

The Power of
Multithreading for
Embedded
Infrastructure
Applications

1/24/2005

Abstract
This paper discusses software application threading. It is intended for those
who would like to learn the basics of threading as well as how threading can
maximize performance of platforms utilizing Intel® architecture processors.

The Power of Multithreading

Disclaimers

THE INFORMATION IS FURNISHED FOR INFORMATIONAL USE ONLY, IS SUBJECT TO CHANGE WITHOUT
NOTICE, AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY INTEL CORPORATION. INTEL
CORPORATION ASSUMES NO RESPONSIBILITY OR LIABILITY FOR ANY ERRORS OR INACCURACIES THAT
MAY APPEAR IN THIS DOCUMENT OR ANY SOFTWARE THAT MAY BE PROVIDED IN ASSOCIATION WITH THIS
DOCUMENT. THIS INFORMATION IS PROVIDED "AS IS" AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO THE USE OF THIS INFORMATION INCLUDING WARRANTIES RELATING TO FITNESS
FOR A PARTICULAR PURPOSE, COMPLIANCE WITH A SPECIFICATION OR STANDARD, MERCHANTABILITY OR
NONINFRINGEMENT.

Performance tests and ratings are measured using specific computer systems and/or
components and reflect the approximate performance of Intel products as measured by those
tests. Any difference in system hardware or software design or configuration may affect actual
performance. Buyers should consult other sources of information to evaluate the performance of
systems or components they are considering purchasing. For more information on performance
tests and on the performance of Intel products, visit
http://www.intel.com/performance/resources/limits.htm.

Hyper-Threading Technology requires a computer system with an Intel® Pentium® 4 processor
supporting HT Technology and a HT Technology enabled chipset, BIOS and operating system.
Performance will vary depending on the specific hardware and software you use. See
www.intel.com/homepage/land/hyperthreading_more.htm for additional information.

Legal Notices
Copyright © 2005, Intel Corporation. All rights reserved.

Intel, Itanium and the Intel logo are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

OpenMP is a trademark of the OpenMP Architecture Review Board. Portions of this publication
may have been derived from the OpenMP Language Application Program Interface Specification.
Copyright © 1997-2003 OpenMP Architecture Review Board.

Other names and brands may be claimed as the property of others.

 2

http://www.intel.com/performance/resources/limits.htm
http://developer.intel.com/products/ht/Hyperthreading_more.htm

The Power of Multithreading

1 OVERVIEW... 5
2 MULTITHREADED SYSTEM ARCHITECTURES ... 5

2.1 UNI-PROCESSOR (UP).. 6
2.2 DUAL-PROCESSOR (DP)... 6
2.3 MULTIPROCESSOR (MP) ... 6
2.4 HYPER-THREADING TECHNOLOGY (HT TECHNOLOGY) ... 6
2.5 MULTI-CORE (MC OR CMP) ... 7
2.6 DUAL CORE (DC) ... 7

3 MULTIPROCESSING... 7
3.1 ASYMMETRICAL .. 7
3.2 SYMMETRICAL .. 7

4 MULTITHREADING.. 7
4.1 THREADS AND THE OPERATING SYSTEM .. 7

5 BIOS AND OPERATING SYSTEM REQUIREMENTS.. 8
6 APPLICATION BENEFITS OF MP, HT TECHNOLOGY, MC ... 8

6.1 SERIAL APPLICATIONS .. 8
6.2 MULTITHREADED APPLICATIONS.. 9
6.3 PERFORMANCE ESTIMATIONS.. 9

7 HT TECHNOLOGY PROGRAMMING ... 9
8 THREADING BASICS.. 10

8.1 THREADING BENEFITS (WHEN TO THREAD) .. 10
8.1.1 Data Decomposition... 10
8.1.2 Functional Decomposition ... 10

8.2 THREADING METHODS .. 10
8.2.1 Library-Based... 10

8.2.1.1 Explicit ..10
8.2.1.2 Strengths of Explicit Threading...11
8.2.1.3 Limitations of Explicit Threading ...11

8.2.2 Compiler-Based ... 11
8.2.2.1 OpenMP ...11
8.2.2.2 Strengths of OpenMP ...11
8.2.2.3 Limitations of OpenMP ...11

8.2.3 Which Method is Right for Your Application? .. 12
8.3 APPROACH TO THREADING (HOW TO THREAD) ... 12

9 CONCLUSION.. 12

10 APPENDIX - INTEL
®

 SOFTWARE DEVELOPMENT TOOLS ... 13
10.1 INTEL® COMPILERS ... 13
10.2 INTEL® PERFORMANCE LIBRARIES ... 13

10.2.1 Intel® Integrated Performance Primitives .. 13
10.2.2 Intel® Math Kernel Library.. 13

10.3 INTEL® VTUNE™ PERFORMANCE ANALYZERS.. 13
10.4 THREADING TOOLS ... 13

10.4.1 Intel® Thread Checker ... 13
10.4.2 Thread Profiler... 13

11 APPENDIX - INTEL
®

 THREADING RESOURCES .. 14
11.1 THREADING SERVICES .. 14

 3

The Power of Multithreading

11.2 THREAD TRAINING .. 14
11.2.1 Developer Centers... 14
11.2.2 Community Forums ... 14
11.2.3 Documents .. 14
11.2.4 Online Articles ... 14
11.2.5 Online Courses.. 15
11.2.6 Classroom Training ... 15

11.3 ONLINE DEMOS .. 15
11.3.1 Hyper-Threading Technology and Threading Short Demos 15
11.3.2 Intel® Thread Checker Short Demo... 15
11.3.3 Intel® VTune™ Performance Analyzers Short Demo.. 15

12 APPENDIX - DEFINITIONS.. 16
APPENDIX - LINUX 2.4.X KERNEL HYPER-THREADING SUPPORT KNOWN ISSUES......... 17
13 APPENDIX - ADDITIONAL REFERENCES .. 18

 4

The Power of Multithreading

1 Overview
This paper discusses application threading, summarizing where applications benefit from
multithreading as well as tradeoffs to consider when implementing threads. Methods for
implementing threads are discussed, including pros and cons of each.

The intent of this paper is to raise software developers’ awareness of how their applications can
benefit from the evolution of Intel® architecture (IA-32) processors, which are based on multiple
logical and physical processor cores.

This paper is not intended as an in depth tutorial for thread development. Instead, it provides a
basic understanding of threading, its benefits and important role for maximizing performance of
applications using IA-32. Several very helpful threading references are provided for developers
who want to learn more about threading.

A brief overview of processor architecture, as they relate to threading, is provided to set a
foundation for understanding how these processor platforms affect system performance. This
overview becomes more relevant as the information in this paper compares single and
multithreaded code across various IA-32 processors.

After reading this paper, application developers may wish to learn more about threading and
determine where threads can increase performance of their applications.

2 Multithreaded System Architectures
Processors are designed for purposes of specific system architectures ranging from single
processor to multiple processor architectures. Multithreaded system architectures are capable of
executing multiple processes or threads simultaneously, and can be designed with multiple
processors or processors that contain multiprocessing capabilities. In general, the more threads
that a system can execute simultaneously, the higher the system performance. Figure 1 shows a
graphic of different multithreading technologies.

Figure 1 Multithreading Technologies

The leftmost diagram depicts a dual-processor system consisting of two physical processors
sharing a common processor side bus, connected to a memory controller. The center diagram

 5

The Power of Multithreading

shows a single processor capable of maintaining two processor states and serving two program
flows with a single processor execution unit. This concept is the basis for Intel Hyper-Threading
Technology (HT Technology). The rightmost diagram shows a dual core implementation which is
basically two processor systems on a single silicon die.

2.1 Uni-Processor (UP)
Only one physical processor exists on the system bus. The system bus connects the processor to
the chipset, typically containing a memory controller and interfaces.

2.2 Dual-Processor (DP)
Two physical processors share the same system bus. Threads that need the same processor
resources will run better on separate processors. The processes run completely independent
from each other without requiring a context switch to get at the resources of the processor.
Note: In IA terms a DP system runs in SMP (symmetric multiprocessing) mode.

2.3 Multiprocessor (MP)
Multiple physical processors (four or more) share the same system bus. MP extends benefits of
DP with increased scaling.

2.4 Hyper-Threading Technology (HT Technology)
HT Technology, based on Intel Netburst® microarchitecture, is two logical processors contained
within one physical processor core. HT Technology supports Simultaneous Multithreading
Technology (SMT), which allows different threads to run simultaneously on different execution
units within one physical processor. This is accomplished by sharing, partitioning, and replicating
certain processor resources.

Provides:
• Simultaneous multi-tasking on the single core
• Appears as two independent processors to the software
• Increases utilization of the execution unit of the processor.
• Accelerates performance of multithreaded applications

Processors resources:
• Shared – cache, out-of-order execution engine, branch predictors, control logic, and system

bus
• Partitioned – Registers, Advanced Programmable Interrupt Controller, Timestamp Counter,

Instruction re-order buffer, load/store buffer, queues
• Replicated – Architecture states, instruction pointers, renaming logic, ITLB, return stack

Performance:
Speedup depends on how logical processors are utilized (coding and resource dependencies).
See section: Performance Estimations.

In general, multithreaded applications do not require modification to run on processors with HT
Technology enabled. However, software that is specifically optimized for HT Technology should
increase processor performance. See section: HT Technology Programming.

Note. If it is suspected that multiple threads running on an HT Technology system will degrade
over running a single thread, thread spawning should be prevented. This can happen if there is
thread contention of processor resources.

 6

The Power of Multithreading

2.5 Multi-Core (MC or CMP)
Multi-core is also referred to as Chip Multiprocessing (CMP). Multiple independent execution
cores and pipelines contained within one packaged processor assembly.

In general, software optimized for MP or HT Technology also works well with CMP. However,
software that is specifically optimized for CMP technology should increase processor
performance and decrease processor power consumption.

2.6 Dual Core (DC)
Dual core processors are multi-core processors that contain only two execution cores.

3 Multiprocessing
Multiple processes run at the same time, allowing different programs or different threads of any
program to run on different processors concurrently. This is referred to as symmetric
multiprocessing (SMP)

3.1 Asymmetrical
One or more processors are exclusively dedicated to specific tasks, such as running the OS. This
configuration may not be performance optimized because on some machines the OS processors
were found to be running at 100% capacity while the user-assigned processors were practically
idle.

3.2 Symmetrical
Symmetrical multiprocessing (SMP) is the favored architecture for IA32 systems, and is
considered the norm today for better balancing of the processing load. The “symmetry” refers to
symmetric access to memory. SMP uses at least two processors. Each additional processor adds
incrementally to the system management administration of the OS, thus each additional
processor will contribute less and less to the overall system performance. Shared-memory
multiprocessor architectures are divided into two categories: SMP and Non-Uniform Memory
Access (NUMA). For purposes related to this paper, only SMP is discussed.

4 Multithreading
Applications can be multithreaded for turnaround, which is maximized with Symmetric
Multiprocessing (SMP). When a single-threaded program is waiting for something to happen,
such as waiting for user input or an I/O device to become ready, the processor is being
underutilized and turnaround is decreased. Programs can be written so that there are several
running software routines, called threads, which are processed independently of each other.

4.1 Threads and the Operating System
When an application executes, the OS creates a process for the application. Multithreaded
applications create additional threads, which run within the same process. All of the threads share
the code and data segments, but have separate instruction pointers and stacks. Figure 2 depicts
the process threads environment.

 7

The Power of Multithreading

Figure 2 – Process Threads

5 BIOS and Operating System Requirements
Operating systems are written with specific support for threading, as well as multithreaded system
architectures, such as MP, HT Technology, and MC.

BIOS and Operating systems support:
• The BIOS and OS must support multithreading.
• The BIOS must detect the presence of multiple physical and logical processors, such as with

HT Technology.
• The OS must retrieve the information of system capabilities from the BIOS.
• The OS must differentiate between physical and logical processors in order for the kernel to

correctly schedule the processes and threads. Since logical processors share some common
processor resources, they are not as efficient as multiple separated physical processors. The
OS should therefore attempt to use all physical processors before resorting to the available
logical processors.

• Operating systems that support multithreaded system architectures require affinity support for
binding processes to a physical processor, which reduces cache thrashing. Most modern
operating systems support affinity and it has been supported in Linux since the 2.2 kernel.

• The OS requires HT Technology or MC support for simultaneous execution of instructions
(threads) on each processor.

6 Application Benefits of MP, HT Technology, MC
Processors that are designed with multiple cores (logical or physical) have certain benefits
depending on how many applications run at the same time on the system and whether the
applications are single or multithreaded.

6.1 Serial Applications
Although serial (single threaded) applications restrict the performance potential of the
multithreaded processor architectures, serial applications can still benefit from these
architectures. Here are some expectations of serial application performance:
• Multithreaded technologies are not expected to make a given single-threaded application

execute faster when executing alone. For example, if HT Technology is enabled and there is
only one process in the run state, then the effective result is the same throughput as if HT

 8

The Power of Multithreading

Technology is not enabled, which is the same as executing on processors without
multithreading capabilities.

• When two or more unrelated applications are multitasked under HT Technology, the overall
system throughput may improve as a result of HT Technology because up to two applications
can execute simultaneously, one on each logical processor. Note, the same theory exists for
MC and MP architectures. However, the performance potential of the system increases as
fewer processor resources are shared.

6.2 Multithreaded Applications
Developers design multithreaded applications to maximize processor performance capabilities.

• Multiple threads on UP can make an application more responsive. When multiple threads are

executed on UP, performance is increased because the OS can execute one thread while
another thread is idle waiting for data or other input. However, only one thread can execute at
the same instant in time.

• With HT Technology capable processors, the OS can dispatch two threads from a

multithreaded application to run concurrently, one on each of the two logical processors. This
is accomplished by the HT Technology processor using out-of-order instruction execution and
resource sharing.

• Multithreaded applications gain even more performance on MC processors than on HT

Technology processors because MC processors use duplicated processor execution
resources for each core.

• Multithread applications gain the most performance advantage in MP environments because

processes and threads can be dispatched by the OS to run on a pool of several physical
processors simultaneously.

• Multithreaded applications written for UP will run without changes on any of the multithreaded

technologies.

6.3 Performance Estimations
Duplication of processor resources increases the performance potential of the processor. HT
Technology benchmark tests1 show some server applications can experience a 30 percent gain in
performance if both logical units are 100% utilized. The greatest gain comes when a thread may
stall, such as when a thread waits for data from memory or from a disk drive. In this case, the
second thread can fully utilize the execution unit. For MC architecture, the performance boost of
applications can approach a theoretical limit of 100% over a single processor when all physical
cores are 100% utilized. Lastly, MP architecture can increase application performance
asymptotically with the number of processors.

Applications that are written to scale well on SMP architectures are not required to be changed to
see the benefits from HT Technology or MC.

7 HT Technology Programming
HT Technology is intended to help applications that have multiple threads and/or processes.
When HT Technology is used, applications must inquire to the operating system to obtain the
number of logical and physical processors in the system. This is not only important for

1 Hyper-Threading Technology requires a computer system with an Intel® Pentium® 4 processor supporting HT
Technology and a HT Technology enabled chipset, BIOS and operating system. Performance will vary depending on the
specific hardware and software you use. See www.intel.com/homepage/land/hyperthreading_more.htm for additional
information.

 9

http://developer.intel.com/products/ht/Hyperthreading_more.htm

The Power of Multithreading

determining how the code should run, but it could be important for licensed software where the
number of physical processors determines the cost of the application, such as the operating
system seat licenses.

There isn't a significant performance difference between a multithreaded application and multiple
single threaded processes as far as HT Technology is concerned, so long as the CPU utilization
isn't bunched up within a single process. If the application realizes benefits from running on a true
SMP system (two or more physical CPU's) then with HT Technology the same workload should
see a performance improvement over a non-HT Technology enabled SMP system.

Spin Wait Loops are efficient in an MP system but compete for resources in an HT Technology
environment. The main problem with spin-waits on HT Technology is that the “spinner” ties-up a
CPU without doing any useful work.
• In multithreaded applications the spin wait loops are normally executed in the thread API

functions.
• When a spin wait loop is used outside of a thread API and it is suspected that a thread will

release a lock within an OS quantum of time, use the “PAUSE” instruction inside the spin wait
loop. If longer than OS quanta of time, use OS synchronization techniques

For more information see Intel’s posting of this online paper: Methods to Utilize Intel’s
HyperThreading Technology with Linux*. This paper includes information as to how to determine
HT Technology support, how to determine the number of logical processors per physical
processor and determining the APIC ID.

8 Threading Basics

8.1 Threading Benefits (When to thread)
Multithreading allows for more efficient use of system resources. When threading an application,
it helps to characterize the problem according to a data or functional decomposition model:

8.1.1 Data Decomposition
In data parallelization, the same instructions or operations are applied repeatedly to different
data. Compute-intensive loops are good candidates for data parallelism. Also, problems that
scale with the amount of data are often good candidates for data parallelism..

8.1.2 Functional Decomposition
In functional decomposition, independent work encapsulated in functions is mapped to threads
that execute simultaneously. Problems that scale with the number of independent tasks are good
candidates for functional decomposition.

8.2 Threading Methods
The most common threading approaches are library-based and compiler based methods.

8.2.1 Library-Based
Library-based methods are best suited for functional decomposition. Win32 and POSIX thread
API’s are examples of library based methods. Library-based methods require the programmer to
create and synchronize threads explicitly.

8.2.1.1 Explicit
Explicit threading requires the developer to manually write all required code to manage threads
that interface to a specific library. This code is responsible for creating and freeing the resources

 10

http://www.intel.com/cd/ids/developer/asmo-na/eng/20354.htm?prn=Y%20
http://www.intel.com/cd/ids/developer/asmo-na/eng/20354.htm?prn=Y%20

The Power of Multithreading

associated with each thread, as well as synchronizing and managing shared thread resources.
Explicit threading requires in-depth threading knowledge of thread management and the thread
API functions.

8.2.1.2 Strengths of Explicit Threading
• Explicit threading allows for fine control of threads, processing based on thread function or

status of specific variables.
• The priority of individual threads can be changed.
• Explicit threading allows developers to write their own scheduler for fine control over

threading operations.

8.2.1.3 Limitations of Explicit Threading
• Explicit threading requires more code modification than compiler-based threading methods.
• Explicit threading alters single threaded implementation forever. Once multithreaded, always

multithreaded. Can’t be turned on/off.
• Explicit threading requires the developer to guess at the optimum number of threads to use,

and then test performance to narrow to the best number.
• Explicit threading requires much more time to write than a compiler-base implementation.
• Explicit threading uses a more complex implementation, which makes it more difficult to

maintain and could potentially lead to more bugs.
• Explicit threading is not as portable as compiler-based implementation.

8.2.2 Compiler-Based
Compiler-base methods are best suited for data parallelization. OpenMP is an example of a
compiler based method.

8.2.2.1 OpenMP
OpenMP is a standardized threading interface in which the programmer uses pragma’s to
describe parallelism to the compiler. The compiler is responsible for creating the threads.
OpenMP is supported by the Intel® compilers. OpenMP is a powerful, portable, and simple means
of threading programs. The OpenMP specification standardizes an extensive set of pragma’s and
directives for controlling key aspects of parallel processing.

8.2.2.2 Strengths of OpenMP
• OpenMP does not require single-threaded code to be changed for threading. Compiler

directives (pragma’s) are added, keeping serial code intact.
• Code can be compiled as multithreaded or single-threaded by simply enabling or disabling

the compiler OpenMP switch respectively.
• OpenMP does a lot of the threading work that would require much more time to write in an

explicit threading implementation.
• The simpler implementation of OpenMP provides for easier maintainability and fewer bugs in

the compiled code.
• OpenMP code is portable to any system with an OpenMP-compliant compiler.

8.2.2.3 Limitations of OpenMP
• Loops that are flow dependent (results are used by other iterations of the loop) will not work

correctly with OpenMP. OpenMP does not determine the correctness of code. Thus, this
situation cannot be detected. Therefore, the developer must understand the dependencies of
a loop before assigning OpenMP to parallelize it.

• OpenMP does not provide the fine control mechanisms (e.g., thread priority) of explicit
threading methods like Pthreads.

 11

The Power of Multithreading

8.2.3 Which Method is Right for Your Application?
For many applications, OpenMP is sufficient. These applications have the characteristic of easy
data decomposition.

Explicit threading is preferred for processing that scales with the amount of data or the number of
independent tasks. Clean functional decomposition makes a program better suited to explicit
threading.

The good news is that this is not necessarily a one or the other choice. Applications can use both
OpenMP and explicit threading (native threading APIs), allowing the best of both worlds to be
realized.

8.3 Approach to Threading (How to thread)
Converting a serial application to take advantage of multi-threading requires an approach which
uses the generic development cycle, consisting of these six phases: Analysis, Design,
Implementation, Debug, Test, and Tune. There are threading tools that help with code analysis,
debug, and tune. See appendix: Software Development Tools.

• Analysis – Use the Intel® VTune™ Performance Analyzer to identify the performance

hotspots in the critical path. Then determine the appropriate threading model.
• Design – Determine changes required to accommodate a threading paradigm (data

restructuring, code restructuring) by characterizing the application threading model (data or
task-level parallelization) Identify which variables must be shared and if the current design
structure is a good candidate for sharing.

• Implementation – Convert the design into code based on the selected threading model.
Consider coding guidelines based on the processor architecture, such as the use of the
PAUSE instruction within spin-wait loops. Make use of the of the available software
development tools.

• Debug – Use dynamic analysis and the Intel® Thread Checker.
• Test – Compare performance against the serial application performance. Ensure correctness

of operation with Thread Checker.
• Tune – Do not begin tuning until correct parallel design is ensured. Use Thread Profiler to

determine thread related performance issues. Modify thread implementation as necessary.

9 Conclusion
The latest processor architectures are designed to support simultaneous execution of processor
instructions. Intel expects to continue support of HT Technology and CMP architectures for the
foreseeable future. Serial applications benefit from these architectures when the applications can
be multitasked. Application performance is maximized when multiple execution streams can be
processed simultaneously. Multithreading allows applications to execute multiple execution
streams, taking advantage of the processor multithreading features and capturing performance
that would otherwise be unrealized. Although multithread programming adds a level of complexity
to program design and implementation, fortunately there are plenty of resources (services, tools,
and training) available to ease the effort.

 12

The Power of Multithreading

10 Appendix - Intel Software Development ® Tools

10.1 Intel® Compilers
Accelerate software performance using Intel® compilers. Compatible with the tools developers
use, Intel compilers plug into popular development environments and feature source and binary
compatibility with widely-used compilers. Every compiler purchase includes one year of Intel®
Premier Support, providing updates, technical support and expertise for the Intel® architecture.

10.2 Intel® Performance Libraries
Increase your application performance and spend less time coding by using high-performance
libraries from Intel. These libraries provide highly optimized functions that take full advantage of
Intel® processors so you can achieve maximum application performance and reduce
development time.

10.2.1 Intel Integrated Performance Primitives®
The Intel Integrated Performance Primitives® (IPP) is the highly optimized Intel software library for
audio, video, imaging, cryptography, speech recognition, and signal processing functions and
codec’s.

10.2.2 Intel Math Kernel Library ®

The Intel® Math Kernel Library is the flagship Intel product for high-performance math software.
This library contains highly optimized, thread-safe, mathematical functions for engineering,
scientific and financial applications

10.3 Intel® VTune™ Performance Analyzers
Intel® VTune™ Analyzers help locate and remove software performance bottlenecks by
collecting, analyzing, and displaying performance data from the system-wide level down to the
source level.

10.4 Threading Tools
Intel® Threading Tools simplify the development and maintenance of threaded applications.
Adding threading to software enables you to take advantage of the performance benefits of
Hyper-Threading Technology included in Intel® Pentium 4 and Intel® Xeon™ processors. Intel
Threading Tools help you to quickly find and fix threading errors, and to tune the performance of
threaded code.

10.4.1 Intel® Thread Checker
This tool automatically locates bugs in threaded software that might otherwise go undetected.
Traditional debugging tools require you to guess where to place traps in the code in hopes of
finding useful information about a bug. Intel Thread Checker eliminates this guesswork and
pinpoints the location of errors to help quickly analyze and correct them.

10.4.2 Thread Profiler
This tool monitors your application's execution to detect threading performance issues, including
thread overhead and synchronization impact. Thread Profiler provides graphical displays to help
analyze and correct threading bottlenecks for Win32* or OpenMP* threaded software.

 13

http://www.intel.com/software/products/compilers/
http://www.intel.com/software/products/perflib/
http://www.intel.com/software/products/vtune/
http://www.intel.com/software/products/threading/

The Power of Multithreading

11 Appendix - Intel ® Threading Resources

11.1 Threading Services
For those who wish to use and learn from the experience of software developers and for actual
hands on help with threading their applications, Intel offers the Intel® Parallel Application Center
(PAC). Located in Champaign, Illinois, the Intel® PAC is a state-of-the-art lab equipped with the
latest Intel hardware, advanced parallel performance tools, and a staff of highly-skilled
applications engineers. The PAC offers a lab environment where Independent Software Vendors
(ISVs) can enhance Intel® architecture (IA)-based applications for parallel execution on multiple
processors.

11.2 Thread Training

11.2.1 Developer Centers
Hyper-Threading Technology

http://www.intel.com/cd/ids/developer/asmo-
na/eng/technologies/threading/hyperthreading/index.htm

Threading Developer Center

http://www.intel.com/cd/ids/developer/asmo-na/eng/technologies/threading/index.htm

Threading Knowledge Base

http://www.intel.com/cd/ids/developer/asmo-
na/eng/technologies/threading/knowledgebase/index.htm

11.2.2 Community Forums
Threading on Intel Parallel Architectures

http://softwareforums.intel.com/ids/board?board.id=42

11.2.3 Documents
Threading Methodology: Principles and Practices (Document)

http://www.intel.com/software/products/threading/downloads/ThreadingMethodology.pdf

11.2.4 Online Articles
Adjusting Thread Stack Address to Improve Performance on Intel® Xeon™ Processors
(Threading Development Center)

http://www.intel.com/cd/ids/developer/asmo-
na/eng/technologies/threading/knowledgebase/index.htm

Developing Multithreaded Applications: A Platform Consistent Approach (Threading Development
Center)

http://www.intel.com/cd/ids/developer/asmo-
na/eng/technologies/threading/hyperthreading/53797.htm

Choosing Between OpenMP* and Explicit Threading Methods (Threading Development Center)
http://www.intel.com/cd/ids/developer/asmo-na/eng/technologies/threading/167238.htm

Getting Started With OpenMP* (Threading Development Center)
http://www.intel.com/cd/ids/developer/asmo-na/eng/technologies/threading/20365.htm

More Work-Sharing with OpenMP* (Threading Development Center)

 14

http://www.intel.com/cd/ids/developer/asmo-na/eng/technologies/threading/hyperthreading/index.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/technologies/threading/hyperthreading/index.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/technologies/threading/index.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/technologies/threading/knowledgebase/index.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/technologies/threading/knowledgebase/index.htm
http://softwareforums.intel.com/ids/board?board.id=42
http://www.intel.com/software/products/threading/downloads/ThreadingMethodology.pdf
http://www.intel.com/cd/ids/developer/asmo-na/eng/technologies/threading/knowledgebase/index.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/technologies/threading/knowledgebase/index.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/technologies/threading/hyperthreading/53797.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/technologies/threading/hyperthreading/53797.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/technologies/threading/167238.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/technologies/threading/20365.htm

The Power of Multithreading

http://www.intel.com/cd/ids/developer/asmo-na/eng/technologies/threading/43669.htm

Advanced OpenMP* Programming (Threading Development Center)
http://www.intel.com/cd/ids/developer/asmo-na/eng/technologies/threading/48795.htm

Intro to Threading (Threading Development Center)
http://www.intel.com/cd/ids/developer/asmo-
na/eng/technologies/threading/applying/intro/index.htm

How to Associate Logical Processors to Physical Processors (Threading Knowledge Base)
http://www.intel.com/cd/ids/developer/asmo-
na/eng/technologies/threading/knowledgebase/43838.htm

How to Determine the Effectiveness of Hyper-Threading Technology with an Application

http://www.intel.com/cd/ids/developer/asmo-na/eng/20470.htm

Methods to Utilize Intel’s Hyper-Threading Technology with Linux*

http://www.intel.com/cd/ids/developer/asmo-na/eng/20354.htm?prn=Y%20

Multiple Approaches to Multithreading (Threading Development Center)

http://www.intel.com/cd/ids/developer/asmo-na/eng/technologies/threading/151201.htm

11.2.5 Online Courses
Detecting Hyper-Threading Technology Enabled Processors

https://shale.intel.com/SoftwareCollege/CourseDetails.asp?courseID=62

Introduction to Hyper-Threading Technology (Threading Knowledge Base)
https://shale.intel.com/SoftwareCollege/CourseDetails.asp?courseID=65

Optimizing Performance of Multithreaded Computations

https://shale.intel.com/SoftwareCollege/CourseDetails.asp?courseID=72

Porting Solaris* Applications to Linux: Threads

https://shale.intel.com/SoftwareCollege/CourseDetails.asp?courseID=80

11.2.6 Classroom Training
Thread Programming and Hyper-Threading Technology

https://shale.intel.com/SoftwareCollege/CourseDetails.asp?courseID=1

11.3 Online Demos

11.3.1 Hyper-Threading Technology and Threading Short Demos
http://www.intel.com/business/bss/products/hyperthreading/server/demo/index.htm#software

11.3.2 Intel® Thread Checker Short Demo
http://www.intel.com/software/products/threading/downloads/ThreadCheckerDemo.htm

11.3.3 Intel® VTune™ Performance Analyzers Short Demo
http://www.intel.com/software/products/vtune/downloads/VTune_V7.htm

 15

http://www.intel.com/cd/ids/developer/asmo-na/eng/technologies/threading/43669.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/technologies/threading/48795.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/technologies/threading/applying/intro/index.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/technologies/threading/applying/intro/index.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/technologies/threading/knowledgebase/43838.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/technologies/threading/knowledgebase/43838.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/20470.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/20354.htm?prn=Y%20
http://www.intel.com/cd/ids/developer/asmo-na/eng/technologies/threading/151201.htm
https://shale.intel.com/SoftwareCollege/CourseDetails.asp?courseID=62
https://shale.intel.com/SoftwareCollege/CourseDetails.asp?courseID=65
https://shale.intel.com/SoftwareCollege/CourseDetails.asp?courseID=72
https://shale.intel.com/SoftwareCollege/CourseDetails.asp?courseID=80
https://shale.intel.com/SoftwareCollege/CourseDetails.asp?courseID=1
http://www.intel.com/business/bss/products/hyperthreading/desktop/demo/index.htm
http://www.intel.com/software/products/threading/downloads/ThreadCheckerDemo.htm
http://www.intel.com/software/products/threading/downloads/ThreadCheckerDemo.htm

The Power of Multithreading

12 Appendix - Definitions
Affinity – There are two types of affinity, system and process affinity. System affinity indicates the
number of processors that the operating system recognizes and can utilize. Process affinity
indicates the processor in a multiprocessor or Hyper-Threading Technology system that a
process is selected to run on.

Concurrency – Simultaneous execution of multiple structurally different application activities, such
as multitasking on multiple activities. For example: computation, disk access, and network
access. It reduces latency (see definition below) and improves throughput, thus reduces the time
an application spends idle.

Context Switch – The current running thread is suspended and its execution state is saved. The
state information belonging to the thread being switched to (next thread) is loaded and the CPU
resumes execution of the next thread.

Intel Netburst® microarchitecture - Adds significant enhancements to the core architecture:
• Change in execution stages: Instruction fetch -> trace cache -> queue -> register rename ->

queue -> schedule -> register read -> execute -> L1 cache store -> register write -> reorder
buffer retire

• Changes in L1 code cache
• Changes to system bus speed
• Changes to maximum core speed

Latency - In general, the period of time that one component in a system is spinning its wheels
waiting for another component. Latency, therefore, is wasted time.

Multitasking - The ability to execute more than one task at the same time, a task being a program.
The terms multitasking and Multiprocessing are often used interchangeably, although
Multiprocessing implies that more than one CPU is involved.

Quanta – OS Quanta are defined as discrete units of time in the operation of the OS.

Thread – A single stream of instructions. Processes themselves are therefore threads. Processes
can also create threads within the process.

Throughput - The amount of data transferred from one place to another or processed in a
specified amount of time. Bandwidth is also used as a basis for throughput. Throughput is also
used to reference the number of jobs finished in a given time interval.

Turnaround – The time required to finish a job

 16

The Power of Multithreading

Appendix - Linux 2.4.x Kernel Hyper-Threading Support
Known Issues
There are known HT Technology performance issues in the v2.4 SMP Linux kernels. The issues
are related to the kernel thread scheduler that can degrade performance when HT Technology is
enabled. Most improvements to these issues were initially made available in the v2.5.32 kernel.
There are several sources that discuss HT Technology performance implications on these Linux
kernels. A couple of these resources are listed below:

• Intel® has posted “Methods to Utilize Intel’s Hyper-Threading Technology with Linux*”. Linux

issues are discussed in section “Linux* Issues with Hyper-Threaded Technology”. See this
link: http://www.intel.com/cd/ids/developer/asmo-na/eng/20354.htm?prn=Y

• The v2.6 Linux kernel will address specific issues with HT Technology. Information about the

v2.6 Linux kernel changes can be found at the Open Source Development Labs (OSDL) web
site.

 17

http://www.intel.com/cd/ids/developer/asmo-na/eng/20354.htm?prn=Y%20

The Power of Multithreading

13 Appendix - Additional References
Binstock, A., & Gerber, R. (2004). Programming with Hyper-Threading Technology, Intel Press.

Gerber, R. (2002). The Software Optimization Cookbook, Intel Press.

Intel Corporation. (2004). IA-32 Intel® Architecture Optimization Reference Manual

Intel Corporation. Hyper-Threading Technology.

http://www.intel.com/business/bss/products/hyperthreading/overview.htm

Intel Corporation. Multithreading, Hyper-threading, Multiprocessing: Now, What’s the Difference?

http://www.intel.com/cd/ids/developer/asmo-na/eng/20456.htm?page=1

OpenMP Organization. Specifications.

http://www.openmp.org/drupal/node/view/8?PHPSESSID=34639b10121747cff6fbcb463e
bf624a

Open Source Development Labs, Inc. Linux 2.6.0: What’s New.

http://www.osdl.org/newsroom/press_releases/2003/2003_12_18_beaverton_2_6_new.ht
ml

 18

http://www.intel.com/business/bss/products/hyperthreading/overview.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/20456.htm?page=1
http://www.openmp.org/drupal/node/view/8?PHPSESSID=34639b10121747cff6fbcb463ebf624a
http://www.openmp.org/drupal/node/view/8?PHPSESSID=34639b10121747cff6fbcb463ebf624a
http://www.osdl.org/newsroom/press_releases/2003/2003_12_18_beaverton_2_6_new.html
http://www.osdl.org/newsroom/press_releases/2003/2003_12_18_beaverton_2_6_new.html

	Overview
	Multithreaded System Architectures
	Uni-Processor (UP)
	Dual-Processor (DP)
	Multiprocessor (MP)
	Hyper-Threading Technology (HT Technology)
	Multi-Core (MC or CMP)
	Dual Core (DC)

	Multiprocessing
	Asymmetrical
	Symmetrical

	Multithreading
	Threads and the Operating System

	BIOS and Operating System Requirements
	Application Benefits of MP, HT Technology, MC
	Serial Applications
	Multithreaded Applications
	Performance Estimations

	HT Technology Programming
	Threading Basics
	Threading Benefits (When to thread)
	Data Decomposition
	Functional Decomposition

	Threading Methods
	Library-Based
	Explicit
	Strengths of Explicit Threading
	Limitations of Explicit Threading

	Compiler-Based
	OpenMP
	Strengths of OpenMP
	Limitations of OpenMP

	Which Method is Right for Your Application?

	Approach to Threading (How to thread)

	Conclusion
	Appendix - Intel(Software Development Tools
	Intel® Compilers
	Intel® Performance Libraries
	Intel® Integrated Performance Primitives
	Intel® Math Kernel Library

	Intel® VTune™ Performance Analyzers
	Threading Tools
	Intel® Thread Checker
	Thread Profiler

	Appendix - Intel(Threading Resources
	Threading Services
	Thread Training
	Developer Centers
	Community Forums
	Documents
	Online Articles
	Online Courses
	Classroom Training

	Online Demos
	Hyper-Threading Technology and Threading Short Demos
	Intel® Thread Checker Short Demo
	Intel® VTune™ Performance Analyzers Short Demo

	Appendix - Definitions
	Appendix - Linux 2.4.x Kernel Hyper-Threading Support Known
	Appendix - Additional References

