

The Application Accelerator unit provides the ability to suspend the current state without losing
status information. The AA resumes without requiring application software to restore the previous
configuration. The example shown in Figure 28 describes pseudo-code for suspending the ongoing
operation and then restarting.

1.9.3 Appending Descriptor for XOR Operations

The example shown in Figure 29 describes the pseudo code for initiating an XOR operation with
the AA. The examples illustrates appending the XOR operation to an existing chain, and taking
advantage of the Chain Resume capability as described in Section 1.9.2, “Suspending and
Resuming the Application Accelerator”.

Figure 28. Pseudo Code: Suspend Application Accelerator

;Suspend Application Accelerator

ACR = 0x0000 0000 ; Suspend ongoing AA transfer

;Restart Application Accelerator

ACR = 0x0000 0001 ; Restart AA operation

Figure 29. Pseudo Code: XOR Transfer Operation

; Set up descriptor in Intel XScale® core local memory at address d

d.nda = 0 /* No chaining */

d.D/SAR1 = 0xA000 0400/* Source address of Data Block 1 */

d.SAR2 = 0xA000 0800/* Source address of Data Block 2 */

d.SAR3 = 0xA000 0C00/* Source address of Data Block 3 */

d.SAR4 = 0xA000 1000/* Source address of Data Block 4 */

d.DAR = 0xB000 0100/* Destination address of XOR-ed data */

d.ABCR = 1024 /* Byte Count of 1024 */

d.ADCR = 0x8000 049F/* Direct fill data from Block 1 */

/* XOR with data from Block 2,Block 3 and

 Block 4 */

 /* Store the result and interrupt processor */

; Append descriptor to end of last chain at address c

c.nda = d

; Resume AA operation

ACR = 0x00000003 ; Set AA Enable and Resume bits

58 January, 2005 Document Number: 304496001US

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Programming the Application Accelerator

1.9.4 Appending Descriptor for Dual XOR Operations

The example shown in Figure 30 describes the pseudo code for initiating a Dual XOR operation
with the AA. The examples illustrates appending the Dual XOR operation to an existing chain, and
taking advantage of the Chain Resume capability as described in Section 1.9.2, “Suspending and
Resuming the Application Accelerator” on page 57.

1.9.5 Appending Descriptor for Memory Block Fill Operations

The example shown in Figure 31 describes the pseudo code for initiating a Memory Block Fill
operation with the AA.

Figure 30. Pseudo Code: Dual XOR Transfer Operation

; Set up descriptor in Intel XScale® core local memory at address d

d.nda = 0 /* No chaining */

d.D/SAR1 = 0xA000 0400/* Source address of Data Block 1 */

d.SAR2 = 0xA000 0800/* Source address of Data Block 2 */

d.SAR3 = 0xA000 0C00/* Source address of Horizontal Data Block */

d.SAR4 = 0xA000 1000/* Source address of Diagonal Data Block */

d.DAR_H = 0xB000 0100/* Destination address of Horizontal XOR-ed data */

d.ABCR = 1024 /* Byte Count of 1024 */

d.ADCR = 0x8800 049F/* Dual XOR Operation */

/* Required: Direct fill from Block 1 */

/* XOR enabled for Blocks 2, 3 and 4 */

/* Store the results */

/* Optional: interrupt processor */

d.DAR_D = 0xB000 4100/* Destination address of Diagonal XOR-ed data */

; Append descriptor to end of last chain at address c

c.nda = d

; Resume AA operation

ACR = 0x00000003 ; Set AA Enable and Resume bits

Figure 31. Pseudo Code: Memory Block Fill Operation

; Set up descriptor in Intel XScale® core local memory at address d

d.nda = 0 /* No chaining */

d.D/SAR1 = 0xA000 0400/* Immediate data used for block write*/

d.DAR = 0xB000 0100/* Address of the memory block to be written*/

d.ABCR = 1024 /* Byte Count of 1024 */

d.ADCR = 0x8000 0005/* Memory Write Block using data in D/SAR1*/

 /* Store the result and interrupt processor */

; Append descriptor to end of last chain at address c

c.nda = d

; Resume AA operation

ACR = 0x00000003 ; Set AA Enable and Resume bits

Document Number: 304496001US January, 2005 59

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Programming the Application Accelerator

1.9.6 Appending Descriptor for Zero Result Buffer Check

The example shown in Figure 32 describes the pseudo code for initiating an XOR operation with
the AA.

Figure 32. Pseudo Code: Zero Result Buffer Check Operationa

a. Notice that ADCR.dwe is cleared and that the DAR is not programmed. The reason is that for Zero Result Buffer Check
operations, there is no need to write out a destination parity stripe.

; Set up descriptor in Intel XScale® core local memory at address d

d.nda = 0 /* No chaining */

d.D/SAR1 = 0xA000 0400/* Source address of Data Block 1 */

d.SAR2 = 0xA000 0800/* Source address of Data Block 2 */

d.SAR3 = 0xA000 0C00/* Source address of Data Block 3 */

d.SAR4 = 0xA000 1000/* Source address of Data Block 4 */

d.ABCR = 1024 /* Byte Count of 1024 */

d.ADCR = 0x4000 049F/* Direct fill data from Block 1 */

/* XOR with data from Block 2,Block 3 and

 Block 4 */

 /* Check Result, Write Status (ADCR) and interrupt processor */

; Append descriptor to end of last chain at address c

c.nda = d

; Resume AA operation

ACR = 0x00000003 ; Set AA Enable and Resume bits

60 January, 2005 Document Number: 304496001US

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Interrupts

1.10 Interrupts

The Application Accelerator can generate an interrupt to the Intel XScale® core. The Interrupt
Enable bit in the Accelerator Descriptor Control Register (ADCR.ie) determines whether the AA
generates an interrupt upon successful, error-free completion. Error conditions described in
Section 1.11 also generate an interrupt. The AA has one interrupt output connected to the PCI and
Peripheral Interrupt Controller described in Chapter 17, “Interrupt Controller Unit and IOAPIC”.

Once the AA is enabled, the AA loads the chain descriptor fields into the respective registers. A
special case exists when data write enable is clear, then an interrupt is generated (when enabled)
after the descriptor is fetched and processed as defined by the block control fields in the ADCR.
Table 5 summarizes the status flags and conditions when interrupts are generated in the Accelerator
Status Register (ASR).

Note: End-of-Transfer and End-of-Chain flags is set only when Interrupt Enable is set. When Interrupt
Enable is clear, then the above flags are always set to 0. End-of-Transfer Interrupt and End of
Chain Interrupt can only be reported in the ASR when the descriptor fetch and processing
completed without any reportable errors. However, multiple error conditions may occur and be
reported together. Also, because the AA does not stop after reporting the End-of-Transfer interrupt,
an IB master-abort error may occur before the End-of-Transfer interrupt is serviced and cleared.

Table 5. AA Interrupts

Interrupt Condition

Accelerator Status Register
(ASR) Flags

Interrupt
Generated?

A
ct

iv
e

E
n

d
 o

f
Tr

an
sf

er

E
n

d
 o

f
C

h
ai

n

IB
 M

as
te

r
A

b
o

rt

In
te

rr
u

p
t

E
n

ab
le

d

In
te

rr
u

p
t

D
is

ab
le

d

(Data Write Enable == 0 || byte count == 0)

&& (ANDAR != NULL || Resume == 1)
(End of Transfer)

1 1 0 0 Y N

(Data Write Enable == 0 || byte count == 0)

&& ANDAR == NULL && Resume == 0
(End of Chain)

0 0 1 0 Y N

IB Master Abort 0 0 0 1 Y Y

IB Target Abort 0 0 0 0 N N

Document Number: 304496001US January, 2005 61

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Error Conditions

1.11 Error Conditions

Master Aborts that occur during a transfer are recorded by the Application Accelerator.

When an error occurs, the actions taken are detailed below:

• The AA ceases the ongoing transfer for the current chain descriptor and clear the Application
Accelerator Active flag in the ASR.

• The AA does not read any new chain descriptors.

• The AA sets the error flag in the Accelerator Status Register. For example; when an IB
master-abort occurred during a transfer, the channel sets bit 5 in the ASR.

• The AA signals an interrupt to the Intel XScale® core.

• The Application Accelerator does not restart the transfer after an error condition. It is the
responsibility of the application software to reconfigure the AA to complete any remaining
transfers.

Note: Target-aborts during AAU reads result from multi-bit ECC errors that are recorded by the MCU.
Refer to Chapter 8, “Memory Controller” for details on error handling in this instance. For correct
operation of the AAU, user software has to disable the AAU before clearing the error condition.
Furthermore, the AAU needs to be re-enabled by writing a 1 to the AA Enable bit before initiating
a new operation.

62 January, 2005 Document Number: 304496001US

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Power-up/Default Status

1.12 Power-up/Default Status

Upon power-up, an external hardware reset, the Application Accelerator Registers are initialized to
their default values.

1.13 Register Definitions

The Application Accelerator Unit contains forty two memory-mapped registers for controlling its
operation. There is read/write access only to the Accelerator Control Register, Accelerator Status
Register, the Accelerator Next Descriptor Address Register, and the three Extended Descriptor
Control Registers. All other registers are read-only and are loaded with new values from the chain
descriptor whenever the AA reads a chain descriptor from memory.

Table 6. Application Accelerator Unit Registers

Section, Register Name - Acronym (page)

Section 1.13.1, “Accelerator Control Register - ACR” on page 63

Section 1.13.2, “Accelerator Status Register - ASR” on page 64

Section 1.13.3, “Accelerator Descriptor Address Register - ADAR” on page 65

Section 1.13.4, “Accelerator Next Descriptor Address Register - ANDAR” on page 66

Section 1.13.5, “Data / Source Address Register1 - D/SAR1/PQSAR1” on page 673

Section 1.13.6, “Source Address Registers 2..32 - SAR2..32” on page 68

Section 1.13.7, “P+Q RAID-6 Source Address Registers 2..16 - PQSAR2..16” on page 706

Section 1.13.8, “P+Q RAID-6 Galois Field Multiplier Registers 1..5 - GFMR1..5” on page 71

Section 1.13.9, “Destination Address Register - DAR” on page 73

Section 1.13.10, “Accelerator Byte Count Register - ABCR” on page 74

Section 1.13.11, “Accelerator Descriptor Control Register - ADCR” on page 75

Section 1.13.12, “Extended Descriptor Control Register 0 - EDCR0” on page 79

Section 1.13.13, “Extended Descriptor Control Register 1 - EDCR1” on page 81

Section 1.13.14, “Extended Descriptor Control Register 2 - EDCR2” on page 83

Document Number: 304496001US January, 2005 63

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Register Definitions

1.13.1 Accelerator Control Register - ACR

The Accelerator Control Register (ACR) specifies parameters that dictate the overall operating
environment. The ACR should be initialized prior to all other AA registers following a system
reset. Table 7 shows the register format. This register can be read or written while the AA is active.

Table 7. Accelerator Control Register - ACR

Bit Default Description

31:04 0 Reserved

03 02

P+Q RAID-6 Enable - when set, causes the AA to process descriptors defined for P+Q RAID-6, which
includes a Galois Field Multiply byte value for each source.

NOTE: This bit can only be changed when the AA is idle (ASR.10=0). Changing the state of this bit while
the AA is active (ASR.10=1) will result in unpredictable results.

0 = Disabled - All source data is passed directly from the internal bus to the AA.
1 = Enabled - All source data is operated on by the GF Multiply function when being fetched from

memory, before being passed to the AA.

02 02
512 Byte Buffer Enable - when set, causes the AA to use only 512 bytes of 1 KB data buffer while
processing all descriptors.

01 02

Chain Resume - when set, causes the AA to resume chaining by re-reading the current descriptor
located at the address in the Accelerator Descriptor Address Register when the AA is idle (AA Active bit
in the ASR is clear) or when the AA completes a transfer. This bit is cleared by hardware when either:

• The AA completes a transfer and the Accelerator Next Descriptor Address Register is non-zero. In
this case, the AA proceeds to the next descriptor in the chain.

• The AA re-reads the chain descriptor located at the address in the Accelerator Descriptor Address
Register and loads the Next Descriptor Address of that descriptor into the Accelerator Next
Descriptor Address Register

00 02

AA Enable - When set, the AA enables transfers. When clear, the AA disables any transfer. Clearing this
bit when the AA is active suspends the current transfer at the earliest opportunity by halting all internal
bus transactions. The AA does not initiate any new transfers when this bit is cleared. Data held in
queues remains valid. Setting the bit after the AA is suspended causes the AA to resume the previously
ongoing transfer.

PCI

IOP
Attributes

Attributes

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only
NA = Not Accessible

Internal bus address

FFFF E800H

64 January, 2005 Document Number: 304496001US

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Register Definitions

1.13.2 Accelerator Status Register - ASR

The Accelerator Status Register (ASR) contains status flags that indicate status. This register is
typically read by software to examine the source of an interrupt. See Section 1.11 for a description
of the error conditions that are reported in the ASR. See Section 1.10 for a description of interrupts
caused by the Application Accelerator.

When an AA error occurs, application software should check the status of Accelerator Active flag
before processing the interrupt.

Table 8. Accelerator Status Register - ASR

Bit Default Description

31:11 000000H Reserved

10 02

Accelerator Active Flag - indicates the AA is either active (in use) or idle (available). When set, indicates
the AA is in use and actively performing an operation. When clear, indicates the channel is idle and
available to be configured for a new operation. The AA clears the Accelerator Active flag when the
previously configured transfer completes as a result of:

• byte count reached zero and last chain descriptor is encountered (NULL value detected for Next
Descriptor Address in chain descriptor)

• Internal Bus Errors

• Last chain descriptor is processed (NULL value detected for Next Descriptor Address in chain
descriptor) and write enable is zero.

The Accelerator Active flag is set once a Chain Descriptor is read from memory.

09 02
End of Transfer Interrupt Flag - set when the AA has signalled an interrupt to the Intel XScale® core after
processing a descriptor but it is not the last descriptor in a chain.

08 02
End of Chain Interrupt Flag - set when the channel has signalled an interrupt to the Intel XScale® core
after processing a descriptor that is the last in a chain.

07:06 02 Reserved

05 02
This bit is set when a Master-abort occurs during a transaction when the AAU is the master on the
internal bus.

04:00 02 Reserved

PCI

IOP
Attributes

Attributes

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

ro

na

rc

na

rc

na

rv

na

rc

na

rc

na

rv

na

rv

na

rv

na

rv

na

rv

na

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only
NA = Not Accessible

Internal bus address

FFFF E804H

Document Number: 304496001US January, 2005 65

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Register Definitions

1.13.3 Accelerator Descriptor Address
Register - ADAR

The Accelerator Descriptor Address Register (ADAR) contains the address of the current chain
descriptor in local memory. This read-only register is loaded when a new chain descriptor is read.
Table 9 depicts the ADAR. Depending on the number of sources, the chain descriptors are required
to be aligned on different address boundaries. These include four sources on an eight word address
boundary, eight sources on a 16 word address boundary, 16 sources on a 32 word address boundary,
and 32 sources on a 64 word address boundary.

Note: In the above paragraph, the term “word” refers to a DWORD.

Table 9. Accelerator Descriptor Address Register - ADAR

Bit Default Description

31:05 000 0000H Current Descriptor Address - local memory address of the current chain descriptor read by the
Application Accelerator.

04:00 0 00002 Reserved

PCI

IOP
Attributes

Attributes

28 24 20 16 12 8 4 031

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only
NA = Not Accessible

Internal bus address

FFFF E808H

66 January, 2005 Document Number: 304496001US

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Register Definitions

1.13.4 Accelerator Next Descriptor Address
Register - ANDAR

The Accelerator Next Descriptor Address Register (ANDAR) contains the address of the next
chain descriptor in local memory. When starting a transfer, this register contains the address of the
first chain descriptor. Table 10 depicts the Accelerator Next Descriptor Address Register.

All chain descriptors are aligned on an eight DWORD boundary. The AA may set bits 04:00 to
zero when loading this register.

Note: The Accelerator Enable bit in the ACR and the Accelerator Active bit in the ASR must both be
clear prior to writing the ANDAR. Writing a value to this register while the AA is active may result
in undefined behavior.

Table 10. Accelerator Next Descriptor Address Register - ANDAR

Bit Default Description

31:05 000 0000H Next Descriptor Address - local memory address of the next chain descriptor to be read by the
Application Accelerator.

04:00 0 00002 Reserved

PCI

IOP
Attributes

Attributes

28 24 20 16 12 8 4 031

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only
NA = Not Accessible

Internal bus address

FFFF E80CH

Document Number: 304496001US January, 2005 67

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Register Definitions

1.13.5 Data / Source Address Register1 - D/SAR1/PQSAR1

The Data / Source Address Register (D/SAR1/PQSAR1) contains a 32-bit, local memory address
or immediate data to be written in case of Memory Block Fill operations. The ADCR register
(Table 17) controls the operation performed on data block referenced by this register. The local
memory address space is a 32-bit, byte addressable address space.

Reading the D/SAR1/PQSAR1 register once the AA has started a chain descriptor returns the
current source address or immediate data to be written in case of Memory Block Fill operations.

Once an operation is initiated, these registers contain the current source addresses. For example;
when the Byte Count is initially 4096 bytes and the AA has completed the operation on the first
three 1K-byte data blocks, the value in register SAR1/PQSAR1 is the equal to the programmed
descriptor value + 3072 (SAR1 + 3072).

During Memory Block Fills the register always contains the data to be written and does not change.

Table 11 shows the Data / Source Address Register1/P+Q RAID-6 SAR1. This read-only register is
loaded when a chain descriptor is read from memory.

Table 11. Data / Source Address Register - SAR1/PQSAR1

Bit Default Description

31:00 0000 0000H
For the XOR command - Local Address - The local source address.

For the Memory Block Fill Command - Data to be written to the memory block.

PCI

IOP
Attributes

Attributes

28 24 20 16 12 8 4 031

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only
NA = Not Accessible

SAR1

Internal bus address

FFFF E810H

68 January, 2005 Document Number: 304496001US

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Register Definitions

1.13.6 Source Address Registers 2..32 - SAR2..32

The Source Address Registers 2..32 (SAR2..32) contain 32-bit, local memory addresses. There are 31
Source Address Registers (SAR2 - SAR32). Each of these registers is loaded with address of blocks of
data to be operated upon by the AA. The ADCR, EDCR0, EDCR1, and EDCR2 registers control the
operation performed on each data block referenced by the registers (SAR2 - SAR32). The local
memory address space is a 32-bit, byte addressable address space.

Reading SARx registers once AA has started a chain descriptor returns the current source addresses.
Once an operation is initiated, these registers contain current source addresses. For example; when Byte
Count is initially 4096 bytes and AA has completed operation on the first three 1K-byte data blocks, the
value in register SARx is the equal to the programmed descriptor value + 3072 (SARx + 3072).

For Dual-XOR-transfers SAR3 is the Horizontal Source Address for the XOR result for Horizontal
XOR result, and SAR4 is the Diagonal Source Address for the Diagonal XOR result. Also, SAR5 is
the Diagonal Destination Address for the Diagonal XOR result.

Note: For P+Q RAID-6 Mode, refer to section Section 1.13.7, “P+Q RAID-6 Source Address Registers
2..16 - PQSAR2..16” on page 70 for source addresses 2 through 16 and Section 1.13.8, “P+Q
RAID-6 Galois Field Multiplier Registers 1..5 - GFMR1..5” on page 71 for P+Q RAID-6
Multiplier Word definitions.

Document Number: 304496001US January, 2005 69

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Register Definitions

Table 12 shows the Source Address Register2..32. These read-only registers are loaded when a
chain descriptor is read from memory.

Table 12. Source Address Register2..32 - SAR2..32

Bit Default Description

31:00 0000 0000H

Local Address - The local source address

For Dual XOR operations, the following applies:

• SAR3 is the Horizontal local source address (SAR_H)

• SAR4 is the Diagonal local source address (SAR_D)

• SAR5 contains the destination address of the Diagonal XOR result (DAR_D)

PCI

IOP
Attributes

Attributes

28 24 20 16 12 8 4 031

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only
NA = Not Accessible

SAR2
SAR3
SAR4
SAR5
SAR6
SAR7
SAR8
SAR9
SAR10
SAR11
SAR12
SAR13
SAR14
SAR15
SAR16
SAR17

Internal bus address

FFFF E814H
FFFF E818H
FFFF E81CH
FFFF E82CH
FFFF E830H
FFFF E834H
FFFF E838H
FFFF E840H
FFFF E844H
FFFF E848H
FFFF E84CH
FFFF E850H
FFFF E854H
FFFF E858H
FFFF E85CH
FFFF E864H

SAR18
SAR19
SAR20
SAR21
SAR22
SAR23
SAR24
SAR25
SAR26
SAR27
SAR28
SAR29
SAR30
SAR31
SAR32

Internal bus address

FFFF E868H
FFFF E86CH
FFFF E870H
FFFF E874H
FFFF E878H
FFFF E87CH
FFFF E880H
FFFF E888H
FFFF E88CH
FFFF E890H
FFFF E894H
FFFF E898H
FFFF E89CH
FFFF E8A0H
FFFF E8A4H

70 January, 2005 Document Number: 304496001US

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Register Definitions

1.13.7 P+Q RAID-6 Source Address Registers 2..16 -
PQSAR2..16

Note: The following definition applies only when P+Q RAID-6 mode is enabled. When P+Q RAID-6 is
NOT enabled, refer to Section 1.13.6, “Source Address Registers 2..32 - SAR2..32” on page 68 for
definition and internal bus addresses of Source Address Registers

The P+Q RAID-6 Source Address Register2..16 (PQSAR2..16) contain 32-bit, local memory
addresses. There are 16 P+Q RAID-6 Source Address Registers (PQSAR1..PQSAR16). Each of these
registers is loaded with address of blocks of data to be operated upon by the AA when P+Q RAID-6
Mode is enabled. The ADCR, EDCR0, and EDCR1 registers control the operation performed on each
data block referenced by the registers (PQSAR1..PQSAR16). The local memory address space is a
32-bit, byte addressable address space.

Reading PQSARx registers once AA has started a chain descriptor returns the current source addresses.
Once an operation is initiated, these registers contain current source addresses. For example; when Byte
Count is initially 4096 bytes and AA has completed operation on the first three 1K-byte data blocks, the
value in register PQSARx is the equal to the programmed descriptor value + 3072 (PQSARx + 3072).

Table 13 shows the P+Q RAID-6 Source Address Registers 2..16. These read-only registers are
loaded when a chain descriptor is read from memory.

Note: See Section 1.13.8 for definition of the Data Multipliers in P+Q RAID-6 mode.

Table 13. P+Q RAID-6 Source Address Registers 2..16 - PQSAR2..16

Bit Default Description

31:00 0000 0000H • Local Address - The local source address

PCI

IOP
Attributes

Attributes

28 24 20 16 12 8 4 031

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only
NA = Not Accessible

PQSAR2
PQSAR3
PQSAR4
PQSAR5
PQSAR6
PQSAR7
PQSAR8
PQSAR9

Internal bus address

FFFF E814H
FFFF E818H
FFFF E82CH
FFFF E830H
FFFF E834H
FFFF E840H
FFFF E844H
FFFF E848H

PQSAR10
PQSAR11
PQSAR12
PQSAR13
PQSAR14
PQSAR15
PQSAR16

Internal bus address

FFFF E850H
FFFF E854H
FFFF E858H
FFFF E864H
FFFF E868H
FFFF E86CH
FFFF E870H

Document Number: 304496001US January, 2005 71

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Register Definitions

1.13.8 P+Q RAID-6 Galois Field Multiplier Registers 1..5
- GFMR1..5

Note: The following definition applies only when P+Q RAID-6 mode is enabled. When P+Q RAID-6 is
NOT enabled, refer to Section 1.13.6, “Source Address Registers 2..32 - SAR2..32” on page 68 for
definition and internal bus addresses of Source Address Registers

The P+Q RAID-6 Galois Field Multiplier Registers 1..5 (GFMR1..5) contain the 8-bit multiplier
values. There are 16 Data Multipliers distributed through the five Data Multiplier Words
(GFMR1..GFMR5). Each of these registers is loaded with data multiplier values to be used by the AA
GF Multiply Function when P+Q RAID-6 Mode is enabled. The ADCR, EDCR0, and EDCR1
registers control the operation performed on each source data block.

Table 14 shows the Galois Field Multiplier Registers GFMR[1:5]. These read-only registers are
loaded when a chain descriptor is read from memory.

Note: See Section 1.13 for definition of the Data Integrity Source Addresses in P+Q RAID-6 Source
Address.

Table 14. Galois Field Multiplier Registers 1..5 - GFMR1..5 (Sheet 1 of 2)

Bit Default Description

31:24 00H

Data Multiplier - Data Multiplier Byte used by the P+Q RAID-6 function (GF Multiply) with source data
from corresponding PQSARx, when P+Q RAID-6 mode is enabled.

• GFMR1 - reserved

• GFMR2 - reserved

• GFMR3 - reserved

• GFMR4 - reserved

• GFMR5 - Data Multiplier 16 (DMLT16)

23:16 00H

Data Multiplier - Data Multiplier Byte used by the P+Q RAID-6 function (GF Multiply) with source data
from corresponding PQSARx, when P+Q RAID-6 mode is enabled.

• GFMR1 - Data Multiplier 3 (DMLT3)

• GFMR2 - Data Multiplier 6 (DMLT6)

• GFMR3 - Data Multiplier 9 (DMLT9)

• GFMR4 - Data Multiplier 12 (DMLT12)

• GFMR5 - Data Multiplier 15 (DMLT15)

PCI

IOP
Attributes

Attributes

28 24 20 16 12 8 4 031

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only
NA = Not Accessible

GFMR1
GFMR2
GFMR3
GFMR4
GFMR5

Internal bus address

FFFF E81CH
FFFF E838H
FFFF E84CH
FFFF E85CH
FFFF E874H

72 January, 2005 Document Number: 304496001US

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Register Definitions

15:8 00H

Data Multiplier - Data Multiplier Byte used by the P+Q RAID-6 function (GF Multiply) with source data
from corresponding PQSARx, when P+Q RAID-6 mode is enabled.

• GFMR1 - Data Multiplier 2 (DMLT2)

• GFMR2 - Data Multiplier 5 (DMLT5)

• GFMR3 - Data Multiplier 8 (DMLT8)

• GFMR4 - Data Multiplier 11 (DMLT11)

• GFMR5 - Data Multiplier 14 (DMLT14)

7:0 00H

Data Multiplier - Data Multiplier Byte used by the P+Q RAID-6 function (GF Multiply) with source data
from corresponding PQSARx, when P+Q RAID-6 mode is enabled.

• GFMR1 - Data Multiplier 1 (DMLT1)

• GFMR2 - Data Multiplier 4 (DMLT4)

• GFMR3 - Data Multiplier 7 (DMLT7)

• GFMR4 - Data Multiplier 10 (DMLT10)

• GFMR5 - Data Multiplier 13 (DMLT13)

Table 14. Galois Field Multiplier Registers 1..5 - GFMR1..5 (Sheet 2 of 2)

Bit Default Description

PCI

IOP
Attributes

Attributes

28 24 20 16 12 8 4 031

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only
NA = Not Accessible

GFMR1
GFMR2
GFMR3
GFMR4
GFMR5

Internal bus address

FFFF E81CH
FFFF E838H
FFFF E84CH
FFFF E85CH
FFFF E874H

Document Number: 304496001US January, 2005 73

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Register Definitions

1.13.9 Destination Address Register - DAR

The Destination Address Register (DAR) contains a 32-bit, local memory address. The DAR may
also contain an address targeting the ATU outbound windows for writing the AAU result to the PCI
bus. During operations, this address is the destination address in local memory where data will be
stored. The 80331 local memory address space is a 32-bit, byte addressable address space. When
programming the result to be on the PCI bus, this address is one of the ATU outbound windows,
which results in a 32-bit or 64-bit PCI address depending on the window addressed.

During Dual XOR operations, this address points to the memory block to be written with the
Horizontal XOR result.

During Memory Block Fill operations, this address points to the memory block to be written with
the constant value contained in the D/SAR1 register.

Reading the DAR once the AA has started a chain descriptor returns the current destination
address. For example; during an XOR operation when the Byte Count is initially 4096 bytes and
the AA has completed the XOR-transfer operation on the first three 1K-byte data blocks, the value
in the Destination Address Register (DAR) will be equal to the programmed descriptor value +
3072 (DAR + 3072).

Table 15 shows the Destination Address Register. This read-only register is loaded when a chain
descriptor is read from memory

Table 15. Destination Address Register - DAR

Bit Default Description

31:00 00000000H

Destination Address - The result destination address in local memory or PCI Outbound windows.

Local Address - The local destination address.

For Dual XOR operations, DAR contains the destination address of the Horizontal XOR result (DAR_H).

PCI

IOP
Attributes

Attributes

28 24 20 16 12 8 4 031

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only
NA = Not Accessible

Internal bus address

FFFF E820H

74 January, 2005 Document Number: 304496001US

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Register Definitions

1.13.10 Accelerator Byte Count Register - ABCR

The Accelerator Byte Count Register (ABCR) contains the number of bytes to transfer for an
operation. This is a read-only register that is loaded from the Byte Count word in a chain
descriptor. It allows for a maximum transfer of 16 Mbytes. A value of zero is a valid byte count and
results in no read or write cycles being generated to the Memory Controller Unit. No cycles are
generated on the internal bus.

Note: Anytime this register is read, it contains the number of bytes left to transfer on the internal bus.
Note that during an operation valid data may be present in the Application Accelerator store queue.
This register is decremented by 1 through 8 for every successful transfer from the store queue to
the destination location. During Memory Block Fills this register is decremented by 1 through 8 for
every successful write operation. Table 16 shows the Accelerator Byte Count Register. The byte
count value is not required to be aligned to a DWORD boundary (i.e., the byte count value can be a
DWORD aligned, short aligned, or byte aligned).

Table 16. Accelerator Byte Count Register - ABCR

Bit Default Description

31:24 00H Reserved

23:00 000000H Byte Count - is the number of bytes to transfer for an operation.

PCI

IOP
Attributes

Attributes

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only
NA = Not Accessible

Internal bus address

FFFF E824H

Document Number: 304496001US January, 2005 75

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Register Definitions

1.13.11 Accelerator Descriptor Control Register - ADCR

The Accelerator Descriptor Control Register contains control values for data transfer on a
per-chain descriptor basis. This read-only register is loaded when a chain descriptor is read from
memory. These values may vary from chain descriptor to chain descriptor. The AAU determines
whether a mini-descriptor is appended to the end of the current chain descriptor by examining
bits 26:25. Table 17 shows the definition of the Accelerator Descriptor Control Register.

Table 17. Accelerator Descriptor Control Register - ADCR (Sheet 1 of 4)

Bit Default Description

31 02

Destination Write Enable (dwe)- Determines whether data present in the store queue is written out to
local memory. When set, data in the queue is written to the address specified in the Destination Address
Register (DAR) after performing the specified operation on data referenced by the SARx registers.
When clear, data is held in the queue.
NOTE: This bit must be set for Dual-XOR-transfers.
NOTE: This bit should be SET when Descriptor Byte Count is larger than the AA buffer size. When the

ABCR register contains a value greater than the buffer size and this bit is cleared, the AAU only
reads the first complete buffer of data and perform the specified function. It does not read the
remaining bytes specified in the ABCR. Further, the AAU proceeds to process the next chain
descriptor when it is specified.

30 02
Zero Result Buffer Check Enable - When this bit is set the AA checks for an all-zero result buffer across
the data blocks specified by the SARx registers.

29 02

Result Buffer Not Zero- This bit is set when the result buffer computed across the data blocks specified
by the SARx registers results in a non-zero value.
NOTE: The AA updates this status in memory only by updating the Descriptor Control Word of the

current descriptor (the eighth word of the descriptor pointed to by the ADAR).

28 02

Transfer Complete - This bit is set when the AA completes the processing of a descriptor with Zero
Result Buffer Check enabled (i.e., bit 30 of the ADCR is set).
NOTE: The AA updates this status in memory only by updating the Descriptor Control Word of the

current descriptor (the eighth word of the descriptor pointed to by the ADAR).

27 02

Reserved

Dual XOR Operation - Defines the descriptor as a Dual XOR format when set. See Section 1.3.2.5,
“Dual-XOR-Transfer Descriptor Format” on page 22 for details. The Supplemental Block Control
Interpreter field must also be set for AA to fetch mini-descriptor.

PCI

IOP
Attributes

Attributes

28 24 20 16 12 8 4 031

ro

na

ro

na

ro

na

ro

na

rv

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

b4cc b3cc b2cc b1ccb5ccb6ccb7ccb8ccsbci

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only
NA = Not Accessible

Internal bus address

FFFF E828H

76 January, 2005 Document Number: 304496001US

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Register Definitions

26:25 00

Supplemental Block Control Interpreter - This bit field specifies the number of additional descriptor
segments beyond the principle descriptor on which the operation is executed.

00 Principle Descriptor only - This specifies that no additional descriptor words exist. The AA only reads
the principle descriptor to initialize the first eight AA descriptor registers. Set for up to 4 sources for XOR,
or up to 3 sources for P+Q RAID-6.

01 Mini-Descriptor - This specifies that there are up to 4 additional words. The AA therefore reads the
mini-descriptor to initialize four additional registers. Set for up to 8 sources for XOR, or Dual-XOR
operation, or up to 6 sources for P+Q RAID-6.

10 Extended Descriptor 0 - This specifies that there are up to nine additional descriptor words. The AA
therefore reads the mini-descriptor and one extended-descriptor to initialize a total of twenty-one
registers. Set for up to 16 sources for XOR, or up to 12 sources for P+Q RAID-6 .

11 Extended Descriptors 1 and 2 - This specifies that there are up to eighteen additional descriptor
words. The AA therefore reads the mini-descriptor and three extended-descriptors to initialize registers a
total of thirty-nine registers. Set for up to 32 sources for XOR, or up to 16 sources for P+Q RAID-6 .

24:22 0

Block 8 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR8 register.

000 Null command - This implies that Block 8 Data can be disregarded for the current chain
descriptor. The Application Accelerator does not transfer data from this block while processing the
current chain descriptor.
001 XOR command - This implies that Block 8 Data is transferred to the Application Accelerator to
execute the XOR function.

All other values are reserved

21:19 0

Block 7 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR7 register.

000 Null command - This implies that Block 7 Data can be disregarded for the current chain
descriptor. The Application Accelerator does not transfer data from this block while processing the
current chain descriptor.
001 XOR command - This implies that Block 7 Data is transferred to the Application Accelerator to
execute the XOR function.

All other values are reserved

18:16 0

Block 6 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR6 register.

000 Null command - This implies that Block 6 Data can be disregarded for the current chain
descriptor. The Application Accelerator does not transfer data from this block while processing the
current chain descriptor.
001 XOR command - This implies that Block 6 Data is transferred to the Application Accelerator to
execute the XOR function.

All other values are reserved

Table 17. Accelerator Descriptor Control Register - ADCR (Sheet 2 of 4)

Bit Default Description

PCI

IOP
Attributes

Attributes

28 24 20 16 12 8 4 031

ro

na

ro

na

ro

na

ro

na

rv

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

b4cc b3cc b2cc b1ccb5ccb6ccb7ccb8ccsbci

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only
NA = Not Accessible

Internal bus address

FFFF E828H

Document Number: 304496001US January, 2005 77

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Register Definitions

15:13 0

Block 5 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR5 register.

000 Null command - This implies that Block 5 Data can be disregarded for the current chain
descriptor. The Application Accelerator does not transfer data from this block while processing the
current chain descriptor.
001 XOR command - This implies that Block 5 Data is transferred to the Application Accelerator to
execute the XOR function.

All other values are reserved

12:10 0

Block 4 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR4 register.

000 Null command - This implies that Block 4 Data can be disregarded for the current chain
descriptor. The Application Accelerator does not transfer data from this block while processing the
current chain descriptor.
001 XOR command - This implies that Block 4 Data is transferred to the Application Accelerator to
execute the XOR function. (required for Dual-XOR-transfers)

All other values are reserved

09:07 0

Block 3 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR3 register.

000 Null command - This implies that Block 3 Data can be disregarded for the current chain
descriptor. The Application Accelerator does not transfer data from this block while processing the
current chain descriptor.
001 XOR command - This implies that Block 3 Data is transferred to the Application Accelerator to
execute the XOR function. (required for Dual-XOR-transfers)

All other values are reserved

06:04 0

Block 2 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR2 register.

000 Null command - This implies that Block 2 Data can be disregarded for the current chain
descriptor. The Application Accelerator does not transfer data from this block while processing the
current chain descriptor.
001 XOR command - This implies that Block 2 Data is transferred to the Application Accelerator to
execute the XOR function. (required for Dual-XOR-transfers)

All other values are reserved

Table 17. Accelerator Descriptor Control Register - ADCR (Sheet 3 of 4)

Bit Default Description

PCI

IOP
Attributes

Attributes

28 24 20 16 12 8 4 031

ro

na

ro

na

ro

na

ro

na

rv

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

b4cc b3cc b2cc b1ccb5ccb6ccb7ccb8ccsbci

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only
NA = Not Accessible

Internal bus address

FFFF E828H

78 January, 2005 Document Number: 304496001US

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Register Definitions

03:01 0

Block 1 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by D/SAR1 register (for XOR command) or with the data contained in the D/SAR1 (for Memory
Block Fill command).

000 Null command - This implies that Block 1 Data can be disregarded for the current chain
descriptor. The Application Accelerator does not transfer data from this block while processing the
current chain descriptor.
001 XOR command - This implies that Block 1 Data is transferred to the Application Accelerator to
execute the XOR function.
010 Memory Block Fill command - This implies that the memory block specified by the DAR is filled
with the constant specified by the D/SAR1register.
111 Direct Fill - This implies that Block 1 Data is transferred directly from local memory to the store
queue. (required for Dual-XOR-transfers)

All other values are reserved

00 0 Interrupt Enable - When set, the Application Accelerator generates an interrupt to the Intel XScale®
core upon completion of a transfer. When clear, no interrupt is generated.

Table 17. Accelerator Descriptor Control Register - ADCR (Sheet 4 of 4)

Bit Default Description

PCI

IOP
Attributes

Attributes

28 24 20 16 12 8 4 031

ro

na

ro

na

ro

na

ro

na

rv

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

b4cc b3cc b2cc b1ccb5ccb6ccb7ccb8ccsbci

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only
NA = Not Accessible

Internal bus address

FFFF E828H

Document Number: 304496001US January, 2005 79

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Register Definitions

1.13.12 Extended Descriptor Control Register 0 - EDCR0

The Extended Descriptor Control Register 0 contains control values for data transfer on a per-chain
descriptor basis. This read-only register is loaded when a chain descriptor that requires a minimum
of 16 Source Addresses is read from memory. The values in EDCR0 define the command/control
value for SAR16 - SAR9. The AAU determines whether an extended descriptor requiring the use
of EDCR0 is appended to the end of the current chain descriptor by examining bits 26:25 of the
Accelerator Descriptor Control Register. Table 18 shows the definition of the Extended Descriptor
Control Register 0.

Table 18. Extended Descriptor Control Register 0 - EDCR0 (Sheet 1 of 2)

Bit Default Description

31:25 02 Reserved

24:22 0

Block 16 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR16 register.

000 Null command - This implies that Block 16 Data can be disregarded for the current chain
descriptor. The Application Accelerator does not transfer data from this block while processing the
current chain descriptor.
001 XOR command - This implies that Block 16 Data is transferred to the Application Accelerator to
execute the XOR function.

All other values are reserved

21:19 0

Block 15 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR15 register.

000 Null command - This implies that Block 15 Data can be disregarded for the current chain
descriptor. The Application Accelerator does not transfer data from this block while processing the
current chain descriptor.
001 XOR command - This implies that Block 15 Data is transferred to the Application Accelerator to
execute the XOR function.

All other values are reserved

18:16 0

Block 14 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR14 register.

000 Null command - This implies that Block 14 Data can be disregarded for the current chain
descriptor. The Application Accelerator does not transfer data from this block while processing the
current chain descriptor.
001 XOR command - This implies that Block 14 Data is transferred to the Application Accelerator to
execute the XOR function.

All other values are reserved

PCI

IOP
Attributes

Attributes

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

b12cc b11cc b10cc b9ccb13ccb14ccb15ccb16cc

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only
NA = Not Accessible

Internal bus address

FFFF E83CH

80 January, 2005 Document Number: 304496001US

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Register Definitions

15:13 0

Block 13 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR13 register.

000 Null command - This implies that Block 13 Data can be disregarded for the current chain
descriptor. The Application Accelerator does not transfer data from this block while processing the
current chain descriptor.
001 XOR command - This implies that Block 13 Data is transferred to the Application Accelerator to
execute the XOR function.

All other values are reserved

12:10 0

Block 12 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR12 register.

000 Null command - This implies that Block 12 Data can be disregarded for the current chain
descriptor. The Application Accelerator does not transfer data from this block while processing the
current chain descriptor.
001 XOR command - This implies that Block 12 Data is transferred to the Application Accelerator to
execute the XOR function.

All other values are reserved

09:07 0

Block 11 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR11 register.

000 Null command - This implies that Block 11 Data can be disregarded for the current chain
descriptor. The Application Accelerator does not transfer data from this block while processing the
current chain descriptor.
001 XOR command - This implies that Block 11 Data is transferred to the Application Accelerator to
execute the XOR function.

All other values are reserved

06:04 0

Block 10 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR10 register.

000 Null command - This implies that Block 10 Data can be disregarded for the current chain
descriptor. The Application Accelerator does not transfer data from this block while processing the
current chain descriptor.
001 XOR command - This implies that Block 10 Data is transferred to the Application Accelerator to
execute the XOR function.

All other values are reserved

03:01 0

Block 9 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR9 register.

000 Null command - This implies that Block 9 Data can be disregarded for the current chain
descriptor. The Application Accelerator does not transfer data from this block while processing the
current chain descriptor.
001 XOR command - This implies that Block 9 Data is transferred to the Application Accelerator to
execute the XOR function.

All other values are reserved

00 0 Reserved.

Table 18. Extended Descriptor Control Register 0 - EDCR0 (Sheet 2 of 2)

Bit Default Description

PCI

IOP
Attributes

Attributes

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

b12cc b11cc b10cc b9ccb13ccb14ccb15ccb16cc

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only
NA = Not Accessible

Internal bus address

FFFF E83CH

Document Number: 304496001US January, 2005 81

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Register Definitions

1.13.13 Extended Descriptor Control Register 1 - EDCR1

The Extended Descriptor Control Register 1 contains control values for data transfer on a per-chain
descriptor basis. This read-only register is loaded when a chain descriptor that requires 32 Source
Addresses is read from memory. The values in EDCR1 define the command/control value for
SAR24 - SAR17. The AAU determines whether an extended descriptor requiring the use of
EDCR1 is appended to the end of the current chain descriptor by examining bits 26:25 of the
Accelerator Descriptor Control Register. Table 19 shows the definition of the Extended Descriptor
Control Register 1.

Table 19. Extended Descriptor Control Register 1 - EDCR1 (Sheet 1 of 2)

Bit Default Description

31:25 02 Reserved

24:22 0

Block 24 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR24 register.

000 Null command - This implies that Block 24 Data can be disregarded for the current chain
descriptor. The Application Accelerator does not transfer data from this block while processing the
current chain descriptor.
001 XOR command - This implies that Block 24 Data is transferred to the Application Accelerator to
execute the XOR function.

All other values are reserved

21:19 0

Block 23 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR23 register.

000 Null command - This implies that Block 23 Data can be disregarded for the current chain
descriptor. The Application Accelerator does not transfer data from this block while processing the
current chain descriptor.
001 XOR command - This implies that Block 23 Data is transferred to the Application Accelerator to
execute the XOR function.

All other values are reserved

18:16 0

Block 22 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR22 register.

000 Null command - This implies that Block 22 Data can be disregarded for the current chain
descriptor. The Application Accelerator does not transfer data from this block while processing the
current chain descriptor.
001 XOR command - This implies that Block 22 Data is transferred to the Application Accelerator to
execute the XOR function.

All other values are reserved

PCI

IOP
Attributes

Attributes

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

b20cc b19cc b18cc b17ccb21ccb22ccb23ccb24cc

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only
NA = Not Accessible

Internal bus address

FFFF E860H

82 January, 2005 Document Number: 304496001US

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Register Definitions

15:13 0

Block 21 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR21 register.

000 Null command - This implies that Block 21 Data can be disregarded for the current chain
descriptor. The Application Accelerator does not transfer data from this block while processing the
current chain descriptor.
001 XOR command - This implies that Block 21 Data is transferred to the Application Accelerator to
execute the XOR function.

All other values are reserved

12:10 0

Block 20 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR20 register.

000 Null command - This implies that Block 20 Data can be disregarded for the current chain
descriptor. The Application Accelerator does not transfer data from this block while processing the
current chain descriptor.
001 XOR command - This implies that Block 20 Data is transferred to the Application Accelerator to
execute the XOR function.

All other values are reserved

09:07 0

Block 19 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR19 register.

000 Null command - This implies that Block 19 Data can be disregarded for the current chain
descriptor. The Application Accelerator does not transfer data from this block while processing the
current chain descriptor.
001 XOR command - This implies that Block 19 Data is transferred to the Application Accelerator to
execute the XOR function.

All other values are reserved

06:04 0

Block 18 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR18 register.

000 Null command - This implies that Block 18 Data can be disregarded for the current chain
descriptor. The Application Accelerator does not transfer data from this block while processing the
current chain descriptor.
001 XOR command - This implies that Block 18 Data is transferred to the Application Accelerator to
execute the XOR function.

All other values are reserved

03:01 0

Block 17 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR17 register.

000 Null command - This implies that Block 17 Data can be disregarded for the current chain
descriptor. The Application Accelerator does not transfer data from this block while processing the
current chain descriptor.
001 XOR command - This implies that Block 17 Data is transferred to the Application Accelerator to
execute the XOR function.

All other values are reserved

00 0 Reserved.

Table 19. Extended Descriptor Control Register 1 - EDCR1 (Sheet 2 of 2)

Bit Default Description

PCI

IOP
Attributes

Attributes

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

b20cc b19cc b18cc b17ccb21ccb22ccb23ccb24cc

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only
NA = Not Accessible

Internal bus address

FFFF E860H

Document Number: 304496001US January, 2005 83

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Register Definitions

1.13.14 Extended Descriptor Control Register 2 - EDCR2

The Extended Descriptor Control Register 2 contains control values for data transfer on a per-chain
descriptor basis. This read-only register is loaded when a chain descriptor that requires 32 Source
Addresses is read from memory. Values in EDCR2 define the command/control value for SAR32 -
SAR25. The AAU determines whether an extended descriptor requiring the use of EDCR2 is appended
to the end of the current chain descriptor by examining bits 26:25 of the Accelerator Descriptor Control
Register. Table 20 shows the definition of the Extended Descriptor Control Register 2.

Table 20. Extended Descriptor Control Register 2 - EDCR2 (Sheet 1 of 2)

Bit Default Description

31:25 02 Reserved

24:22 0

Block 32 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR32 register.

000 Null command - This implies that Block 32 Data can be disregarded for the current chain
descriptor. The Application Accelerator does not transfer data from this block while processing the
current chain descriptor.
001 XOR command - This implies that Block 32 Data is transferred to the Application Accelerator to
execute the XOR function.

All other values are reserved

21:19 0

Block 31 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR31 register.

000 Null command - This implies that Block 31 Data can be disregarded for the current chain
descriptor. The Application Accelerator does not transfer data from this block while processing the
current chain descriptor.
001 XOR command - This implies that Block 31 Data is transferred to the Application Accelerator to
execute the XOR function.

All other values are reserved

18:16 0

Block 30 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR30 register.

000 Null command - This implies that Block 30 Data can be disregarded for the current chain
descriptor. The Application Accelerator does not transfer data from this block while processing the
current chain descriptor.
001 XOR command - This implies that Block 30 Data is transferred to the Application Accelerator to
execute the XOR function.

All other values are reserved

15:13 0

Block 29 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR29 register.

000 Null command - This implies that Block 29 Data can be disregarded for the current chain
descriptor. The Application Accelerator does not transfer data from this block while processing the
current chain descriptor.
001 XOR command - This implies that Block 29 Data is transferred to the Application Accelerator to
execute the XOR function.

All other values are reserved

PCI

IOP
Attributes

Attributes

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

b12cc b11cc b10cc b9ccb13ccb14ccb15ccb16cc

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only
NA = Not Accessible

Internal bus address

FFFF E884H

84 January, 2005 Document Number: 304496001US

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Register Definitions

12:10 0

Block 28 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR28 register.

000 Null command - This implies that Block 28 Data can be disregarded for the current chain
descriptor. The Application Accelerator does not transfer data from this block while processing the
current chain descriptor.
001 XOR command - This implies that Block 28 Data is transferred to the Application Accelerator to
execute the XOR function.

All other values are reserved

09:07 0

Block 27 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR27 register.

000 Null command - This implies that Block 27 Data can be disregarded for the current chain
descriptor. The Application Accelerator does not transfer data from this block while processing the
current chain descriptor.
001 XOR command - This implies that Block 27 Data is transferred to the Application Accelerator to
execute the XOR function.

All other values are reserved

06:04 0

Block 26 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR26 register.

000 Null command - This implies that Block 26 Data can be disregarded for the current chain
descriptor. The Application Accelerator does not transfer data from this block while processing the
current chain descriptor.
001 XOR command - This implies that Block 26 Data is transferred to the Application Accelerator to
execute the XOR function.

All other values are reserved

03:01 0

Block 25 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR25 register.

000 Null command - This implies that Block 25 Data can be disregarded for the current chain
descriptor. The Application Accelerator does not transfer data from this block while processing the
current chain descriptor.
001 XOR command - This implies that Block 25 Data is transferred to the Application Accelerator to
execute the XOR function.

All other values are reserved

00 0 Reserved.

Table 20. Extended Descriptor Control Register 2 - EDCR2 (Sheet 2 of 2)

Bit Default Description

PCI

IOP
Attributes

Attributes

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

b12cc b11cc b10cc b9ccb13ccb14ccb15ccb16cc

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only
NA = Not Accessible

Internal bus address

FFFF E884H

	Intel® 80331 I/O Processor
	Application Accelerator Unit 1
	1.1 Overview
	1.2 Theory of Operation
	Figure 1. Application Accelerator Block Diagram

	1.3 Hardware-Assist XOR Unit
	1.3.1 Data Transfer
	Table 1. Register Description

	1.3.2 Chain Descriptors
	1.3.2.1 Principle / Four-Source Descriptor Format
	Figure 2. Principle / Four Source Descriptor Format

	1.3.2.2 Eight-Source Descriptor Format
	Figure 3. Chain Descriptor Format for Eight Source Addresses (XOR Function)

	1.3.2.3 Sixteen-Source Descriptor Format
	Figure 4. Chain Descriptor Format for Sixteen Source Addresses (XOR Function)

	1.3.2.4 Thirty-two-Source Descriptor Format
	Figure 5. Chain Descriptor Format for Thirty Two Source Addresses (XOR Function)

	1.3.2.5 Dual-XOR-Transfer Descriptor Format
	Figure 6. Chain Descriptor Format for Dual-XOR-transfer

	1.3.2.6 P+Q Three-Source Descriptor Format
	Figure 7. P+Q Base Chain Descriptor Format

	1.3.2.7 P+Q Six-Source Descriptor Format
	Figure 8. P+Q Chain Descriptor Format for Six Source Addresses (XOR Function)

	1.3.2.8 P+Q Twelve-Source Descriptor Format
	Figure 9. P+Q Chain Descriptor Format for Twelve Source Addresses (XOR Function)

	1.3.2.9 P+Q Sixteen-Source Descriptor Format
	Figure 10. P+Q Chain Descriptor Format for Sixteen Source Addresses (XOR Function)

	1.3.3 Descriptor Summary
	Table 2. Descriptor Summary (Sheet 1 of 2)

	1.3.4 Descriptor Chaining
	Figure 11. XOR Chaining Operation

	1.4 AA Descriptor Processing
	Figure 12. Example of Gather Chaining for Four Source Blocks
	1.4.1 Scatter Gather Transfers
	1.4.2 Synchronizing a Program to Chained Operation
	Figure 13. Synchronizing to Chained AA Operation

	1.4.3 Appending to The End of a Chain

	1.5 AA Operations
	Table 3. AA Operation and Command Combination Summary
	1.5.1 AA Addressing
	Table 4. Typical AA Operation and Addressing Summary

	1.5.2 XOR Operation
	Figure 14. The Bit-wise XOR Algorithm
	Figure 15. Hardware Assist XOR Unit

	1.5.3 XOR Operation with P+Q RAID-6 Mode
	Figure 16. The Bit-wise XOR Algorithm including the P+Q RAID-6 Mode
	Figure 17. GF Multiply Function
	Figure 18. Galois Field Logarithm Transformation Table
	Figure 19. Galois Field Inverse Logarithm Transformation table
	Equation 1. Galois Field Primitive Polynomial (0x11D)

	1.5.4 Dual-XOR Operation
	Figure 20. The Bit-wise Dual-XOR Algorithm

	1.5.5 Zero Result Buffer Check
	Figure 21. An Example of Zero Result Buffer Check

	1.5.6 Zero Result Buffer Check with P+Q RAID-6
	Figure 22. An example of Zero Result Buffer Check with P+Q RAID-6

	1.5.7 Memory Block Fill Operation
	Figure 23. Example of a Memory Block Fill Operation

	1.6 Programming Model State Diagram
	Figure 24. Application Accelerator Programming Model State Diagram

	1.7 Application Accelerator Priority
	1.8 Packing and Unpacking
	1.8.1 64-bit Unaligned Data Transfers
	Figure 25. Optimization of an Unaligned Data Transfer

	1.9 Programming the Application Accelerator
	1.9.1 Application Accelerator Initialization
	Figure 26. Pseudo Code: Application Accelerator Initialization
	Figure 27. Pseudo Code: Application Accelerator Chain Resume Initialization

	1.9.2 Suspending and Resuming the Application Accelerator
	Figure 28. Pseudo Code: Suspend Application Accelerator

	1.9.3 Appending Descriptor for XOR Operations
	Figure 29. Pseudo Code: XOR Transfer Operation

	1.9.4 Appending Descriptor for Dual XOR Operations
	Figure 30. Pseudo Code: Dual XOR Transfer Operation

	1.9.5 Appending Descriptor for Memory Block Fill Operations
	Figure 31. Pseudo Code: Memory Block Fill Operation

	1.9.6 Appending Descriptor for Zero Result Buffer Check
	Figure 32. Pseudo Code: Zero Result Buffer Check Operation

	1.10 Interrupts
	Table 5. AA Interrupts

	1.11 Error Conditions
	1.12 Power-up/Default Status
	1.13 Register Definitions
	Table 6. Application Accelerator Unit Registers
	1.13.1 Accelerator Control Register - ACR
	Table 7. Accelerator Control Register - ACR

	1.13.2 Accelerator Status Register - ASR
	Table 8. Accelerator Status Register - ASR

	1.13.3 Accelerator Descriptor Address Register - ADAR
	Table 9. Accelerator Descriptor Address Register - ADAR

	1.13.4 Accelerator Next Descriptor Address Register - ANDAR
	Table 10. Accelerator Next Descriptor Address Register - ANDAR

	1.13.5 Data / Source Address Register1 - D/SAR1/PQSAR1
	Table 11. Data / Source Address Register - SAR1/PQSAR1

	1.13.6 Source Address Registers 2..32 - SAR2..32
	Table 12. Source Address Register2..32 - SAR2..32

	1.13.7 P+Q RAID-6 Source Address Registers 2..16 - PQSAR2..16
	Table 13. P+Q RAID-6 Source Address Registers 2..16 - PQSAR2..16

	1.13.8 P+Q RAID-6 Galois Field Multiplier Registers 1..5 - GFMR1..5
	Table 14. Galois Field Multiplier Registers 1..5 - GFMR1..5 (Sheet 1 of 2)

	1.13.9 Destination Address Register - DAR
	Table 15. Destination Address Register - DAR

	1.13.10 Accelerator Byte Count Register - ABCR
	Table 16. Accelerator Byte Count Register - ABCR

	1.13.11 Accelerator Descriptor Control Register - ADCR
	Table 17. Accelerator Descriptor Control Register - ADCR (Sheet 1 of 4)

	1.13.12 Extended Descriptor Control Register 0 - EDCR0
	Table 18. Extended Descriptor Control Register 0 - EDCR0 (Sheet 1 of 2)

	1.13.13 Extended Descriptor Control Register 1 - EDCR1
	Table 19. Extended Descriptor Control Register 1 - EDCR1 (Sheet 1 of 2)

	1.13.14 Extended Descriptor Control Register 2 - EDCR2
	Table 20. Extended Descriptor Control Register 2 - EDCR2 (Sheet 1 of 2)

