
i960® VH Embedded-PCI
Processor
Specification Update

August 2004
Notice: The 80960VH may contain design defects or errors known as errata. Characterized
errata that may cause 80960VH’s behavior to deviate from pubished specifications are
documented in this specification update.

Order Number: 273174-011

i960® VH Embedded-PCI Processor Specification Update

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The 80960VH may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current
characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-
548-4725 or by visiting Intel’s website at http://www.intel.com.

Copyright © Intel Corporation, 1999, 2004

*Third-party brands and names are the property of their respective owners.

Contents

Revision History ... 5

Preface... 6

Summary Table Of Changes.. 7

Identification Information.. 8

Errata ..11

Specification Changes ... 18

Specification Clarifications ... 19

Documentation Changes ... 20
i960® VH Embedded-PCI Processor Specification Update iii

Revision History
Revision History

Date Revision Description

10/13/99 009 Added Documentation Changes 18.
09/08/99 008 Added Documentation Changes 10 - 17.
08/11/99 007 Added Specification Change #3.

Added Documentation Change #9.
06/09/99 006 Added Errata #10.
03/11/99 005 Added Specification Change #2.

Added Specification Clarifications #4 and 5.
Added Documentation Change #8.

02/05/99 004 Added Errata #9 and Documentation Changes #5, 6 and 7.
12/09/98 003 Added Documentation Change #4.
11/10/98 002 Added Specification Clarification #3 and Documentation Changes #1, 2 and 3.
10/13/98 001 This is the new Specification Update document. It contains all identified errata

published prior to this date.

8/19/2004 010 To address the fact that many of the package prefix variables have changed,
all package prefix variables in this document are now indicated with an "x".
i960® VH Embedded-PCI Processor Specification Update 5

Preface
Preface

As of July, 1996, Intel has consolidated available historical device and documentation errata into
this document type called the Specification Update. We have endeavored to include all
documented errata in the consolidation process, however, we make no representations or
warranties concerning the completeness of the Specification Update.

This document is an update to the specifications contained in the Affected Documents/Related
Documents table below. This document is a compilation of device and documentation errata,
specification clarifications and changes. It is intended for hardware system manufacturers and
software developers of applications, operating systems, or tools.

Information types defined in Nomenclature are consolidated into the specification update and are
no longer published in other documents.

This document may also contain information that was not previously published.

Affected Documents/Related Documents

Nomenclature

Errata are design defects or errors. These may cause the 80960VH’s behavior to deviate from
published specifications. Hardware and software designed to be used with any given stepping must
assume that all errata documented for that stepping are present on all devices.

Specification Changes are modifications to the current published specifications. These changes
will be incorporated in any new release of the specification.

Specification Clarifications describe a specification in greater detail or further highlight a
specification’s impact to a complex design situation. These clarifications will be incorporated in
any new release of the specification.

Documentation Changes include typos, errors, or omissions from the current published
specifications. These will be incorporated in any new release of the specification.

Note: Errata remain in the specification update throughout the product’s lifecycle, or until a particular
stepping is no longer commercially available. Under these circumstances, errata removed from the
specification update are archived and available upon request. Specification changes, specification
clarifications and documentation changes are removed from the specification update when the
appropriate changes are made to the appropriate product specification or user documentation
(datasheets, manuals, etc.).

Title Order

i960® VH Processor Developer’s Manual 273173-001

i960® VH Embedded_PCI Processor Datasheet, 273179-001 273179-001
6 i960® VH Embedded-PCI Processor Specification Update

Summary Table Of Changes
Summary Table Of Changes

The following table indicates the errata, specification changes, specification clarifications, or
documentation changes which apply to the 80960VH product. Intel may fix some of the errata in a
future stepping of the component, and account for the other outstanding issues through
documentation or specification changes as noted. This table uses the following notations:

Codes Used in Summary Table

Stepping

X: Errata exists in the stepping indicated. Specification Change or
Clarification that applies to this stepping.

(No mark)

or (Blank box): This erratum is fixed in listed stepping or specification change does not
apply to listed stepping.

Page

(Page): Page location of item in this document.

Status

Doc: Document change or update will be implemented.

Fix: This erratum is intended to be fixed in a future step of the component.

Fixed: This erratum has been previously fixed.

NoFix: There are no plans to fix this erratum.

Eval: Plans to fix this erratum are under evaluation.

Row

Change bar to left of table row indicates this erratum is either new or
modified from the previous version of the document.
i960® VH Embedded-PCI Processor Specification Update 7

Identification Information
Identification Information

Topside Markings

Device ID Registers

A6040-01

i 9 6 0

9 7

K O R AE

x80960VH
L
S
I NT LE

X X X X
X X X X

X X X A

M C

Device and Stepping

Processor Device
ID Register

(PDIDR - 1710H)
(g0)

Address Translation
Unit Revision ID

Register
(ATURID - 1208H)

i960® Core Processor
Device ID

(DEVICEID -
FF00 8710H)

80960VH A-0 0x08864013 0x00 0x00823013

NOTE: To address the fact that many of the package prefix variables have changed, all package prefix variables
 in this document are now indicated with an "x".
8 i960® VH Embedded-PCI Processor Specification Update

Identification Information
Errata

Specification Changes

Specifications Clarifications

Item
Stepping

Page Status Errata
A-0 # #

1 X 11 NoFix Parity checking for inbound PCI address cycles is always
enabled for the ATU

2 X 11 NoFix DMA Descriptors appended to the end of a chain may not
execute

3 X 11 NoFix Memory Controller Unit may assert an unexpected RAS# in
certain memory configurations

4 X 15 Eval Changing the limit register when a value exists in the
corresponding base address register may prevent access to
the address space

5 X 15 Eval P_REQ# is not deasserted when a single DWORD transfer
is retried

6 X 16 Fix Bit 0 of the ATURID register is permanently set to a one
7 X 16 NoFix Inbound ATU writes to non-existent 80960 local memory will

cause the next PCI configuration write cycle to target abort
on the PCI bus

8 X 16 NoFix Inbound configuration write cycles may latch invalid data on
the PCI bus if STOP# is asserted before the initiator asserts
IRDY# during the delayed request cycle

9 X 17 NoFix P_SERR# status bit does not indicate the proper status
10 X 17 NoFix Parity is ignored with delayed write transactions

Item
Stepping

Page Status Specification Changes
A-0 # #

1 X 19 Doc The Memory Bank Extended MWE3:0# bits in the Memory
Bank Control Register can provide one clock of address hold
time during write cycles

2 X 19 Doc PCI Local Bus Specification, Revision 2.2
3 X 19 Doc Tis6 changed for DX2 and DX modes

Item
Stepping

Page Status Specification Clarifications
A-0 # #

1 X 20 Doc Multiple reads of the Base Address Register after writing all
1’s will return different values

2 X 20 Doc When determining memory address block size, accesses to
the Base Address Register must be 32-bit configuration
cycles
i960® VH Embedded-PCI Processor Specification Update 9

Identification Information
Documentation Changes

3 X 20 Doc Some PCI chipsets will break unaligned transactions into
two LOCKED# transactions on the PCI bus. This can livelock
the PCI bus if the LOCKED# transaction is directed at the
Address Translation Unit

4 X 20 Doc HALT Mode is not supported
5 X 20 Doc Proper Bulk Decoupling Must Be Used

Item
Stepping

Page Status Specification Clarifications
A-0 # #

Item
Document
Revision

Page Documentation Changes

1 273173-001 21 Section 1.2.3, Messaging Unit
2 273173-001 21 Section 1.3, i960® Core Processor Features (80960VH)
3 273173-001 21 Section 17.4.5, Inbound Interrupt Mask Register - IIMR
4 273179-001 21 Section 3.2.1, 324-Lead PBGA Package, Figure 4, 324-Plastic Ball Grid

Array
5 273173-001 21 Section 15.6.1, DRAM Organization and Configuration
6 273179-001 21 Section 3.2.2, Thermal Analysis
7 273179-001 22 Section 3.2.2, Table 14. 324-Lead PBGA Package Thermal Characteristics
8 273173-001 22 Section 12.3.1.3, Fail# Timing
9 273173-001 22 Section 15.5.1, Table 15-3. Memory Bank Control Register-MBCR
10 273173-001 23 Section 17.4.1 Inbound Message Registers - IMRx
11 273173-001 23 Section 17.4.2 Outbound Message Registers - OMRx
12 273173-001 24 Section 17.4.3 Inbound Doorbell Register - IDR
13 273173-001 24 Section 17.4.4 Inbound Interrupt Status Register - IISR
14 273173-001 25 Section 17.4.5 Inbound Interrupt Mask Register - IIMR
15 273173-001 26 Section 17.4.6 Outbound Doorbell Register - ODR
16 273173-001 27 Section 17.4.7 Outbound Interrupt Status Register - OISR
17 273173-001 28 Section 17.4.8 Outbound Interrupt Mask Register - OIMR
18 273173-001 29 Section 3.3 Memory-Mapped Control Registers (MMRs)
10 i960® VH Embedded-PCI Processor Specification Update

Errata
Errata

1. Parity checking for inbound PCI address cycles is always enabled for the
ATU

Problem: The Parity Checking Enable bit (bit 06) in the Primary ATU Command Registers (local bus address
1204H) only affects inbound parity checking on PCI data cycles. Parity checking is always enabled
for address cycles regardless of this bit’s setting.

Implication: PCI masters that access 80960 local memory through the ATU’s must generate address parity.

Workaround: Make certain to connect the P_PAR signal from the 80960VH PCI bus. Use PCI masters that
generate address parity in all cases.

Status: For the steppings affected see the Summary Table Of Changes.

2. DMA Descriptors appended to the end of a chain may not execute
Problem: A descriptor appended to a DMA chain may not execute when the Chain Resume bit (bit 01) is set

in the Channel Control Register. This occurs when:

1. The last descriptor of the existing chain is a DMA read, and

2. The Chain Resume bit is set when the last word of the DMA is being transferred.

When condition 1 and 2 occur, the DMA unit does not re-read the Next Descriptor Address (NDA)
of the current descriptor.

This erratum exists for both aligned and unaligned DMA transfers.

Implication: A DMA transfer from an appended DMA descriptor may not execute.

Workaround: Two workarounds can be used to prevent this errata:

1. Add a NULL descriptor to the end of a chain where the last descriptor is a read. This applies to
original chains and to appended chains even when the appended chain is one descriptor in
length. The NULL descriptor has a Byte Count = 0000H, and an NDA of 0000H. A NULL
descriptor at the end of a DMA chain is appended in the normal manner — the NDA of the last
descriptor of the existing chain is changed to point to the new chain — then the Chain Resume
bit is set.

2. Append chains as normal, then poll the state of the Channel Active Flag (bit 10) in the Channel
Status Register. When flag is cleared, set the Chain Resume bit once more.

Status: For the steppings affected see the Summary Table Of Changes.

3. Memory Controller Unit may assert an unexpected RAS# in certain memory
configurations

Problem: The 80960VH MCU supports from one to four banks of DRAM. When the memory subsystem
contains fewer than the maximum number of banks used in the 80960VH design, certain addresses
may cause the MCU to assert a RAS# to an empty bank. Table 1 shows the relationship between
the 80960 local memory address and the RAS# asserted by the MCU.
i960® VH Embedded-PCI Processor Specification Update 11

Errata
Implication: The MCU may assert RAS# to access a nonexistent 80960VH DRAM bank. This may occur when
the number of DRAM banks installed is less than the maximum number of DRAM banks used in
the 80960VH design. Two examples of when this problem can occur are:

• Re-mapping 80960VH DRAM after DRAM accesses occurred in a previous memory map.

• Initializing from 80960VH DRAM instead of using FLASH/ROM.

These two cases are described further in this erratum as CASE 1 - Re-mapping 80960VH DRAM
and CASE 2 - Initializing from 80960VH DRAM instead of FLASH/ROM.

CASE 1 - Re-mapping 80960VH DRAM

In an application using 1 Mbyte per bank/leaf and one Fast Page Mode (FPM) single-sided SIMM
populated in a four bank design (total DRAM = 1 Mbyte), the following registers are set:

Table 1. DRAM Bank/Leaf Size and RAS# Asserted

Non-Interleaved DRAM Interleaved DRAM
DRAM Base Address

Register (DBAR)
Address Boundary

DRAM Bank Control
Register (DBCR)

Bits 2:1

Address
Bits

RAS#
Signal

Asserted

Address
Bits

RAS#
Signal

Asserted
4 * Bank/Leaf Size

00
(1 Mbyte DRAM
per bank/leaf)

21:20 21:20 40 0000H
(4 Mbytes)

0 0 RAS0# 00, 01 RAS1:0#

0 1 RAS1#

1 0 RAS2# 10, 11 RAS3:2#

1 1 RAS3#

01
(4 Mbyte DRAM
per bank/leaf)

23:22 23:22 100 0000H
(16 Mbytes)

0 0 RAS0# 00, 01 RAS1:0#

0 1 RAS1#

1 0 RAS2# 10, 11 RAS3:2#

1 1 RAS3#

10
(16 Mbyte DRAM

per bank/leaf)

25:24 25:24 400 0000H
(64 Mbytes)

0 0 RAS0# 00, 01 RAS1:0#

0 1 RAS1#

1 0 RAS2# 10, 11 RAS3:2#

1 1 RAS3#

11
(64 Mbyte DRAM

per bank/leaf)

27:26 27:26 1000 0000H
(128 Mbytes)

 0 0 RAS0# 00, 01 RAS1:0#

 0 1 RAS1#

 1 0 RAS2# 10, 11 RAS3:2#

 1 1 RAS3#
12 i960® VH Embedded-PCI Processor Specification Update

Errata
DRAM Bank Control Register (DBCR) = 0x0000 0001
DRAM Base Address Register (DBAR) = 0xD000 0000

The DBCR and DBAR values imply an address range of 1 Mbyte from 0xD000 0000 to
0xD00F FFFF.

The following sequence can occur:

1. A write is issued to 80960 local address 0xD000 1000.

2. Since 1-Mbyte is the DRAM bank/leaf size, the MCU decodes the next two higher order bits
21:20 from within the address to determine which RAS# signal to assert during the DRAM
access.

3. Since address bits 21:20 = 002, the MCU asserts RAS0# (See Table 1).

4. The programmer then re-maps 80960VH DRAM by programming the DBAR to
0xDFE0 0000. The address range is now 0xDFE0 0000 - 0xDFEF FFFF.

5. When a read is issued to 0xDFE0 1000 (i.e., the same address offset written in Step 1), the
MCU asserts RAS2# because bits 21:20 = 102 (See Table 1). Data initially written to this
location in Step 1 cannot be read.

6. Because the DRAM was remapped, the MCU now asserts RAS2# to an unpopulated DRAM
bank and the data returned is invalid.

CASE 2 - Initializing from 80960VH DRAM instead of FLASH/ROM

When the 80960VH initializes from 80960 local memory instead of FLASH/ROM, the 80960VH’s
first instruction fetch of the IBR is hard-coded to address 0xFEFF FF30. When the MCU reads this
address, it asserts RAS2# or RAS3#, depending on the DRAM bank/leaf size.

In an application using 4 Mbyte per bank/leaf and two single-sided SIMMs populated in a four
bank design (total DRAM = 8 Mbytes), the following registers are set:

DRAM Bank Control Register (DBCR) = 0x0000 0013
DRAM Base Address Register (DBAR) = 0xFE80 0000

The DBAR and DBCR values imply an address range of 8 Mbytes from 0xFE80 0000 to
0xFEFF FFFF.

The following sequence can occur:

1. A read of the IBR is issued to 0xFEFF FF30.

2. Since 4-Mbytes is the DRAM bank/leaf size, the MCU decodes the next two higher order bits
23:22 from within the address to determine which RAS# signal to assert during the DRAM
access.

3. IBR address bits 23:22 = 112, and the MCU asserts RAS3# (See Table 1).

4. RAS3# selects an unpopulated DRAM bank, the IBR will not be read, and the device will not
initialize.

Workaround: Two workarounds are presented. The CASE 1 WORKAROUND describes a software modification.
The CASE 2 WORKAROUND describes a hardware modification.

CASE 1 WORKAROUND - Re-mapping 80960VH DRAM
i960® VH Embedded-PCI Processor Specification Update 13

Errata
When 80960VH memory subsystem contains unpopulated DRAM banks, the DBAR must be
aligned on an address boundary of a multiple of four times the DRAM bank/leaf size (for non-
interleaved or interleaved memory) to ensure the correct RAS# is asserted (See Table 1). Limit
80960 local memory accesses to the total amount of memory installed in the system.

Note: This workaround is for booting from Flash/ROM. See CASE 2 WORKAROUND for booting
from 80960VH DRAM.

CASE 2 WORKAROUND - Initializing from 80960VH DRAM instead of FLASH/ROM

In a standard DRAM configuration, RAS0# and RAS1# are routed to the front sides of the SIMMs,
and RAS2# and RAS3# are routed to the back sides of the SIMMs. To implement this workaround,
swap RAS0# and RAS2# and swap RAS1# and RAS3#. This routes RAS2# and RAS3# to the
front sides of their respective SIMMs, and routes RAS0# and RAS1# to the back sides of their
respective SIMMs (See Figure 1). To determine which RAS# is asserted for a particular address
and DRAM configuration, see Table 1.

In an application using 4 Mbytes per bank/leaf and two single-sided SIMMs populated in a four
bank design (total DRAM = 8 Mbytes), the following registers are set:

DRAM Bank Control Register (DBCR) = 0x0000 0013
DRAM Base Address Register (DBAR) = 0xFE80 0000

The DBCR and DBAR values imply an address range of 8 Mbytes from 0xFE80 0000 to
0xFEFF FFFF.

When initializing from 80960VH DRAM, the first instruction fetch of the IBR is hard-coded to
address 0xFEFF FF30; as a result, A23:22 = 112 and RAS3# is asserted. With the workaround in
place, the RAS# lines are swapped and RAS3# is connected to the front side of the second SIMM
and the IBR can be read.

Status: For the steppings affected see the Summary Table Of Changes.

Figure 1. DRAM RAS# Configurations

RAS0#

RAS1#

RAS2#

RAS3#

RAS0#

RAS2#

SIMM #1

WorkaroundStandard

RAS0#

RAS1#

RAS2#

RAS3#

RAS1#

RAS3#

SIMM #2

RAS0#

RAS1#

RAS2#

RAS3#

RAS3#

RAS1#

SIMM #2

RAS0#

RAS1#

RAS2#

RAS3#

RAS2#

RAS0#

SIMM #1
14 i960® VH Embedded-PCI Processor Specification Update

Errata
4. Changing the limit register when a value exists in the corresponding base
address register may prevent access to the address space

Problem: The 80960VH provides a programmable mechanism for defining the memory block size require-
ments. This mechanism utilizes a base address register (BAR) and corresponding limit register.
Any bit in a BAR becomes read-only when the corresponding bit in the associated limit register is
cleared. When a bit is set in the BAR before the corresponding bit in the associated limit register is
cleared, that bit in the BAR can no longer be cleared and remains set.

Implication: The address space defined by a BAR and limit register pair can become inaccessible if the limit
register is changed to define a larger address space when the BAR has already been programmed to
a non-zero value. This problem can exist with the following register pairs:

Since all bits in the BARs are used by the address detection logic, having a bit set (1) in the BAR,
which is clear (0) in the corresponding limit register creates a condition where no PCI address is
recognized as valid. For example:

Initial Settings:
PIALR = 0xFFFF F000 (default)
PIABAR = 0xFFA2 4000

When the PIALR is modified to 0xFFF0 0000 (bits 19:12 = 0), the PIABAR remains
programmed to 0xFFA2 4000 (bits 19:12 are read only).

Inbound address detection is determined from the 32-bit PCI address, the base address register
and the limit register. The algorithm for detection is:

When
PCI_Address & Limit_Register == Base_Register,
the PCI Address is claimed by the primary ATU.

Workaround: Before programming the limit register to a larger block size, clear all bits of the corresponding
BAR which are to be cleared (programmed to 0) in the limit register. For example:

Initial Settings:
PIALR = 0xFFFF F000 (default)
PIABAR = 0xFFA2 4000

To set the PIALR to 0xFFF0 0000 (bits 19:12 = 0), first program the PIABAR to 0xFFA0 0000
(or some larger address boundary — at least bits 19:12 = 0).

Status: For the steppings affected see the Summary Table Of Changes.

5. P_REQ# is not deasserted when a single DWORD transfer is retried
Problem: When the 80960VH is mastering a single DWORD transaction on the primary PCI bus and it is

retried, P_REQ# will not deassert after the retry. P_REQ# remains asserted until the transaction
completes or aborts.

Implication: When the host system has not implemented arbitration that conforms to a fairness algorithm on the
80960VH’s primary PCI bus, the 80960VH will continue to own the bus and enter into a deadlock
condition.

Register Name Abbreviation 80960 local address

Primary Inbound Base Address Register PIABAR 0x1210

Primary Inbound Limit Register PIALR 0x1240

Expansion ROM Base Address Register ERBAR 0x1230

Expansion ROM Limit Register ERLR 0x1274
i960® VH Embedded-PCI Processor Specification Update 15

Errata
Workaround: PCI Local Bus Specification, revision 2.1 section 3.4 states that arbiters are required to implement
a fairness algorithm. Make certain that the 80960VH design is used in a host system compliant to
the Arbitration section of the Specification.

Status: For the steppings affected see the Summary Table Of Changes.

6. Bit 0 of the ATURID register is permanently set to a one
Problem: Bit 0 of the ATU Revision ID register is permanently set to a one.

Implication: The ATURID register is a read/write register from the 80960 local bus. Since bit 0 of the ATURID
is always set, the bit operates as a read only bit. Writing any value to bit 0 will always read back a
one. Bits 7:1 of the ATURID remain read/write from the 80960 local bus.

Workaround: There is no workaround.

Status: For the steppings affected see the Summary Table Of Changes.

7. Inbound ATU writes to non-existent 80960 local memory will cause the next
PCI configuration write cycle to target abort on the PCI bus

Problem: The 80960VH’s memory controller has a bus monitor feature which asserts LRDYRCV# if valid
data is not returned for 80960 local bus accesses in 127 P_CLK periods. The bus monitor feature
keeps the local bus from deadlocking if a local bus cycle addresses an invalid memory address (one
that doesn’t return LRDYRCV# or nonexistent memory space). If the bus monitor expires for an
inbound write cycle through the primary ATU, the next PCI configuration write cycle through that
same ATU will target abort on the PCI bus. Note that even though the PCI configuration cycle
target aborted, the appropriate address in configuration space is still written correctly.

Implication: If inbound ATU writes address local bus addresses that do not return LRDYRCV#, the next
inbound PCI configuration write cycle will cause a target abort on the PCI bus. The implications of
target aborts are system dependent.

Workaround: Ensure that inbound ATU write cycles always address local bus memory space that will return
LRDYRCV#. This can be done by programming the ATU Inbound Limit Register (PIALR) and the
Inbound Translate Value Register (PIATVR) to define a window to a region in 80960 local memory
space that always returns LRDYRCV#, this will prevent the bus monitor timer from expiring.

Status: For the steppings affected see the Summary Table Of Changes.

8. Inbound configuration write cycles may latch invalid data on the PCI bus if
STOP# is asserted before the initiator asserts IRDY# during the delayed
request cycle

Problem: All inbound configuration write cycles are treated as delayed transactions. During the delayed
request cycle, the 80960VH (PCI target) latches valid data on the PCI bus and retries the initiator
by asserting STOP#. According to the Target Termination Signaling rules in the PCI Local Bus
Specification Revision 2.1 (Section 3.3.3.2.1), once an initiator sees STOP# asserted, the initiator
first must assert IRDY# and deassert FRAME# on the first cycle after IRDY# is asserted. It is
recommended that IRDY# be asserted as soon as possible after STOP#. In the case of the target
asserting STOP# before the initiator asserts IRDY#, the initiator is not required (although recom-
mended) to provide valid data on the PCI bus when IRDY# is asserted.
16 i960® VH Embedded-PCI Processor Specification Update

Errata
The problem is that the 80960VH does not recognize this particular case for configuration writes
and treats it as the delayed request cycle and latches data on the PCI bus. See the timing diagram
below. If the PCI master begins the cycle by inserting waitstates (IRDY# asserted) before STOP# is
asserted and doesn’t drive valid data on the PCI bus when IRDY# is asserted, the ATU will
incorrectly latch invalid data and write to the PCI configuration register.

Only inbound PCI configuration cycles are affected by this errata. The ATU does not treat PCI
memory writes and Memory write-invalidate as delayed transactions.

Implication: When used with PCI initiators that can assert IRDY# with invalid data for PCI configuration writes
under the conditions described above, the 80960VH can write invalid data to a PCI configuration
register.

Note that for the ATU to retire the delayed completion cycle, the initiator must reissue the original
request with the same data. If the initiator reissues the initial request and asserts IRDY# before
STOP# with valid data this time, the data will not match and the delayed completion cycle will not
be retired. Potentially, the reissued cycle can be retried until the discard timer expires. Once the
discard timer expires, the cycle is accepted (this time with valid data) and the correct data gets
written into the PCI configuration register.

Workaround: Do not use the 80960VH with PCI initiators that insert IRDY# waitstates during PCI configuration
cycles and drive invalid data on the bus when IRDY# is asserted following STOP#.

Status: For the steppings affected see the Summary Table Of Changes.

9. P_SERR# status bit does not indicate the proper status
Problem: When P_SERR# is asserted, PATUISR.4 (P_SERR# status) is not set to a ‘1’ unless PATUCMD.6

(Parity checking enable) = ‘1’.

Implication: When a local bus address fault occurs and the P_SERR# enable bit (PATUCMD.8) is set, the
P_SERR# signal is asserted and both PATUSR.14 and PATUISR.4 should be set. Instead, only
PATUSR.14 is set and PATUISR.4 remains a ‘0’. So, if the application code is reading PATUISR.4
to trigger a P_SERR# event, the event will never be captured.

Workaround: Since PATUSR.14 and PATUISR.4 both indicate the P_SERR# status, the application code should
only read PATUSR.14 for P_SERR# assertion status. PATUSR.14 is not affected by the state of
PATUCMD.6.
If it does not adversely effect the application, setting PATUCMD.6 will also cause PATUISR.4 to

get set when P_SERR# is asserted.

Status: For the steppings affected see the Summary Table Of Changes.

10. Parity is ignored with delayed write transactions
Problem: The ATU on the 80960VH ignores parity for Delayed Write Requests and Delayed Write

Completions on configuration writes. A change was made to section 3.3.3.3.2 of the PCI Spec v2.2
that now states ‘a target must latch the address and data parity, if the Parity Error Response bit (bit
6 of the command register) is set’. This includes handling of the Delayed Write Requests (DWR)
and Delayed Write Completions (DWC) when parity checking is enabled for Configuration Writes.

Implication: If parity is not used, there is no problem. If parity is used, then parity errors will not be reported
and the transaction will not be discarded by the 80960VH. For example, during configuration
writes, data with a parity error will get forwarded to the configuration registers causing the device
to be inappropriately initialized.

Workaround: There is no workaround.
i960® VH Embedded-PCI Processor Specification Update 17

Errata
Status: For the steppings affected see the Summary Table Of Changes.
18 i960® VH Embedded-PCI Processor Specification Update

Specification Changes
Specification Changes

1. The Memory Bank Extended MWE3:0# bits in the Memory Bank Control
Register can provide one clock of address hold time during write cycles

Issue: The description for both Memory Bank 1 Extended MWE3:0# bit and Memory Bank 0 Extended
MWE3:0# bit should now read:

This bit field enables or disables extending the deassertion period for the MWE3:0# signal during
burst write cycles. The bit also enables one clock of MA11:0 and BE1:0 hold time relative to the
rising edge of MWE# during writes to this region.

• When cleared (0), deassertion period is one-half of a P_CLK period.

• When set (1), the deassertion period is extended by the wait state profile defined in the
MBWWSx registers in addition to the one-half clock in period. Also when set, the MA11:0
and BE1:0 keep their current state for one clock after MWE3:0# are deasserted. This also adds
an extra wait state.”

2. PCI Local Bus Specification, Revision 2.2
Issue: The 80960VH is compliant with the PCI Local Bus Specification, Revision 2.2.

3. Tis6 changed for DX2 and DX modes
Issue: Tis6, input setup to P_CLK -- P_RST#, was changed to 10ns for DX2 and DX modes.
i960® VH Embedded-PCI Processor Specification Update 19

Specification Clarifications
Specification Clarifications

1. Multiple reads of the Base Address Register after writing all 1’s will return
different values

Issue: The 80960VH provides a programmable mechanism for defining the memory block size require-
ments. This mechanism uses the Base Address Register (BAR) and corresponding limit register.
80960VH initialization code programs into the limit register the desired value to be returned for
memory block size. To determine the memory block size requirements, write FFFF FFFFH or
FFFF FFFEH to the BAR, then read the BAR. On the first read, this value is the memory block size
(for example, the limit register value); all subsequent reads of the BAR will return a value other
than the memory block size.

2. When determining memory address block size, accesses to the Base
Address Register must be 32-bit configuration cycles

Issue: When determining block size requirements, the 80960VH’s Base Address Register (BAR) must be
accessed by 32-bit configuration cycles. Writing FFFF FFFFH or FFFF FFFEH to the BAR must
be performed as a 32-bit configuration write cycle. Reading the BAR, to determine the block size
requirements, must be a 32-bit configuration read cycle.

Configuration cycles not used to determine block size requirement can be performed as 8-, 16-, or
32-bit cycles.

3. Some PCI chipsets will break unaligned transactions into two LOCKED#
transactions on the PCI bus. This can livelock the PCI bus if the LOCKED#
transaction is directed at the Address Translation Unit

Issue: The ATU does not support PCI LOCKED# transactions. It has been observed that some PCI
chipsets may split an unaligned memory read access into two LOCKED# transactions on the PCI
bus. A livelock can occur if the ATU has a pending outbound write that occurs between the two
LOCKED# transactions. The PCI chipset will not accept the inbound write from the ATU until its
second LOCKED# read is flushed and the ATU will not accept the LOCKED# read from the PCI
chipset until it completes the outbound write. Because the ATU specifically does not support PCI
LOCKED# transactions, avoid performing unaligned reads of the ATU from a host processor
through a PCI chipset.

4. HALT Mode is not supported
Issue: Although the product manual lists ’HALT’ as a valid instruction, the 80960VH does not support

HALT mode. HALT mode is not validated and tested, therefore, we cannot guarantee proper
operation.

5. Proper Bulk Decoupling Must Be Used
Issue: The 80960VH processor is produced on Intel’s advanced CMOS process. Proper bulk decoupling

must be used to prevent device damage during power up and power down. Power supply behavior
during these transitions without proper bulk decoupling can cause the power supply to exceed the
maximum VCC specification causing device damage.
20 i960® VH Embedded-PCI Processor Specification Update

Documentation Changes
Documentation Changes

1. Section 1.2.3, Messaging Unit
Issue: Page 1-2, Section 1.2.3 of Chapter 1 incorrectly reads that the MU has four messaging

mechanisms.

The third sentence in Section 1.2.3 should read, “The MU has two messaging mechanisms.”

Affected Docs: i960® VH Processor Developer’s Manual, 273173-001

2. Section 1.3, i960® Core Processor Features (80960VH)
Issue: The core features description in the first paragraph and the Figure 1-2 label on Page 1-3, Section

1.3 of Chapter 1 are incorrect.

The first three sentences should read “The processing power of the 80960VH comes from the
80960JT processor core. The 80960JT is a new, scalar implementation of the i960® core
architecture. Figure 1-2 shows a block diagram of the 80960JT core processor.” The label in Figure
1-2 should read “80960JT Core Processor Block Diagram”.

Affected Docs: i960® VH Processor Developer’s Manual, 273173-001

3. Section 17.4.5, Inbound Interrupt Mask Register - IIMR
Issue: The description information in Table 17-7 of Section 17.4.5 on page 17-9 is incomplete.

The description for Bit 06 in Table 17-7 should read “Reserved: must be set to ‘1’.”

Affected Docs: i960® VH Processor Developer’s Manual, 273173-001

4. Section 3.2.1, 324-Lead PBGA Package, Figure 4, 324-Plastic Ball Grid Array
Issue: On page 26, Figure 4 of the i960VH Embedded-PCI Processor datasheet incorrectly states ’Bottom

View’ inside the figure. This should read ’Top View’ as is stated in the Figure 4 heading.

Affected Docs: i960® VH Embedded_PCI Processor Datasheet, 273179-001

5. Section 15.6.1, DRAM Organization and Configuration
Issue: In Section 15.6.1, page 15-17, third paragraph, third sentence should read, ‘Up to two banks of

interleaved DRAM can be connected with each bank containing two leaves.’ ‘non-’ should be
removed.

Affected Docs: i960® VH Processor Developer’s Manual, 273173-001

6. Section 3.2.2, Thermal Analysis
Issue: In Section 3.2.2, page 35, last sentence should read, ‘The θJA (Junction-to-Ambient) for this

package is currently estimated at 26.54° C/Watt with no airflow.

Affected Docs: i960® VH Embedded_PCI Processor Datasheet, 273179-001
i960® VH Embedded-PCI Processor Specification Update 21

Documentation Changes
7. Section 3.2.2, Table 14. 324-Lead PBGA Package Thermal Characteristics
Issue: In Table 14,page 35, the θJC value should read 1.36 in all columns. In Table 14 the θCA values

should read 25.18, 20.30, 18.29, 16.57, 15.55 and 14.75 for columns with 0, 100, 200, 400, 600,
and 800 airflow, respectively.

Affected Docs: i960® VH Embedded_PCI Processor Datasheet, 273179-001

8. Section 12.3.1.3, Fail# Timing
Issue: Figure 12-3 of the user’s manual shows three cycle times that are correct for DX clock mode, but

need to be updated for the DX2 and DX4 clock modes of the 80960VH processor. The following
timings are approximations:

• DX4 mode-

Built-In Self-Test: ~138,000 cycles

Built-In Self-Test Status: ~10 cycles

80960 Local Bus Confidence Test: ~44 cycles

• DX2 mode-

Built-In Self-Test: ~207,000 cycles

Built-In Self-Test Status: ~14 cycles

80960 Local Bus Confidence Test: ~66 cycles

Affected Docs: i960® VH Processor Developer’s Manual, 273173-001

9. Section 15.5.1, Table 15-3. Memory Bank Control Register-MBCR
Issue: The default values for the Memory Bank 1 Size Field (bits 23:20) and Memory Bank 0 Size Field

(bits 7:4) should be 1000H.

Affected Docs: i960® VH Processor Developer’s Manual, 273173-001

Thermal Resistance — °C/Watt

Parameter

Airflow — ft./min (m/sec)

0
(0)

100
(0.50)

200
(1.01)

400
(2.03)

600
(3.04)

800
(4.06)

θJC (Junction-to-Case) 1.36 1.36 1.36 1.36 1.36 1.36

θCA (Case-to-Ambient)
Without Heatsink 25.18 20.30 18.29 16.57 15.55 14.75
22 i960® VH Embedded-PCI Processor Specification Update

Documentation Changes
10. Section 17.4.1 Inbound Message Registers - IMRx

The PCI attributes should read Read/Write. See table below.

Affected Docs: i960® VH Processor Developer’s Manual, 273173-001

11. Section 17.4.2 Outbound Message Registers - OMRx

The PCI attributes should read Read/Write. See table below.

Affected Docs: i960® VH Processor Developer’s Manual, 273173-001

Table 17-3 Inbound Message Register - IMRx

LBA:

PCI:

CH. 0 = 1310H
CH. 1 = 1314H

CH. 0 = 10H

CH. 1 = 14H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:00 0000 0000H
Inbound Message - This 32-bit message is written by an external PCI agent. When
written, an interrupt to the i960 core processor is generated.

PCI

LBA

28 24 20 16 12 8 4 031

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

Table 17-4 Outbound Message Register - OMRx

LBA:

PCI:

CH. 0 = 1318H
CH. 1 = 131CH

CH. 0 = 18H

CH. 1 = 1CH

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:00 0000 0000H
Outbound Message - This is 32-bit message written by the i960 core processor.
When written, an interrupt is generated on the PCI Interrupt pin determined by the
ATU Interrupt Pin Register.

PCI

LBA

28 24 20 16 12 8 4 031

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw
i960® VH Embedded-PCI Processor Specification Update 23

Documentation Changes
12. Section 17.4.3 Inbound Doorbell Register - IDR

The PCI attributes should read Read/Set. See table below.

Affected Docs: i960® VH Processor Developer’s Manual, 273173-001

13. Section 17.4.4 Inbound Interrupt Status Register - IISR

The PCI attributes should read Reserved and Read Clear as indicated in the table below.

Table 17-5 Inbound Doorbell Register - IDR

LBA:

PCI:

1320H

20H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31 02 NMI Interrupt - Generate an NMI Interrupt to the i960 core processor.

30:00 0000 000H
XINT7 Interrupt - When any bit is set, generate an XINT7 interrupt to the i960 core
processor. When all bits are clear, do not generate an XINT7 interrupt.

PCI

LBA

28 24 20 16 12 8 4 031

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

Table 17-6 Inbound Interrupt Status Register - IISR (Sheet 1 of 2)

LBA:

PCI:

1324H

24H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:09 0000 00H Reserved.

08 02
APIC Window Interrupt - set by MU hardware when the APIC Window Register is written
by a PCI transaction.

07 02
APIC Register Select Interrupt - set by MU hardware when the APIC Register Select
Register is written by a PCI transaction.

06 02
Index Register Interrupt - set by MU hardware when an Index Register is written by a
PCI transaction.

05 02

Outbound Free Queue Overflow Interrupt - set when the Outbound Free Head Pointer
becomes equal to the Tail Pointer and the queue is full. An NMI interrupt is generated for
this condition.

04 02
Inbound Post Queue Interrupt - set by MU hardware when the Inbound Post Queue has
been written.

PCI

LBA

28 24 20 16 12 8 4 031

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rc

rc

rc

rc

rc

rc

rc

rc

rc

rc

ro

ro

ro

ro

rc

rc

rc

rc
24 i960® VH Embedded-PCI Processor Specification Update

Documentation Changes
Affected Docs: i960® VH Processor Developer’s Manual, 273173-001

14. Section 17.4.5 Inbound Interrupt Mask Register - IIMR

The PCI attributes should read Reserved and Read/Write as indicated in the table below.

03 02

NMI Doorbell Interrupt - set when the Inbound Doorbell Register NMI Interrupt is set. To
clear this bit (and the interrupt), the Inbound Doorbell Register NMI Interrupt bit in the
Inbound Doorbell Register must be clear.

02 02

Inbound Doorbell Interrupt - set when at least one XINT7 Interrupt bit in the Inbound
Doorbell Register is set. To clear this bit (and the interrupt), the XINT7 Interrupt bits in
the Inbound Doorbell Register must all be clear.

01 02
Inbound Message 1 Interrupt - set when the Inbound Message 1 Register has been
written.

00 02
Inbound Message 0 Interrupt - set when the Inbound Message 0 Register has been
written.

Table 17-6 Inbound Interrupt Status Register - IISR (Sheet 2 of 2)

LBA:

PCI:

1324H

24H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

28 24 20 16 12 8 4 031

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rc

rc

rc

rc

rc

rc

rc

rc

rc

rc

ro

ro

ro

ro

rc

rc

rc

rc

Table 17-7 Inbound Interrupt Mask Register - IIMR (Sheet 1 of 2)

LBA:

PCI:

1328H

28H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:09 0000 00H Reserved.

08 02
APIC Window Interrupt Mask - When set, this bit masks the interrupt generated by MU
hardware when the APIC Window Register is written to by a PCI transaction.

07 02

APIC Register Select Interrupt Mask - When set this bit masks the interrupt generated
by MU hardware when the APIC Register Select Register is written to by a PCI trans-
action.

06 02
Index Register Interrupt Mask - When set, this bit masks the interrupt generated by MU
hardware when an Index Register has been written after a PCI transaction.

PCI

LBA

28 24 20 16 12 8 4 031

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw
i960® VH Embedded-PCI Processor Specification Update 25

Documentation Changes
Affected Docs: i960® VH Processor Developer’s Manual, 273173-001

15. Section 17.4.6 Outbound Doorbell Register - ODR

The PCI attributes should read Read Clear. See table below.

05 02

Outbound Free Queue Overflow Interrupt Mask - When set, this bit masks the NMI
interrupt generated when the Outbound Free Head Pointer becomes equal to the Tail
Pointer and the queue is full.

04 02
Inbound Post Queue Interrupt Mask - When set, this bit masks the interrupt generated
by MU hardware when the Inbound Post Queue has been written.

03 02
NMI Doorbell Interrupt Mask - When set, this bit masks the NMI Interrupt when the
Inbound Doorbell Register NMI Interrupt bit is set.

02 02
Inbound Doorbell Interrupt Mask - When set, this bit masks the interrupt generated when
at least one XINT7 Interrupt bit in the Inbound Doorbell Register is set.

01 02
Inbound Message 1 Interrupt Mask - When set, this bit masks the Inbound Message 0
Interrupt generated by a write to the Inbound Message 0 Register.

00 02
Inbound Message 0 Interrupt Mask - When set, this bit masks the Inbound Message 0
Interrupt generated by a write to the Inbound Message 0 Register.

Table 17-7 Inbound Interrupt Mask Register - IIMR (Sheet 2 of 2)

LBA:

PCI:

1328H

28H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

28 24 20 16 12 8 4 031

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

Table 17-8 Outbound Doorbell Register - ODR

LBA:

PCI:

132CH

2CH

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31 02
PCI Interrupt D - When set, this bit causes P_INTD# to assert.
When cleared, P_INTD# deasserts.

30 02
PCI Interrupt C - When set, this bit causes P_INTC# to assert.
When cleared, P_INTC# deasserts.

PCI

LBA

28 24 20 16 12 8 4 031

rs rs

rc rc
26 i960® VH Embedded-PCI Processor Specification Update

Documentation Changes
Affected Docs: i960® VH Processor Developer’s Manual, 273173-001

16. Section 17.4.7 Outbound Interrupt Status Register - OISR

The first two LBA attributes should read Read Clear. See the table below. The PCI attributes
should read Reserved, Read Only and Read Clear as indicated in the table below.

29 02
PCI Interrupt B- When set, this bit causes P_INTB# to assert.
When cleared, P_INTB# deasserts.

28 02
PCI Interrupt A- When set, this bit causes P_INTA# to assert.
When cleared, P_INTA# deasserts.

27:00 0000 000H
Software Interrupt - When any bit is set, generate a PCI interrupt. The PCI interrupt pin
used is determined by the ATU Interrupt Pin Register. When all bits are clear, do not
generate a PCI interrupt.

Table 17-8 Outbound Doorbell Register - ODR

LBA:

PCI:

132CH

2CH

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

28 24 20 16 12 8 4 031

rs rs

rc rc

Table 17-9 Outbound Interrupt Status Register - OISR (Sheet 1 of 2)

LBA:

PCI:

1330H

30H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:08 0000 00H Reserved.

07 02

PCI Interrupt D - set when the PCI Interrupt D bit is set in the Outbound Doorbell
Register. To clear this bit (and the interrupt), the PCI Interrupt D bit in the Outbound
Doorbell Register must be cleared.

06 02

PCI Interrupt C - set when the PCI Interrupt C bit is set in the Outbound Doorbell
Register. To clear this bit (and the interrupt), the PCI Interrupt C bit in the Outbound
Doorbell Register must be cleared.

05 02

PCI Interrupt B - set when the PCI Interrupt B bit is set in the Outbound Doorbell
Register. To clear this bit (and the interrupt), the PCI Interrupt B bit in the Outbound
Doorbell Register must be cleared.

PCI

LBA

28 24 20 16 12 8 4 031

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

rc

rc

rc

rc
i960® VH Embedded-PCI Processor Specification Update 27

Documentation Changes
Affected Docs: i960® VH Processor Developer’s Manual, 273173-001

17. Section 17.4.8 Outbound Interrupt Mask Register - OIMR

The PCI attributes should read Reserved and Read/Write as indicated in the table below.

04 02

PCI Interrupt A - set when the PCI Interrupt A bit is set in the Outbound Doorbell
Register. To clear this bit (and the interrupt), the PCI Interrupt A bit in the Outbound
Doorbell Register must be cleared.

03 02

Outbound Post Queue Interrupt - set when the Outbound Post Head Pointer Register
does not equal the Outbound Post Tail Pointer Register. This bit is cleared when the
Outbound Post Head Pointer Register equals the Outbound Post Tail Pointer Register.

02 02

Outbound Doorbell Interrupt - set when at least one Software Interrupt bit in the
Outbound Doorbell Register is set. To clear this bit (and the interrupt), Software Interrupt
bits in the Outbound Doorbell Register must all be clear.

01 02
Outbound Message 1 Interrupt - set by the MU when the Outbound Message 1 Register
is written. Clearing this bit clears the interrupt.

00 02
Outbound Message 0 Interrupt - set by the MU when the Outbound Message 0 Register
is written. Clearing this bit clears the interrupt.

Table 17-9 Outbound Interrupt Status Register - OISR (Sheet 2 of 2)

LBA:

PCI:

1330H

30H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

28 24 20 16 12 8 4 031

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

rc

rc

rc

rc

Table 17-10 Outbound Interrupt Mask Register - OIMR (Sheet 1 of 2)

LBA:

PCI:

1334H

34H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:08 0000 00H Reserved.

07 02

PCI Interrupt D Mask - When set, this bit masks the PCI Interrupt D signal when the PCI
Interrupt D bit in the in the Outbound Doorbell Register is set.

0 - allow interrupt to be generated
1 - do not allow interrupt to be generated

PCI

LBA

28 24 20 16 12 8 4 031

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw
28 i960® VH Embedded-PCI Processor Specification Update

Documentation Changes
Affected Docs: i960® VH Processor Developer’s Manual, 273173-001

18. Section 3.3 Memory-Mapped Control Registers (MMRs)

The last sentence in the first paragraph in on page 3-5 reads "The processor ensures that accesses to
MMRs do not generate external bus cycles". The statement should read "The processor ensures that
accesses to the i960® core processor MMRs do not generate external bus cycles. Accesses to
integrated peripheral MMRs may generate external bus cycles."

Affected Docs: i960® VH Processor Developer’s Manual, 273173-001

06 02

PCI Interrupt C Mask - When set, this bit masks the PCI Interrupt C signal when the PCI
Interrupt C bit in the in the Outbound Doorbell Register is set.

0 - allow interrupt to be generated
1 - do not allow interrupt to be generated

05 02

PCI Interrupt B Mask - When set, this bit masks the PCI Interrupt B signal when the PCI
Interrupt B bit in the in the Outbound Doorbell Register is set.

0 - allow interrupt to be generated
1 - do not allow interrupt to be generated

04 02

PCI Interrupt A Mask - When set, this bit masks the PCI Interrupt A signal when the PCI
Interrupt A bit in the in the Outbound Doorbell Register is set.

0 - allow interrupt to be generated
1 - do not allow interrupt to be generated

03 02

Outbound Post Queue Interrupt Mask - When set, this bit masks the PCI interrupt
generated when the Outbound Post Head Pointer Register does not equal the
Outbound Post Tail Pointer Register.

0 - allow interrupt to be generated
1 - do not allow interrupt to be generated

02 02

Outbound Doorbell Interrupt Mask - When set, this bit masks the Software Interrupt
generated by the Outbound Doorbell Register.

0 - allow interrupt to be generated
1 - do not allow interrupt to be generated

01 02

Outbound Message 1 Interrupt Mask - When set, this bit masks the Outbound Message
1 Interrupt generated by a write to the Outbound Message 1 Register.

0 - allow interrupt to be generated
1 - do not allow interrupt to be generated

00 02

Outbound Message 0 Interrupt Mask- When set, this bit masks the Outbound Message
0 Interrupt generated by a write to the Outbound Message 0 Register.

0 - allow interrupt to be generated
1 - do not allow interrupt to be generated

Table 17-10 Outbound Interrupt Mask Register - OIMR (Sheet 2 of 2)

LBA:

PCI:

1334H

34H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

28 24 20 16 12 8 4 031

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw
i960® VH Embedded-PCI Processor Specification Update 29

	i960® VH Embedded-PCI Processor
	Revision History
	Preface
	Affected Documents/Related Documents
	Nomenclature

	Summary Table Of Changes
	Codes Used in Summary Table
	Stepping
	Page
	Status
	Row

	Identification Information
	Topside Markings
	Device ID Registers
	Errata
	Specification Changes
	Specifications Clarifications
	Documentation Changes

	Errata
	Specification Changes
	Specification Clarifications
	Documentation Changes

