intgl.

Intel® 80331 I/O Processor

Application Accelerator Unit D-O0 Addendum

January, 2005

Document Number: 304496001US




Intel® 80331 I/0 Processor Application Accelerator Unit D-O0 Addendum =

Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Intel® internal code names are subject to change.

THIS SPECIFICATION, THE Intel® 80331 I/O Processor IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY
WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE
ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

Intel disclaims all liability, including liability for infringement of any proprietary rights, relating to use of information in this specification. No license,
express or implied, by estoppel or otherwise, to any intellectual property rights is granted herein.

Copyright © Intel Corporation, 2005

AlertVIEW, i960, AnyPoint, AppChoice, BoardWatch, BunnyPeople, CablePort, Celeron, Chips, Commerce Cart, CT Connect, CT Media, Dialogic,
DM3, EtherExpress, ETOX, FlashFile, GatherRound, i386, i486, iCat, iCOMP, Insight960, InstantIP, Intel, Intel logo, Intel386, Intel486, Intel740,
IntelDX2, IntelDX4, IntelSX2, Intel ChatPad, Intel Create&Share, Intel Dot.Station, Intel GigaBlade, Intel InBusiness, Intel Inside, Intel Inside logo, Intel
NetBurst, Intel NetStructure, Intel Play, Intel Play logo, Intel Pocket Concert, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel TeamStation,
Intel WebOutfitter, Intel Xeon, Intel XScale, Itanium, JobAnalyst, LANDesk, LanRover, MCS, MMX, MMX logo, NetPort, NetportExpress, Optimizer
logo, OverDrive, Paragon, PC Dads, PC Parents, Pentium, Pentium Il Xeon, Pentium Il Xeon, Performance at Your Command, ProShare,
RemoteExpress, Screamline, Shiva, SmartDie, Solutions960, Sound Mark, StorageExpress, The Computer Inside, The Journey Inside, This Way In,
TokenExpress, Trillium, Vivonic, and VTune are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and
other countries.

*Other names and brands may be claimed as the property of others.

2 January, 2005 Document Number: 304496001US



Contents

intel Intel® 80331 I/0 Processor Application Accelerator Unit D-O0 Addendum
®

Contents

1 ApPlication ACCEIEIAtOr UNIT .....oiiiiiiiiii ittt e e ee e 9
I @ V=T V1= TP PP PPPPPPPPPPPPPR 9
1.2 Theory Of OPEIaAtiON ........coioi ittt ettt ettt e e e e s s e bbb e e eeaeeaee s s nnae 10
1.3 Hardware-AsSISt XOR UNIT ....c.oiiiiiiiiiiee ettt e ner e e e 12

R N B D T v I - 1011 (=] S TSP P TP OPTPPPPRPPPPPPRT 12

1.3.2  Chain DESCIIPLOIS .. eittieieeieie e e es ettt s et e e e e s s e s bbb eeeeeeeesannen 13
1.3.2.1 Principle / Four-Source Descriptor FOrmat ..........c.oovcvvvvieiiienieeenenienns 14

1.3.2.2 Eight-Source Descriptor FOrmat ..........ccvvvimieiiieiniiiiiiieeeceeee e 15

1.3.2.3 Sixteen-Source DescCriptor FOrMat........cccccevveviieiniiiiiiiiiieeeeeie e 16

1.3.2.4 Thirty-two-Source Descriptor FOrmMat...........cccccevveiiiiiiiiiiieiiiinieeee e 18

1.3.2.5 Dual-XOR-Transfer Descriptor FOrmat ..........cccccoevviiiiriiiieiiinieeeeeniens 22

1.3.2.6 P+Q Three-Source Descriptor FOrmat.........cccccevveiiiiiiiiiieiiiinieeee e 24

1.3.2.7 P+Q Six-Source Descriptor FOrmMat .........cceuvevveeieeriiniiiiieieeieee e 25

1.3.2.8 P+Q Twelve-Source Descriptor FOrmat.........cccccevveviiiiiiieiieiiieeeeenees 26

1.3.2.9 P+Q Sixteen-Source Descriptor FOrmMat ...........ccccoovevivviviiinieeiee e 28

1.3.3  DESCIPIOr SUMIMAIY ...uiiiiiiiiiieiie ettt ee e ee e s st e e e e e s s e s s r b re e e eeeeeeee s s nnnn 33

1.3.4  DeSCrPtOr CRAINING ...uviirieeiiie et ee e e e e s eeeee e s e aanes 35

1.4 AA DESCHPLON PrOCESSING ... cuuuietieieeeeieee e ettt e e e e s et e e ee e s s e s s nb b e e e eeeeeaees s nnan 36
1.4.1  Scatter Gather TraANSTEIS ... 38

1.4.2 Synchronizing a Program to Chained Operation ...........cccccccveriiiirieenienieein s 38

1.4.3 Appending to The End of @ ChaiN...........oeiiiiiiiiiiiiiiie e 40

1.5 AA OPEIALIONS ...ttt ettt ettt e e e e s e s s aE et e e ee e s s e e e e e 41
1.5.1  AA AUIrESSING .ottt ettt e e e st e e e e s e e e e e e ae e 42

1.5.2  XOR OPEIALION .ttt ettt e e et e s e e e e s e s e ee e eeeeees e nnannes 43

1.5.3 XOR Operation with P+Q RAID-6 MOE............ccoiiiiiiiiiiiiiiiecie i 46

1.5.4  DUAI-XOR OPEIALION. ....uuiiiiiiieiis ettt e e e s et e e s s eeeeeee e s anee 50

1.5.5 Zero Result BUFfEr CRECK ........ccoiiiiiiiiiiiic e 55

1.5.6  Zero Result Buffer Check with P+Q RAID-6 .........coooviiiiiiiiie e 56

1.5.7  Memory BIOCK Fill OPeration.........cccuuviiiiiiiieiieeiies ittt 57

1.6 Programming Model State DIAgram .........cccvvurieeiieiie et e e 58
1.7  Application ACCEIEratOr PrIOIILY ........cciiiii ittt eae e 59
1.8 Packing and UNPacKiNg ........cc.uuuiiiiiiiieiie ittt e e 60
1.8.1 64-bit Unaligned Data TranSTers ...t 60

1.9 Programming the Application ACCEIEIALON ........c.uieiiiiiiiiiiie e 61
1.9.1 Application Accelerator INItIAliIZAtION ..............ooiiiiiiiiiii e 62

1.9.2 Suspending and Resuming the Application Accelerator.............ccccovevvivieereenieennn, 62

1.9.3 Appending Descriptor for XOR OPEerations...........ccouvrreeiiiiieeineniiiiieieeee e e e 63

1.9.4 Appending Descriptor for Dual XOR Operations ...........cccccceeiveriiniiririeeiieeeieeneennnns 64

1.9.5 Appending Descriptor for Memory Block Fill Operations ..............c.ouvuvvviiiiniinennnnn. 64

1.9.6  Appending Descriptor for Zero Result Buffer Check............ccooviiiiiiiiiicicinnn, 65

O T 1 (=T o (VT o £ PP P 66
R = ¢ (o] o] T [ i [o ] 1 PP PR TP PRPPPRPP 67
1.12  PoWer-up/Default STATUS .......eueieteiiies et a e e e e e e e eeeeeeeeees 68
1.13  RegiSter DefiNItIONS......ccciiiiiit ettt e e e 68
1.13.1 Accelerator Control Register - ACR .......cooiiiiiiieiie e 69
1.13.2 Accelerator Status RegISter - ASR.......cociiiiiiiiieeie et 70

1.13.3 Accelerator Descriptor Address

Document Number: 304496001US January, 2005 3



Contents

Intel® 80331 I/0 Processor Application Accelerator Unit D-O0 Addendum = tel
®

REGISIEN - ADAR ...ttt e s 71
1.13.4 Accelerator Next Descriptor Address

REGISTEr - ANDAR. ...ttt e e e e e e 72
1.13.5 Data/ Source Address Registerl - DISARL/PQSARL .......ccoooiiiiiiiiiiiiiiiieieeceee 73
1.13.6 Source Address Registers 2..32 - SAR2..32 .......oouiiiiiiiiiiiiiee e 74
1.13.7 P+Q RAID-6 Source Address Registers 2..16 -

PQSARZ..LB ..ttt 76
1.13.8 P+Q RAID-6 Galois Field Multiplier Registers 1..5

S GFMRLL.S e e e e e ee e 77
1.13.9 Destination Address Register - DAR .......coooiiiiiiiiiiieeee e 79
1.13.10 Accelerator Byte Count Register - ABCR .........ouiiiiiiiiiiiiiiiie e 80
1.13.11 Accelerator Descriptor Control Register - ADCR.......ccoovviiiiiiiiiiiiieiieee e 81
1.13.12 Extended Descriptor Control Register 0 - EDCRO........c.ccoviiiiiiiiiiiiiiiieeieeene e 85
1.13.13 Extended Descriptor Control Register 1 - EDCRI........ccoooviiiiiiiiiiiiiiiieiie e 87
1.13.14 Extended Descriptor Control Register 2 - EDCR2........ccoooviiiiiiiiiiiiiiieiee e 89

January, 2005 Document Number: 304496001US



Contents

intel Intel® 80331 I/0 Processor Application Accelerator Unit D-O0 Addendum
®

Figures
1 Application Accelerator BIOCK Diagram...........cocuvuiiiiiiiiiineeiee ittt e e 10
2 Principle / Four Source DesSCriptOr FOIMAL .......ccc.uuviiiiiiiieiie ettt eee e 14
3 Chain Descriptor Format for Eight Source Addresses (XOR FUNCEION) .........ccocoviiieriieeeieenennnnes 15
4  Chain Descriptor Format for Sixteen Source Addresses (XOR FUNCLION) ............ccccvvvveirienieennnn. 16
5 Chain Descriptor Format for Thirty Two Source Addresses (XOR FUNcCtion) .........ccccceeevveviinnnnns 19
6  Chain Descriptor Format for Dual-XOR-tranSfer..........c.vveiiiiiieiiiiie e 22
7  P+Q Base Chain DeSCHPLOr FOIMAL ........ueuiiiiiiiiiiiiiie et e e s eeeee e s 24
8 P+Q Chain Descriptor Format for Six Source Addresses (XOR FuNncCtion)...........ccccuvvevvverieennnn. 25
9 P+Q Chain Descriptor Format for Twelve Source Addresses (XOR Function) ..........ccccceveeeenn. 26
10 P+Q Chain Descriptor Format for Sixteen Source Addresses (XOR FuNnction).............ccceevenens 29
11 XOR ChainiNg OPEIALION .....cee ittt ettt ee ettt ee e e e e e e sttt eeae e s s e s bbb be e e eeaeeeees s nnne 35
12 Example of Gather Chaining for FOur SOUrce BIOCKS ..........coooiiiiiiiiiiiieeei e 36
13 Synchronizing to Chained AA OPEIAtION ........cccuuiiiiiiiiiie et e e e 39
14  The Bit-wise XOR AlGOTNM .......iiiiiii e e e e 43
15 Hardware ASSISt XOR UNIT ....coiiiiiiiiieie ettt e e e e et rreeeeeeen e s e 44
16 The Bit-wise XOR Algorithm including the P+Q RAID-6 MOUE.........ccvvivieerieiiiiiiiiiniieeeeee s 46
17 GF MURIPIY FUNCHON ....iiiiii ettt e e s et e e e e ae e s s nnee 47
18 Galois Field Logarithm Transformation Table..............viiiiiiiii e 47
19 Galois Field Inverse Logarithm Transformation table ... 48
20 P+Q RAID-6 Generation EQUALION. ..........uiiiiiiiiitiitieeie ettt e st e e e e ae e nnne 49
21 The Bit-wise DUal-XOR AIGOITNM .......eiiiiiiiiii e eee e 51
22  An example of Zero Result BUffer CheCK .........oooiiiiiiiiiiie e 55
23 An example of Zero Result Buffer Check with P+Q RAID-6........cccuviiiiiiiiiiiiiieeeeeeeee e 56
24 Example of a Memory BIOCK Fill OpEration........ccuuvieeiieiieiiiiiis ittt 57
25 Application Accelerator Programming Model State Diagram..........ccceeeveieieieieieieeeeeieeeeeeeeeee e 58
26 Optimization of an Unaligned Data TranSfer..........c.euiiiiiiiieiii e 60
27 Pseudo Code: Application Accelerator INtialiZation ..............ocovieiieiiie e 62
28 Pseudo Code: Application Accelerator Chain Resume Initialization.............ccccoeeeieiiiiiiiivieeiiens 62
29 Pseudo Code: Suspend AppliCation ACCEIEIALON .........ieiiiiiiiiiiiiiee et 62
30 Pseudo Code: XOR Transfer OPEratiON .........ccuueiiiiiririeeie et e e 63
31 Pseudo Code: Dual XOR Transfer OPEration...........c.ueeiieeireiiisirierieeieeeieess s ee e e es e e 64
32 Pseudo Code: Memory BIOCK Fill OPEration.............ceuieiieiiiiiiisiiieiieii e en e 64
33 Pseudo Code: Zero Result Buffer Check Operation.............oocoviieiiieiiieineiiesiiee e 65

Document Number: 304496001US January, 2005 5



Contents In

Intel® 80331 I/0 Processor Application Accelerator Unit D-O0 Addendum = tel
®

Tables
1 REQISIEr DESCIIPTION ..eetieitieiieis ettt ettt e e e e e s s bbb e e e et ee e s aa s st n e reeetaeeeeen e nnan 12
2 DESCIIPION SUMIMIAIY ...titiieiiieiee ettt e e s e e ettt e ee e e s e s st e e et eeteeeaea s e as b b bn e et e eeeeees e nnans 33
3 AA Operation and Command Combination SUMMAIY ..........coooiuiriiiiiiiieeie e 41
4  Typical AA Operation and AddreSSiNg SUMMEANY .......ueeuiieireariiirieieeiree e e ee e ae e s 42
LT N N 11T (U] o) £ PP TRTPTPTPRPR 66
6  Application Accelerator UNit REGISTEIS ........iiiiiiiiiiiiiei et e e 68
7 Accelerator Control REGISTEN - ACR ... ..t e e 69
8  Accelerator Status REQISIEN - ASR ... 70
9  Accelerator Descriptor Address Register - ADAR .......ooiiiiiiiiiiii e 71
10 Accelerator Next Descriptor Address Register - ANDAR ... 72
11 Data/ Source Address Register - SARL/PQSARL......cooiiiiiiiiiiieee e 73
12 Source Address Register2..32 - SARZ2..32 .. ..ot 75
13 P+Q RAID-6 Source Address Registers 2..16 - PQSARZ2..16 ........c.ouuiuiiiiiiiiaiaieieeeee e eeeeeeeee e 76
14 Galois Field Multiplier Registers 1.5 - GEMRL..5 ......oooiiiiiiiiiii e 77
15 Destination Address RegiSter - DAR ..ottt 79
16 Accelerator Byte Count Register - ABCR .......ooiiiiiiiiiiiiii et 80
17 Accelerator Descriptor Control Register - ADCR.......coiiiiiiiiiiiiiee e 81
18 Extended Descriptor Control Register 0 - EDCRO.........coiiiiiiiiiiiiie ittt 85
19 Extended Descriptor Control Register 1 - EDCRIL.......ccoiiiiiiiiiiiiie et 87
20 Extended Descriptor Control RegiSter 2 - EDCR2.......ccuiiiiiiiiiiiiiiiee ittt 89
6 January, 2005 Document Number: 304496001US



Contents

intel Intel® 80331 I/0 Processor Application Accelerator Unit D-O0 Addendum
®

Revision History

Date

Revision

Description

January 2005

001

Initial Developer Web Site Release.

Document Number: 304496001US

January, 2005




Contents In

Intel® 80331 I/0 Processor Application Accelerator Unit D-O0 Addendum = tel
®

This Page L eft Intentionally Blank

8 January, 2005 Document Number: 304496001US



intel.

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Overview

Application Accelerator Unit 1

This chapter describes the integrated Application Accelerator (AA) Unit. The operation modes,
setup, external interface, and implementation of the AA unit are detailed in this chapter.

1.1 Overview

The Application Accelerator provides low-latency, high-throughput data transfer capability
between the AA unit and Intel® 80331 1/0 processor (80331) local memory. It executes data
transfers to and from 80331 local memory, checks for all-zero result across local memory blocks,
performs memory block fills, and provides the necessary programming interface. The Application
Accelerator performsthe following functions:

Transfers data (read) from memory controller.

Performs an optional boolean operation (XOR) on read data.
Transfers data (write) to memory controller or PCI.
Checksfor All-zero result across local memory blocks.
Performs memory block fills.

Optiona Dual-XOR for RAID-6 application single strip write.

Optional Galois Field (GF) Multiply calculation for P+Q RAID-6 in conjunction with XOR
operations.

The AA unit features:

1K byte/512-byte store queue.

Utilization of the 80331 memory controller Interface.

232 addressing range on the 80331 local memory interface.

Hardware support for unaligned data transfers for the internal bus.

Fully programmable from the Intel X Scale® core.

Support for automatic data chaining for gathering and scattering of data blocks.
Support for writing a constant value to a memory block (block fill).

Support for writing descriptor statusto local memory.

Hardware to perform Galois Field (GF) Multiply function on the Source Data Streams during
an XOR operation, when enabled.

Document Number: 304496001US January, 2005 9



Theory of Operation In

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum = tel
®

1.2

Figure 1.

10

Theory of Operation

The Application Accelerator isamaster on the internal bus and performs data transfers to and from
local memory. It does not interface to the PCI bus. AA uses direct addressing for memory
controller.

The AA implements XOR algorithm in hardware. It performs X OR operation on multiple blocks of
source (incoming) data and stores result back in 80331 local memory. The source and destination
addresses are specified through chain descriptors resident in 80331 local memory. A Dual-X OR
operation is aso supported for optimized processing of two different, but related X OR operations
inasingle operation. The AA can also check for all-zero result across local memory blocks or fill a
memory block with arbitrary data. Figure 1 shows a block diagram of the AA unit. The AA can

a so perform memory-to-memory transfers of data blocks controlled by 80331 memory controller
unit.

Application Accelerator Block Diagram

Application Accelerator Unit /
| Data Queue - Bolj’r']?tan uﬁ%‘;'é';?i%g Iécu)spl;otg?fséscoe J-»
T Unit 64-bit
] Bus Interface Internal
Control Registers Data Unit Bus
Accelerator Control Register

Accelerator Status Register
Accelerator Descriptor Address Register
Accelerator Next Descriptor Address Register \J
1/0 Processor Data / Local Source Address Registerl
1/0 Processor Local Source Address Register2..32
1/0 Processor Local Destination Address Register
Accelerator Byte Count Register

Accelerator Descriptor Control Register
Extended Descriptor Control Register 0
Extended Descriptor Control Register 1
Extended Descriptor Control Register 2

AA programming interface is accessible from the interna bus through a memory-mapped register
interface. Datafor XOR operation is configured by writing source addresses, destination address,
number of bytes to transfer, and various control information into alocal memory chain descriptor.
Chain descriptors are described in detail in Section 1.3.2, “Chain Descriptors’ on page 13.

The AA unit contains a hardware data packing and unpacking unit. This unit enables data transfers
from and to unaligned addresses in 80331 local memory. All combinations of unaligned data are
supported with the packing and unpacking unit. Datais held internally in the AA until ready to be
stored back to local memory. Thisis done using a 1KByte/512Byte holding queue. Data to be
written back to 80331 local memory can either be aligned or unaligned.

Each chain descriptor contains necessary information for initiating an XOR operation on blocks of
data specified by the source addresses. The AA unit supports chaining. Chain descriptors that
specify the source datato be XORed can be linked together in 80331 local memory to form a
linked list.

January, 2005 Document Number: 304496001US



= Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
® Theory of Operation

Similar to XOR operations, AA can be programed to compute parity across multiple memory
blocks specified by chain descriptors. In addition, AA isalso used for memory block fills. A
Dual-XOR operation is available for use when calculating two parity blocks for aRAID-6 single
strip write.

In conjunction with the XOR and Dual-XOR operations, a GF Multiply calculation can be applied to
source datain support of P+Q RAID-6. The AA will perform a GF Multiply between source data and
acontrol byte for each source before the XOR operation when enabled. P+Q RAID-6 isenabled
through an enable bit in the Section 1.13.1, “Accelerator Control Register - ACR” (bit 3).

Document Number: 304496001US January, 2005 11



Hardware-Assist XOR Unit

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum intel
®

1.3

Hardware-Assist XOR Unit

The AAU implements the XOR algorithm in hardware. It performs the XOR operation on multiple
blocks of source (incoming) data and stores the result back in 80331 local memory.

* The process of reading source data, executing the XOR agorithm, and storing the XOR data
will hereafter isreferred to as XOR-transfer.

* The operation of two XOR-transfers defined in a single descriptor will hereafter be referred to

as Dual-XOR transfer.

* The process of reading or writing datawill hereafter isreferred to as data transfer.

Source and destination addresses specified through chain descriptors resident in 80331 local

memory.
1.3.1 Data Transfer
All transfers are configured and initiated through a set of memory-mapped registers and one or
more chain descriptorslocated in local memory. A transfer is defined by the source address,
destination address, number of bytes to transfer, and control values. These values are loaded in the
chain descriptor before atransfer begins. Table 1 describes the registers that need to be configured
for any operation.
When P+Q RAID-6 is enabled, the GF Multiplier bytes also act as control valuesin the data
transfer.
Table 1. Register Description
Register Abbreviation Description
Accelerator Control Register ACR Application Accelerator Control Word
Accelerator Status Register ASR Application Accelerator Status Word
Accelerator Descriptor Address Register ADAR Address of Current Chain Descriptor
Accelerator Next Descriptor Address Register ANDAR Address of Next Chain Descriptor
Data / Source Address Registerl D/SAR1 Data to be written or Local memory addresses of source data
Source Address Register 2..32 SAR2.. SAR32 Local memory addresses of source data
. PQSAR2.. Local memory addresses of source data when operating in
P+Q RAID-6 Source Address Register 2..16 PQSAR16 P+Q RAID-6 mode
iy ) GFMR1.. GFMRS5, P+Q RAID-6 GF Multiplier bytes
P+Q RAID-6 GF Multiplier Register 1..5,D GFMRD when operating in P+Q RAID-6 mode
Destination Address Register DAR Address of result data
Accelerator Byte Count Register ABCR Number of Bytes to transfer
Data Register DR Data to be written to the destination
Accelerator Descriptor Control Register ADCR Chain Descriptor Control Word

12

January, 2005

Document Number: 304496001US




intel.

1.3.2

Warning:

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Hardware-Assist XOR Unit

Chain Descriptors

All transfers are controlled by chain descriptors located in local memory. A chain descriptor
contains the necessary information to complete one transfer. A single transfer has only one chain
descriptor in memory. Chain descriptors can be linked together to form more complex operations.

Chain descriptors can only be located in DDR SDRAM memory in order for the AAU to function
properly. Location of the chain descriptors anywhere else (e.g., either on the Peripheral Busor on
PCI) is not supported and the results would be unpredictable.

To perform atransfer, one or more chain descriptors must first be written to 80331 local memory.
The words of a descriptor are contiguous in local memory. Descriptors can be different sizes, each
dependent on the number of sources being addressed by the operation. The sizes supported by the
Application Accelerator are four, eight, sixteen and thirty-two sources. The alignment of the
descriptor in local memory is dependent on the descriptor size and is defined for each in the
following sections. Not all sources must be used in a given descriptor.

Descriptor formats for P+Q RAID-6 enabled operation are defined separately. When P+Q RAID-6
is enabled, only the P+Q RAID-6 descriptor formats are valid.

Document Number: 304496001US January, 2005 13



Hardware-Assist XOR Unit In

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum = tel
®

1.3.2.1

Figure 2.

14

Principle / Four-Source Descriptor Format

Figure 2 shows the format of an individual chain descriptor. This four-source descriptor is the smallest
supported descriptor. The four-source descriptor requires eight contiguous wordsin 80331 local
memory and is required to be aligned on an 8-word boundary. All eight words are required.

Principle / Four Source Descriptor Format

Chain Descriptor in Local Memory Description

Next Descriptor Address (NDA) Address of Next Chain Descriptor

Al D/SAR1 . .
Source Address (D/S ) Immediate Data or Source Address for first block of data

Source Address (SAR2) Source Address for second block of data

Source Address (SAR3) Source Address for third block of data
Source Address (SAR4) Source Address for fourth block of data
Destination Address (DAR) Destination Address
Byte Count (BC) Number of bytes
Descriptor Control (DC) Descriptor Control

Each word in the chain descriptor is analogous to control register values. Bit definitions for the
words in the chain descriptor are the same as for the control registers.

* Firstwordisloca memory address of next chain descriptor. A value of zero specifiesthe end of the

chain. Thisvalue is loaded into the Accelerator Next Descriptor Address Register. Because chain

descriptors must be aligned on aminimum 8-word boundary, the unit may ignore bits 04:00 of this

address.

* Second word isaddress of the first block of dataresident inloca memory, or immediate data when

performing aMemory Block Fill. Thisvalueisloaded into the Data/ Source Address Register 1.

* Third word is the address of the second block of data resident in local memory. This addressis
driven on the internal bus. This value isloaded into the Source Address Register 2.

* Fourth word is the address of the third block of data resident in local memory. This addressis

driven on the internal bus. This value isloaded into the Source Address Register 3.

¢ Fifth word isthe address of the fourth block of data resident in local memory. This addressis
driven on the internal bus. This value isloaded into the Source Address Register 4.

* Sixth word isthe destination address where datais stored in local memory or PCI. Thisaddressis
driven on the internal bus. This value isloaded into the Destination Address Register.

* Seventh word isthe Byte Count value. This value specifies the number of bytes of datain the
current chain descriptor. This value is loaded into the Accelerator Byte Count Register.

¢ Eighth word isthe Descriptor Control Word. Thisword configures the Application Accelerator for

one operation. This value isloaded into the Accelerator Descriptor Control Register.

There are no dataalignment requirements for any source addresses or destination address. However,
maximum performance is obtained from aligned transfers, especialy small transfers. See Section 1.4.

Refer to Section 1.13 for additional description on the control registers.

January, 2005 Document Number: 304496001US



= Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
In ® Hardware-Assist XOR Unit

1.3.2.2 Eight-Source Descriptor Format

To perform an XOR-transfer with up to eight source blocks of data, a special chain descriptor needs
to be configured:

* Thefirst part is the four-source descriptor (referred to as the principal-descriptor) containing
the address of the first 4 source data blocks along with other information.

* The second part (mini-descriptor) contains 4, DWORDSs containing the address of the
additional four (SAR5 - SARS) source data blocks. The mini-descriptor iswritten to a
contiguous address immediately following the principal descriptor.

To perform atransfer, both parts (principal and mini-descriptor) must be written to local memory.
Figure 3 shows the format of this eight-source descriptor. The eight-source descriptor requires
twelve contiguous words in local memory and is required to be aligned on an 16-word boundary.
All twelve words are required.

Figure 3. Chain Descriptor Format for Eight Source Addresses (XOR Function)
Chain Descriptor in I/0O Processor Memory Description
Next Descriptor Address (NDA) Address of Next Chain Descriptor

Source Address (D/SAR1) Source Address for first block of data
Source Address (SAR2) Source Address for second block of data
Source Address (SAR3) Source Address for third block of data
Source Address (SAR4) Source Address for fourth block of data

Destination Address (DAR) Destination Address of XOR-ed data

Byte Count (BC) Number of bytes to XOR

Descriptor Control (DC) Descriptor Control
Source Address (SAR5) Source Address for fifth data block
Source Address (SAR6) Source Address for sixth data block
Source Address (SAR7) Source Address for seventh data block
Source Address (SARS) Source Address for eighth data block

* Thefirst eight words are defined in the four-source descriptor definition. See Section 1.3.2.1,
“Principle / Four-Source Descriptor Format” for the definition of these words.

* The ninth word (1st word of mini-descriptor) isthe address of thefifth block of dataresident in
local memory. This address is driven on the internal bus. Thisvalueis |loaded into SARS.

* The tenth word (2nd word of mini-descriptor) is the address of the sixth block of dataresident in
local memory. This addressis driven on the internal bus. This value isloaded into SARG.

* Thedeventh word (3rd word of mini-descriptor) isthe address of the seventh block of data resident
inloca memory. This addressis driven on the internal bus. Thisvalueisloaded SARY.

* Thetwelfth word (4th word of mini-descriptor) isthe address of the eighth block of data
resident in local memory. This address is driven on the internal bus. Thisvalueis|loaded into
SARS8.

Document Number: 304496001US January, 2005 15



Hardware-Assist XOR Unit

in

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum = tel
®

1.3.2.3 Sixteen-Source Descriptor Format

To perform an XOR-transfer with up to sixteen source blocks of data, a specia chain descriptor

needs to be configured:

* Thefirst part (principal-descriptor) contains the address of the first 4 source data blocks along

with other information.

® The second part (mini-descriptor) contains four, DWORDSs containing the address of the
additional four (SARS - SARS8) source data blocks. The mini-descriptor is written to a
contiguous address immediately following the principal descriptor.

® Thethird part (extended-descriptor 0) contains nine, DWORDs containing the address of the
additional eight (SAR9 - SAR16) source data blocks and the command/control for these data
blocks. The extended-descriptor O is written to a contiguous address immediately following

the mini descriptor.

To perform atransfer, al three parts (principal descriptor, mini-descriptor and extended-descriptor
0) must be written to local memory. Figure 4 shows the format of this configuration. Every
descriptor requires twenty one contiguous words in local memory and is required to be aligned on
an 32-word boundary. All twenty one words are required.

Figure 4. Chain Descriptor Format for Sixteen Source Addresses (XOR Function)

Chain Descriptor in Intel XScale® Core Memory

Next Descriptor Address (NDA)

Source Address (D/SAR1)

Source Address (SAR2)

Source Address (SAR3)

Source Address (SAR4)

Destination Address (DAR)

Byte Count (BC)

Descriptor Control (DC)

Source Address (SARS5)

Source Address (SARG6)

Source Address (SAR7)

Source Address (SARS8)

Extended Descriptor Control 0 (EDCO)

Source Address (SAR9)

Source Address (SAR10)

Source Address (SAR11)

Source Address (SAR12)

Source Address (SAR13)

Source Address (SAR14)

Source Address (SAR15)

Source Address (SAR16)

Description
Address of Next Chain Descriptor
Source Address for first block of data
Source Address for second block of data
Source Address for third block of data

Source Address for fourth block of data
Destination Address of XOR-ed data

Number of bytes to XOR

Descriptor Control

Source Address for fifth data block
Source Address for sixth data block
Source Address for seventh data block
Source Address for eighth data block
Extended Descriptor O control

Source Address for ninth block of data
Source Address for tenth block of data
Source Address for eleventh block of data

Source Address for twelfth block of data
Source Address for thirteenth block of data

Source Address for fourteenth block of data

Source Address for fifteenth block of data

Source Address for sixteenth block of data

16 January, 2005 Document Number: 304496001US



tel.

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Hardware-Assist XOR Unit

Thefirst eight words are defined in the four-source descriptor definition. See Section 1.3.2.1,
“Principle / Four-Source Descriptor Format” for the definition of these words.

Words nine through twelve are defined in the eight-source descriptor definition. See Section
1.3.2.2, “Eight-Source Descriptor Format” for the definition of these words.

The thirteenth word (1st word of extended-descriptor 0) is the Extended Descriptor Control
Word 0. This word configures the Application Accelerator for one operation. The valueis
loaded into the Extended Descriptor Control Register O.

The fourteenth word (2nd word of extended-descriptor 0) is the address of the ninth block of
dataresident in local memory. This address is driven on the internal bus. This vaue is loaded
into SAR 9.

The fifteenth word (3rd word of extended-descriptor 0) isthe address of the tenth block of data
resident in local memory. This address is driven on the internal bus. Thisvalueisloaded into
SAR 10.

The sixteenth word (4th word of extended-descriptor 0) isthe address of the el eventh block of
dataresident in local memory. This address is driven on the internal bus. This vaue is loaded
into SAR 11.

The seventeenth word (5th word of extended-descriptor 0) isthe address of the twelfth block
of dataresident in local memory. This address isdriven on the internal bus. Thisvaueis
loaded into SAR 12.

The eighteenth word (6th word of extended-descriptor O) is the address of the thirteenth block
of dataresident in local memory. This address isdriven on the internal bus. Thisvalueis
loaded into SAR 13.

The nineteenth word (7th word of extended-descriptor 0) isthe address of the fourteenth block
of dataresident in local memory. This address is driven on the internal bus. Thisvaueis
loaded into SAR 14.

The twentieth word (8th word of extended-descriptor 0) isthe address of the fifteenth block of
dataresident in local memory. This address is driven on the internal bus. This vaue is loaded
into SAR 15.

The twenty first word (9th word of extended-descriptor 0) is the address of the sixteenth block
of dataresident in local memory. This address isdriven on the internal bus. Thisvaueis
loaded into SAR 16.

Document Number: 304496001US January, 2005 17



Hardware-Assist XOR Unit In

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum = tel
®

1.3.24

18

Thirty-two-Source Descriptor Format

To perform an XOR-transfer with up to thirty two source blocks of data, a special chain descriptor
needs to be configured:

Thefirst part (principal-descriptor) contains the address of the first 4 source data blocks along
with other information.

The second part (mini-descriptor) contains four, DWORDS containing the address of the
additional four (SARS - SARS8) source data blocks. The mini-descriptor is written to a
contiguous address immediately following the principal descriptor.

The third part (extended-descriptor 0) contains nine, DWORDS containing the address of the
additional eight (SAR9 - SAR16) source data blocks and the command/control for these data
blocks. The extended-descriptor O is written to a contiguous address immediately following
the mini descriptor.

The fourth part (extended-descriptor 1) contains nine, DWORDS containing the address of the
additional eight (SAR17 - SAR24) source data blocks and the command/control for these data
blocks. The extended-descriptor 1 iswritten to a contiguous address immediately following
extended-descriptor O.

The fifth part (extended-descriptor 2) contains nine, DWORDs containing the address of the
additional eight (SAR25 - SAR32) source data blocks and the command/control for these data
blocks. The extended-descriptor 2 iswritten to a contiguous address immediately following
extended-descriptor 1.

To perform atransfer, all five parts (principal descriptor, mini-descriptor, extended-descriptor O,
extended-descriptor 1, and extended-descriptor 2) must be written to local memory. Figure 5 shows
the format of this configuration. The full descriptor requires thirty nine contiguous wordsin local
memory and is required to be aligned on an 64-word boundary. All thirty nine words are required.

January, 2005 Document Number: 304496001US



= Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Hardware-Assist XOR Unit

INlal.

Figure 5. Chain Descriptor Format for Thirty Two Source Addresses (XOR Function)

Chain Descriptor in I1/O Processor Memory

Next Descriptor Address (NDA)

Source Address (D/SAR1)

Source Address (SAR2)

Source Address (SAR3)

Source Address (SAR4)

Destination Address (DAR)

Byte Count (BC)

Descriptor Control (DC)

Source Address (SARS5)

Source Address (SARG6)

Source Address (SAR7)

Source Address (SARS8)

Extended Descriptor Control 0 (EDCO)

Source Address (SAR9)

Source Address (SAR10)

Source Address (SAR11)

Source Address (SAR12)

Source Address (SAR13)

Source Address (SAR14)

Source Address (SAR15)

Source Address (SAR16)

Extended Descriptor Control 1 (EDC1)

Source Address (SAR17)

Source Address (SAR18)

Source Address (SAR19)

Source Address (SAR20)

Source Address (SAR21)

Source Address (SAR22)

Source Address (SAR23)

Source Address (SAR24)

Extended Descriptor Control 2 (EDC2)

Source Address (SAR25)

Source Address (SAR26)

Source Address (SAR27)

Source Address (SAR28)

Source Address (SAR29)

Source Address (SAR30)

Source Address (SAR31)

Source Address (SAR32)

Description

Address of Next Chain Descriptor

Source Address for first block of data

Source Address for second block of data
Source Address for third block of data

Source Address for fourth block of data
Destination Address of XOR-ed data

Number of bytes to XOR

Descriptor Control

Source Address for fifth data block

Source Address for sixth data block

Source Address for seventh data block
Source Address for eighth data block
Extended Descriptor O control

Source Address for ninth block of data
Source Address for tenth block of data
Source Address for eleventh block of data
Source Address for twelfth block of data
Source Address for thirteenth block of data
Source Address for fourteenth block of data
Source Address for fifteenth block of data
Source Address for sixteenth block of data
Extended Descriptor 1 control
Source Address for seventeenth block of data
Source Address for eighteenth block of data
Source Address for nineteenth block of data
Source Address for twentieth block of data
Source Address for twenty first block of data
Source Address for twenty second block of data
Source Address for twenty third block of data
Source Address for twenty fourth block of data
Extended Descriptor 2 control
Source Address for twenty fifth block of data
Source Address for twenty sixth block of data
Source Address for twenty seventh block of data
Source Address for twenty eighth block of data
Source Address for twenty ninth block of data
Source Address for thirtieth block of data
Source Address for thirty first block of data
Source Address for thirty second block of data

Document Number: 304496001US January, 2005

19



Hardware-Assist XOR Unit

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum intel
®

20

The first eight words are defined in the Four-source descriptor definition. See Section 1.3.2.1,
“Principle / Four-Source Descriptor Format” for the definition of these words.

Words nine through twelve are defined in the Eight-source descriptor definition. See Section
1.3.2.2, “Eight-Source Descriptor Format” for the definition of these words.

Words thirteen through twenty-one are defined in the Sixteen-source descriptor definition. See
Section 1.3.2.3, “ Sixteen-Source Descriptor Format” for the definition of these words.

The twenty second word (1st word of extended-descriptor 1) is the Extended Descriptor
Control Word 1. Thisword configures the Application Accelerator for one operation. The
value isloaded into the Extended Descriptor Control Register 1.

The twenty third word (2nd word of extended-descriptor 1) is the address of the seventeenth
block of dataresident in local memory. Thisaddressisdriven on theinternal bus. Thisvalueis
loaded into SAR17.

The twenty fourth word (3rd word of extended-descriptor 1) is the address of the eighteenth
block of dataresident in local memory. Thisaddressisdriven on theinternal bus. Thisvalueis
loaded into SAR 18.

The twenty fifth word (4th word of extended-descriptor 1) is the address of the nineteenth
block of dataresident in local memory. Thisaddressisdriven on theinternal bus. Thisvalueis
loaded into SAR 19.

The twenty sixth word (5th word of extended-descriptor 1) is the address of the twentieth
block of dataresident in local memory. Thisaddressisdriven on theinternal bus. Thisvalueis
loaded into SAR 20.

The twenty seventh word (6th word of extended-descriptor 1) isthe address of the twenty first
block of dataresident in local memory. Thisaddressisdriven on theinternal bus. Thisvalueis
loaded into SAR 21.

The twenty eighth word (7th word of extended-descriptor 1) isthe address of the twenty
second block of dataresident in local memory. This address is driven on the internal bus. This
valueisloaded into SAR 22.

The twenty ninth word (8th word of extended-descriptor 1) is the address of the twenty third
block of dataresident in local memory. Thisaddressisdriven on theinternal bus. Thisvalueis
loaded into SAR 23.

The thirtieth word (9th word of extended-descriptor 1) isthe address of the twenty fourth
block of dataresident in local memory. Thisaddressisdriven on theinternal bus. Thisvalueis
loaded into SAR 24,

The thirty first word (1st word of extended-descriptor 2) isthe Extended Descriptor Control
Word 2. Thisword configures the Application Accelerator for one operation. The valueis
loaded into the Extended Descriptor Control Register 2.

The thirty second word (2nd word of extended-descriptor 2) is the address of the twenty fifth
block of dataresident in local memory. Thisaddressisdriven on theinternal bus. Thisvalueis
loaded into SAR 25.

The thirty third word (3rd word of extended-descriptor 2) is the address of the twenty sixth
block of dataresident in local memory. Thisaddressisdriven on theinternal bus. Thisvalueis
loaded into SAR 26.

Thethirty fourth word (4th word of extended-descriptor 2) is the address of the twenty seventh
block of dataresident in local memory. Thisaddressisdriven on theinternal bus. Thisvalueis
loaded into SAR 27.

January, 2005 Document Number: 304496001US



tel.

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Hardware-Assist XOR Unit

The thirty fifth word (5th word of extended-descriptor 2) is the address of the twenty eighth
block of dataresident in local memory. This addressis driven on theinternal bus. Thisvalueis
loaded into SAR 28.

The thirty sixth word (6th word of extended-descriptor 2) isthe address of the twenty ninth
block of dataresident in local memory. This addressis driven on theinternal bus. Thisvalueis
loaded into SAR 29.

The thirty seventh word (7th word of extended-descriptor 2) isthe address of the thirtieth
block of dataresident in local memory. This addressisdriven on theinternal bus. Thisvalueis
loaded into SAR 30.

The thirty eighth word (8th word of extended-descriptor 2) isthe address of the thirty first
block of dataresident in local memory. This addressis driven on theinternal bus. Thisvalueis
loaded into SAR 31.

The thirty ninth word (9th word of extended-descriptor 2) is the address of the thirty second
block of dataresident in local memory. This addressis driven on theinternal bus. Thisvalueis
loaded into SAR 32.

Document Number: 304496001US January, 2005 21



Hardware-Assist XOR Unit In

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum = tel
®

1.3.25

Figure 6.

22

Dual-XOR-Transfer Descriptor Format

To perform a Dual-XOR-transfer, aspecia chain descriptor needs to be configured:

* Thedescriptor contains addresses for 4 source data blocks and 2 destination data buffers along
with other information.

® This descriptor format is only valid when the Dual-XOR-transfer Enable bit (bit 27) in the
Descriptor Control word is set.

* Theformat isbased on the Eight Source Descriptor for XOR-transfers, and the control
registers of the corresponding words take on a different meaning when processing this
descriptor.

Figure 6 shows the format of this Dual-XOR-transfer descriptor. The Dual-XOR-transfer
descriptor requires nine contiguous words in local memory and is required to be aligned on an
16-word boundary. All nine words are required.

Chain Descriptor Format for Dual-XOR-transfer

Chain Descriptor in I/0O Processor Memory Description
Next Descriptor Address (NDA) Address of Next Chain Descriptor
Source Address (SAR1) Source Address for first block of data
Source Address (SAR2) Source Address for second block of data
Horizontal Source Address (SAR_H) Source Address for Horizontal data
Diagonal Source Address (SAR_D) Source Address for Diagonal data
Horizontal Destination Address (DAR_H) Destination Address of Horizontal XOR-ed data
Byte Count (BC) Number of bytes to XOR
Descriptor Control (DC) Descriptor Control
Diagonal Destination Address (DAR_D) Destination Address for Diagonal XOR-ed data

Each word in the chain descriptor is analogous to control register values. Bit definitions for the
words in the chain descriptor are the same as for the control registers.

* Firstwordisloca memory address of next chain descriptor. A value of zero specifiesthe end of the
chain. Thisvalue is loaded into the Accelerator Next Descriptor Address Register. Because chain
descriptors must be aligned on aminimum 8-word boundary, the unit may ignore bits 04:00 of this
address.

* Second word isthe address of the first block of dataresident inloca memory. This addresswill be
driven on the internal bus. Thisvalue isloaded into the Data/ Source Address Register 1 (SARL).

* Third word isthe address of the second block of dataresident in local memory. This addresswill be
driven on the internal bus. This value isloaded into the Source Address Register 2 (SAR2)

* Fourth word is the address of the third block of data resident in local memory. This address
will be driven on the internal bus. This source is referred to as the Horizontal source, and is
associated with the Horizontal Destination for the Dual-XOR-transfer. Thisvalue isloaded
into the Horizontal Source Address Register (SAR3/SAR_H).

* Fifth word isthe address of the fourth block of dataresident inlocal memory. This address will
be driven on the internal bus. This sourceis referred to as the Diagonal source, and is
associated with the Diagonal Destination for the Dual-XOR-transfer. Thisvalueisloaded into
the Diagonal Source Address Register 4 (SAR4/SAR_D).

January, 2005 Document Number: 304496001US



= Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
® Hardware-Assist XOR Unit

¢ Sixth word isthe destination address where the first XOR result will be stored inloca memory.
This addresswill be driven on theinternad bus. This destination is referred to as the Horizontal
Destination, and is associated with the Horizontal Source for the Dual-XOR-transfer. Thisvalue
isloaded into the Destination Address Register (DAR/DAR_H).

¢ Seventh word is the Byte Count value. This val ue specifies the number of bytes of datain the
current chain descriptor. Thisvalue isloaded into the Accelerator Byte Count Register.

¢ Eighth word is the Descriptor Control Word. Thisword configures the Application Accelerator for
one operdtion. Thisvalueisloaded into the Accelerator Descriptor Control Register.

® The ninth word is the destination address where the second X OR result will be stored in local
memory. Thisaddresswill be driven on theinternal bus. This destination isreferred to asthe
Diagonal Destination, and is associated with the Diagonal Source for the Dual-XOR-transfer.
Thisvalueisloaded into the Diagona Destination Address Register (SAR5/DAR_D).

There are no data aignment requirements for any source addresses. While the destinations addresses
(Horizontal and Diegonal) aso have no data aignment requirements rel ative to memory, the aignment
of the Horizontal and Diagond destination addresses must match (relative to 16 Byte address).

Refer to Section 1.13 for additional description on the control registers.

Document Number: 304496001US January, 2005 23



Hardware-Assist XOR Unit In

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum = tel
®

1.3.2.6 P+Q Three-Source Descriptor Format

Figure 7 shows the format of an individual chain descriptor when P+Q RAID-6 is enabled. This
three-source descriptor is the smallest supported descriptor for P+Q RAID-6 operations. The
three-source descriptor requires eight contiguous wordsin 80331 local memory and is required to
be aligned on an 8-word boundary. All eight words are required.

Figure 7. P+Q Base Chain Descriptor Format
Chain Descriptor in Local Memory Description
Next Descriptor Address (NDA) Address of Next Chain Descriptor
Source Address (D/PQSAR1) Immediate Data or Source Address for first block of data
Source Address (PQSAR?2) Source Address for second block of data
Source Address (PQSARS3) Source Address for third block of data
Data Multiplier Values (PQMR1) Data Multiplier Values for Sources 1 through 3
Destination Address (DAR) Destination Address
Byte Count (BC) Number of bytes
Descriptor Control (DC) Descriptor Control

Each word in the chain descriptor is analogous to control register values. Bit definitions for the
words in the chain descriptor are the same as for the control registers.

First word islocal memory address of next chain descriptor. A vaue of zero specifies end of chain.
Valueisloaded into the Accelerator Next Descriptor Address Register. Because chain descriptors
must be aligned on aminimum 8-word boundary, unit may ignore bits 04:00 of this address.

Second word isaddress of thefirst block of dataresident inlocal memory, or immediate data when
performing aMemory Block Fill. Thisvalueisloaded into the Data/ P+Q RAID-6 Source Address
Register 1 (D/PQSARLY).

Third word is address of second block of dataresident in local memory. This addressisdriven on
the internd bus. This value isloaded into the P+Q RAID-6 Source Address Register 2 (PQSAR?2).

Fourth word is address of third block of data resident in local memory and is driven on the
internal bus. Thisvalueisloaded into P+Q RAID-6 Source Address Register 3 (PQSAR3).

Fifth word contains Data Multiplier Values (DMLTX) for source addresses 1 through 3. These
bytes are used as control input for GF Multiply of corresponding source. The respective byte
will be driven to the GF Multiply when source data is being fetched. The lowest order byte of
thisword contains the data multiplier for source address 1, the second byte for source address
2, the third byte for source address 3, and the highest order byte is not used and is reserved.
Thisvaueisloaded into the P+Q RAID-6 GF Multiply Multiplier Register 1 (GFMR1).

Sixth word isthe degtination address where datawill be stored in local memory. This address will
be driven on theinterna bus. Thisvalueisloaded into the Destination Address Register.

Seventh word isthe Byte Count value. This value specifies the number of bytes of datain the
current chain descriptor. This value is loaded into the Accelerator Byte Count Register.

Eighth word is the Descriptor Control Word. Thisword configures the Application Accelerator for
one operation. This value isloaded into the Accelerator Descriptor Control Register.

There are no dataalignment requirements for any source addresses or destination address. However,
maximum performance is obtained from aligned transfers, especialy small transfers. See Section 1.4.

Refer to Section 1.13 for additional description on the control registers.

24

January, 2005 Document Number: 304496001US



= Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
In ® Hardware-Assist XOR Unit

1.3.2.7 P+Q Six-Source Descriptor Format

To perform an P+Q RAID-6 XOR-transfer with up to six source blocks of data, a special chain
descriptor needs to be configured:

* First part: three-source descriptor (referred to as principal-descriptor) containing source
address and data multiplier values of first 3 source data blocks along with other information.

® Second part: (mini-descriptor) contains 4 DWORDs containing the address of the additional
three source data blocks and Data Multiplier values. The mini-descriptor iswritten to a
contiguous address immediately following the principal descriptor.

To perform atransfer, both parts (principal and mini-descriptor) must be written to local memory.
Figure 8 shows the format of this eight-source descriptor. The six-source descriptor requirestwelve
contiguous words in local memory and is required to be aligned on an 16-word boundary. All
twelve words are required.

Figure 8. P+Q Chain Descriptor Format for Six Source Addresses (XOR Function)
Chain Descriptor in I/0O Processor Memory Description

Next Descriptor Address (NDA) Address of Next Chain Descriptor
Source Address (PQSAR1) Source Address for first block of data
Source Address (PQSAR?) Source Address for second block of data
Source Address (PQSARS) Source Address for third block of data

Data Multiplier Values (GFMR1) Data Multiplier Values for Sources 1 through 3
Destination Address (DAR) Destination Address of XOR-ed data

Byte Count (BC) Number of bytes to XOR
Descriptor Control (DC) Descriptor Control

Source Address (PQSAR4) Source Address for fourth data block
Source Address (PQSARS) Source Address for fifth data block
Source Address (PQSARG) Source Address for sixth data block

Data Multiplier Values (GFMR2) Data Multiplier Values for Sources 4 through 6

* Thefirst eight words are defined in the three-source descriptor definition. See Section 1.3.2.1
for the definition of these words.

® Theninth word (1st word of mini-descriptor) isthe address of the fourth block of dataresident
in loca memory. This address will be driven on the internal bus. This value isloaded into
PQSARA4.

* Thetenth word (2nd word of mini-descriptor) is the address of the fifth block of dataresident in
local memory. This addresswill be driven on theinternal bus. Thisvalueisloaded into PQSARS.

* Theeeventh word (3rd word of mini-descriptor) isthe address of the sixth block of dataresidentin
local memory. This address will be driven on theinternal bus. Thisvalueisloaded PQSARG

* Thetwelfth word contains the Data Multiplier Values (DMLT) for source addresses 4 through
6. These bytes are used as the control input for the GF Multiply of the corresponding source.
The respective byte will be driven to the GF Multiply when source data is being fetched. The
lowest order byte of thisword contains the data multiplier for source address 4, the second
byte for source address 5, the third byte for source address 6, and the highest order byte is not
used and isreserved. This value isloaded into the P+Q RAID-6 GF Multiply Multiplier
Register 2 (GFMR2).

Document Number: 304496001US January, 2005 25



Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum =
Hardware-Assist XOR Unit

1.3.2.8

Figure 9.

26

INlal.

P+Q Twelve-Source Descriptor Format

To perform an XOR-transfer with a GF Multiply data multiplier on up to twelve source blocks of
data, a special chain descriptor needs to be configured:

* Thefirst part (principal-descriptor) contains the address of the first 3 source data blocks and
data multiplier values a ong with other information.

* The second part (mini-descriptor) contains four, DWORDSs containing the address of the
additional three source data blocks and data multiplier values. The mini-descriptor iswritten to
a contiguous address immediately following the principal descriptor.

® Thethird part (extended-descriptor 0) contains nine, DWORDs containing the address of the
additional six source data blocks and data multiplier values. The extended-descriptor O is
written to a contiguous address immediately following the mini descriptor.

To perform atransfer, al three parts (principal descriptor, mini-descriptor and extended-descriptor
0) must be written to local memory. Figure 9 shows the format of this configuration. Every
descriptor requires twenty one contiguous words in local memory and is required to be aligned on
an 32-word boundary. All twenty one words are required.

P+Q Chain Descriptor Format for Twelve Source Addresses (XOR Function)

Chain Descriptor in Intel XScale® Core Memory

Next Descriptor Address (NDA)
Source Address (D/PQSAR1)
Source Address (PQSAR2)
Source Address (PQSARS3)

Data Multiplier Values (GFMR1)
Destination Address (DAR)
Byte Count (BC)
Descriptor Control (DC)
Source Address (PQSAR4)
Source Address (PQSARS)
Source Address (PQSAR®G)

Data Multiplier Values (GFMR2
Extended Descriptor Control 0 (EDCO)
Source Address (PQSAR7)
Source Address (PQSA8)R

Source Address (PQSAR9)
Data Multiplier Values (GFMR3)
Source Address (PQSAR10)
Source Address (PQSAR11)
Source Address (PQSAR12)
Data Multiplier Values (GFMR4)

Description
Address of Next Chain Descriptor
Source Address for first block of data
Source Address for second block of data
Source Address for third block of data

Data Multiplier Values for Sources 1 through 3
Destination Address of XOR-ed data

Number of bytes to XOR

Descriptor Control
Source Address for fourth data block

Source Address for fifth data block

Source Address for sixth data block

Data Multiplier Values for Sources 4 through 6
Extended Descriptor O control

Source Address for seventh block of data
Source Address for eighth block of data
Source Address for ninth block of data

Data Multiplier Values for Sources 7 through 9
Source Address for tenth block of data

Source Address for eleventh block of data

Source Address for twelfth block of data

Data Multiplier Values for Sources 10 through 12

January, 2005

Document Number: 304496001US



tel.

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Hardware-Assist XOR Unit

The first eight words are defined in the three-source descriptor definition. See Section 1.3.2.6,
“P+Q Three-Source Descriptor Format” for the definition of these words.

Words nine through twelve are defined in the six-source descriptor definition. See Section
1.3.2.7, “P+Q Six-Source Descriptor Format” for the definition of these words.

The thirteenth word (1st word of extended-descriptor 0) is the Extended Descriptor Control
Word 0. This word configures the Application Accelerator for one operation. The valueis
loaded into the Extended Descriptor Control Register O.

The fourteenth word (2nd word of extended-descriptor 0) isthe address of the seventh block of
dataresident in loca memory. This address will be driven on the internal bus. Thisvaueis
loaded into PQSARY.

The fifteenth word (3rd word of extended-descriptor 0) is the address of the eighth block of
dataresident in loca memory. This address will be driven on the internal bus. Thisvaueis
loaded into PQSARS.

The sixteenth word (4th word of extended-descriptor 0) is the address of the ninth block of
dataresident in loca memory. This address will be driven on the internal bus. Thisvaueis
loaded into PQSARO.

The seventeenth word (5th word of extended-descriptor 0) contains the Data Multiplier Values
(DMLTX) for source addresses 7 through 9. These bytes are used as the control input for the
TDIfn of the corresponding source. The respective byte will be driven to the GF Multiply when
source datais being fetched. Thelowest order byte of thisword contains the data multiplier for
source address 7, the second byte for source address 8, the third byte for source address 9, and
the highest order byte is not used and is reserved. This value is loaded into the P+Q RAID-6
GF Multiply Multiplier Register 3 (GFMR?3).

The eighteenth word (6th word of extended-descriptor 0) is the address of the tenth block of
dataresident in loca memory. This address will be driven on the internal bus. Thisvaueis
loaded into PQSAR10.

The nineteenth word (7th word of extended-descriptor 0) is the address of the eleventh block
of dataresident in local memory. This address will be driven on the internal bus. Thisvalueis
loaded into PQSAR11.

The twentieth word (8th word of extended-descriptor 0) is the address of the twelfth block of
dataresident in loca memory. This address will be driven on the internal bus. Thisvaueis
loaded into PQSAR12.

The twenty first word (9th word of extended-descriptor 0) contains the Data Multiplier Values
(DMLTX) for source addresses 10 through 12. These bytes are used as the control input for the
GF Multiply of the corresponding source. The respective byte will be driven to the GF Multiply
when source datais being fetched. The lowest order byte of thisword contains the data
multiplier for source address 10, the second byte for source address 11, the third byte for
source address 12, and the highest order byte is not used and is reserved. This valueisloaded
into the P+Q RAID-6 GF Multiply Multiplier Register 4 (GFMR4).

Document Number: 304496001US January, 2005 27



Hardware-Assist XOR Unit In

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum = tel
®

1.3.2.9

28

P+Q Sixteen-Source Descriptor Format

To perform an P+Q RAID-6 XOR-transfer with up to sixteen source blocks of data, a specia chain
descriptor needs to be configured:

* Thefirst part (principal-descriptor) contains the address of the first 3 source data blocks

(PQSARL - PQSARJ) and data multiplier values along with other information.

The second part (mini-descriptor) contains four, DWORDS containing the address of the
additional three (PQSAR4 - PQSARG) source data blocks and data multiplier values. The
mini-descriptor is written to a contiguous address immediately following the principal
descriptor.

The third part (extended-descriptor 0) contains nine, DWORDSs contai ning the address of the
additional six (PQSARY7 - PQSAR12) source datablocks and data multiplier values. The
extended-descriptor O iswritten to a contiguous address immediately following the mini
descriptor.

The fourth part (extended-descriptor 1) contains nine, DWORDS containing the address of the
additional four (PQSARL3 - PQSAR16) source data blocks and data multiplier values along
with the command/control for these data blocks. The extended-descriptor 1 iswritten to a
contiguous address immediately following extended-descriptor O.

January, 2005 Document Number: 304496001US



Figure 10.

Document Number: 304496001US

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Hardware-Assist XOR Unit

To perform atransfer, all four parts (principa descriptor, mini-descriptor, extended-descriptor O,

and extended-descriptor 1) must be written to local memory. Figure 10 shows the format of this

configuration. The full descriptor requires twenty-seven contiguous words in local memory and is
required to be aligned on an 32-word boundary. All twenty-seven words are required.

P+Q Chain Descriptor Format for Sixteen Source Addresses (XOR Function)

Chain Descriptor in I1/O Processor Memory

Next Descriptor Address (NDA)

Source Address (D/PQSAR1)

Source Address (PQSAR2)

Source Address (PQSAR3)

Data Multiplier Values (GFMR1)

Destination Address (DAR)

Byte Count (BC)

Descriptor Control (DC)

Source Address (PQSAR4)

Source Address (PQSARS5)

Source Address (PQSARG6)

Data Multiplier Values (GFMR2)

Extended Descriptor Control 0 (EDCO)

Source Address (PQSAR7)

Source Address (PQSARS)

Source Address (PQSAR9)

Data Multiplier Values (GFMR3)

Source Address (PQSAR10)

Source Address (PQSAR11)

Source Address (PQSAR12)

Data Multiplier Values (GFMR4)

Reserved

Source Address (PQSAR13)

Source Address (PQSAR14)

Source Address (PQSAR15)

Source Address (PQSAR16)

Data Multiplier Values (GFMR5)

Description

Address of Next Chain Descriptor
Source Address for first block of data
Source Address for second block of data
Source Address for third block of data

Data Multiplier Values for Sources 1 through 3
Destination Address of XOR-ed data

Number of bytes to XOR

Descriptor Control
Source Address for fourth data block

Source Address for fifth data block

Source Address for sixth data block

Data Multiplier Values for Sources 4 through 6
Extended Descriptor O control

Source Address for seventh block of data
Source Address for eighth block of data
Source Address for ninth block of data

Data Multiplier Values for Sources 4 through 9
Source Address for tenth block of data

Source Address for eleventh block of data
Source Address for twelfth block of data

Data Multiplier Values for Sources 10 through 12
Reserved - not used
Source Address for thirteenth block of data
Source Address for fourteenth block of data
Source Address for fifteenth block of data

Source Address for sixteenth block of data
Data Multiplier Values for Sources 13 through 16

January, 2005

29



Hardware-Assist XOR Unit

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum intel
®

30

Thefirst eight words are defined in the three-source descriptor definition. See Section 1.3.2.6,
“P+Q Three-Source Descriptor Format” for the definition of these words.

Words nine through twelve are defined in the six-source descriptor definition. See Section
1.3.2.7, “P+Q Six-Source Descriptor Format” for the definition of these words.

Words thirteen through twenty-one are defined in the Twel ve-source descriptor definition. See
Section 1.3.2.8, “P+Q Twelve-Source Descriptor Format” for the definition of these words.

The twenty second word (1st word of extended-descriptor 1) is reserved and not used by the
AA in the processing of this descriptor.

The twenty third word (2nd word of extended-descriptor 1) is the address of the thirteenth
block of dataresident in local memory. This address will be driven on the internal bus. This
valueisloaded into PQSAR12.

The twenty fourth word (3rd word of extended-descriptor 1) is the address of the fourteenth
block of dataresident in local memory. This address will be driven on the internal bus. This
valueisloaded into PQSAR12.

The twenty fifth word (4th word of extended-descriptor 1) is the address of the fifteenth block
of dataresident in local memory. This address will be driven on theinternal bus. Thisvalueis
loaded into PQSAR12.

Thetwenty sixth word (5th word of extended-descriptor 1) isthe address of the sixteenth block
of dataresident in local memory. This address will be driven on theinternal bus. Thisvalueis
loaded into PQSAR12.

The twenty seventh word (6th word of extended-descriptor 1) contains the Data Multiplier
Values (DMLTX) for source addresses 13 through 16. These bytes are used as the control input
for the GF Multiply of the corresponding source. The respective byte will be driven to the GF
Multiply when source data is being fetched. The lowest order byte of this word contains the
data multiplier for source address 13, the second byte for source address 14, the third byte for
source address 15, and the highest order byte for source address 16. This value is loaded into
the P+Q RAID-6 GF Multiply Multiplier Register 5 (GFMR5).

The highest order byte (bits[31:24]) is unused in other Data Multiplier words GFMR[4:1], but is
defined in GFMR5.

January, 2005 Document Number: 304496001US



intel.

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Hardware-Assist XOR Unit

1.3.3 Descriptor Summary
Table 2 summarizes the content of the descriptors defined in previous sections.
Table 2. Descriptor Summary (Sheet 1 of 2)

g hd e (3] (]

o g S o o S 3 o o

z N3 N3 X X g 5 5 3 3

< 3 8 8 8 X 3 3 @ @

§ 5 5 = = © ) © f:{ 3

z 3 3 3 3 3 ¢ 4 of of

g < & 9 o a d & &
FFFF NDA NDA NDA NDA NDA NDA NDA NDA NDA
ESOCh
FFFF
Ea10h SAR1 SAR1 SAR1 SAR1 SAR1 SAR1 SAR1 SAR1 SAR1
FFFF
Eg14ah SAR2 SAR2 SAR2 SAR2 SAR2 SAR2 SAR2 SAR2 SAR2
ég;;‘ SAR3 | SAR3 | SAR3 | SAR3 | SARH | SAR3 | SAR3 | SAR3 | SAR3
éi&; SAR4 SAR4 SAR4 SAR4 | SARD | GFMR1 | GFMR1 | GFMR1 | GFMR1
FFFF

DAR DAR DAR DAR DAR_H DAR DAR DAR DAR

E820h
FFFF
Es24h BC BC BC BC BC BC BC BC BC
FFFF
Es28h DC DC DC DC DC DC DC DC DC
FEFE SARS5 SARS5 SAR5 | DAR_D SAR4 SAR4 SAR4
E82Ch _
FFFF
E830h SARG SARG SARG SARS5 SARS5 SARS5
FFFF
Ea3ah SAR7 SAR7 SAR7 SARG SARG SARG
FPFE SARS SARS SARS GFMR2 | GFMR2 | GFMR2
E838h
FFFF
E83Ch EDCRO | EDCRO EDCRO | EDCRO
FFFF
E840h SAR9 SAR9 SAR7 SAR7
FFFF
Eg44h SAR10 | SARI10 SARS SARS
FFFF
Es48h SAR11 | SAR11 SAR9 SAR9
FFFF
E84Ch SAR12 | SAR12 GFMR3 | GFMR3
FFFF
Es50h SAR13 | SAR13 SAR10 | SARI10
FFFF
E854h SAR14 | SAR14 SAR11 | SAR11
FFFF
Es58h SAR15 | SARI15 SAR12 | SAR12
FFFF
Essch SAR16 | SAR16 GFMR4 | GFMR4

Document Number: 304496001US

January, 2005

31



Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum =
Hardware-Assist XOR Unit

Table 2. Descriptor Summary (Sheet 2 of 2)
»
$ x X & 5 3 3 S 8
s | X L2358z 2| 3 | 3
< 8 8 o o X % % 2 2
b3 < 5] 9 S a a a a
Ié:BFgOFh EDCR1 rsvd
EFBFg 4Fh SAR17 SAR13
EFsFerFh SAR18 SAR14
Eaach SAR19 SARI15
EFBF7FOFh SAR20 SAR16
EFBF7F4Fh SAR21 GFMR5
o
e
e
e
o
T
o
o
o
T
EFBFAFth SAR3L
32 January, 2005 Document Number: 304496001US



intel.

1.3.4

Figure 11.

Document Number: 304496001US

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum

Descriptor Chaining

Hardware-Assist XOR Unit

To perform an AA operation, a series of chain descriptors can be built in local memory to operate
on multiple blocks of source dataresident in local memory. The result can then be stored back in
local memory. An application can build multiple chain descriptors to operate on many blocks of
data which have different source addresses within the local memory.

When multiple chain descriptors are built in local memory, the application can link each of these
chain descriptors using the Next Descriptor Address in the chain descriptor. This address logically
links the chain descriptors together. This allows the application to build alist of transfers which
may not require the processor until all transfers are complete. Figure 11 shows an example of a
linked-list of transfers using only four-source descriptors specified in external memory.

XOR Chaining Operation

Descriptor Address Register

’—l Accelerator Control Register

Next Descriptor Address (NDA)

Source Address (D/SAR1)

Source Address (SAR2)

Source Address (SAR3)

Source Address (SAR4)

Destination Address (DAR)

Byte Count (BC)

Descriptor Control (DC)

Next Descriptor Address (NDA)

Source Address (D/SAR1)

Source Address (SAR2)

Source Address (SAR3)

Source Address (SAR4)

Destination Address (DAR)

Byte Count (BC)

Descriptor Control (DC)

(
i

Next Descriptor Address (NDA)

Source Address (D/SAR1)

Source Address (SAR2)

Source Address (SAR3)

Source Address (SAR4)

Destination Address (DAR)

Byte Count (BC)

Descriptor Control (DC)

Linked Descriptors In Local Memory

Buffer Transfers

First Chain Descriptor
XOR

Operation

Second Chain Descriptor
XOR

Operation

End of Chain
(Null Value Detected)

Nth Chain Descriptor
XOR

Operation

January, 2005

33



AA Descriptor Processing In

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum = tel
®

1.4

Figure 12.

34

AA Descriptor Processing

An AA operation isinitiated by building one or more chain descriptors in Intel X Scale® corelocal
memory (ARM* architecture compliant). Figure 12 shows the format of a principal descriptor.

Example of Gather Chaining for Four Source Blocks

_—— T, source buffers 1Kbyte Store Buffer

|NDA |D/SAR1|SAR2 |SAR3 |SAR4|DAR |BC |DC | """"""
—
/’—\
[noa Jprsari]sarz [sars[sardlpar|sc |oc | /
/\ ___________
[oa [prsarifsare [sars[sardoar]ec |oc |
[noa Jprsari]sarz [sars[sardpar|sc |oc |
) NDA = Next Descriptor Address SAR4 = Source Address Register 4
End of Chain D/SAR1 = Source Address Register 1 ~ DAR = Destination Address Register
Null Value Detected SAR2 = Source Address Register 2 BC = Byte Count
SAR3 = Source Address Register 3 DC = Descriptor Control

The following describes the steps for initiating a new AA operation:

1. The AA must beinactive prior to starting an AA operation. This can be checked by software
by reading the Accelerator Active bit in the Accelerator Status Register. When this bit is clear,
the unit isinactive. When thisbit is set, the unit is currently active.

2. The ASR must be cleared of all error conditions.

3. The software writes the address of the first chain descriptor to the Accelerator Next Descriptor
Address Register (ANDAR).

4. The software setsthe Accelerator Enable bit in the Accelerator Control Register (ACR).
Because thisisthe start of anew AA operation and not the resumption of a previous operation,
the Chain Resume bit in the ACR should be clear.

5. The AA operation starts by reading the ANDAR chain descriptor address. The AA loads the
chain descriptor values into the ADAR and begins data transfer. The Accelerator Descriptor
Address Register (ADAR) contains the address of the chain descriptor just read and ANDAR
now contains the Next Descriptor Address from the chain descriptor just read.

Thelast AA chain list descriptor has zero in the next descriptor address field specifying the last
chain descriptor. A NULL value notifies AA not to read additional chain descriptors from memory.

Once an AA operation is active, it can be temporarily suspended by clearing the Acceler ator
Enable bit in the ACR. Note that this does not abort the AA operation. The unit resumes the
process when the Accelerator Enable bit is set.

When descriptors are read from external memory, bus latency and memory speed affect chaining

latency. Chaining latency is defined as the time required for the AA to access the next chain
descriptor plusthe time required to set up the next AA operation.

January, 2005 Document Number: 304496001US



intel.

1.4.1

1.4.2

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
AA Descriptor Processing

Scatter Gather Transfers

The Application Accelerator can be used to perform typical scatter gather transfers. This consists
of programming the chain descriptors to gather data which may be located in non-contiguous
blocks of memory. The chain descriptor specifies the destination location such that once all data
has been processed, the data is contiguous in memory. Figure 12 shows how the destination
pointers can gather data.

Synchronizing a Program to Chained Operation

Any operation involving the AA can be synchronized to a program executing on the Intel XScaIe
core through the use of processor interrupts. The AA generates an interrupt to the Intel X Scale®
core under certain conditions. They are:

1. [Interrupt and Continue] The AA completes processing a chain descriptor and the A ccel erator
Next Descriptor Address Register (ANDAR) is non-zero. When the Interrupt Enable bit
within the Accel erator Descriptor Control Register (ADCR) is set, an interrupt is generated to
the Intel X Scale® core. Thisinterrupt isfor synchronization purposes. The AA sets the End Of
Transfer Interrupt flag in the Accelerator Status Register (ASR). Sinceit is not the last chain
descriptor in the list, the AA starts to process the next chain descriptor without requiring any
processor interaction.

2. [End of Chain] The AA completes processing a chain descriptor and the Accelerator Next
Descriptor Address Register is zero specifying the end of the chain. When the Interrupt
Enable bit within the ADCR is set, an interrupt is generated to the Intel XScale® core. The AA
sets the End Of Chain Interrupt flag in the ASR.

3. [Error] Anerror condition occurs (refer to Section 1.11, “Error Conditions’ on page 61 for
Application Accelerator error conditions) during atransfer. The AA halts operation on the
current chain descriptor and not proceed to the next chain descriptor.

Each chain descriptor can independently set the Interrupt Enable bit in the Descriptor Control
word. This bit enables an independent interrupt once a chain descriptor is processed. Thisbit can
be set or clear within each chain descriptor. Control of interrupt generation within each descriptor
aids in synchronization of the executing software with AA operation.

Figure 13 shows two examples of program synchronization. The left column shows program
synchronization based on individua chain descriptors. Descriptor 1A generated an interrupt to the
processor, while descriptor 2A did not because the Interrupt Enable bit was clear. The last

Document Number: 304496001US January, 2005 35



Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
AA Descriptor Processing

Figure 13.

36

Synchronizing to Chained AA Operation

intel.

descriptor nA, generated an interrupt to signify the end of the chain has been reached. The right
column in Figure 13 shows an example where the interrupt was generated only on the last
descriptor signifying the end of chain.

Independent Interrupt after Completing any Descriptor

Interrupt after Completing Last Descriptor

chain descriptors

Descriptor 1A

Descriptor 2A

Optional interrupt
generated to
interrupt procedure

RET

No Interrupt on this Descriptor

Descriptor nA

interrupt procedure

RET

chain descriptors

Descriptor 1B

Descriptor 2B

Descriptor nB

interrupt procedure

RET

January, 2005

Document Number: 304496001US



intel.

1.4.3

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
AA Descriptor Processing

Appending to The End of a Chain

Once the AA has started processing a chain of descriptors, application software may need to
append a chain descriptor to the current chain without interrupting the transfer in progress. The
mechanism used for performing this action is controlled by the Chain Resume bit in the
Accelerator Control Register (ACR).

The AA reads the subsequent chain descriptor each time it completes the current chain descriptor
and the Accelerator Next Descriptor Address Register (ANDAR) isnhon-zero. ANDAR aways
contains the address of the next chain descriptor to be read and the Accelerator Descriptor Address
Register (ADAR) always contains the address of the current chain descriptor.

The procedure for appending chains requires the software to find the last chain descriptor in the
current chain and change the Next Descriptor Addressin that descriptor to the address of the new
chain to be appended. The software then sets the Chain Resume bit in the ACR. It does not matter
when the unit is active or not.

The AA examines the Chain Resume bit of the ACR when the unit isidle or upon completion of a
chain of transfers. When this bit is set, the AA re-reads the Next Descriptor Address of the current
chain descriptor and loadsit into ANDAR. The address of the current chain descriptor is contained
in ADAR. The AA clears the Chain Resume bit and then examines ANDAR. When ANDAR isnot
zero, the AA reads the chain descriptor using this new address and begins a new operation. When
ANDAR is zero, the AA remains or returnsto idle.

There are three cases to consider:

1. The AA completes an AA operation and it is not the last descriptor in the chain. In this case,
the AA clearsthe Chain Resume bit and reads the next chain descriptor. The appended
descriptor is read when the AA reaches the end of the original chain.

2. Thechannel completesan AA transfer and it isthe last descriptor in the chain. In this case, the
AA examines the state of the Chain Resume bit. When the bit is set, the AA re-reads the
current descriptor to get the address of the appended chain descriptor. When the bit is clear, the
AA returnstoidle.

3. TheAA isidle. Inthis case, the AA examinesthe state of the Chain Resume bit when the ACR
iswritten. When the bit is set, the AA re-reads the | ast descriptor from the most-recent chain to
get the next descriptor address of the appended chain descriptor.

Document Number: 304496001US January, 2005 37



AA Operations

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum intel
®

1.5

Note:

Table 3.

38

AA Operations

The AA can be configured on a per descriptor basis through the Descriptor Control Word to
perform three distinct operations:

1. Inan XOR operation, the AA generates a parity data stream in local memory that is

comprised of the XOR of upto 32 distinct datastreams (i.e., SAR1..32) on aper byte basis. All
of the source data streams and the parity data stream can be up to 16 MB long.

. InaDua XOR operation, the AA will generate two parity data streamsin local memory. The

two parity data streams are the Horizontal and Diagonal parities for XOR based RAID-6 Each
parity stream is comprised of the XOR of 2 common data streams (SAR1 and SAR2) and 1
distinct data streams (SAR_H, and SAR_D) respectively on a per byte basis. All of the source

data streams and the parity data stream can be up to 16 MB long.

3. Perform aMemory Block Fill of up to 16 MB of local memory with a 32-bit constant
(DATA/SARLY).

4, With the Zero Result Buffer Check, the AA confirms that the XOR of all the bytes of source
dataresultsin OOH for the entire byte count. All the source data streams can be up to 16 MB
long. The results of the check is written back to the Descriptor Control Word in local memory.

P+Q RAID-6 operation is controlled for the entire AA, and is applicable to all descriptors

processed, not on a per-descriptor basis.

Table 3 documents the combination of AA operations, modes and Descriptor Control features
which are valid. The typical application usage of each combination is provided. Combinations of
descriptor control features not listed are not valid.

AA Operation and Command Combination Summary

Descriptor Control Feature AA
- Operation . I
Zero-Result I Destination (Source Application Usage Description
Check Dual-XOR Write Command)
Enable
Typical usage for RAID Applications, up to 32
XOR sources for RAID-3, RAID-5 and 2D-XOR RAID-6.
0 0 1 (up to16 sources for P+Q RAID-6)
Block Fill® Memory Block fill with constant data
Two parity calculation for single strip write /O in
0 1 1 XOR 2D-XOR RAID-6
Parity Scrub for RAID array w/o saving check
1 0 0 XOR buffer (typical use). Can be used in conjunction
with P+Q RAID-6 mode.
Parity Scrub for RAID array with check buffer
1 0 1 XOR saved to memory (not typical use). Can be used in
conjunction with P+Q RAID-6 mode.
First Source moved into result buffer (not XORed
X X X Direct Fill2 with current contents)
Normal use for RAID applications

a. Specified only in Block 1 Command of Accelerator Descriptor Control.

January, 2005

Document Number: 304496001US




intel.

1.5.1 AA Addressing

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum

AA Operations

All source address operated on by the AA must be local memory addresses. The destination
address may be either alocal memory address, or a PCl address mapped through the ATU
outbound memory windows. Table 4 summarizes the application usage of the AA operations for

the valid destination addressing options.

Table 4. Typical AA Operation and Addressing Summary
Descriptor antrol AA
Feature ; b
Operation | Destination Application Usage Description
(Source Address pp 9 P
Zero-Result Dual-XOR | C d
Check ommand)
0 0 XOR PCI RAID Application Degraded Read
0 0 XOR Local Typical usage for RAID Applications
Block Fill® Local Memory Block fill with constant data
Two parity calculation for single strip write /O in
0 ! XOR Local 2D-XOR RAID-6
Parity Scrub for RAID array with check buffer
1 0 XOR Local saved to memory. Can be used in conjunction

with P+Q RAID-6 mode.

a. Destination Write Enable set for all cases listed. Cases with DWE clear are not listed.
b.  All AA sources must be local memory addresses.
c.  Specified only in Block 1 Command of Accelerator Descriptor Control.

The following sections describes the AA operations in detail.

Document Number: 304496001US

January, 2005

39




AA Operations

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum intel
®

1.5.2

Figure 14.

40

XOR Operation

Figure 14 describes the XOR algorithm implementation. In thisillustrative example, there are four
blocks of source data to be XOR-ed. The intermediate result is kept by the store queue in the AA
before being written back to local memory. The source datais located at addresses A000 0400H,
A000 0800H, AOCO OCOOH and A00O 1000H respectively.

All data transfers needed for this operation are controlled by chain descriptors located in local
memory. The Application Accelerator as amaster on the internal bus initiates data transfer. The
algorithm isimplemented such that as data is read from local memory, the boolean unit executes
the XOR operation on incoming data.

The Bit-wise XOR Algorithm

Local Memory

MSB LSB
Block 1 [ T 1 [ T 1 A000 0400H
1024 byt o
es
y = bytes 1-8 =
-
Block 2 [ T 1 [ T 1 A000 0800H
bitwise-XOR @ 1024 bytes N N /\
(64-bit wide) i bytes 1-8 i
v~
Block 3 [ T 1 [ T 1 AO00 0COOH
bitwise-XOR @
. . T~
(64-bit wide) 1024 bytes = bytes 1-8 ==
-
\ Block 4 [ [ | [ [ 1 A000 1000H
bitwise-XOR @ -
(64-bit wide) 1024 bytes T bytes 1-8 =
byte 8 byt; 1
[ [ [ T 1T [ ] BO0O 0400H
=
1K byte .
128-Deep Control Register Values

D/SAR1 = A0O00 0400H
SAR2 = A0O00 0800H
SAR3 = A0O0O0 0COOH
SAR4 = A000 1000H

DAR = B000 0400H
ABCR = 0000 0400H
ADCR = 8000 049FH

Store Queue

January, 2005 Document Number: 304496001US



In AA Operations

= tel Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
®

Figure 15. Hardware Assist XOR Unit

New Data
XORed
data Each existing bit is XORed with new data
T and stored back to the same bit location
| Byte 1 =Byte 1@ Byte 1 ® Byte 1® Byte 1
Block 1 Block2 Block3 Block 4
[ [ [ [ [ [ 1 bytes 1-8

bytes 9-16

y

bytes 1017-1024 v

Byte 1024 = Byte 1024 ® Byte 1024 @ Byte 1024 & Byte 1024
Block 1 Block 2 Block 3 Block 4

The XOR algorithm and methodol ogy followed once a chain descriptor has been configured is
detailed below:

1. The Application Accelerator as a master on the bus initiates data transfer from the address
pointed at by the First Source Address Register (SAR1). The total number of bytesto
XOR-transfer is specified by the Byte Count (BC) field in the chain descriptor.

a. Whenthe Direct Fill command is selected for SARL, thisisdesignated asthefirst block of
datain the current XOR operation, and the datais transferred directly to the store queue.
The number of bytes transferred to the store queue is 1K Byte/512Bytes (based on bit 2 of
the Accelerator Control Register).

b. When the XOR command is selected for SAR1, the boolean unit performs the XOR
operation on the data currently existing in the store queue with the data being transferred
from memory (see steps 3-7 for SAR2). Thismay be done to XOR more than 32 blocks of
data together with a byte count of 1KByte or less.

Note: When the Byte Count Register contains a value greater than the buffer size, the AA completes the
XOR-transfer operation on the first buffer of data obtained from each Source Register (D/SAR1,
SAR2- SAR4), then proceeds with the next buffer of data. This processis repeated until the BCR
contains a zero value.

2. The Application Accelerator transfers the first eight bytes of data from the address pointed at
by the Second Source Address Register (SAR2).

3. The boolean unit performsthe bit-wise XOR algorithm on the input operands. The input
operands are the first eight bytes of dataread from D/SAR1 (bytes 1-8) which are stored in the
queue and the first eight bytes of data just read from SAR2 (bytes 1-8).

Document Number: 304496001US January, 2005 41



AA Operations

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum intel
®

42

10.

The XOR-ed result is transferred to the store queue and stored in the first eight bytes
(bytes 1-8) overwriting previously stored data.

The Application Accelerator transfers the next eight bytes of data (bytes 9-16) from address
pointed at by the Second Source Address Register (SAR2).

The boolean unit performs the bit-wise X OR algorithm on the input operands. The input
operands are the next eight bytes of data read from D/SARL1 (bytes 9-16 stored in the queue)
and the eight bytes of data read from SAR2 in Step-5.

Step-5 and Step-6 (Data transfer and XOR) are repeated until all data pointed at by SARL is
XOR-ed with the corresponding data pointed at by SAR2. The store queue now contains a
buffer full of XOR-ed data, the source addresses for which were specified in SAR1 and SAR2.

Steps 1-7 are repeated once again. The first input to the XOR unit is the data held in the store
gueue and the second input is the data pointed at by SARS.

The above steps are repeated once more. The first input to the XOR unit is the data held in the
store queue and the second input is the data pointed at by SAR4.

Once Steps 1-9 are completed, the XOR operation is complete for the first full buffer of the
current chain descriptor. When the Destination Write Enable Bit in the Accelerator Descriptor
Control Register (ADCR) is set, the datain the store queue is written to local memory at the
address pointed to by the Destination Address Register (DAR). When the Destination Write
Enable Bit in the ADCR is not set, the datais not written to local memory and is held in the
queue. Steps 1-9 are repeated until all the bytes of data have undergone the XOR-transfer
operation.

The Destination Write Enable bit should be SET when Descriptor Byte Count islarger than the AA
buffer size. When the ABCR register contains a value greater than the buffer size and the
ADCR.dwe hit is cleared, the AAU only reads the first buffer of data and performs the specified
function. It does not read the remaining bytes specified in the ABCR. Furthermore, the AAU
proceeds to process the next chain descriptor when it is specified.

January, 2005 Document Number: 304496001US



intel.

1.5.3

Note:

Figure 16.

Document Number: 304496001US

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
AA Operations

XOR Operation with P+Q RAID-6 Mode

Figure 16 describesthe X OR with P+Q RAID-6 mode implementation. In thisillustrative example,
there are three blocks of source data to have a P+Q RAID-6 mode function performed on them
followed by the an XOR function. The intermediate result is kept by the XOR store queue in the
AA before being written back to local memory. The source datais located at addresses A00O
0400H, A00O 0800H, A0O00 OCOOH and A0OO 1000H respectively.

All data transfers needed for this operation are controlled by chain descriptors located in local
memory. The Application DMA as a master on theinternal bus initiates a data transfer. The
algorithm isimplemented such that as datais read from local memory, the boolean unit executes
the XOR operation on incoming data.

Two descriptors are required for P+Q RAID-6 modes, one for each check value. Each descriptor
would be processed asillustrated in Figure 16.

The Bit-wise XOR Algorithm including the P+Q RAID-6 Mode

Local Memory
GF Multiply MSB LSB
fDMLT1=11 [
Block 1 [ T 1 [ T 1 A000 0400H
1024 bytes
y = bytes 1-8 =
GF Multiply ‘ ‘
& pyLT2=22 |
Block 2 I I I I A A000 0800H
bitwise-XOR C—B 1024 bytes - N —
(64-bit wide) T bytes 1-8 T
GF Multlply
& pyL73=33 [
Block 3 [ [ 1 [ [ 1 A000 OCOOH
bitwise-XOR )
(64-bit wide) 1024 bytes T bytes 18 T
byte 8 ‘
[ [ [ [ [ [ | BO0O 0400H Control Register Values
PQSAR1 = A000 0400H
= NN PQSAR2 = A00O0O 0800H
112*; %yé‘;p PQSAR3 = A000 0COOH
Store Queue GFMR1 = 0033 2211H
DAR = B000 0400H
ABCR = 0000 0400H
ADCR = 8000 009FH

January, 2005 43



Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum =
AA Operations In ®

The GF Multiply function is shown in Figure 17 for 8-bits of data. Thisfunction is replicated
across each byte lane of the data path, where the G(j) input is the same for each byte lane for a
given source,

Figure 17. GF Multiply Function

1
& GF Multiply |

O
[
-~

(00]
«Q
=

o
«

|
: MOD(255) LB D=
! O0CS) L] gfilog |—A DO® G0)
|

®
[
N

0

Q

=

o
Q

44 January, 2005 Document Number: 304496001US



In AA Operations

= tel Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
®

The blocksfor gflog and dfilog are the Galois Field Logarithm and Inverse Logarithm
transformations respectively. These transformations for 8-bit words are provided in Figure 18 and
Figure 19, with the upper nibble used to index the rows, and the lower nibble used to index the
columns. These are based on the primitive polynomial listed in Equation 1.

Figure 18. Galois Field Logarithm Transformation Table

Table of gflog(28): gflog(xy)

9flog0y) Mo T T T 23] al5]6] 71819 ]alblecldl el
-- 00| 01[19]02[32]|1a|c6|03]| df|33]|ee|lb]| 68| c7]| 4b
04]|164|(e0|0e|34|8d|ef|81lf1c|cl|[69]| f8]c8|]08]|4c| 71
05| 8a|[65] 2f | el | 24| Of | 21 [ 35| 93| 8e| da] f0| 12| 82| 45
1d|[b5| c2|[7d]|6a|27| f9|b9]|c9|9a| 09| 78| 4d]|ed| 72| a6
06| bf [8b]| 62| 66| dd|30]| fd [e2] 98| 25| b3 ]| 10| 91| 22| 88
36| d0[ 94| ce| 8 | 96| db]| bd| f1 | d2| 13| 5¢c| 83| 38| 46 | 40
le| 42| b6|a3| c3|[48| 7e| 6e|[6b]| 3a]| 28| 54| fa| 85| ba| 3d
ca|5e | 9b | 9f |Oa|[ 15| 79| 2b|4e|d4|e5]|ac| 73| f3 | a7 | 57
07170 cO| f7|8c|80|63]|0d|[67]|4a|lde]|ed]|31]|c5]| fe| 18
e3|a5[99| 77|26 b8|b4]| 7c|{11]44[92]|d9| 23] 20| 89| 2e
37| 3f [ d1|5b| 95| bc| cf | cd[90]| 87|97 | b2]|dc| fc | be | 61
f2156|d3|ab| 14| 2a|5d]| 9 [84]3c|39]|53|47]|6d]| 41| a2
1f | 2d| 43 [ d8| b7 | 7b|ad4]| 76| c4| 17| 49| ec ]| 7f]| Oc | 6f | {6
6clal|3b|52]|29[9d|55]aa| fb|60]|86|bl]|bb|cc|3e]ba
cb|[59]| 5f[b0]9c|a9|a0|51|0b|f5]|16]|eb| 7a] 75| 2c | d7
Af lae| d5| e9 | e6|e7]ad] e8| 74| d6]| f4 | ea| a8 | 50 [ 58 | af

l [ON [o8 (o3 [o [V [(o} [eo} EN] [} (6} HoN) [OV] |\ S8 | Dl (@]

Figure 19. Galois Field Inverse Logarithm Transformation table

Table of gfilog(2"8): gfilog(xy)

9filogCY) o T 1 T2 (a3 [a 5 [6] 71819 alblcldleld

01]02(04]08|10|20|40]|80|1d|3a| 74| e8| cd]| 87| 13| 26
4c |1 98| 2d| 5a| b4 ]| 75| ea] c9f 8 | 03| 06] 0c| 18] 30| 60] cO
9d | 27| 4e | 9c| 25| 4a| 94| 35| 6a|d4|b5| 77| ee| cl| 9f | 23
46| 8c | 05| 0a] 14| 28] 50| a0 | 5d|ba]69|d2] b9| 6f]| de| al
5f|be| 61| c2]99]| 2f | 5e| bc|[65]ca]89]| Of | 1e]| 3c| 78| fO
fd]e7 | d3|bb|6b]d6|bl] 7f|[ fe |el| df | a3|5b]| b6 | 71| e2
d9 | af [ 43|86 1122|4488 [0d]| 1a|34]| 68| d0| bd| 67| ce
81| 1f [3e| 7c| 8 | ed | c7]93|3b| 76| ec| c5]| 97| 33[66] cc
85| 17| 2e|5¢c|h8|6d|dala9| 4 | 9e| 21| 42]|84]| 15| 2a | 54
a8|4d|[9a| 29| 52| a4 |[55]|aaf[49]|92| 39| 72| e4| d5| b7 | 73
e6|dl| bf | 63| c6] 91| 3f|7e| fc|e5|d7]| b3 | 7b]| f6 | f1 | ff
e3|db|[ab|[4b | 96| 31|62 c4| 95| 37| 6e|dc|a5|57|ae] 41
82]119(32]64|c8|8d[07]|0ef1c|38|70]|e0]|dd]| a7 | 53] a6
51|a2|[59|b2| 79| f2|f9]| ef[c3|9|2b]|56]ac]| 45| 8a| 09
121241 48[ 90| 3d|7a| f4] 5| 7] 3| fb|eb|cb]8b|0Ob]| 16
2c | 58| b0 | 7d| fa [ e9| cf [ 83| 1b| 36| 6¢c| d8|ad]| 47| 8e | --

= |0 2|0 [T |O|Jo|[N[oO|O|~|WIN]|F|O

Equation 1. Galois Field Primitive Polynomial (0x11D)
XB+ X4+ X3+ X2+ 1

Document Number: 304496001US January, 2005 45



AA Operations In

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum = tel
®

1.5.4

46

Note:

Dual-XOR Operation

The Dual-X OR operation can be used in RAID-6 applications when a single strip write requires
updating of two parity blocks. For this use, the two parity blocks are based on the same data being
updated, and this operation performs the calculation of both updated parity blocks. In the
illustrative Dual-X OR example in Figure 20, there are four blocks of source data to be X OR-ed.
Two sources are used for both updated parity results, and thereis one unique source for each parity
result. The intermediate results are kept in store queues in the AA before being written back to
local memory.

The two common source data blocks are located at addresses A000 0400H, A0OO 0800H. The
Horizontal datasourceislocated at address AOOO OCOOH and the Diagonal data sourceislocated at
address A000 1000H. The Horizontal and Diagonal destination addresses are located at addresses
BO00 0400H and BOOO 0800H respectively.

All data transfers needed for this operation are controlled by chain descriptors located in local
memory. The Application Accelerator as amaster on the internal bus initiates data transfer. The
algorithm isimplemented such that as data is read from local memory, the boolean unit executes
the XOR operation on incoming data.

Dual_XOR operation isintended for use with single strip write 1/Osto RAID-6 arrays. To generate
two check values for afull stripe of datain a RAID-6 array, XOR operations defined by separate
descriptors for each check value must be used. See Section 1.5.2, “XOR Operation” on page 40 for
details.

January, 2005 Document Number: 304496001US



in

Figure 20.

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum

The Bit-wise Dual-XOR Algorithm

AA Operations

Local Memory
MSB LSB
| I
Block 1 I I I I L A000 0400H
1024 b == IR
t
yies T bytes 1-8 =
- | [ >
\J Block 2 I I I I A000 0800H
bitwise-XOR b —
Lo 1024 byt
(64-bit wide) VIS bytes 1-8 = bitwise-XOR
‘ ‘ (64-bit wide)
- . |
» Y Horizontal [ ST 4000 0CooH
bitwise-XOR @ Source —
~bit wi 1024 byt R
(64-bit wide) yles T bytes 1-8 T
| | >
Diagonal I O ) I A000 1000H ()
Source . bitwise-XOR
1024 bytes T bytes 1-8 T (64-bit wide)
byte 8 ' byte 1 byte 8 v byte 1
BO0O 0400H
B00O 0800H
[T T T T T 7 [ T T T T T 7
= = = . =
Horizontal 1K byte Diagonal
128-Deep R It
Result Store Queues esu
Control Register Values
D/SAR1 = AO0O 0400H
SAR2 = AD0OO 0800H
SAR3/SAR_H = AD00 0COOH
SAR4/SAR_D = A000 1000H
DAR/DAR_H = BO0O 0400H
ABCR = 0000 0400H
ADCR = 8A00 049FH
SAR5/DAR_D = B000 0800H
January, 2005 47

Document Number: 304496001US



AA Operations

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum intel
®

48

Note:

Note:

The XOR algorithm and methodology followed once a chain descriptor has been configured is
similar to that described for the basic XOR transfer. The steps followed by the AA when processing
a Dual-XOR-transfer are detailed below:

1. The Application Accelerator as a master on the bus initiates data transfer from the address
pointed at by the First Source Address Register (SAR1). The total number of bytes to
XOR-transfer is specified by the Byte Count (BC) field in the chain descriptor.

The Direct Fill command must be selected for SAR1, designating it asthe first block of datain the
current Dual XOR operation, resulting in data being transferred directly to the horizontal and
diagona store queues. The number of bytes transferred to the store queues is 1K Byte/512Bytes
(based on bit 2 of the Accelerator Control Register).

If the Byte Count Register contains a value greater than the buffer size, the AA completes the
XOR-transfer operation on the first buffer (store queue size) of data obtained from each Source
Register (SAR1, SAR2, SAR_H, SAR_D), then proceeds with the next buffer of data. This process
is repeated until the BCR contains a zero value.

2. The Application Accelerator transfersthe first eight bytes of data from the address pointed at
by the Second Source Address Register (SAR2).

a The XOR command must be selected for SAR2, so that the boolean unit performs the
XOR operation on the data currently existing in the two store queues (SAR1) with the
data being transferred from memory (SAR2).

3. The boolean unit performs the bit-wise XOR algorithm on the input operands. The input
operands are the first eight bytes of dataread from SAR1 (bytes 1-8) which are stored in the
store queues and the first eight bytes of data just read from SAR2 (bytes 1-8).

4. The XOR-ed result istransferred to both store queues and stored in the first eight bytes
(bytes 1-8) overwriting previously stored data.

5. The Application Accelerator transfers the next eight bytes of data (bytes 9-16) from address
pointed at by the Second Source Address Register (SAR2).

6. The boolean unit performs the bit-wise XOR algorithm on the input operands. The input
operands are the next eight bytes of dataread from SARL1 (bytes 9-16 stored in the queue) and
the eight bytes of dataread from SAR2 in Step-5.

7. Step-5 and Step-6 (Data transfer and XOR) are repeated until al data pointed at by SAR1 is
XOR-ed with the corresponding data pointed at by SAR2. The two store queues now both
contain a buffer full of XOR-ed data, the source addresses for which were specified in SAR1
and SAR2.

8. Steps 2-7 are repeated with the Horizontal Source address used for the next source data with
the following exceptions

a. Only the Horizontal Store Queue is overwritten with the new X OR-ed result.

b. Upon completion, the Horizontal Store Queue holds the bit-wise XOR of Source 1
(SAR1), Source 2 (SAR2) and the Horizontal Source (SAR_H).

c. The Diagonal Store Queue remains unchanged.

9. Once Step 8is completed, the XOR operation is complete for the first full buffer of the
Horizontal XOR operation. The Destination Write Enable Bit in the Accelerator Descriptor
Control Register (ADCR) must be set. The data in the horizontal store queueiswritten to local
memory at the address pointed to by the Horizontal Destination Address Register (DAR_H).

January, 2005 Document Number: 304496001US



In AA Operations

= tel Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
®

10. Steps 2-7 are then repeated with the Diagonal Source address used for the next source data
with the following exceptions

a. Only the Diagona Store Queue is overwritten with the new X OR-ed result.

b. Upon completion, the Diagonal Store Queue holds the bit-wise XOR of Source 1 (SARL),
Source 2 (SAR2) and the Diagonal Source (SAR_D).

¢. The Horizontal Store Queue remains unchanged.

11. Once Step 10 is completed, the XOR operation is complete for the first full buffer of the
Diagonal XOR operation. The Destination Write Enable Bit in the Accelerator Descriptor
Control Register (ADCR) must be set. The datain the diagonal store queue iswritten to local
memory at the address pointed to by the Diagonal Destination Address Register (DAR_D).

12. Steps 1-11 are repeated until al the bytes of data have undergone the Dual-XOR-transfer
operation.

Document Number: 304496001US January, 2005 49



Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum

AA Operations

1.5.5

Figure 21.

50

Zero Result Buffer Check

the eighth word of the descriptor (ADCR) pointed to by the ADAR in local memory.

An Example of Zero Result Buffer Check

intel.

The AA can be used to verify parity across memory blocks specified by the SARX registers. XOR
operation descriptors are used to specify the memory blocks on which the AA performsthe Zero

Result Buffer Check. Figure 21 illustrates a Zero Result Buffer Check performed by the AA. After
processing al source data, the AA updates the Transfer Complete and Result Buffer Not Zero bit of

1/0 Processor Local Memory

MSB LSB
Block 1 A000 0400H
1024 bytes = =
V Block 2 A000 0800H
bitwise-XOR ) 1024 bytes & J
(64-bit wide) 0 =
L V Block 3 A000 0COOH
bitwise-XOR @
(64-bit wide) 1024 bytes = =
o v Block 4 A000 1000H
bitwise-XOR @
(64-bit wide) ‘ 1024 bytes T =
byte 8 byte 1
yie 4 NOTE: Typically, the user clears the
* Data Write Enable in the DC

Byte 1..8 Checked for 00H with result indicated when not 00H

when the Zero Result Buffer
Check operation is enabled.

Control Register Values

D/SAR1 = AO0O 0400H

SAR?2 = A000 0800H

SAR3 = A000 0COOH

SAR4 = A000 1000H

ABCR = 0000 0400H

ADCR = 4000 049FH

January, 2005

Document Number: 304496001US




AA Operations

intel Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum

1.5.6 Zero Result Buffer Check with P+Q RAID-6

The AA can be used to verify check valuesfor P+Q RAID-6 implementations. P+Q XOR
operation descriptors are used to specify the memory blocks on which the AA performs the Zero
Result Buffer Check. Figure 22 illustrates a P+Q RAID-6 Zero Result Buffer Check performed by
the AA. After processing all source data, the AA updates the Transfer Complete and Result Buffer
Not Zero bit of the eighth word of the descriptor (ADCR) pointed to by the ADAR in local
memory. If the Destination Write Enable bit is set, the result buffer is aso stored to the memory

location pointed to by the DAR.

Figure 22. An example of Zero Result Buffer Check with P+Q RAID-6

1/0 Processor Local Memory

NOTE: Typically, the user clears the

Byte 1..8 Checked for 00H with result indicated when not 00H

Data Write Enable in the

DC when the Zero Result Buffer Check operation is
enabled. This example illustrates this usage with the
DAR not programmed (0000 0000H).

MSB LSB
A000 0400H
GF Wutiply | o B0 Block 1
DMLT1=11H 1024 bytdst =
bitwise-XOR 1 G wutiply | Block 2 A000 0800H
(64-bit wide) e vy 1024 byt -
=
bitwise-XOR \J SF) Slock 3 A000 OCOOH
(64-bit wide) @<_DMLT3=33H 1024 bytds
=S
bitwise-XxOR Y ———— Block4 A000 1000H
(64-bit wide) (D~ " LYH )
=44H| 1024 byt
‘ =
byte 8 ‘ byte 1

Control Register Values

PQSARL = AO00 0400H

PQSAR2 = A0O00 0800H

PQSAR3 = A0O00 0COO0H

GFMR1 = 0033 2211H

ABCR = 0000 0400H

ADCR = 4200 049FH

DAR = 0000 0000H

PQSAR4 = A000 1000H

PQSARS5 = 0000 0000H

PQSARG = 0000 0000H

GFMR2 = 0000 0044FH

Document Number: 304496001US

January, 2005

51




AA Operations

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum intel
®

1.5.7

Figure 23.

52

Memory Block Fill Operation

The AA can be used to write a constant value to a memory block in the 80331 local memory. As
with XOR operations, descriptors are used to specify the memory blocks to which the AA writes
the data contained in the Data/ Source Address Registerl. All memory block fill operations are
controlled by chain descriptors located in the Intel X Scal €® corelocal memory. Figure 23
illustrates a Block Fill Operation to an arbitrary destination address.

Example of a Memory Block Fill Operation

4001 0300H

8l B4 EQ 4501 0308H

8 BQ EQ 4001 0310H

8 B EQ 4001 0318H

Programmed Values

ACR 0000 0001H I
D/SARL1| A581 BCEGH I
D/AR 4001 0307H I
ABCR 0000 0014H I
ADCR 8000 0004H I

MSB Memory LSB
AS
AS 81 B(] E6] Aj
o
64-bit Destination bus A3 £3 EG E9 a
(Internal bus)
X

Lvalue

Bus operation

DESTINATION

byte store@ 40010307
DWORD store@ 40010308
DWORD store@ 40010310
3-byte store@ 40010318

January, 2005

Document Number: 304496001US



= Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
In ® Programming Model State Diagram

1.6 Programming Model State Diagram

The AA programming model diagram is shown in Figure 24. Error condition states are not shown.

Figure 24. Application Accelerator Programming Model State Diagram

IDLE
STATE

AA Active =0

i~
< g @ READ DESCRIPTOR
3 2 STATE
fﬁ 'q') g Read descriptor
Si g8 at ANDAR
X P 5 hain Resume = ()
STATE YA
Read NDA from Zc g
current descriptor S+
at ADAR o
and load ANDAR

hain Resume = @

XOR TRANSFER/

EMORY BLOCK FILA
ZERO RESULT

BUFFER CHECK
STATE

AA Active = 1

ANDAR != 0 && !Internal Bus error

Document Number: 304496001US January, 2005 53



Application Accelerator Priority In

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum = tel
®

1.7

54

Warning:

Application Accelerator Priority

Theinternal bus arbitration logic determines which interna bus master has access to the 80331
interna bus. The Application Accelerator has an independent Bus Request/Grant signal pair to the
internal bus arbitration logic. The “Arbitration Unit” in the Intel® 80331 1/0 Processor
Developer’s Manual, describesin detail the priority scheme between all of the bus masters on the
internal bus.

In addition, theinterna bus arbitration unit has a Multi-Transaction timer (Sectlon 13.4.3,
“Multi-Transaction Timer Register 2 - MTTR2” on page 656, in the Intel® 80331 1/0 Processor
Developer’s Manual) that affects the throughput of the AA. The default value for MTT2 of

152 clocks was chosen to ensure that once an internal bus agent (in this case the AA) is granted the
internal bus that it is guaranteed an opportunity to burst datainto DDR SDRAM memory. However,
when the busis busy the AA loses grant before the burst is completed. This meansthat the AA isable
to complete only one burst for each arbitration cycle.

Alternatively, the user may wish to increase the value of MTT2 to guarantee that two or more
bursts are able to complete within an arbitration cycle.

For example, assuming 1 Kbyte bursts and a 64-bit memory subsystem, an MTT2 setting of
192 clocks would be sufficient to support two 1 Kbyte bursts for an AA single arbitration cycle.

Increasing the MTT2 value may also increase the latency to peripheral memory mapped registers
or PCI addresses for the Intel XScale® core on the average. Before changing the MTT2 value, it's
imperative that the overall impact to the performance of the application is considered.

January, 2005 Document Number: 304496001US



intel.

1.8

1.8.1

Figure 25.

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Packing and Unpacking

Packing and Unpacking

The Application Accelerator contains a hardware data packing and unpacking unit to support data
transfers between unaligned source and destination addresses. Source and destination addresses can
either be unaligned or aligned on natural boundaries. The packing unit optimizes data transfersto and
from 32 and 64-bit memory. It reformats data words for the correct bus data width. When the read
data needs to be packed or unpacked, the datais held internally and does not need to be re-read.

Aligned datatransfersfall on natural boundaries. For example; DWORDs are digned on 8-byte
boundaries and words are aligned on 4-byte boundaries. Data transfers take place in two instances:

* The source and destination addresses are both aligned.
¢ All or some source addresses are unaligned and the destination address is aligned or unaligned.

64-bit Unaligned Data Transfers

Figure 26 illustrates a data transfer between unaligned 64-bit, source and destination addresses.

Optimization of an Unaligned Data Transfer

MSB Memory LSB
+ + ADDRESS
64-bit Source bus 7 6 5 4 3 2 1 A000 0200H
(Internal Bus)
15 14 13 14 17 1( 9 8 A000 0208H
20| 19 18 17] 16
A000 0210H
AA performs a
Data Block Transfe

1 4001 0300H

of 81 71 6f 51 41 31 2f40010308H

i 4 y J g
64-bit Destination bus L 16 13 L 13 12 11 14 4001 0310H
Internal bus
( ) 24 19 184 4001 0318H

Programmed Values

ACR 0000 0001H I 1
SARL |  A0000201H I L byte number g5 gperation
DAR 4001 0307H I SOURCE DESTINATION
DWORD load@ A0000200
ABCR [ 0000 0014H__J] DWORD Ioad@ AOOD0210  DUORD sore 40010308

DWORD store@ 40010310
ADCR 8000 O00EH I 3-byte store@ 40010318

Document Number: 304496001US January, 2005 55



Programming the Application Accelerator In

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum = tel
®

1.9

1.9.1

Figure 26.

Figure 27.

56

Programming the Application Accelerator

The operations for Application Accelerator software fallsinto the following categories:
* AAinitialization * Appending Descriptors
* Suspend AA * Resume AA Operation

An examplefor each category is shown in the following sections as pseudo code flow.

The AA control register provides independent control each time the AA isconfigured. This
provides the greatest flexibility to the applications programmer.

The most efficient method for operating the AA is to use the Chain Resume capability described in
Section 1.3.4, “Descriptor Chaining”. To use of the Chain Resume capability for appending
descriptors to chainsin normal operation, an initial AA descriptor must be executed. This
initialization step isdescribed in Section 1.9.1, “Application Accelerator Initialization”. The
example AA operations provided later in this section use the Chain Resume capability asfollows:

* Store Descriptor in Local Memory * Resume AA Operation
* Append Descriptor to Chain

Application Accelerator Initialization

The AA is designed to have independent control of the interrupts, enables, and control. The
initialization consists of virtually no overhead as shown in Figure 27.

Pseudo Code: Application Accelerator Initialization

ACR = 0x0000 0000 ; Disable the application accelerator

Call setup_ accelerator

The following exampleillustrates how AA initialization S/W prepares the AA for descriptor Chain
Resume operation. Initializing the AA for chaining requires an initial descriptor be created and
executed. This descriptor is then the start of the chain, and future descriptors are appended to this
descriptor to create the chain. This descriptor isa NULL descriptor, requiring no source or
destination data buffers be allocated. To start an operation, software simply sets the AA Enable bit
in the “Accelerator Control Register - ACR” (seeinthel ntel® 80331 1/0O Processor Devel oper’'s
Manual) as shown in Figure 27.

Pseudo Code: Application Accelerator Chain Resume Initialization

Set up descriptor in Intel XScale® core local memory at address d

d.nda = 0 /* No chaining */

d.D/SAR1 = 0x0000 0000/* Source address of Data Block 1 */
d.SAR2 = 0x0000 0000/* Source address of Data Block 2 */
d.SAR3 = 0x0000 0000/* Source address of Data Block 3 */
d.SAR4 = 0x0000 0000/* Source address of Data Block 4 */
d.DAR = 0x0000 0000/* Destination address of XOR-ed data */
d.ABCR = 0x0 /* Byte Count of zero */

d.ADCR = 0x000 0000/* Null Descriptor, No Interruptx/

; Start operation
ANDAR = &d ; Setup descriptor address
ACR = 0x0000 0001 ; Set AA Enable bit

January, 2005 Document Number: 304496001US



= Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
In ® Programming the Application Accelerator

1.9.2 Suspending and Resuming the Application Accelerator

The Application Accelerator unit provides the ability to suspend the current state without losing
status information. The AA resumes without requiring application software to restore the previous
configuration. The example shown in Figure 28 describes pseudo-code for suspending the ongoing
operation and then restarting.

Figure 28. Pseudo Code: Suspend Application Accelerator

;Suspend Application Accelerator
ACR = 0x0000 0000 ; Suspend ongoing AA transfer

;Restart Application Accelerator
ACR = 0x0000 0001 ; Restart AA operation

1.9.3 Appending Descriptor for XOR Operations

The example shown in Figure 29 describes the pseudo code for initiating an XOR operation with
the AA. The examples illustrates appending the XOR operation to an existing chain, and taking
advantage of the Chain Resume capability as described in Section 1.9.2, “ Suspending and
Resuming the Application Accelerator”.

Figure 29. Pseudo Code: XOR Transfer Operation

Set up descriptor in Intel XScale® core local memory at address d

d.nda = 0 /* No chaining */

d.D/SAR1 = 0xA000 0400/* Source address of Data Block 1 */

d.SAR2 = 0xA000 0800/* Source address of Data Block 2 */

d.SAR3 = 0xA000 0C00/* Source address of Data Block 3 */

d.SAR4 = 0xA000 1000/* Source address of Data Block 4 */

d.DAR = 0xB000 0100/* Destination address of XOR-ed data */

d.ABCR = 1024 /* Byte Count of 1024 */

d.ADCR = 0x8000 049F/* Direct f£ill data from Block 1 */
/* XOR with data from Block 2,Block 3 and

Block 4 */

/* Store the result and interrupt processor */

; Append descriptor to end of last chain at address c
c.nda = d

; Resume AA operation
ACR = 0x00000003 ; Set AA Enable and Resume bits

Document Number: 304496001US January, 2005 57



Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum =
Programming the Application Accelerator In

1.9.4 Appending Descriptor for Dual XOR Operations

The example shown in Figure 30 describes the pseudo code for initiating a Dual XOR operation
with the AA. The examplesillustrates appending the Dual XOR operation to an existing chain, and
taking advantage of the Chain Resume capability as described in Section 1.9.2, “ Suspending and
Resuming the Application Accelerator” on page 57.

Figure 30. Pseudo Code: Dual XOR Transfer Operation

Set up descriptor in Intel XScale® core local memory at address d

.nda = 0 /* No chaining */
.D/SAR1 = 0xA000 0400/* Source address of Data Block 1 */
.SAR2 = 0xA000 0800/* Source address of Data Block 2 */

.SAR3 = 0xA000 0C00/* Source address of Horizontal Data Block */
.SAR4 = 0xA000 1000/* Source address of Diagonal Data Block */
.DAR_H = 0xB000 0100/* Destination address of Horizontal XOR-ed data */
.ABCR = 1024 /* Byte Count of 1024 */
.ADCR = 0x8800 049F/* Dual XOR Operation */
/* Required: Direct fill from Block 1 */
/* XOR enabled for Blocks 2, 3 and 4 */
/* Store the results */
/* Optional: interrupt processor */
d.DAR_D = 0xB000 4100/* Destination address of Diagonal XOR-ed data */

[oTR PR o T e TR o P O PR o AR o PR £

; Append descriptor to end of last chain at address c
c.nda = d

; Resume AA operation
ACR = 0x00000003 ; Set AA Enable and Resume bits

1.9.5 Appending Descriptor for Memory Block Fill Operations

The example shown in Figure 31 describes the pseudo code for initiating a Memory Block Fill
operation with the AA.

Figure 31. Pseudo Code: Memory Block Fill Operation

Set up descriptor in Intel XScale®’ core local memory at address d

d.nda = 0 /* No chaining */

d.D/SAR1 = 0xA000 0400/* Immediate data used for block writex*/
d.DAR = 0xB000 0100/* Address of the memory block to be written*/
d.ABCR = 1024 /* Byte Count of 1024 */

d.ADCR = 0x8000 0005/* Memory Write Block using data in D/SAR1*/

/* Store the result and interrupt processor */

; Append descriptor to end of last chain at address c
c.nda = d

; Resume AA operation
ACR = 0x00000003 ; Set AA Enable and Resume bits

58 January, 2005 Document Number: 304496001US



= Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
In ® Programming the Application Accelerator

1.9.6 Appending Descriptor for Zero Result Buffer Check

The example shown in Figure 32 describes the pseudo code for initiating an XOR operation with
the AA.

Figure 32. Pseudo Code: Zero Result Buffer Check Operation?

Set up descriptor in Intel XScale® core local memory at address d

d.nda = 0 /* No chaining */

d.D/SAR1 = 0xA000 0400/* Source address of Data Block 1 */

d.SAR2 = 0xA000 0800/* Source address of Data Block 2 */

d.SAR3 = 0xA000 0C00/* Source address of Data Block 3 */

d.SAR4 = 0xA000 1000/* Source address of Data Block 4 */

d.ABCR = 1024 /* Byte Count of 1024 */

d.ADCR = 0x4000 049F/* Direct f£ill data from Block 1 */
/* XOR with data from Block 2,Block 3 and

Block 4 */

/* Check Result, Write Status (ADCR) and interrupt processor */

; Append descriptor to end of last chain at address c
c.nda = d

; Resume AA operation
ACR = 0x00000003 ; Set AA Enable and Resume bits

a. Notice that ADCR.dwe is cleared and that the DAR is not programmed. The reason is that for Zero Result Buffer Check
operations, there is no need to write out a destination parity stripe.

Document Number: 304496001US January, 2005 59



Interrupts

in

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum = tel
®

1.10

Table 5.

60

Note:

Interrupts

The Application Accelerator can generate an interrupt to the Intel XScale® core. The Interrupt
Enable bit in the Accelerator Descriptor Control Register (ADCR.ie) determines whether the AA
generates an interrupt upon successful, error-free completion. Error conditions described in
Section 1.11 also generate an interrupt. The AA has one interrupt output connected to the PCI and
Peripheral Interrupt Controller described in Chapter 17, “ Interrupt Controller Unit and IOAPIC”.

Once the AA is enabled, the AA loads the chain descriptor fieldsinto the respective registers. A
special case exists when datawrite enable is clear, then an interrupt is generated (when enabled)
after the descriptor is fetched and processed as defined by the block control fieldsin the ADCR.
Table 5 summarizes the status flags and conditions when interrupts are generated in the Accelerator
Status Register (ASR).

AA Interrupts

Accelerator Status Register Interrupt
(ASR) Flags Generated?
]
5 s ® o
2 £ E e =
iti T
Interrupt Condition ° = = < © 5
> o () = w a
= [ “— Q -
o — o b o a
< o S o =] S
° UCJ = a’:) =
(]
w o 1= =

(Data Write Enable == 0 || byte count == 0)

&& (ANDAR != NULL || Resume == 1) 1 1 0 0 Y N
(End of Transfer)
(Data Write Enable == 0 || byte count == 0)
&& ANDAR == NULL && Resume == 0 0 1 0 Y N
(End of Chain)
IB Master Abort 0 0 0 1
IB Target Abort 0 0 0 0

End-of-Transfer and End-of-Chain flags is set only when Interrupt Enable is set. When Interrupt
Enableis clear, then the above flags are ways set to 0. End-of-Transfer Interrupt and End of
Chain Interrupt can only be reported in the ASR when the descriptor fetch and processing
completed without any reportable errors. However, multiple error conditions may occur and be
reported together. Also, because the AA does not stop after reporting the End-of-Transfer interrupt,
an |B master-abort error may occur before the End-of-Transfer interrupt is serviced and cleared.

January, 2005 Document Number: 304496001US




intel.

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Error Conditions

1.11 Error Conditions

Master Aborts that occur during atransfer are recorded by the Application Accelerator.

When an error occurs, the actions taken are detailed below:

The AA ceases the ongoing transfer for the current chain descriptor and clear the Application
Accelerator Activeflag inthe ASR.

The AA does not read any new chain descriptors.

The AA setsthe error flag in the Accelerator Status Register. For example; when an IB
master-abort occurred during a transfer, the channel sets bit 5in the ASR.

The AA signals an interrupt to the Intel X Scal €® core.

The Application Accelerator does not restart the transfer after an error condition. It isthe
responsibility of the application software to reconfigure the AA to complete any remaining
transfers.

Note: Target-aborts during AAU reads result from multi-bit ECC errors that are recorded by the MCU.
Refer to Chapter 8, “Memory Controller” for details on error handling in this instance. For correct
operation of the AAU, user software has to disable the AAU before clearing the error condition.
Furthermore, the AAU needsto be re-enabled by writing a 1 to the AA Enable bit before initiating
anew operation.

Document Number: 304496001US January, 2005 61



Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum =
Power-up/Default Status In

1.12 Power-up/Default Status

Upon power-up, an external hardware reset, the Application Accelerator Registers areinitialized to
their default values.

1.13 Register Definitions

The Application Accelerator Unit contains forty two memory-mapped registers for controlling its
operation. There isread/write access only to the Accelerator Control Register, Accelerator Status
Register, the Accelerator Next Descriptor Address Register, and the three Extended Descriptor
Control Registers. All other registers are read-only and are loaded with new values from the chain
descriptor whenever the AA reads a chain descriptor from memory.

Table 6. Application Accelerator Unit Registers

Section, Register Name - Acronym (page)

Section 1.13.1, “Accelerator Control Register - ACR” on page 63

Section 1.13.2, “Accelerator Status Register - ASR” on page 64

Section 1.13.3, “Accelerator Descriptor Address Register - ADAR” on page 65

Section 1.13.4, “Accelerator Next Descriptor Address Register - ANDAR” on page 66

Section 1.13.5, “Data / Source Address Registerl - D/ISAR1/PQSAR1” on page 673

Section 1.13.6, “Source Address Registers 2..32 - SAR2..32” on page 68

Section 1.13.7, “P+Q RAID-6 Source Address Registers 2..16 - PQSAR2..16” on page 706

Section 1.13.8, “P+Q RAID-6 Galois Field Multiplier Registers 1..5 - GFMR1..5” on page 71

Section 1.13.9, “Destination Address Register - DAR” on page 73

Section 1.13.10, “Accelerator Byte Count Register - ABCR” on page 74

Section 1.13.11, “Accelerator Descriptor Control Register - ADCR” on page 75

Section 1.13.12, “Extended Descriptor Control Register 0 - EDCRO” on page 79

Section 1.13.13, “Extended Descriptor Control Register 1 - EDCR1" on page 81

Section 1.13.14, “Extended Descriptor Control Register 2 - EDCR2” on page 83

62 January, 2005 Document Number: 304496001US




intel.

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Register Definitions

1.13.1 Accelerator Control Register - ACR

The Accelerator Control Register (ACR) specifies parameters that dictate the overall operating
environment. The ACR should beinitialized prior to all other AA registers following a system
reset. Table 7 shows the register format. This register can be read or written while the AA is active.

Table 7. Accelerator Control Register - ACR

31

28 24 20 16 12 8 4 0

10P

PCI

Attributes fIvfIviNgE NIV IV IVE NSNSV IV VIV IV IV VIV IV IVE IV IV IV IV IV IV IV TV TW TW TWTWY,

Attributes na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na

Internal bus address Attribute Legend: RW = Read/Write
EEEFE ES8O00H RV = Reserved RC = Read Clear

PR = Preserved RO = Read Only
RS = Read/Set NA = Not Accessible

Bit Default

Description

31:04 0

Reserved

03 0,

P+Q RAID-6 Enable - when set, causes the AA to process descriptors defined for P+Q RAID-6, which
includes a Galois Field Multiply byte value for each source.

NOTE: This bit can only be changed when the AA is idle (ASR.10=0). Changing the state of this bit while
the AA is active (ASR.10=1) will result in unpredictable results.

0= Disabled - All source data is passed directly from the internal bus to the AA.

1= Enabled - All source data is operated on by the GF Multiply function when being fetched from
memory, before being passed to the AA.

02 0,

512 Byte Buffer Enable - when set, causes the AA to use only 512 bytes of 1 KB data buffer while
processing all descriptors.

01 0,

Chain Resume - when set, causes the AA to resume chaining by re-reading the current descriptor
located at the address in the Accelerator Descriptor Address Register when the AA is idle (AA Active bit
in the ASR is clear) or when the AA completes a transfer. This bit is cleared by hardware when either:

» The AA completes a transfer and the Accelerator Next Descriptor Address Register is non-zero. In
this case, the AA proceeds to the next descriptor in the chain.

* The AA re-reads the chain descriptor located at the address in the Accelerator Descriptor Address
Register and loads the Next Descriptor Address of that descriptor into the Accelerator Next
Descriptor Address Register

00 0,

AA Enable - When set, the AA enables transfers. When clear, the AA disables any transfer. Clearing this
bit when the AA is active suspends the current transfer at the earliest opportunity by halting all internal
bus transactions. The AA does not initiate any new transfers when this bit is cleared. Data held in
gueues remains valid. Setting the bit after the AA is suspended causes the AA to resume the previously
ongoing transfer.

Document Number: 304496001US January, 2005 63




Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum =

Register Definitions In

1.13.2

Accelerator Status Register - ASR

The Accelerator Status Register (ASR) contains status flags that indicate status. Thisregister is
typically read by software to examine the source of an interrupt. See Section 1.11 for a description
of the error conditions that are reported in the ASR. See Section 1.10 for adescription of interrupts
caused by the Application Accelerator.

When an AA error occurs, application software should check the status of Accelerator Active flag
before processing the interrupt.

Table 8. Accelerator Status Register - ASR
31 28 24 20 16 12 8 4 0
10P
Attributes rvyrvyvgvgovgvgvgrvgrvgovgovgovgovgnvgonvgrvgnvgovgrvgrvgrvgrof rcfrcgrvgrcyrcfrvgrvg vy rvg v
PCI B
Attributes na\na\na\nayna\na\na\nayna\na\na\nayna\na\na\na\na\na\na\nayna\na\na\nayna\na\na\nayna\na\na\na
Internal bus address Attribute Legend: RW = Read/Write
FFFF ES804H RV = Reserved RC = Read Clear
PR = Preserved RO = Read Only
RS = Read/Set NA = Not Accessible
Bit Default Description
31:11 000000H |Reserved
Accelerator Active Flag - indicates the AA is either active (in use) or idle (available). When set, indicates
the AA is in use and actively performing an operation. When clear, indicates the channel is idle and
available to be configured for a new operation. The AA clears the Accelerator Active flag when the
previously configured transfer completes as a result of:
» byte count reached zero and last chain descriptor is encountered (NULL value detected for Next
10 0, Descriptor Address in chain descriptor)
* Internal Bus Errors
» Last chain descriptor is processed (NULL value detected for Next Descriptor Address in chain
descriptor) and write enable is zero.
The Accelerator Active flag is set once a Chain Descriptor is read from memory.
09 0 End of Transfer Interrupt Flag - set when the AA has signalled an interrupt to the Intel XScale® core after
2 processing a descriptor but it is not the last descriptor in a chain.
08 0 End of Chain Interrupt Flag - set when the channel has signalled an interrupt to the Intel XScale® core
2 after processing a descriptor that is the last in a chain.
07:06 0, Reserved
05 0 This bit is set when a Master-abort occurs during a transaction when the AAU is the master on the
2 internal bus.
04:00 0, Reserved
64 January, 2005 Document Number: 304496001US




Register Definitions

intel Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
®

1.13.3 Accelerator Descriptor Address
Register - ADAR

The Accelerator Descriptor Address Register (ADAR) contains the address of the current chain

descriptor in local memory. This read-only register isloaded when a new chain descriptor is read.

Table 9 depicts the ADAR. Depending on the number of sources, the chain descriptors are required
to be aligned on different address boundaries. These include four sources on an eight word address
boundary, eight sources on a 16 word address boundary, 16 sources on a 32 word address boundary,

and 32 sources on a 64 word address boundary.

Note: Inthe above paragraph, the term “word” refersto aDWORD.

Table 9. Accelerator Descriptor Address Register - ADAR
31 28 24 20 16 12 8 4 0
0P
Attributes rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof ro
per [
Attributes na\na\na\na\na\na\na\nayna\na\na\nayna\na\na\nayna\na\na\nayna\na\na\nayna\na\na\nayna\na\na\na
Internal bus address Attribute Legend: RW = Read/Write
EEFF ES08H RV = Reserved RC = Read Clear
PR = Preserved RO = Read Only
RS = Read/Set NA = Not Accessible
Bit Default Description
. Current Descriptor Address - local memory address of the current chain descriptor read by the
31.05 000 0000H Application Accelerator.
04:00 0 0000, Reserved

Document Number: 304496001US January, 2005

65



Intel® 80331

Register Definitions In

1.13.4

Note:

Table 10.

I/0 Processor Application Accelerator Unit D-0 Addendum = tel
®

Accelerator Next Descriptor Address
Register - ANDAR

The Accelerator Next Descriptor Address Register (ANDAR) contains the address of the next
chain descriptor in local memory. When starting a transfer, this register contains the address of the
first chain descriptor. Table 10 depicts the Accelerator Next Descriptor Address Register.

All chain descriptors are aligned on an eight DWORD boundary. The AA may set bits 04:00 to
zero when loading this register.

The Accelerator Enable bit in the ACR and the Accelerator Active bit in the ASR must both be
clear prior to writing the ANDAR. Writing aval ue to this register whilethe AA is active may result
in undefined behavior.

Accelerator Next Descriptor Address Register - ANDAR

10P
Attributes

PCI
Attributes

31 28 24 20 16 12 8 4 0

[ TWJ TWJ TWJ TWE TWJ TWJ TWJ TWE TW TWS TWE TWE TW TWL TWS TWE TW TW TW TWE TWE TWE TW W TWI W TW TV TV V] v v

[ na\na\na\nayna\na\na\nayna\na\na\nayna\na\na\nayna\na\na\nayna\na\na\nayna\na\na\nayna\na\na\na

Internal bus address Attribute Legend: RW = Read/Write
FFFF ESOCH RV = Reserved RC = Read Clear
PR = Preserved RO = Read Only
RS = Read/Set NA = Not Accessible

Bit Default Description

31:05 000 0000H

Next Descriptor Address - local memory address of the next chain descriptor to be read by the
Application Accelerator.

04:00 0 0000, Reserved

66

January, 2005 Document Number: 304496001US



intel.

1.13.5

Table 11.

Data / Source Address Registerl - D/ISAR1/PQSARL1

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Register Definitions

The Data/ Source Address Register (D/SARL/PQSAR1) contains a 32-bit, local memory address

or immediate data to be written in case of Memory Block Fill operations. The ADCR register
(Table 17) contrals the operation performed on data block referenced by this register. The local
memory address space is a 32-bit, byte addressable address space.

Reading the D/SARL/PQSARL register once the AA has started a chain descriptor returns the
current source address or immediate data to be written in case of Memory Block Fill operations.

Once an operation isinitiated, these registers contain the current source addresses. For example;
when the Byte Count isinitially 4096 bytes and the AA has completed the operation on the first
three 1K-byte data blocks, the value in register SARL/PQSARL is the equal to the programmed

descriptor value + 3072 (SAR1 + 3072).

During Memory Block Fills the register always contains the data to be written and does not change.

Table 11 showsthe Data/ Source Address Registerl/P+Q RAID-6 SARL. Thisread-only register is

loaded when a chain descriptor is read from memory.

Data / Source Address Register - SAR1/PQSAR1

Attri

SAR1

Attributes rof rof rof rof rof rof rof roy rof rof rof rof rof rof rof rog rof rof rof roy rof rof roj roy rof rof rof roy rof rof rof ro

31 28 24 20 16 12 8 4 0

10P

PCI
butes na\na\na\na\na\na\na\nayna\na\na\nayna\na\na\nayna\na\na\naynay\na\na\nayna\na\na\nayna\na\na\na

Internal bus address Attribute Legend: RW = Read/Write
FFFF ES10H RV = Reserved RC = Read Clear
PR = Preserved RO = Read Only
RS = Read/Set NA = Not Accessible

Bit

Default Description

31:00

For the XOR command - Local Address - The local source address.

0000 0000H
For the Memory Block Fill Command - Data to be written to the memory block.

Document

Number: 304496001US January, 2005

67




Register Definitions In

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum = tel
®

1.13.6

68

Note:

Source Address Registers 2..32 - SAR2..32

The Source Address Registers 2..32 (SAR2..32) contain 32-bit, local memory addresses. There are 31
Source Address Registers (SAR2 - SAR32). Each of these registersis loaded with address of blocks of
datato be operated upon by the AA. The ADCR, EDCRO, EDCR1, and EDCR2 registers control the
operation performed on each data block referenced by the registers (SAR2 - SAR32). Thelocal
memory address space is a 32-hit, byte addressable address space.

Reading SARX registers once AA has started a chain descriptor returns the current source addresses.
Once an operation isinitiated, these registers contain current source addresses. For example; when Byte
Count isinitially 4096 bytesand AA has completed operation on the first three 1K -byte data blocks, the
vauein register SARX isthe equa to the programmed descriptor value + 3072 (SARX + 3072).

For Dual-XOR-transfers SAR3 is the Horizontal Source Address for the XOR result for Horizontal
XOR result, and SAR4 is the Diagonal Source Address for the Diagonal XOR result. Also, SARS is
the Diagonal Destination Address for the Diagonal X OR result.

For P+Q RAID-6 Mode, refer to section Section 1.13.7, “P+Q RAID-6 Source Address Registers
2..16 - PQSAR2..16” on page 70 for source addresses 2 through 16 and Section 1.13.8, “P+Q
RAID-6 Galois Field Multiplier Registers 1..5 - GFMR1..5” on page 71 for P+Q RAID-6
Multiplier Word definitions.

January, 2005 Document Number: 304496001US



INlal.

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Register Definitions

Table 12 shows the Source Address Register2..32. These read-only registers are loaded when a

chain descriptor is read from memory.

Table 12. Source Address Register2..32 - SAR2..32
31 28 24 20 16 12 8 4 0
10P
Attributes rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof ro
PCI
Attributes na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na
Internal bus address Attribute Legend: RW = Read/Write
SAR2 FFFF E814H Internal bus address RV = Reserved RC = Read Clear
SAR3 FEFF E818H SAR18 FFFF E868H PR = Preserved RO = Read Only
SAR4 FEFF ES1CH SAR19 FFFF ES86CH RS = Read/Set NA = Not Accessible
SAR5 FFFF ES82CH SAR20 FFFF E870H
SAR6 FFFF E830H SAR21 FFFF E874H
SAR7 FFEF E834H SAR22 FFFF E878H
SARS FFFF E838H SAR23 FFFF E87CH
SAR9 FFEF E840H SAR24 FFFF E880H
SAR10 FFFF E844H SAR25 FFFF E888H
SAR11 FFFF E848H SAR26 FFFF E88CH
SAR12 FFFF E84CH SAR27 FFFF EG90H
SAR13 FFFF E850H SAR28 FFFF E894H
SAR14 FFFF E854H SAR29 FFFF E898H
SAR15 FFFF E858H SAR30 FFFF E89CH
SAR16 FFFF E85CH SAR31 FFFF ESAOH
SAR17 FFFF E864H SAR32 FFFF E8A4H
Bit Default Description

Local Address - The local source address
For Dual XOR operations, the following applies:

31:00 | 0000 0000H | * SARS3is the Horizontal local source address (SAR_H)

* SAR4 is the Diagonal local source address (SAR_D)
* SARS5 contains the destination address of the Diagonal XOR result (DAR_D)

Document Number: 304496001US January, 2005

69




Register Definitions In

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum = tel
®

1.13.7 P+Q RAID-6 Source Address Registers 2..16 -
PQSAR2..16
Note: The following definition applies only when P+Q RAID-6 mode is enabled. When P+Q RAID-6is
NOT enabled, refer to Section 1.13.6, “ Source Address Registers 2..32 - SAR2..32” on page 68 for
definition and internal bus addresses of Source Address Registers
The P+Q RAID-6 Source Address Register2..16 (PQSARZ2..16) contain 32-bit, local memory
addresses. There are 16 P+Q RAID-6 Source Address Registers (PQSARL..PQSAR16). Each of these
registersisloaded with address of blocks of datato be operated upon by the AA when P+Q RAID-6
Mode is enabled. The ADCR, EDCRO, and EDCRL registers control the operation performed on each
data block referenced by the registers (PQSAR1..PQSAR16). The local memory address spaceisa
32-hit, byte addressable address space.
Reading PQSARX registers once AA has started a chain descriptor returnsthe current source addresses.
Once an operation isinitiated, these registers contain current source addresses. For example; when Byte
Count isinitially 4096 bytesand AA has completed operation on the first three 1K -byte data blocks, the
vauein register PQSARX is the equal to the programmed descriptor value + 3072 (PQSARX + 3072).
Table 13 shows the P+Q RAID-6 Source Address Registers 2..16. These read-only registers are
loaded when a chain descriptor is read from memory.
Note: See Section 1.13.8 for definition of the Data Multipliersin P+Q RAID-6 mode.
Table 13. P+Q RAID-6 Source Address Registers 2..16 - PQSAR2..16
_ 31 28 24 20 16 12 8 4 0
10P
Attributes rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof ro
PCI B
Attributes na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na
Internal bus address Attribute Legend: RW = Read/Write
PQSAR2 EFFE E814H Internal bus address RV = Reserved RC = Read Clear
PQSAR3 FFFF ES18H PQSAR10 FFEF E850H PR = Preserved RO = Read Only_
PQSAR4 FEFF E82CH PQSAR11 FFFF E854H RS = Read/Set NA = Not Accessible
PQSAR5 FFFF E830H PQSAR12 FFFF E858H
PQSARG6 FFFF E834H PQSAR13 FFFF E864H
PQSAR7 EFFE ES40H PQSAR14 FFFF E868H
PQSARS FFFF E844H PQSAR15 FFFF E86CH
PQSAR9 FFFF E848H PQSAR16 FFFF E870H
Bit Default Description

31:00 0000 O000H | + Local Address - The local source address

70

January, 2005 Document Number: 304496001US




intel.

1.13.8

Note:

Note:

Table 14.

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Register Definitions

P+Q RAID-6 Galois Field Multiplier Registers 1..5
- GFMRL1..5

The following definition applies only when P+Q RAID-6 mode is enabled. When P+Q RAID-6 is

NOT enabled, refer to Section 1.13.6, “ Source Address Registers 2..32 - SAR2..32” on page 68 for
definition and internal bus addresses of Source Address Registers

The P+Q RAID-6 Galois Field Multiplier Registers 1..5 (GFMRL..5) contain the 8-bit multiplier
values. There are 16 Data Multipliers distributed through the five Data Multiplier Words
(GFMR1..GFMR5). Each of these registersis loaded with data multiplier valuesto be used by the AA
GF Multiply Function when P+Q RAID-6 Maodeis enabled. The ADCR, EDCRO, and EDCR1
registers control the operation performed on each source data block.

Table 14 shows the Galois Field Multiplier Registers GFMR[1:5]. These read-only registers are
|oaded when a chain descriptor is read from memory.

Address.
Galois Field Multiplier Registers 1..5 - GFMR1..5 (Sheet 1 of 2)

See Section 1.13 for definition of the Data Integrity Source Addressesin P+Q RAID-6 Source

31

28

24 20

16

12 8 4 0

10P
Attributes rof rof rof rof rof rof rof roy rof rof rof rof rof rof rof roy rof rof rof rof rof rof roj roy rof rof rof roy rof rof rof ro

PCI
Attributes na\na\na\na\na\na\na\nayna\na\na\nayna\na\na\nayna\na\na\nayna\na\na\nayna\na\na\nayna\na\na\na

Internal bus address Attribute Legend: RW = Read/Write
GFMR1 FFFF ES1CH RV = Reserved RC = Read Clear
GFMR2 FFFF E838H PR = Preserved RO = Read Only
GFMR3 FFFF ES4CH RS = Read/Set NA = Not Accessible
GFMR4 FFFF ES5CH
GFMR5 FFFF E874H
Bit Default Description
Data Multiplier - Data Multiplier Byte used by the P+Q RAID-6 function (GF Multiply) with source data
from corresponding PQSARX, when P+Q RAID-6 mode is enabled.
* GFMR1 - reserved
31:24 00H *» GFMR?2 - reserved
* GFMR3 - reserved
* GFMR4 - reserved
* GFMRS5 - Data Multiplier 16 (DMLT16)
Data Multiplier - Data Multiplier Byte used by the P+Q RAID-6 function (GF Multiply) with source data
from corresponding PQSARX, when P+Q RAID-6 mode is enabled.
* GFMR1 - Data Multiplier 3 (DMLT3)
23:16 00H * GFMR2 - Data Multiplier 6 (DMLT6)
* GFMRS3 - Data Multiplier 9 (DMLT9)
* GFMR4 - Data Multiplier 12 (DMLT12)
* GFMRS5 - Data Multiplier 15 (DMLT15)

Document Number: 304496001US

January, 2005

71



Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum =

Register Definitions In
Table 14. Galois Field Multiplier Registers 1..5 - GFMR1..5 (Sheet 2 of 2)
31 28 24 20 16 12 8 4 0
0P
Attributes rofrof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof ro
e [
Attributes na\na\na\nayna\na\na\nayna\na\na\nayna\na\na\na\na\na\na\nayna\na\na\na\na\na\na\nay\na\na\na\na
Internal bus address Attribute Legend: RW = Read/Write
GFMR1 FFFF ES1CH RV = Reserved RC = Read Clear
GEMR2 FFEE ES38H PR = Preserved RO = Read Only
GFMR3 FEFF E84CH RS = Read/Set NA = Not Accessible
GFMR4 FFFF E85CH
GFMR5 FFFF E874H
Bit Default Description
Data Multiplier - Data Multiplier Byte used by the P+Q RAID-6 function (GF Multiply) with source data
from corresponding PQSARX, when P+Q RAID-6 mode is enabled.
* GFMR1 - Data Multiplier 2 (DMLT2)
15:8 00H * GFMR?2 - Data Multiplier 5 (DMLT5)
* GFMRS3 - Data Multiplier 8 (DMLT8)
* GFMR4 - Data Multiplier 11 (DMLT11)
* GFMRS5 - Data Multiplier 14 (DMLT14)
Data Multiplier - Data Multiplier Byte used by the P+Q RAID-6 function (GF Multiply) with source data
from corresponding PQSARX, when P+Q RAID-6 mode is enabled.
* GFMR1 - Data Multiplier 1 (DMLT1)
7:0 00H * GFMR?2 - Data Multiplier 4 (DMLT4)
* GFMRS3 - Data Multiplier 7 (DMLT7)
* GFMR4 - Data Multiplier 10 (DMLT10)
* GFMRS5 - Data Multiplier 13 (DMLT13)
72 January, 2005 Document Number: 304496001US




intel.

1.13.9

Table 15.

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Register Definitions

Destination Address Register - DAR

The Destination Address Register (DAR) contains a 32-bit, local memory address. The DAR may
also contain an address targeting the ATU outbound windows for writing the AAU result to the PCI
bus. During operations, this address is the destination addressin local memory where data will be
stored. The 80331 local memory address space is a 32-hit, byte addressable address space. When
programming the result to be on the PCI bus, this address is one of the ATU outbound windows,
which resultsin a 32-hit or 64-bit PCI address depending on the window addressed.

During Dual XOR operations, this address points to the memory block to be written with the
Horizontal XOR result.

During Memory Block Fill operations, this address points to the memory block to be written with
the constant value contained in the D/SAR1 register.

Reading the DAR once the AA has started a chain descriptor returns the current destination
address. For example; during an X OR operation when the Byte Count isinitially 4096 bytes and
the AA has completed the XOR-transfer operation on the first three 1K-byte data blocks, the value
in the Destination Address Register (DAR) will be equal to the programmed descriptor value +
3072 (DAR + 3072).

Table 15 shows the Destination Address Register. This read-only register is loaded when a chain
descriptor is read from memory

Destination Address Register - DAR

10P
Attributes

PCI
Attributes

31 28 24 20 16 12 8 4 0

rof rof rof rof rof rof rof roy rof rof rof rof rof rof rof roy rof rof rof rof roJ rof roj roy rof rof rof roy rof rof rof ro

na\na\na\na\na\na\na\nayna\na\na\nayna\na\na\nayna\na\na\nayna\na\na\nayna\na\na\nayna\na\na\na

Internal bus address Attribute Legend: RW = Read/Write
FEFF ES820H RV = Reserved RC = Read Clear
PR = Preserved RO = Read Only
RS = Read/Set NA = Not Accessible

Bit Default Description

31:00 00000000H

Destination Address - The result destination address in local memory or PCI Outbound windows.
Local Address - The local destination address.
For Dual XOR operations, DAR contains the destination address of the Horizontal XOR result (DAR_H).

Document Number: 304496001US January, 2005 73



Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Register Definitions

1.13.10

Table 16.

intel.

The Accelerator Byte Count Register (ABCR) contains the number of bytes to transfer for an
operation. Thisisaread-only register that is |oaded from the Byte Count word in a chain
descriptor. It allows for amaximum transfer of 16 Mbytes. A value of zero isavalid byte count and
resultsin no read or write cycles being generated to the Memory Controller Unit. No cycles are
generated on the internal bus.

Accelerator Byte Count Register - ABCR

Accelerator Byte Count Register - ABCR

op [

Attributes

PCI
Attributes

31 28 24 20 16 12 8 4 0

vfrvfrvfvgvgvf v vy rof rof rof roy rof rof rof roy rof rof rof rof roj rof rof rog rof rof roj roy rof rof rof ro

na\na\na\nayna\na\na\nayna\na\na\nayna\na\na\nayna\na\na\nayna\na\na\nayna\na\na\nayna\na\na\na

Internal bus address
FFFF E824H

Attribute Legend:
RV = Reserved
PR = Preserved

RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only
NA = Not Accessible

Bit

Default

Description

31:24

00H

Reserved

23:00

000000H

Byte Count - is the number of bytes to transfer for an operation.

Note:

74

Anytime this register isread, it contains the number of bytes left to transfer on the internal bus.
Note that during an operation valid data may be present in the Application Accelerator store queue.
This register is decremented by 1 through 8 for every successful transfer from the store queue to
the destination location. During Memory Block Fills thisregister is decremented by 1 through 8 for
every successful write operation. Table 16 shows the Accelerator Byte Count Register. The byte
count valueis not required to be aligned to aDWORD boundary (i.e., the byte count value can be a
DWORD aligned, short aligned, or byte aligned).

January, 2005 Document Number: 304496001US



intel.

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Register Definitions

1.13.11  Accelerator Descriptor Control Register - ADCR
The Accelerator Descriptor Control Register contains control values for data transfer on a
per-chain descriptor basis. Thisread-only register is loaded when a chain descriptor is read from
memory. These values may vary from chain descriptor to chain descriptor. The AAU determines
whether a mini-descriptor is appended to the end of the current chain descriptor by examining
bits 26:25. Table 17 shows the definition of the Accelerator Descriptor Control Register.
Table 17. Accelerator Descriptor Control Register - ADCR (Sheet 1 of 4)
shei b8cc b7cc béce b5cc b4cc b3cc b2cc blcc
31 28 [ I 24 ] 20 I 16l 12 ] 8 ] AN 10
0P
Attributes rof rof rof rof rvfrof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof ro
ror [
Attributes naynay\na n%ne\na na\nayna\na\na\nayna\na\na\nayna\na\na\nayna\na\na\nayna\na\na\nayna\na\na\na
Internal bus address Attribute Legend: RW = Read/Write
FEFF E828H RV = Reserved RC = Read Clear
PR = Preserved RO = Read Only
RS = Read/Set NA = Not Accessible
Bit Default Description
Destination Write Enable (dwe)- Determines whether data present in the store queue is written out to
local memory. When set, data in the queue is written to the address specified in the Destination Address
Register (DAR) after performing the specified operation on data referenced by the SARX registers.
When clear, data is held in the queue.
31 0 NOTE: This bit must be set for Dual-XOR-transfers.
2 NOTE: This bit should be SET when Descriptor Byte Count is larger than the AA buffer size. When the
ABCR register contains a value greater than the buffer size and this bit is cleared, the AAU only
reads the first complete buffer of data and perform the specified function. It does not read the
remaining bytes specified in the ABCR. Further, the AAU proceeds to process the next chain
descriptor when it is specified.
30 0 Zero Result Buffer Check Enable - When this bit is set the AA checks for an all-zero result buffer across
2 the data blocks specified by the SARX registers.
Result Buffer Not Zero- This bit is set when the result buffer computed across the data blocks specified
29 0 by the SARX registers results in a non-zero value.
2 NOTE: The AA updates this status in memory only by updating the Descriptor Control Word of the
current descriptor (the eighth word of the descriptor pointed to by the ADAR).
Transfer Complete - This bit is set when the AA completes the processing of a descriptor with Zero
28 0 Result Buffer Check enabled (i.e., bit 30 of the ADCR is set).
2 NOTE: The AA updates this status in memory only by updating the Descriptor Control Word of the
current descriptor (the eighth word of the descriptor pointed to by the ADAR).
Reserved
27 0, Dual XOR Operation - Defines the descriptor as a Dual XOR format when set. See Section 1.3.2.5,
“Dual-XOR-Transfer Descriptor Format” on page 22 for details. The Supplemental Block Control
Interpreter field must also be set for AA to fetch mini-descriptor.

Document Number: 304496001US

January, 2005 75



Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum =

Register Definitions In

Table 17.

Accelerator Descriptor Control Register - ADCR (Sheet 2 of 4)

Attributes rojrofrof rof rvgrof rof rof rof rof roj roy rof rof roj roy rof rof rof rof roj rof rof rog rof rof roj roy rof rof rof ro

Attributes na na\na nayna\na\na\nayna\na\na\nayna\na\na\na\na\na\na\nayna\na\na\nayna\na\na\nayna\na\na\na

shei b8cc b7cc béce b5cc b4cc b3cc b2cc blcc
31 28 [ 24 ] 20 I 16l 112 ] 8 ] A 10

10P

PCI

Internal bus address Attribute Legend: RW = Read/Write
FEFF E828H RV = Reserved RC = Read Clear
PR = Preserved RO = Read Only
RS = Read/Set NA = Not Accessible

Bit

Default Description

26:25

Supplemental Block Control Interpreter - This bit field specifies the number of additional descriptor
segments beyond the principle descriptor on which the operation is executed.

00 Principle Descriptor only - This specifies that no additional descriptor words exist. The AA only reads
the principle descriptor to initialize the first eight AA descriptor registers. Set for up to 4 sources for XOR,
or up to 3 sources for P+Q RAID-6.

01 Mini-Descriptor - This specifies that there are up to 4 additional words. The AA therefore reads the
mini-descriptor to initialize four additional registers. Set for up to 8 sources for XOR, or Dual-XOR
operation, or up to 6 sources for P+Q RAID-6.

10 Extended Descriptor O - This specifies that there are up to nine additional descriptor words. The AA
therefore reads the mini-descriptor and one extended-descriptor to initialize a total of twenty-one
registers. Set for up to 16 sources for XOR, or up to 12 sources for P+Q RAID-6 .

11 Extended Descriptors 1 and 2 - This specifies that there are up to eighteen additional descriptor
words. The AA therefore reads the mini-descriptor and three extended-descriptors to initialize registers a
total of thirty-nine registers. Set for up to 32 sources for XOR, or up to 16 sources for P+Q RAID-6 .

00

24:22

Block 8 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SARS register.

000 Null command - This implies that Block 8 Data can be disregarded for the current chain
descriptor. The Application Accelerator does not transfer data from this block while processing the
current chain descriptor.

001 XOR command - This implies that Block 8 Data is transferred to the Application Accelerator to
execute the XOR function.

All other values are reserved

21:19

Block 7 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR7 register.

000 Null command - This implies that Block 7 Data can be disregarded for the current chain
descriptor. The Application Accelerator does not transfer data from this block while processing the
current chain descriptor.

001 XOR command - This implies that Block 7 Data is transferred to the Application Accelerator to
execute the XOR function.

All other values are reserved

18:16

Block 6 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SARG6 register.

000 Null command - This implies that Block 6 Data can be disregarded for the current chain
descriptor. The Application Accelerator does not transfer data from this block while processing the
current chain descriptor.

001 XOR command - This implies that Block 6 Data is transferred to the Application Accelerator to
execute the XOR function.

All other values are reserved

76

January, 2005 Document Number: 304496001US



= Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
In ® Register Definitions

Table 17. Accelerator Descriptor Control Register - ADCR (Sheet 3 of 4)

shei b8cc b7cc béce b5cc b4cc b3cc b2cc blcc
31 28 [ I 24 ] 20 I 16l 12 ] 8 ] AN 10
10P
Attributes rof rof rof rof rvfrofrof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof rof ro
ror [
Attributes najynay\najna\na\na\na\nayna\na\na\nayna\na\na\nayna\na\na\nayna\na\na\nayna\na\na\nayna\na\na\na
Internal bus address Attribute Legend: RW = Read/Write
FEFF E828H RV = Reserved RC = Read Clear
PR = Preserved RO = Read Only
RS = Read/Set NA = Not Accessible
Bit Default Description
Block 5 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR5 register.
000 Null command - This implies that Block 5 Data can be disregarded for the current chain
15:13 0 descriptor. The Application Accelerator does not transfer data from this block while processing the
’ current chain descriptor.
001 XOR command - This implies that Block 5 Data is transferred to the Application Accelerator to
execute the XOR function.
All other values are reserved
Block 4 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR4 register.
000 Null command - This implies that Block 4 Data can be disregarded for the current chain
12:10 0 descriptor. The Application Accelerator does not transfer data from this block while processing the
’ current chain descriptor.
001 XOR command - This implies that Block 4 Data is transferred to the Application Accelerator to
execute the XOR function. (required for Dual-XOR-transfers)
All other values are reserved
Block 3 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SARS register.
000 Null command - This implies that Block 3 Data can be disregarded for the current chain
09:07 0 descriptor. The Application Accelerator does not transfer data from this block while processing the
’ current chain descriptor.
001 XOR command - This implies that Block 3 Data is transferred to the Application Accelerator to
execute the XOR function. (required for Dual-XOR-transfers)
All other values are reserved
Block 2 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR2 register.
000 Null command - This implies that Block 2 Data can be disregarded for the current chain
06:04 0 descriptor. The Application Accelerator does not transfer data from this block while processing the
’ current chain descriptor.
001 XOR command - This implies that Block 2 Data is transferred to the Application Accelerator to
execute the XOR function. (required for Dual-XOR-transfers)
All other values are reserved

Document Number: 304496001US January, 2005 77



Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum

Register Definitions

INlal.

Table 17. Accelerator Descriptor Control Register - ADCR (Sheet 4 of 4)
shei b8cc b7cc béce b5cc b4cc b3cc b2cc blcc
31 28 [ 24 ] 20 I 16l 112 ] 8 A 10
0P
Attributes rojrojrojrog rvfrof rof roy rof rof rof roy rof rof rojJ rog roj rof rof roy rofJ roj roj roy roj rof rof roy rof rof rof ro
PCI B
Attributes na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na
Internal bus address Attribute Legend: RW = Read/Write
FEFF E828H RV = Reserved RC = Read Clear
PR = Preserved RO = Read Only
RS = Read/Set NA = Not Accessible
Bit Default Description

Block 1 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by D/SAR1 register (for XOR command) or with the data contained in the D/SAR1 (for Memory
Block Fill command).

000 Null command - This implies that Block 1 Data can be disregarded for the current chain
descriptor. The Application Accelerator does not transfer data from this block while processing the

current chain descriptor.
03:01 0 001

execute the XOR function.
with the constant specified by the D/SAR1register.

gueue. (required for Dual-XOR-transfers)
All other values are reserved

XOR command - This implies that Block 1 Data is transferred to the Application Accelerator to
010 Memory Block Fill command - This implies that the memory block specified by the DAR is filled

111  Direct Fill - This implies that Block 1 Data is transferred directly from local memory to the store

00 0 core upon completion of a transfer. When clear, no interrupt is generated.

Interrupt Enable - When set, the Application Accelerator generates an interrupt to the Intel XScale®

78 January, 2005

Document Number: 304496001US




intel.

1.13.12

Table 18.

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Register Definitions

Extended Descriptor Control Register 0 - EDCRO

The Extended Descriptor Control Register 0 contains control valuesfor datatransfer on aper-chain
descriptor basis. This read-only register isloaded when a chain descriptor that requires a minimum
of 16 Source Addresses is read from memory. The valuesin EDCRO define the command/control
value for SAR16 - SAR9. The AAU determines whether an extended descriptor requiring the use
of EDCRO is appended to the end of the current chain descriptor by examining bits 26:25 of the
Accelerator Descriptor Control Register. Table 18 shows the definition of the Extended Descriptor
Control Register 0.

Extended Descriptor Control Register 0 - EDCRO (Sheet 1 of 2)

Attributes

Attributes

31

bl6cc b15cc bldcc b13cc bl12cc bllcc b10cc b9cc
28 24 ] 20 I 160 12 ] 8 ] all 10

10P

PCI

rvyrvyrvymnvgrvg v g v rof rof rof rof rof rof rof rof rog rof rof rof rog rof rof roj roy rof rof rof roy rof rof rof ro

naynajnaj\na\na\na\na\nayna\na\na\naynaj\na\na\nayna\na\na\nayna\na\na\nayna\na\na\nayna\na\na\na

Internal bus address Attribute Legend: RW = Read/Write
FFFF E83CH

RV = Reserved RC = Read Clear
PR = Preserved RO = Read Only
RS = Read/Set NA = Not Accessible

Bit

Default

Description

31:25

02

Reserved

24:22

Block 16 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR16 register.

000 Null command - This implies that Block 16 Data can be disregarded for the current chain
descriptor. The Application Accelerator does not transfer data from this block while processing the
current chain descriptor.

001 XOR command - This implies that Block 16 Data is transferred to the Application Accelerator to
execute the XOR function.

All other values are reserved

21:19

Block 15 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR15 register.

000 Null command - This implies that Block 15 Data can be disregarded for the current chain
descriptor. The Application Accelerator does not transfer data from this block while processing the
current chain descriptor.

001 XOR command - This implies that Block 15 Data is transferred to the Application Accelerator to
execute the XOR function.

All other values are reserved

18:16

Block 14 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR14 register.

000 Null command - This implies that Block 14 Data can be disregarded for the current chain
descriptor. The Application Accelerator does not transfer data from this block while processing the
current chain descriptor.

001 XOR command - This implies that Block 14 Data is transferred to the Application Accelerator to
execute the XOR function.

All other values are reserved

Document Number: 304496001US January, 2005 79



Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum =

Register Definitions In ®
Table 18. Extended Descriptor Control Register 0 - EDCRO (Sheet 2 of 2)
bl6cc bl15cc bl4cc b13cc bl2cc bllcc b10cc b9cc
31 28 24 ] 20 I 16l 12 ] 8 ] A 10
10P
Attributes rvyrvyjrvyvgrvgvf vy rof rof rof rof roy rof rof rojJ rog roj rof rof roy rof rof roj roy roj rof rof roy rof rof rof ro
PCI B
Attributes na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na
Internal bus address Attribute Legend: RW = Read/Write
FFFF ES83CH RV = Reserved RC = Read Clear
PR = Preserved RO = Read Only
RS = Read/Set NA = Not Accessible
Bit Default Description
Block 13 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR13 register.
000 Null command - This implies that Block 13 Data can be disregarded for the current chain
1513 0 descriptor. The Application Accelerator does not transfer data from this block while processing the
’ current chain descriptor.
001 XOR command - This implies that Block 13 Data is transferred to the Application Accelerator to
execute the XOR function.
All other values are reserved
Block 12 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR12 register.
000 Null command - This implies that Block 12 Data can be disregarded for the current chain
12:10 0 descriptor. The Application Accelerator does not transfer data from this block while processing the
’ current chain descriptor.
001 XOR command - This implies that Block 12 Data is transferred to the Application Accelerator to
execute the XOR function.
All other values are reserved
Block 11 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR11 register.
000 Null command - This implies that Block 11 Data can be disregarded for the current chain
09:07 0 descriptor. The Application Accelerator does not transfer data from this block while processing the
’ current chain descriptor.
001 XOR command - This implies that Block 11 Data is transferred to the Application Accelerator to
execute the XOR function.
All other values are reserved
Block 10 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR10 register.
000 Null command - This implies that Block 10 Data can be disregarded for the current chain
06:04 0 descriptor. The Application Accelerator does not transfer data from this block while processing the
’ current chain descriptor.
001 XOR command - This implies that Block 10 Data is transferred to the Application Accelerator to
execute the XOR function.
All other values are reserved
Block 9 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR9 register.
000 Null command - This implies that Block 9 Data can be disregarded for the current chain
03:01 0 descriptor. The Application Accelerator does not transfer data from this block while processing the
’ current chain descriptor.
001 XOR command - This implies that Block 9 Data is transferred to the Application Accelerator to
execute the XOR function.
All other values are reserved
00 0 Reserved.

80 January, 2005 Document Number: 304496001US



intel.

1.13.13

Table 19.

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Register Definitions

Extended Descriptor Control Register 1 - EDCR1

The Extended Descriptor Control Register 1 contains control valuesfor datatransfer on aper-chain
descriptor basis. This read-only register is loaded when a chain descriptor that requires 32 Source
Addressesis read from memory. The values in EDCR1 define the command/control value for
SAR24 - SAR17. The AAU determines whether an extended descriptor requiring the use of
EDCRL1 is appended to the end of the current chain descriptor by examining bits 26:25 of the
Accelerator Descriptor Control Register. Table 19 shows the definition of the Extended Descriptor
Control Register 1.

Extended Descriptor Control Register 1 - EDCR1 (Sheet 1 of 2)

Attributes

Attributes

31

b24cc b23cc b22cc b2lcc b20cc b19cc b18cc bl7cc
28 24 ] 20 I 160 12 ] 8 ] all 10

10P

PCI

rvyrvyrvymnvgrvg g rof rof rof rof rof rof rof rof rog rof rof rof rog rof rof roj roy rof rof rof rog rof rof rof ro

naynajnaj\najyna\na\na\nayna\na\na\nayjnaj\na\na\nayna\na\na\naynay\na\na\nayna\na\na\nayna\na\na\na

Internal bus address Attribute Legend: RW = Read/Write

FFFF E860H

RV = Reserved RC = Read Clear
PR = Preserved RO = Read Only
RS = Read/Set NA = Not Accessible

Bit

Default

Description

31:25

02

Reserved

24:22

Block 24 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR24 register.

000 Null command - This implies that Block 24 Data can be disregarded for the current chain
descriptor. The Application Accelerator does not transfer data from this block while processing the
current chain descriptor.

001 XOR command - This implies that Block 24 Data is transferred to the Application Accelerator to
execute the XOR function.

All other values are reserved

21:19

Block 23 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR23 register.

000 Null command - This implies that Block 23 Data can be disregarded for the current chain
descriptor. The Application Accelerator does not transfer data from this block while processing the
current chain descriptor.

001 XOR command - This implies that Block 23 Data is transferred to the Application Accelerator to
execute the XOR function.

All other values are reserved

18:16

Block 22 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR22 register.

000 Null command - This implies that Block 22 Data can be disregarded for the current chain
descriptor. The Application Accelerator does not transfer data from this block while processing the
current chain descriptor.

001 XOR command - This implies that Block 22 Data is transferred to the Application Accelerator to
execute the XOR function.

All other values are reserved

Document Number: 304496001US January, 2005 81



Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum =

Register Definitions In ®
Table 19. Extended Descriptor Control Register 1 - EDCR1 (Sheet 2 of 2)
b24cc b23cc b22cc b2lcc b20cc bl9cc b18cc bl7cc
31 28 24 ] 20 I 16l 12 ] 8 ] A 10
10P
Attributes rvyrvyjrvyvgrvgvf vy rof rof rof rof roy rof rof rojJ rog roj rof rof roy rof rof roj roy roj rof rof roy rof rof rof ro
PCI B
Attributes na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na
Internal bus address Attribute Legend: RW = Read/Write
FEFF ES860H RV = Reserved RC = Read Clear
PR = Preserved RO = Read Only
RS = Read/Set NA = Not Accessible
Bit Default Description
Block 21 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR21 register.
000 Null command - This implies that Block 21 Data can be disregarded for the current chain
1513 0 descriptor. The Application Accelerator does not transfer data from this block while processing the
’ current chain descriptor.
001 XOR command - This implies that Block 21 Data is transferred to the Application Accelerator to
execute the XOR function.
All other values are reserved
Block 20 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR20 register.
000 Null command - This implies that Block 20 Data can be disregarded for the current chain
12:10 0 descriptor. The Application Accelerator does not transfer data from this block while processing the
’ current chain descriptor.
001 XOR command - This implies that Block 20 Data is transferred to the Application Accelerator to
execute the XOR function.
All other values are reserved
Block 19 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR19 register.
000 Null command - This implies that Block 19 Data can be disregarded for the current chain
09:07 0 descriptor. The Application Accelerator does not transfer data from this block while processing the
’ current chain descriptor.
001 XOR command - This implies that Block 19 Data is transferred to the Application Accelerator to
execute the XOR function.
All other values are reserved
Block 18 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR18 register.
000 Null command - This implies that Block 18 Data can be disregarded for the current chain
06:04 0 descriptor. The Application Accelerator does not transfer data from this block while processing the
’ current chain descriptor.
001 XOR command - This implies that Block 18 Data is transferred to the Application Accelerator to
execute the XOR function.
All other values are reserved
Block 17 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR17 register.
000 Null command - This implies that Block 17 Data can be disregarded for the current chain
03:01 0 descriptor. The Application Accelerator does not transfer data from this block while processing the
’ current chain descriptor.
001 XOR command - This implies that Block 17 Data is transferred to the Application Accelerator to
execute the XOR function.
All other values are reserved
00 0 Reserved.

82 January, 2005 Document Number: 304496001US



intel.

1.13.14

Table 20.

Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum
Register Definitions

Extended Descriptor Control Register 2 - EDCR2

The Extended Descriptor Control Register 2 contains control vaues for datatransfer on aper-chain
descriptor basis. Thisread-only register isloaded when a chain descriptor that requires 32 Source
Addressesis read from memory. Valuesin EDCR?2 define the command/control value for SAR32 -
SAR25. The AAU determines whether an extended descriptor requiring the use of EDCR2 is gppended
to the end of the current chain descriptor by examining bits 26:25 of the Accelerator Descriptor Control
Register. Table 20 shows the definition of the Extended Descriptor Control Register 2.

Extended Descriptor Control Register 2 - EDCR2 (Sheet 1 of 2)

Attributes

Attributes

31

bl6cc b15cc bl4cc b13cc bl12cc bllcc b10cc b9cc
28 24 ] 20 I 160 12 ] 8 ] all 10

10P

PCI

rvyrvygrvymnvgrvg vy g rof rof rof rof rof rof rof rof roy rof rof rof rof rof rof roj roy rof rof rof rogy rof rof rof ro

najnajnajna\na\na\na\nayna\na\na\nayna\na\na\nayna\na\na\nayna\na\na\nayna\na\na\nayna\na\na\na

Internal bus address Attribute Legend: RW = Read/Write
FFFF E884H RV = Reserved RC = Read Clear

PR = Preserved RO = Read Only
RS = Read/Set NA = Not Accessible

Bit

Default

Description

31:25

02

Reserved

24:22

Block 32 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR32 register.

000 Null command - This implies that Block 32 Data can be disregarded for the current chain
descriptor. The Application Accelerator does not transfer data from this block while processing the
current chain descriptor.

001 XOR command - This implies that Block 32 Data is transferred to the Application Accelerator to
execute the XOR function.

All other values are reserved

21:19

Block 31 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR31 register.

000 Null command - This implies that Block 31 Data can be disregarded for the current chain
descriptor. The Application Accelerator does not transfer data from this block while processing the
current chain descriptor.

001 XOR command - This implies that Block 31 Data is transferred to the Application Accelerator to
execute the XOR function.

All other values are reserved

18:16

Block 30 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR30 register.

000 Null command - This implies that Block 30 Data can be disregarded for the current chain
descriptor. The Application Accelerator does not transfer data from this block while processing the
current chain descriptor.

001 XOR command - This implies that Block 30 Data is transferred to the Application Accelerator to
execute the XOR function.

All other values are reserved

15:13

Block 29 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR29 register.

000 Null command - This implies that Block 29 Data can be disregarded for the current chain
descriptor. The Application Accelerator does not transfer data from this block while processing the
current chain descriptor.

001 XOR command - This implies that Block 29 Data is transferred to the Application Accelerator to
execute the XOR function.

All other values are reserved

Document Number: 304496001US January, 2005 83




Intel® 80331 I/O Processor Application Accelerator Unit D-0 Addendum =

Register Definitions In ®
Table 20. Extended Descriptor Control Register 2 - EDCR2 (Sheet 2 of 2)
bl6cc bl15cc bldcc b13cc b12cc bllcc b10cc b9cc
! 28 2z 20 1 Toll 12 — 5 1 7 10
10P

Attributes rvyrvyrvgvgrvg v g v frof rof rof roj roy rof rof rof roy rof rof rof rof roj rof rof rog rof roj rof roy rof rof rof ro

PCI
najna\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na

Attributes
Internal bus address Attribute Legend: RW = Read/Write
FFFF E884H RV = Reserved RC = Read Clear
PR = Preserved RO = Read Only
RS = Read/Set NA = Not Accessible
Bit Default Description
Block 28 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR28 register.
000 Null command - This implies that Block 28 Data can be disregarded for the current chain
12:10 0 descriptor. The Application Accelerator does not transfer data from this block while processing the
’ current chain descriptor.
001 XOR command - This implies that Block 28 Data is transferred to the Application Accelerator to
execute the XOR function.
All other values are reserved
Block 27 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR27 register.
000 Null command - This implies that Block 27 Data can be disregarded for the current chain
09:07 0 descriptor. The Application Accelerator does not transfer data from this block while processing the
’ current chain descriptor.
001 XOR command - This implies that Block 27 Data is transferred to the Application Accelerator to
execute the XOR function.
All other values are reserved
Block 26 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR26 register.
000 Null command - This implies that Block 26 Data can be disregarded for the current chain
06:04 0 descriptor. The Application Accelerator does not transfer data from this block while processing the
’ current chain descriptor.
001 XOR command - This implies that Block 26 Data is transferred to the Application Accelerator to
execute the XOR function.
All other values are reserved
Block 25 Command Control - This bit field specifies the type of operation to be carried out on the data
pointed at by SAR25 register.
000 Null command - This implies that Block 25 Data can be disregarded for the current chain
03:01 0 descriptor. The Application Accelerator does not transfer data from this block while processing the
’ current chain descriptor.
001 XOR command - This implies that Block 25 Data is transferred to the Application Accelerator to
execute the XOR function.
All other values are reserved
00 0 Reserved.

B

g
=
ARMa

84 January, 2005 Document Number: 304496001US



	Intel® 80331 I/O Processor
	Application Accelerator Unit 1
	1.1 Overview
	1.2 Theory of Operation
	Figure 1. Application Accelerator Block Diagram

	1.3 Hardware-Assist XOR Unit
	1.3.1 Data Transfer
	Table 1. Register Description

	1.3.2 Chain Descriptors
	1.3.2.1 Principle / Four-Source Descriptor Format
	Figure 2. Principle / Four Source Descriptor Format

	1.3.2.2 Eight-Source Descriptor Format
	Figure 3. Chain Descriptor Format for Eight Source Addresses (XOR Function)

	1.3.2.3 Sixteen-Source Descriptor Format
	Figure 4. Chain Descriptor Format for Sixteen Source Addresses (XOR Function)

	1.3.2.4 Thirty-two-Source Descriptor Format
	Figure 5. Chain Descriptor Format for Thirty Two Source Addresses (XOR Function)

	1.3.2.5 Dual-XOR-Transfer Descriptor Format
	Figure 6. Chain Descriptor Format for Dual-XOR-transfer

	1.3.2.6 P+Q Three-Source Descriptor Format
	Figure 7. P+Q Base Chain Descriptor Format

	1.3.2.7 P+Q Six-Source Descriptor Format
	Figure 8. P+Q Chain Descriptor Format for Six Source Addresses (XOR Function)

	1.3.2.8 P+Q Twelve-Source Descriptor Format
	Figure 9. P+Q Chain Descriptor Format for Twelve Source Addresses (XOR Function)

	1.3.2.9 P+Q Sixteen-Source Descriptor Format
	Figure 10. P+Q Chain Descriptor Format for Sixteen Source Addresses (XOR Function)


	1.3.3 Descriptor Summary
	Table 2. Descriptor Summary (Sheet 1 of 2)

	1.3.4 Descriptor Chaining
	Figure 11. XOR Chaining Operation


	1.4 AA Descriptor Processing
	Figure 12. Example of Gather Chaining for Four Source Blocks
	1.4.1 Scatter Gather Transfers
	1.4.2 Synchronizing a Program to Chained Operation
	Figure 13. Synchronizing to Chained AA Operation

	1.4.3 Appending to The End of a Chain

	1.5 AA Operations
	Table 3. AA Operation and Command Combination Summary
	1.5.1 AA Addressing
	Table 4. Typical AA Operation and Addressing Summary

	1.5.2 XOR Operation
	Figure 14. The Bit-wise XOR Algorithm
	Figure 15. Hardware Assist XOR Unit

	1.5.3 XOR Operation with P+Q RAID-6 Mode
	Figure 16. The Bit-wise XOR Algorithm including the P+Q RAID-6 Mode
	Figure 17. GF Multiply Function
	Figure 18. Galois Field Logarithm Transformation Table
	Figure 19. Galois Field Inverse Logarithm Transformation table
	Equation 1. Galois Field Primitive Polynomial (0x11D)

	1.5.4 Dual-XOR Operation
	Figure 20. The Bit-wise Dual-XOR Algorithm

	1.5.5 Zero Result Buffer Check
	Figure 21. An Example of Zero Result Buffer Check

	1.5.6 Zero Result Buffer Check with P+Q RAID-6
	Figure 22. An example of Zero Result Buffer Check with P+Q RAID-6

	1.5.7 Memory Block Fill Operation
	Figure 23. Example of a Memory Block Fill Operation


	1.6 Programming Model State Diagram
	Figure 24. Application Accelerator Programming Model State Diagram

	1.7 Application Accelerator Priority
	1.8 Packing and Unpacking
	1.8.1 64-bit Unaligned Data Transfers
	Figure 25. Optimization of an Unaligned Data Transfer


	1.9 Programming the Application Accelerator
	1.9.1 Application Accelerator Initialization
	Figure 26. Pseudo Code: Application Accelerator Initialization
	Figure 27. Pseudo Code: Application Accelerator Chain Resume Initialization

	1.9.2 Suspending and Resuming the Application Accelerator
	Figure 28. Pseudo Code: Suspend Application Accelerator

	1.9.3 Appending Descriptor for XOR Operations
	Figure 29. Pseudo Code: XOR Transfer Operation

	1.9.4 Appending Descriptor for Dual XOR Operations
	Figure 30. Pseudo Code: Dual XOR Transfer Operation

	1.9.5 Appending Descriptor for Memory Block Fill Operations
	Figure 31. Pseudo Code: Memory Block Fill Operation

	1.9.6 Appending Descriptor for Zero Result Buffer Check
	Figure 32. Pseudo Code: Zero Result Buffer Check Operation


	1.10 Interrupts
	Table 5. AA Interrupts

	1.11 Error Conditions
	1.12 Power-up/Default Status
	1.13 Register Definitions
	Table 6. Application Accelerator Unit Registers
	1.13.1 Accelerator Control Register - ACR
	Table 7. Accelerator Control Register - ACR

	1.13.2 Accelerator Status Register - ASR
	Table 8. Accelerator Status Register - ASR

	1.13.3 Accelerator Descriptor Address Register - ADAR
	Table 9. Accelerator Descriptor Address Register - ADAR

	1.13.4 Accelerator Next Descriptor Address Register - ANDAR
	Table 10. Accelerator Next Descriptor Address Register - ANDAR

	1.13.5 Data / Source Address Register1 - D/SAR1/PQSAR1
	Table 11. Data / Source Address Register - SAR1/PQSAR1

	1.13.6 Source Address Registers 2..32 - SAR2..32
	Table 12. Source Address Register2..32 - SAR2..32

	1.13.7 P+Q RAID-6 Source Address Registers 2..16 - PQSAR2..16
	Table 13. P+Q RAID-6 Source Address Registers 2..16 - PQSAR2..16

	1.13.8 P+Q RAID-6 Galois Field Multiplier Registers 1..5 - GFMR1..5
	Table 14. Galois Field Multiplier Registers 1..5 - GFMR1..5 (Sheet 1 of 2)

	1.13.9 Destination Address Register - DAR
	Table 15. Destination Address Register - DAR

	1.13.10 Accelerator Byte Count Register - ABCR
	Table 16. Accelerator Byte Count Register - ABCR

	1.13.11 Accelerator Descriptor Control Register - ADCR
	Table 17. Accelerator Descriptor Control Register - ADCR (Sheet 1 of 4)

	1.13.12 Extended Descriptor Control Register 0 - EDCR0
	Table 18. Extended Descriptor Control Register 0 - EDCR0 (Sheet 1 of 2)

	1.13.13 Extended Descriptor Control Register 1 - EDCR1
	Table 19. Extended Descriptor Control Register 1 - EDCR1 (Sheet 1 of 2)

	1.13.14 Extended Descriptor Control Register 2 - EDCR2
	Table 20. Extended Descriptor Control Register 2 - EDCR2 (Sheet 1 of 2)




