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Introduction—3rd Generation Microarchitecture

1.0 Introduction

This design guide contains routines for OS, monitor and device driver writers. It is 
generally not of interest for user-level code. Also, it is not intended to be an 
optimization how-to guide. What it does contain are routines and code sequences that 
are reference examples and templates necessary for system software to function 
correctly on 3rd generation Intel XScale® microarchitecture1 (3rd generation 
microarchitecture or microarchitecture).

1.1 Quick Porting Guide

This section summarizes some significant changes in the 3rd generation 
microarchitecture. Subsequent sections give more details and code suggestions.

1.1.1 L2 Cache

The 3rd generation microarchitecture introduces a physically tagged, physically 
indexed, L2 cache (Section 3.2.6). Availability of the L2 cache varies by product. This 
typically has minimal impact on the OS with the following exceptions.

• System initialization code, at the appropriate time, enables the L2.

• Pages containing page table descriptors are marked as L2 cacheable. In addition, 
the table walk outer cache attribute, in the translation table base register, must be 
set to 0b11 (Outer Write Back) to allow the 3rd generation microarchitecture to hit 
the cached page descriptors.

Page table descriptor L2 cacheability and the table walk outer cache attribute must be 
enabled together, or disabled together, to ensure consistency between software and the 
processor microarchitecture.

1. ARM* architecture compliant.
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1.1.2 Shared Bit

The shared bit is a new page attribute enabling cache coherency for memory shared by 
multiple agents. The shared bit marks pages that are shared between the 
3rd generation microarchitecture and external devices. Not all products support I/O 
coherency (refer to the appropriate ASSP specification for more details.) Allowing the 
processor to manage I/O coherency achieves higher performance than using 
uncacheable memory regions.

Shared memory does not imply any specific memory ordering. For regions of memory 
that require more explicit access and timing controls see Memory Barriers below.

Do not use the S bit in Operating Systems without consideration. Performance is lower 
in some circumstances when the S bit is used and specific products that do not enable 
hardware coherency prohibit its use. See Table 1 for notes on use of the S bit.

1.1.3 Memory Barriers

The 3rd generation microarchitecture optimizes memory accesses; this optimization 
causes external viewers of the microarchitecture to see memory operations in a 
different order than sequential execution implies. This reordering aids performance and 
does not alter the correctness of single-processor application programs. However, 
system software occasionally needs to control memory access order. Three new 
instructions were added to handle these situations. These instructions are:

• data memory barrier (DMB)

• data write barrier (DWB)

• pipeline flush (PF)

Refer to Section 3.2.8 for an example use of these instructions.

There are other methods to control memory ordering in addition to the three explicit 
instructions. This includes specific page table attributes and certain instructions which 
have a side-effect of synchronizing memory operations.

Table 1. S Bit Scenarios

S bit in page table 
entry

Product supports 
hardware 
coherency

L2 cache present Effect

0 X X
Normal operation. Coherence enforced by 
software.

1 X False
Performance suffers because the machine 
degrades memory accesses to “L1 
uncacheable”.

1 False X
Unpredictable — do not use S bit when 
hardware does not support coherency.

1 True True
Performance is slightly lower because of 
coherency overhead. Coherency is 
supported by hardware.
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1.1.4 Miscellaneous Changes

The 3rd generation microarchitecture introduces new cache management functions 
useful for system-level software. The L1 data cache is now cleaned by set and way. 
Also, a cache line is now cleaned and invalidated in one instruction (by either MVA or 
set and way, refer to Section 3.2.4).

The 3rd generation microarchitecture requires new L1 cache cleaning routines using 
the new instructions mentioned above. Cache cleaning routines from previous 
microarchitectures produces unreliable results. See Example 27 for a routine to clean 
the L1 D cache.

The 3rd generation microarchitecture no longer has a mini data cache. Instead, system 
software uses Low Locality of Reference (LLR) memory attributes. LLR has the same 
page table entry encoding as formerly used for the mini data cache. However, LLR is 
not always a direct functional replacement for the mini data cache. Evaluate each 
situation to ensure the correct behavior is achieved.

A specific routine to lock data into the L1 data cache has been defined in this document 
(Example 22). When data is locked in the L1, be sure to use this routine; variations 
from it does not operate correctly.
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1.2 Use of Coprocessors

Throughout this guide, ARM coprocessor access instructions are used to perform many 
operations. Many of these instructions, especially for control of the caches, do not use 
the value in the specified ARM register operand — a simple write to the co-processor 
causes the operation to occur.

According to the ARM Architecture Reference Manual, the contents of the ARM registers 
needs to be zero when the value is not used by the function. However, in most of the 
code sequences the specified ARM register contains some non-zero value, this value is 
ignored and the contents of the ARM register are not modified. This behavior is valid 
and is used for the 3rd generation microarchitecture, and the code sequences are able 
to avoid zeroing and using a scratch ARM register by depending on this behavior.
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2.0 System Initialization and Reset

Certain tasks must be performed in order to initialize the 3rd generation 
microarchitecture after a system reset, and to perform a soft-reboot during a reset 
sequence. This section describes some routines that are utilized as part of these tasks.

2.1 Configuration

This section describes operations relating to access of configuration and co-processor 
registers in the 3rd generation microarchitecture. Co-processor registers are accessed 
to control certain functions of the microarchitecture (such as cache enabling and 
disabling) as well as to perform specialized operations using other implementation 
specific co-processors.

Throughout this Guide, individual bits are turned on and off with a read-modify-write 
sequence on the CP15 ARM control register. Although in most examples only one bit is 
changed at a time (for example, turning BTB on/off, MMU on/off), it is possible to 
simultaneously enable multiple features in the ARM control register, by setting multiple 
bits at once. It is useful to do this in order to have a shorter configuration code 
sequence when multiple features of the 3rd generation microarchitecture need to be 
turned on or off at once.
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2.1.1 Co-processor Access

Product specific co-processors are accessed using the co-processor access instructions 
in the 3rd generation microarchitecture. An example of this is accumulator functionality 
of co-processor 0. Within a running system, multiple applications want to use a single 
co-processor with an exclusive access view to it. In this case, it is desirable to have the 
co-processor state and its registers appear to be consistent and exclusively used by 
each process. When a process switches out with another it simply saves all the 
registers out to memory, so another process restores its old state and continue 
running.

The 3rd generation microarchitecture provides a mechanism for co-processor context 
switching to occur only when needed, by providing a co-processor access register, 
which allows system software to receive an undefined exception whenever an 
application accesses a specific co-processor. This is accomplished by clearing a bit in 
the Co-processor Access Register (CPAR). Each bit in the CPAR corresponds to a 
co-processor. When the bit is cleared, then access to the corresponding co-processor 
causes an undefined exception, which system software handles and uses to determine 
what action to take to ensure each process sees the co-processor in the state it last left 
it.

Example 1 sets Co-processor Access Register (CPAR) bit 0 based on the value of Rd. 
When Rd is zero, bit CPAR[0] is cleared, disabling access to co-processor 0 for any 
software that runs afterward. When software attempts to either read or write a 
co-processor 0 register, the 3rd generation microarchitecture produces an undefined 
exception. Since this is a precise exception, the exact state of the microarchitecture 
and which instruction caused the exception is determined. With this information system 
software is determined whether to allow the software to access the co-processor (and 
perhaps save and restore some state information) or to return an error to the process 
which caused the exception. Note, that at power-on-reset, all bits in the CPAR register 
are zero, so access to all co-processors is initially disabled.

An example of how system software utilizes the CPAR, is to allow multiple applications 
to have an exclusive view of a shared co-processor. Initially, access to the co-processor 
is disabled at boot time. When a process attempts to access the co-processor, an 
undefined exception occurs. The exception is handled and the co-processor being 
accessed is determined. At this point the exception handler decides when it needs to 
save the state of the co-processor, and also when it needs to load a saved state into the 
co-processor. When the co-processor is ready to be used by the current process, the 
handler code sets the corresponding bit in CPAR and exits the exception handler. The 
process that was accessing the co-processor continues as though the co-processor was 
always available and its state was consistent with when it was last context-switched.

Example 1. Setting Access Control Bits in the Co-processor Access Register

@ This macro enables or disables access to Co-processor 0.
@ The register Rd contains a nonzero value when access is to be enabled,
@ and zero when it is to be disabled.
.macro SET_CP0_ACCESS, Rd

cmp \Rd, #0                 @ check whether to enable or disable
mrc p15, 0, \Rd, c15, c1, 0 @ read original CPAR value
biceq \Rd, \Rd, #0x1        @ disable when zero
orrne \Rd, \Rd, #0x1        @ enable when nonzero
mcr p15, 0, \Rd, c15, c1, 0 @ move back to CPAR
mcr p15, 0, \Rd, c7, c5, 4  @ Prefetch Flush instruction so next instruction
                            @ re-fetched and see the effect

.endm
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2.1.2 Synchronization (CPWAIT)

At times, it is necessary to be able to ensure a point, after which a write to the ARM 
control register has taken effect. For example, when enabling memory address 
translation (turning on the MMU), it is vital to know when the MMU is actually ensured 
to be in operation. When the configuration routine returned and other software 
resumed before the MMU was enabled, memory accesses initially is affected in an 
unpredictable way.

The CPWAIT macro is a sequence of instructions which utilizes a read-after-write 
dependency, followed by a pipeline flush, to ensure changes to the ARM control register 
have taken effect before the next instruction executes. 

Since any configuration operation on the ARM control register occurs with a write to a 
register in CP15, this macro works by issuing a read to a register in CP15. This read 
does not occur until after the previous writes have completed. 

Additionally, reading this register causes a stall until the effect of the original 
configuration operation takes effect. In order to ensure execution stops before 
continuing any further, the next instruction after the read creates a 
load-use-dependency on the register used. This causes a stall until the previous read 
completes, along with any prior write operations. 

The final instruction causes the pipeline to be flushed, which ensures that the next 
instruction executed must be re-fetched either out of cache when it exists there, or 
from main memory.

Example 2. CPWAIT Macro

@ Use the following macro when software needs to be
@ assured that a CP15 update has taken effect.
@ It is only used while in a privileged mode, because it
@ accesses CP15. Rs is a scratch register.
.macro CPWAIT, Rs

mrc p15, 0, \Rs, c2, c0, 0 @ arbitrary read of CP15
mov \Rs, \Rs               @ wait for it
sub pc, pc, #4             @ flush the pipeline
@ At this point, any previous CP15 writes are
@ ensured to have taken effect.

.endm
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It is important to understand when it is necessary to utilize the CPWAIT macro. 
Because the macro ensures that all previous writes to CP15 have completed, it is not 
necessary to issue a CPWAIT after each write in a sequence of CP15 register writes, 
unless it was desired to have some part of the sequence take effect before the entire 
sequence completed.

Additionally it is not necessary to issue a CPWAIT immediately after a CP15 write, it is 
delayed and issued at a later time, and still ensures that the operation takes effect by 
the time the macro had completed.

Also, since CPWAIT does not explicitly change anything with respect to the 
configuration of the 3rd generation microarchitecture, it is important to remember that 
the effect of the original writes to CP15 are observed during or even before the issue of 
the CPWAIT macro. That is to say, although software cannot know exactly when the 
effect of a configuration operation is observed, it is ensured to be no later than the end 
of the CPWAIT sequence.

It is also useful to note that the entire code sequence above is not necessarily required 
for the CPWAIT operation to occur.

The Example 2 on page 11 works as a self-contained macro that is invoked from 
anywhere in the code. The macro creates its own dependency stall to ensure the 
3rd generation microarchitecture stops executing until it has completed, but it does so 
by executing a dummy instruction after the read, to create the stall. When there was 
an instruction that generates a dependency on ‘r0’ that executes, after the read of the 
co-processor register, which is then used in its place.

For example, when desiring to invalidate the TLB immediately after disabling the MMU, 
a write to co-processor 15, using ‘r0’ (the contents are ignored) to invalidate the TLB 
just after the read, still ensures the disabling of the MMU takes effect, but result in a 
more compact code. An example of this ‘short CPWAIT’ is shown in “Soft Reset 
Sequence (Code Mapped 1:1)” on page 14.

Note: This method does not also flush the pipeline. It is only suitable in a situation where the 
operation does not affect the code currently being executed (and any instructions 
already in the pipeline).
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2.2 Soft Reset

Performing a soft reset in the 3rd generation microarchitecture, essentially involves 
returning the system to a power-on like-state and then branching to the reset vector to 
allow the system to boot again. It is important that certain components be returned to 
the power-on state in a specific order, or a situation occurs where the reset sequence 
causes a lockup, and the system is unable to reset or continue operation.

For example, when the L1 caches are disabled, but still contain valid lines, these 
produce cache hits when those memory locations are accessed, thaty cause errors 
when the system is restarting.

A similar problem occurs when the data or instruction TLB, the L2 cache, or the BTB 
have stale data, when a soft reset occurs.

The soft-reset sequence handles the case where the soft-reset code executes in a 
memory region, with the virtual and physical addresses mapped 1:1. That is to say, 
that the address the code resides at from the view of the software, is the same with the 
MMU enabled and disabled. In this case, the code is marked ‘outer’ cacheable in the 
page table entries describing the code, and there is no requirement to change this 
during the soft boot sequence.

In either case, it is essential that interrupts are disabled before this code is executed. 
This is because any execution of an interrupt handler causes the 3rd generation 
microarchitecture to branch from this code at an unknown point, possibly causing lines 
to be fetched in to the cache, or causing an abort loop when the handler code is no 
longer accessible (after the MMU is off).

Example 3 on page 14 illustrates the sequence of operations required to facilitate a 
soft-reset.
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Example 3. Soft Reset Sequence (Code Mapped 1:1)

@ This code must have a 1:1 virtual to physical memory mapping
@ This code is or is not marked ‘outer cacheable’ in its page table entry
@ This first instruction has the effect of disabling interrupts.

msr cpsr, #0xD3                @ Reset cpsr, F,I bits, SVC mode
GET_L2_PRESENT r0                @ macro call sets Z flag when L2 is not present
mov r0, #0

@ First unlock all caches and the TLBs
mcr p15, 0, r0, c9, c5, 1      @ unlock all lines in the L1 I-cache
mcr p15, 0, r0, c9, c6, 1      @ unlock all lines in the L1 D-cache
mcrne p15, 1, r0, c9, c5, 1    @ unlock all L2 cache lines, when L2 present
mcr p15, 0, r0, c10, c4, 1     @ unlock the I-tlb
mcr p15, 0, r0, c10, c8, 1     @ unlock the D-tlb

@ Disable the L1 data cache
mrc p15, 0, r0, c1, c0, 0      @ Get Control Register
bic r0, r0, #0x0004            @ Clear C Bit (bit 2)
mcr p15, 0, r0, c1, c0, 0      @ Update control register

@ When desired, branch to the L1 D-cache clean function here
@   bl l1_dcache_clean

bic r0, r0, #0x1800            @ Clear I Bit (bit 12), Z Bit (bit 11)
bic r0, r0, #0x0001            @ Clear M Bit (bit 0)
mcr p15, 0, r0, c1, c0, 0      @ Disable MMU, L1 I cache, and BTB
mrc p15, 0, r0, c1, c0, 0      @ short CPWAIT
mcr p15, 0, r0, c8, c7, 0      @ Invalidate I, D-TLB (stall on CPWAIT read)
beq CLEANDONE                  @ Jump over L2 clean when L2 not present

@ This code cleans and invalidates all lines in the L2 cache
mcr p15, 0, r0, c7, c10, 5     @ DMB Operation to impose memory fence.
GET_L2_SIZE r0                 @ low four bits returned in r0 are the L2
                               @ cache size, starting with 64 KB (0b0000)
                               @ increasing by powers of 2 (Example 30)
mov r1, #0xffffffe0
mov r2, #19
sub r2, r2, r0                 @ determine the number of sets
mov r0, r1, lsl r2             @ clear out the extra bits when configuring
mov r0, r0, lsr r2             @ the number of sets

CLEANLOOP:
mcr p15, 1, r0, c7, c15, 2 @ clean and invalidate set/way in r0
adds r0, r0, #0x20000000   @ Increment shifted way index
bcc CLEANLOOP              @ Clean the next way when not done with this set
subs r0, r0, #0x00000020   @ Decrement shifted set index
bpl CLEANLOOP              @ Go to next set when not at last one
mcr p15, 0, r0, c7, c10, 5 @ DMB Operation to impose memory fence.

CLEANDONE:
mcr p15, 0, r0, c7, c6, 0      @ globally invalidate the L1 D-cache
mcr p15, 0, r1, c7, c5, 0      @ Invalidate I-cache, BTB

@ Reset microarchitecture registers to power-on-reset state.
mov r0, #0x0
mcr p15, 0, r0, c1, c0, 1      @ Reset Aux Control Register
mcr p15, 0, r0, c13, c0, 0     @ Process ID Register
mcr p15, 0, r0, c15, c1, 0     @ Co-processor Access Register
mcr p14, 0, r0, c0, c1, 0      @ PMU Control register
mcr p14, 0, r0, c4, c1, 0      @ PMU Interrupt enable register
mov r0, #0x1f
mcr p14, 0, r0, c5, c1, 0      @ PMU Overflow Flag Register

@ When applicable reset CP14 c7 and c6 to reset values.
@ Now restore the ARM control register to its power-on-reset state.
@ Note the L2 cannot be disabled once it has been enabled.

mrc p15, 0, r0, c1, c0, 0      @ Read Control Register
and r0, r0, #0x04000000        @ Clear all bits but L2 Enable
mcr p15, 0, r0, c1, c0, 0      @ write back value, reset to power on state

@ Branch to zero (or reset handler)
mov pc, #0
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As shown in Example 3 on page 14, in order to shut down the system, the components 
of the 3rd generation microarchitecture must be disabled in a particular order, to 
ensure that the reset code still executes during this time. Additionally, it is important 
that the system appear to be in a power-on-reset state when the final branch to the 
reset vector occurs. 

In order to ensure the processor is in a power-on reset state, the CPSR register is 
reset, to have interrupts disabled (F and I bits) and to be in supervisor mode. Then the 
next step is to unlock all entries in the L1 cache, L2 cache, and the TLB. This ensures 
the subsequent clean/invalidate operations work as expected, and not leave any locked 
valid entries behind. 

After that the L1 data cache is disabled, then its contents are cleaned when desired, so 
any dirty cached data is cleaned and written out. The L1 instruction cache and BTB are 
also disabled. Cleaning the cache is or is not desired, depending on the specific 
application of the system software. In a case where dirty written data exists that needs 
to be cleaned out to some non-volatile storage, it needs to be cleaned before the 
system soft boots. In other cases, the system has already cleaned out all important 
data and any valid dirty lines in cache need not be written out.

It is important that the cache is disabled first and then emptied. This ensures that no 
new entries are created in the cache during or after the time it is cleaned and 
invalidated. This procedure is followed to ensure the L1 instruction cache and L2 cache 
are also emptied. 

Now that the L1 Data and Instruction caches are disabled, the MMU is disabled. This 
effectively disables the L2 cache. After the MMU is off and no new TLB entries are 
fetched, the TLB is invalidated. Then, the L2 cache must be unlocked, cleaned when 
desired, and invalidated so that it is completely empty, since it is in a power on state. 

Finally the L1 instruction cache, L1 data cache, and BTB are both invalidated so these 
are empty as well. The power-on-reset values of many co-processor registers are 
written out before the soft reboot occurs. This ensures that the processor behaves as 
though it had just powered on when the boot up code executes. 

Note: The L2 cache cannot be disabled once it has been enabled, so it must be left enabled 
even during a soft reboot. 

Depending on the product configuration, Co-processor 14 registers 6 and 7 need to be 
reset to restore the power and clock modes. At this point, branching to the reset vector 
produce a reboot with the 3rd generation microarchitecture in the same state as 
though it had just been power cycled.

It is not possible to perform a soft reset of the 3rd generation microarchitecture with 
code that is not mapped 1:1. When using code that is not mapped 1:1 then the 1:1 
code sequence must be copied to a page that is mapped 1:1 where the code is then 
executed. Treat this code as though it were self-modifying code as described in 
Chapter 3.2.8
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3.0 Memory

This section describes code sequences and examples which explain how system 
software utilizes memory related functions of the 3rd generation microarchitecture. 
Memory access in the microarchitecture is affected by:

• memory translation

• L1 caching

• L2 caching

• memory barriers

3.1 Virtual Memory (MMU)

The MMU is a collection of hardware functions that implement virtual-to-physical 
memory address translation. The MMU contains:

• control registers

• the TLB

• translation table walk hardware

Access to the data and L2 caches is also controlled by enabling the MMU, because the 
page tables provide the cacheability information about the specific memory regions. 
Enabling the MMU is performed by code that is mapped 1:1 (virtual addresses match 
the translated physical addresses). Example 6 on page 19 shows a code fragment that 
enables the MMU.
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The code in Example 4 calls a function that creates a page table of section descriptors, 
which configure all virtual memory to have a 1-to-1 mapping with physical memory. 
Depending on particular system configuration, regions of address space are or are not 
marked cacheable in the L1 and L2 caches. 

Example 4. Creating a First Level Page Table

@ This code calls a function that sets up a first-level page table
@ of section descriptors. After it returns, it calls a function to create
@ a coarse 2nd level page table, and modifies the attributes of
@ the pages containing both page tables to have the correct cache attributes
@ for the microarchitecture.

@ The address where the table(s) need to reside is in r3.

mov r0, r3                   @ Address where table needs to reside
bl create_1stlevel_table     @ create table of sections, @ addr r0 1:1 mapped
add r4, r3, #16384           @ set r4 to the address just after the 1st
                             @ level table
mov r0, r4
mov r1, r3, lsr #20
mov r1, r1, lsl #20          @ put 1Meg aligned address of 1st table in r1
bl create_coarse_table       @ create table of 2nd level coarse descriptors
                             @ table @ addr r0, mapping for 1meg @ addr r1

@ Now set the correct 1st level descriptor to point to the 2nd level table.
mov r2, r3, lsr #20          @ put index of 1st level descriptor that
                             @ contains table into r2
ldr r2, [r3, r2]             @ load section descriptor
mov r2, r2, lsl #22
mov r2, r2, lsr #22          @ convert section descriptor to coarse pg tbl
orr r2, r2, r4               @ set coarse page table base address
bic r2, r2, #0xF             @ Clear section type, c,b bits
orr r2, r2, #0x1             @ Set coarse pg table type
str r2, [r3, r2]             @ Write coarse page table pointer back

mov r2, r3, lsl #12
mov r2, r2, lsr #24          @ Get index into 2nd level table
add r2, r2, r4               @ Get addr of coarse descriptors to modify
mov r0, #5                   @ number of extended small pages to modify

ATTR_LOOP:
ldr r1, [r2]                 @ Load descriptor
bic r1, r1, #0xFF
orr r1, r1, #0x3             @ Set Extended small page type, CB=00
orr r1, r1, #0x170           @ Set Tex=101, AP=11
subs r0, r0, #1
str r1, [r2], #4             @ write back descriptor
bne ATTR_LOOP

mov r1, r3                   @ address to clean, invalidate from DCache
mov r0, #544                 @ Clean 544 lines = 16k + 1k of tables
bl clean_inv_unlock          @ Call function
mcr p15, 0, r0, c7, c10, 4   @ Data Write Barrier

@ At this point, the first and second level tables written out have
@ the correct attributes in place for being updated while used, and
@ these are ready to be used by the MMU.
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After creating the first level table, another function is called to create a second level 
table, located just after the first level table. The second level table contains pages 
which define attributes for 4 K of address space each. The second level descriptors, 
which map to the address range the table exists in, are modified as extended small 
page descriptors with L2 cacheability and no L1 cacheability. This ensures any page 
table writes, once it is being used by the MMU, do not need a cache clean/invalidate 
sequence, since these go directly to the L2. Any pages containing page tables must be 
marked L2 cacheable on the processor.

After the code has executed and the page table has been written, the L1 data cache 
lines that contain the modified data are cleaned and invalidated, and a data write 
barrier operation is executed. After this operation, it is possible to set the page table 
base register to the address of this table.

The code sequence in Example 5 creates a supersection, which maps the specified 
virtual address to the specified 36-bit physical address. It is assumed that the first level 
page table has already been created, and so only the supersection descriptors need to 
be written to.

The format of a supersection is similar to a section descriptor except that the upper 
4 bits of the 36-bit physical address are stored in bits 23:20 of the descriptor, and 
bit 18 of the descriptor is set to designate that this is a supersection descriptor. The 
same supersection descriptor must be repeated for 16 consecutive page table entries, 
otherwise unpredictable behavior occurs.

After any change to the page table, it is necessary to invalidate the instruction and data 
TLBs, to clear out any stale entries. Also note, that page table updates must be 
managed carefully, when table walks are configured as L2 cacheable in the Translation 
Table Base register. Old page table entries were cached in the L2 cache and stores to 
the page table (when the MMU is disabled or the MMU enabled and the page table 
mapped to a L2 non-cacheable memory region) bypass the L2 cache. 

Example 5. Creating a Supersection

@ Create a supersection in the first level page table.
@ It assumes the first level page table is already created.
@ r1 = address of first level page table
@ r2 = 32-bit virtual address of start of supersection
@ r3 = bits 35:24 of supersection physical address in bits 11:0

mov r4, r2, lsr #20         @ Get the index into page table
add r4, r1, r4, lsl #2      @ multiply index by 4 (word offset into table)
                            @ and add to page table base address
mov r5, r3, lsl #24         @ put bits 7:0 of r3 into bits 31:24 of r5
mov r6, r3
bic r6, r6, #0xFF
add r5, r5, r6, lsl #12     @ put bits 11:8 of r3 into bits 23:20 of r5
orr r5, r5, #0xe            @ Set C,B, SectionType bits
orr r5, r5, #0x00040000     @ Set bit 18, supersection bit

@ At this point, r5 contains the supersection descriptor, which is repeated
@ for 16 entries (so it occupies 16 megs)

mov r0, #16                 @ put count into r0
1:

subs r0, r0, #1             @ decrement count
str r5, [r4], #4            @ store descriptor and increment
bne 1b                      @ loop through all 16 entries

@ At this point VA r2 maps to 16-megabyte address space specified in bits
@ 11:0 of r3.
@ It is necessary to invalidate the instruction and data TLBs
@ at this point.
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To avoid issues when table walks are L2 cacheable, it is recommended that the memory 
region containing the page table be marked as L2 cacheable in the page table and the 
MMU be enabled to allow the stores to be L2 cacheable.

Once the supersection is created, any access by the 3rd generation microarchitecture 
to the specified virtual address, causes the memory operation to access the specified 
36-bit physical address. Access to 36-bit addresses only occurs when the MMU is 
enabled, because the actual address specified in code is still only 32-bits.

Example 6 shows a method of enabling the MMU on the 3rd generation 
microarchitecture. In order for the MMU to operate, a valid page table must exist in 
memory and its base address must be set in the Translation Table Base register 
(TTBASE). 

Additionally the domains which are represented in the page table must be set up with 
the appropriate access in the domain access control register (DACR). Code executing 
memory operations from this point forward has the addresses translated by the page 
table entries, and has accesses checked against the access permission bits in the page 
section or page descriptor and the corresponding domain access bits in the DACR. 

It is important that a CPWAIT instruction be used after the enabling of the MMU and 
before any code attempts to perform a memory operation. Using a CPWAIT allows the 
system software to ensure that the effect of the MMU being enabled is seen by any 
code that executes after the CPWAIT.

Example 7 disables the operation of the MMU by turning off the MMU enable bit in the 
ARM control register. Since the L1 data cache cannot operate without the MMU, it is 
important that it be cleaned and disabled before the MMU is disabled. 

Also note, that when the MMU is off, the L2 cache is effectively disabled, since any 
memory accesses are no longer able to see the attribute bits that enable L2 
cacheability. 

After the L2 is disabled it is necessary to globally clean it to ensure any data written 
that is stored in the L2 cache is cleaned out. 

Finally, it is important that this code is mapped 1:1 with physical memory, because 
during the execution of this code, the MMU turns off and when the virtual address 
location, the code was executing from is not the same as the physical address, 
unpredictable results occur when the instructions are fetched. The CPWAIT macro at 
the end of the sequence ensures that any code after the macro, sees the effects of the 
MMU being disabled.

Example 6. Enable the MMU

@ Enable the MMU. Before enabling, make sure the page table base (TTBASE) is set,
@ and that the domain access control register (DACR) is configured as desired.

mrc p15, 0, r0, c1, c0, 0   @ Read the ARM control register
orr r0, r0, #0x1
mcr p15, 0, r0, c1, c0, 0   @ Enable the MMU
CPWAIT r0

Example 7. Disable the MMU

@ This code disables the MMu. It is important that the L1 data cache
@ be cleaned and disabled before the MMU is disabled.

mrc p15, 0, r0, c1, c0, 0   @ Read the ARM control register
bic r0, r0, #0x1
mcr p15, 0, r0, c1, c0, 0   @ Disable the MMU
CPWAIT r0
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3.1.1 Translation Look Aside Buffers (TLB)

In order to increase the speed of memory address translations, the 3rd generation 
microarchitecture implements two fully associative 32-entry translation look aside 
buffers (TLBs). 

• One is used to cache the lookup of instruction address translations

• The other is for data address translations

When an address translation occurs, the appropriate TLB (instruction or data) is 
checked prior to performing a ‘table walk’ to the page table residing in the backing 
levels of memory. When a cached page table entry is found in the TLB, the address 
translation, as well as permission and cacheability checks, occur based on the 
information cached in the TLB. Because the TLB is used to cache page table entries for 
use by the MMU, the TLB only operates when the MMU is enabled. Some operations, 
such as TLB entry locking, require that the MMU be enabled or unpredictable results 
occur.

When an entry is not found in the TLB, a ‘table-walk’ occurs to load the page table 
entry from the backing levels of memory. Page table entries are cached in the L2 cache, 
depending on configuration of certain control bits in the Translation Table Base Register. 
When table walks are configured to be cacheable in the L2, the L2 cache is checked 
next. When the table walk does not hit in the L2 cache, then a memory access occurs 
to the external memory.
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Example 8 sets the base address of the page table in main memory. When the MMU 
does not find a page table entry in the TLB, it uses the Translation Table Base Register 
(TTBASE) to calculate the physical address where it reads the page table entry. 
Changing page table base from one page table to another likely affects the mappings or 
cacheability of certain areas of memory, so it is important that the L1 caches and BTB 
are empty when the mappings are changed. When a line was valid in the cache and its 
virtual address changed or became no longer cacheable, unpredictable results occur. 

After the page table base has changed, both the instruction and data TLBs are 
invalidated, because these contain cached page table entries from the old page table, 
and any accesses to those entries produce a ‘hit’ without correctly checking the values 
in memory. Finally, a CPWAIT macro is used to ensure that any code executing after 
this code sequence sees the new mappings.

When page table entries are being modified by software, it is also important that 
similar steps be taken to ensure stale data is not cached anywhere within the 
3rd generation microarchitecture. It is necessary to invalidate both the instruction and 
data TLBs, in case any of the entries being modified had previously been cached in the 
TLBs. 

It is also necessary to clean and invalidate lines in the L1 data cache that exist due to 
the memory accesses to the page table entries. In particular stores to the page table 
must be properly forced out to memory. Once the TLB has been invalidated and the L1 
data cache has been cleaned and invalidated, the next memory access to the virtual 
address, whose translation was modified, results in a table walk which accesses the 
updated information.

The entries for the address space containing the code executing the change in the page 
table base must not have its mappings changed while it is executing. When the 
mapping changes, memory accesses (such as those fetching future instructions into 
the pipeline) cause entries to be created in the instruction TLB after it has been 
invalidated, but before the effect of the page table change was observed. When the 
virtual to physical address translation of those entries was changing between the two 
sets of page tables, then the old ones become cached after this code had completed.

Example 8. Changing the Page Table Base

@ This code sets the page table base register. The address in this register
@ defines the base address that are accessed when a ‘table walk’ is
@ performed.

.set TTBR_OC, 0x18             @ Page table entries are outer cacheable

@ NOTE: ICache, DCache, and the BTB need to all be cleaned/invalidated before
@ this point, to ensure any data which resides in memory
@ locations that are affected by new mappings is not cached in any way.
@ When any updates to the page table about to be used have just been made,
@ It is necessary to also invoke a DWB operation.

ldr r1, =page_table_base
orr r1, r1, #TTBR_OC         @ Allow table walks to be L2 cacheable
mcr p15, 0, r1, c2, c0, 0    @ Write the page table base
mcr p15, 0, r0, c8, c7, 0    @ Globally invalidate I, D TLB
CPWAIT r1
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At times it is desirable to lock entries in the TLB to improve performance. When an 
entry is locked in the TLB it is never evicted and always produces a ‘hit’ when the 
virtual address is translated. When a translation is cached in the TLB it is not necessary 
for the MMU to execute a ‘table walk’, which creates a delay while it retrieves the 
information from the L2 cache or even main memory. 

Note: When locking an entry into the TLB, when the virtual address being translated were 
already in the TLB and valid, then issuing a lock operation on that address, produces 
unpredictable results. 

For this reason, it is necessary to ensure that the address is not valid in the TLB first, 
either by globally invalidating the TLB or by specifically invalidating the virtual 
addresses which are about to be locked. Also due to this restriction, take care that the 
code executing the lock is not in the same page (referenced through the same TLB 
entry) as the address being locked. There is the possibility that the very end of this 
code sequence occurs on a page boundary, and the instructions after the code 
sequence then occurs on a new page (and therefore a new TLB entry). When the TLB 
entry being locked was the next entry after the code, it is already in the TLB when the 
lock occurs, due to fetching and speculative execution of the instructions after the 
CPWAIT. 

Note: An alignment directive is used to ensure the code sequence does not cross a page 
boundary to prevent a table walk from the above scenario.

Since this is an example of ‘incremental’ TLB locking, where system software 
repeatedly calls this function to lock different entries each time, the specific entry 
invalidate operation is used. This ensures that the entry being locked is not present in 
the TLB when the lock operation is performed. It is important that the entries being 
invalidated are not locked in the TLB, were these then invalidated by MVA operation 
have unpredictable results. Because there is no method to query the TLB for which 
entries it has locked, it is necessary to store this information elsewhere in order to 
check when an entry was already locked in the TLB. For this reason, it is recommended 
that the system software maintain a table of locked entries.

Only 31 entries in the TLB are lockable. Attempting to lock the 32nd way fails and the 
request to lock that entry is ignored.

Example 9. Incrementally Locking Instruction TLB Entries

.align 6
@ r0, r1 and r2 contain the virtual addresses to translate and lock into
@ the instruction TLB. The TLB entries specified by r0, r1, and r2 must
@ not already be locked in the ITLB.
@ Hardware ensures that accesses to CP15 occur in program order

mcr p15,0,r0,c8,c5,1     @ Invalidate ITLB Entry specified in r0.
mcr p15,0,r1,c8,c5,1     @ Invalidate ITLB Entry specified in r1.
mcr p15,0,r2,c8,c5,1     @ Invalidate ITLB Entry specified in r2.
mcr p15,0,r0,c10,c4,0    @ Translate virtual address (r0) and lock into
                         @ instruction TLB
mcr p15,0,r1,c10,c4,0    @ Translate virtual address (r1) and lock
                         @ into instruction TLB
mcr p15,0,r2,c10,c4,0    @ Translate virtual address (r2) and lock into
                         @ instruction TLB
CPWAIT r0

@ The MMU is ensured to be updated at this point; the next instruction 
@ sees the locked instruction TLB entries.
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This code sequence illustrates how to lock page table entries in the data TLB. The 
instruction is virtually identical to the instruction TLB locking sequence, except that 
CRm=8 instead of 4. For this example, the specific addresses being locked are first 
invalidated in the data TLB. This is a way of avoiding the previously mentioned problem 
where locking an address in the TLB that is already valid in the TLB causes 
unpredictable results. When the lines being invalidated were not in the TLB, then the 
invalidation instruction acts like a no-op and has no results. It is still necessary to 
ensure that any of the entries being locked have not already been locked into the TLB. 
For this reason it is still necessary to maintain a separate table of locked TLB entries.

In the following examples, both the instruction and data TLB instructions are shown 
together in the same code sequences. Both operations are nearly identical, and both 
have the same effect on respective TLBs. The only difference between these, is the 
CRm field of the co-processor access instruction.

The instructions above invalidate specific lines in either the instruction or data TLBs 
depending on which co-processor access instruction is issued. This operation was used 
in the previous examples just before locking, in order to ensure that the entry is not 
valid and unlocked in the TLB. Note, that when the entries being invalidated are in the 
TLB and are locked, the result is unpredictable. It is important for this reason to first 
globally unlock the TLB or use a table of locked entries to check when it has already 
been locked.

Example 10. Invalidating and Locking Data TLB Entries

@ r1, and r2 contain the virtual addresses to translate
@ and lock into the data TLB

mcr p15,0,r1,c8,c6,1     @ Invalidate the data TLB entry specified by the
                         @ virtual address in r1
mcr p15,0,r1,c10,c8,0    @ Translate virtual address (r1) and lock into
                         @ data TLB

@ Repeat sequence for virtual address in r2
mcr p15,0,r2,c8,c6,1     @ Invalidate the data TLB entry specified by the
                         @ virtual address in r2
mcr p15,0,r2,c10,c8,0    @ Translate virtual address (r2) and lock into
                         @ data TLB
CPWAIT r2                @ wait for locks to complete

@ The MMU is ensured to be updated at this point; the next instruction 
@ sees the locked data TLB entries.

Example 11. Invalidating TLB entries

@ This code invalidates a specifc entry in the TLB. The entry invalidated
@ corresponds to the virtual address specified in r0.
@ To invalidate in the iTLB, CRm=5. To invalide in the dTLB, CRm=6

mcr p15, 0, r0, c8, c5, 1    @ Invalidate addr in r0 in instruction TLB
mcr p15, 0, r0, c8, c6, 1    @ Invalidate addr in r0 in data TLB
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Both the instruction and data TLBs are globally invalidated by writing to 
co-processor 15, register 8. The operation simultaneously ensures that no valid lines 
are left in either the data or instruction TLBs. However, when any TLB entries locked 
before this operation, are not invalidated, remain locked with contents unchanged. In 
order to ensure that the global invalidate operation leaves no valid entries in either 
TLB, it is necessary to issue a global unlock on each TLB before invalidating.

This example shows how to globally unlock all entries in both the instruction or data 
TLB. This is performed by writing to the co-processor 15 register with CRm=4 for the 
iTLB and CRm=8 for the dTLB. Since it is required that entries in the TLB are unlocked 
before these are invalidated, it is useful to globally unlock the TLB to be certain that no 
locked entries exist. Then the TLB is invalidated (either globally or via specific 
addresses) without the possibility of a locked entry having an invalidate instruction 
issued against it.

Example 12. Globally Invalidating the TLBs

mov r0, #0 @ The data in R0 is to be zero
@ This code globally invalidates both the instruction and data TLBs
@ The data in r0 is ignored.

mcr p15, 0, r0, c8, c7, 0    @ Globally invalidate I, D TLB

Example 13. Globally unlocking the TLB

@ This code globally unlocks the instruction and data TLBs. When any entries
@ are valid and locked in the targeted TLB when this code executes, these 
@ become unlocked and remain unchanged.
@ To globally unlock the iTLB, CRm=4. To globally unlock the dTLB, CRm=8.

mov r0, #0                     @ The data in R0 is to be zero
mcr p15, 0, r0, c10, c4, 1     @ Globally unlock instruction TLB
mcr p15, 0, r0, c10, c8, 1     @ Globally unlock data TLB
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3.2 Cache Management

The 3rd generation microarchitecture contains 32 KB of L1 data cache, 32 KB 
of L1 instruction cache, and 0 KB, 256 KB, or 512 KB of L2 cache. All microarchitecture 
cache management operations are performed by utilizing co-processor 15, register 7 
(cache functions), register 9 (cache lock down), and register 1 (control). Operations 
are typically “global”, meaning one instruction has an effect on the entire cache, or are 
“per-line”, meaning each cache control instruction has an effect on a single cache line. 
In the case of “per-line” instructions, the line is specified either using a modified virtual 
address or by a set and way index. 

Some of the examples in this section contain references to a CPWAIT macro. This 
macro is used as a way to delay execution of subsequent code until the previous 
co-processor 15 operation has taken effect, refer to Section 2, “CPWAIT Macro” on 
page 11 for more information.

The caches on the 3rd generation microarchitecture help to isolate its execution from 
the latency of accessed memory and buses. The microarchitecture attempts to access 
the L1 or L2 cache, in lieu of sending a memory operation all the way out to memory, 
and this reduces the number of cycles a memory operation instruction must wait before 
it is retired. In order for some memory and device access routines to function correctly 
however, certain memory regions and certain explicit memory operation ordering must 
occur some of the time. The code sequences in this section are reference examples that 
explain how system software controls the cache, allowing some control over how and 
when memory operations are observed outside the microarchitecture.

Because cache sizes are different depending on the ASSP, it is necessary to check the 
size at run-time in order to allow the software to be portable. The co-processor 15 ARM 
cache type registers contain information about both the L1 and L2 caches.
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3.2.1 L1 Cache

The 3rd generation microarchitecture L1 cache consists of separate 32 KB 4-way set 
associative instruction and data caches. When a region of memory is marked cacheable 
in the L1, a fetch of either instruction or data memory cause a cache line allocation and 
fill. When a subsequent instruction fetch occurs, when the data is in the L1 cache and 
the line is valid, the instruction from the cache line is used and no external memory 
operation occurs. The operations described in this section allow system software to 
explicitly cache, clean, invalidate, lock, and unlock lines in the L1 instruction and data 
caches.

It is important to note that the operation of the L1 and L2 caches in the 3rd generation 
microarchitecture is closely linked to the operation of the MMU, the TLB, and the BTB. 
More information on these components are found in the following sections: “Virtual 
Memory (MMU)” on page 16, “Translation Look Aside Buffers (TLB)” on page 20, and 
“Branch Target Buffer (BTB)” on page 47.

3.2.1.1 L1 Instruction Cache Enable/Disable

The 3rd generation microarchitecture L1 instruction cache is enabled independently 
from the MMU or BTB. When the L1 instruction cache is enabled, on every instruction 
fetch that is found to be cacheable by the MMU (or every fetch when the MMU is 
disabled), the instruction cache are checked and when the instructions are found there 
these are used. When the address is not found in the L1 instruction cache, a fill request 
is issued and a new cache line is allocated to contain the instruction data from memory. 
Although these operations refer to ‘enabling’ and ‘disabling’ the L1 instruction cache, it 
is better to view these operations as merely enabling and disabling the ability of the L1 
instruction cache to fill a cache line. 

In other words, with the exception of a new line being allocated and filled in the L1 
instruction cache, every aspect of the L1 instruction cache remains active all of the 
time. This means that when a cacheable instruction fetch occurs, the L1 instruction 
cache in the 3rd generation microarchitecture is checked prior to any access to external 
memory. When the system software elects to ensure that the L1 instruction cache is 
never ‘hit’, it is necessary to both disable its ability to allocate and fill new lines, and to 
invalidate all the lines which already exist in the L1 cache. When completely invalidated 
and unable to fill new lines, the L1 instruction cache is effectively disabled.

Note: This behavior (hitting the cache when it is disabled) is deprecated on the 
3rd generation microarchitecture. It is possible this behavior changes on future 
generations so do not let software depend it its existence.
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The code above enables the L1 instruction cache on the 3rd generation 
microarchitecture. This is done by reading Register 1 of the Control Register and 
modifying it so bit 12 (L1 I-Cache Enable/Disable) is turned on. Unlike the L1 data 
cache, the L1 instruction cache on the microarchitecture is enabled at any time, 
independently of the MMU or BTB. However, it is important to note that the behavior of 
the L1 instruction cache is very different with respect to the MMU being enabled or 
disabled. When the MMU is disabled and the L1 I-cache is enabled, every instruction 
fetch, regardless of address, is cached. When the MMU is enabled and the L1 I-cache is 
enabled, whether or not instructions are cached depends on the cacheable bit being set 
on the page corresponding to the instruction memory address being fetched. Also when 
the MMU is off, no address translation takes place. Therefore the addresses in the L1 
instruction cache when the MMU is off are physical addresses.

The L1 instruction cache on the 3rd generation microarchitecture is disabled by reading 
Register 1 of the Control Register and modifying it so bit 12 (L1 I-Cache 
Enable/Disable) is cleared. After this operation, even though the instruction cache is 
disabled, any lines that are not invalid cause a hit when memory address is fetched. 
When this is not the desired behavior, it is the responsibility of system software to 
invalidate the L1 instruction cache as well as the BTB, in order to ensure future 
instruction fetches do not hit the L1 cache. Operations on the L1 cache, such as 
invalidation and unlocking, work with the cache enabled or disabled. The reason the L1 
instruction cache is invalidated after it is disabled, rather than before, is to avoid 
caching the code that does the disabling (and any instructions also in the lines it 
occupies), which results in the code being ‘trapped’ in the L1 instruction cache after the 
cache becomes disabled.

Example 14. Enable the L1 Instruction Cache

@ Enable I-cache
mrc p15, 0, r3, c1, c0, 0   @ Get control register
orr r3, r3, #0x1000         @ Set I bit (bit 12)
mcr p15, 0, r3, c1, c0, 0   @ Update control register

Example 15. Disable the L1 Instruction Cache

@ Disable I-cache
mrc p15, 0, r3, c1, c0, 0     @ Get control register
bic r3, r3, #0x1000           @ Clear I bit (bit 12)
mcr p15, 0, r3, c1, c0, 0     @ Update control register

@ Now that I-cache is disabled, it is necessary to invalidate
@ the L1 I-Cache and the BTB as described in the text.
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3.2.2 L1 Instruction Cache Operations

This section describes various operations that have an effect on L1 instruction cache 
lines, including locking, unlocking and invalidating on a per-line and global basis.

It is desirable to lock certain L1 instruction cache code routines. This favors achieving 
higher performance on code often executed, such as interrupt handler routines. When 
instructions are locked in the L1 instruction cache, these are always available and 
always produce a cache ‘hit’ every time the memory location is executed.

The previous code sequence locks an L1 instruction cach function. It accomplishes this 
by calculating the cache line - aligned start and end address of a function, then looping 
through each cache line the function occupies, locking the line. The line lock operation 
is performed by writing the modified virtual address to co-processor 15, register 9. It is 
important that no part of the code being locked is already present in the L1 instruction 
cache before this operation is executed. 

When an address being locked is already in the instruction cache, the operation fails 
and the line is not locked. For this reason, each line in the instruction cache is 
invalidated before it is locked, to avoid this possibility. Due to the fact that way0 of 
each set cannot be locked, a maximum of 24 KB of code is locked in the L1 instruction 
cache. However, in practice the maximum is less, due to the limitation that only 3 ways 
of each set are locked at a time. 

Example 16. Lock Lines In the L1 Instruction Cache

codeLock:                @ This code locks the “lockMe” routine
ldr r0, =(lockMe)    @ ptr to first cache line to lock
bic r0, r0, #0x1F
ldr r1, =(lockMeEnd) @ ptr to last cache line to lock
sub r1, r1, #1       @ up to last instruction of function
bic r1, r1, #0x1F

lockLoop:
mcr p15, 0, r0, c7, c5, 1  @ invalidate IC Line first
mcr p15, 0, r0, c9, c5, 0  @ lock next line into Icache
cmp r0, r1                 @ check when done
add r0, r0, #32            @ increment by cache line size
bne lockLoop               @ when not done, do next line

b finished
nop
nop
nop
nop

@ ------------------------------------------------
.p2align 5                @ Align the function on a cache-line boundary

lockMe:                        @ This is the code to lock into I-cache
mov r1, #5
add r1, r1, #8
mov pc, lr
@...

lockMeEnd:



3rd Generation Intel XScale® Microarchitecture
July 2007 Software Design Guide
Order Number: 315058-001US 29

Memory—3rd Generation Microarchitecture

In general, it is useful for system software to maintain a table of locked lines. Since 
there is no method for determining how ‘full’ the instruction cache is with locked lines, 
it is necessary to check a separate table, in order to determine when a line lock 
operation is successful. Because fetches for speculative execution cause instructions 
after the end of the lock loop to be fetched into the instruction cache, it is possible in 
the case where the code being locked is part of the next cache line, that the last line 
lock fails because the line is already in the cache. 

For this reason, enough NOPs to fill the pipeline are inserted after the loop, so these are 
fetched instead of the code after the end of the loop. The function occurring next is 
aligned on a cache line boundary, so it is ensured it does not occupy the same cache 
lines as the function performing the lock.

The code above globally unlocks the L1 instruction cache. This operation does not 
modify or invalidate any contents of the valid lines in the instruction cache. After this 
operation is complete, no lines are locked, and these are potentially evicted when an 
instruction fetch occurred. The L1 instruction cache is unlocked by performing a write 
to co-processor 15, register 9. The contents of the data written are ignored. This 
operation is performed and has the same effect with the L1 instruction cache enabled 
or disabled.

It is necessary to invalidate instructions in the L1 cache when these have been modified 
externally and the modification needs to have taken effect the next time the 
3rd generation microarchitecture executes those instructions. When L1 instruction 
cache lines are invalidated, it ensures that the next time an instruction fetch to that 
memory address occurs, the data is retrieved externally from the L1 cache.

This example invalidates cache lines in the L1 instruction cache. The number of lines 
specified in register r1 are invalidated sequentially, starting at the line that corresponds 
to the modified virtual address stored in register r0. This is done by incrementing a 
pointer by the size of a line and writing the address to co-processor 15, register 7. 
When the cache does not contain a valid entry corresponding to the modified virtual 
address, no action is taken. 

Before the invalidation takes place, this operation also unlocks the line when it is 
locked. For this reason, the invalidate operation is used as a way to unlock only certain 
routines in the L1 instruction cache, without having to unlock all of thesewith a global 
unlock. 

Example 17. Globally Unlock the L1 Instruction Cache

mov r1, #0                 @ The data in R1 is to be zero
mcr p15, 0, r1, c9, c5, 1  @ unlock all lines in the L1 I-cache
                           @ data in R1 is ignored

Example 18. Unlock and Invalidate L1 Instruction Cache Lines

@ This code unlocks & validates a memory region in the l1 I-cache.
@ r0 contains the MVA of the address to start the unlocking
@ r1 contains the number of 32-byte lines to invalidate & unlock.
@ In this example, 16 lines are unlocked and invalidated.

mov r1, #16

unlockLoop:
mcr p15, 0, r0, c7, c5, 1  @ invalidate and unlock address R0 in I-cache
add r0, r0, #32            @ increment by cache line size
subs r1, r1, #1            @ decrement loop counter, set flags
bne unlockLoop             @ when not done, do next line
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It is important to be aware that the BTB also contains information relating to 
instructions. When routines are invalidated in the L1 instruction cache, any 
corresponding branch entries in the BTB are not invalidated. When the purpose of the 
operation is to allow the 3rd generation microarchitecture to execute code that has 
been modified in memory, then it is also necessary to invalidate the BTB, to ensure the 
new code when fetched has the correct entries in the BTB. When the BTB and the L1 
instruction cache are not in sync, then the results are unpredictable.

The code above performs a global invalidation of the L1 instruction cache. It does this 
by performing a write to co-processor 15, register 7, the contents of the register 
written are ignored. Note, that when any lines in the L1 instruction cache are locked, 
these are not touched and remain valid, and locked after this operation. When ensured 
global invalidation is the desired behavior, and when there is the possibility of locked 
lines existing in the cache, then the cache lines must be unlocked either through a 
global unlock operation, or by virtual address before the global invalidate. 

This operation is used as part of the sequence to disable operation of the 
3rd generation microarchitecture L1 instruction cache, by first disabling the cache and 
second ensuring all lines are invalidated. Also note, that since the BTB also contains 
branch prediction data, it is implicitly invalidated as well to prevent stale branch data 
from causing unpredictable behavior.

Example 19. Globally Invalidate the L1 Instruction Cache

mov r1, #0                  @ The data in R0 is to be zero
mcr p15, 0, r1, c7, c5, 0   @ Invalidate the I-cache and BTB
                            @ Data in r1 is ignored
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3.2.3 L1 Data Cache Enable/Disable

The 3rd generation microarchitecture L1 data cache is dependent on the MMU. In order 
for it to be enabled, the MMU must have been enabled first. The MMU performs the 
address translation lookup, and determines when the data being accessed is cacheable 
in the L1 data cache. When the address being accessed is determined to be cacheable, 
then the L1 data cache allocates a line and fills it with data from the address being 
accessed on a read. 

For writes, when a valid cache line already exists, the 3rd generation microarchitecture 
L1 Data cache is configured to write only to the cache line (write-back), or write to the 
cache line as well as out to external memory (write-through). This behavior is 
determined by the page table entry bits corresponding to the memory address being 
accessed.

This routine enables the L1 data cache in the 3rd generation microarchitecture. This is 
accomplished by reading, modifying, and writing bit 2 (L1 D-Cache enable/disable) in 
co-processor 15 register 1. Note, that the MMU must be enabled prior to or at the same 
time as the enabling of the L1 data cache. This requirement is different than the L1 
instruction cache, which does not require the MMU to be enabled in order to operate. 
When this routine is executed without the MMU being enabled, the results are 
unpredictable. When the L1 data cache is enabled, memory pages that are marked as 
cachable allow a cache ‘hit’ when the data these contain is already in the cache, and 
memory pages marked as write-back is cached on write hits.

This code disables the L1 data cache in the 3rd generation microarchitecture. This is 
accomplished by reading, modifying, and writing bit 2 (L1 D-Cache enable/disable) in 
co-processor 15 register 1. Note, that even though the L1 data cache is disabled after 
this operation completes, any valid lines in the cache results in both cache hits on reads 
for regions marked cacheable, as well as writes for memory regions marked write-back. 
This behavior is unlikely to be desired because any changes to memory in the regions 
that are in the cache are not observable to the processor, and any writes to regions in 
the cache are written into the cache, but never cleaned out. For this reason, it is 
necessary to unlock, clean, and invalidate all L1 data cache lines. Because invalidate, 
clean, and unlock operations still affect the cache, even though it is disabled, this is 
done after the L1 data cache is disabled, to ensure no new lines are allocated during 
this operation or afterwards.

Example 20. Enable the L1 Data Cache

@ MMU must be enabled
@ Enable dcache

mrc p15, 0, r3, c1, c0, 0  @ Get Control Register
orr r3, r3, #0x0004        @ Set C Bit (bit 2)
mcr p15, 0, r3, c1, c0, 0  @ Update control register

Example 21. Disable the L1 Data Cache

@ Disable dcache
mrc p15, 0, r3, c1, c0, 0  @ Get Control Register
bic r3, r3, #0x0004        @ Clear C Bit (bit 2)
mcr p15, 0, r3, c1, c0, 0  @ Update control register

@ Now unlock, clean, and invalidate L1 D-cache
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3.2.4 L1 Data Cache Operations

This section describes various operations that are performed on the L1 data cache. 
These operations change the behavior of regions of the data cache, as well as assist in 
turning it on or off. Lines in the data cache are locked, cleaned (written out when dirty), 
and invalidated, either globally or on a per line basis. Regions of the L1 data cache are 
used to permanently hold and cache a small part of memory, or these are configured to 
act as a small amount of high-speed “scratch memory”, that is not present in allocated 
system memory. Specific regions of locked data memory are cleaned, but still remain 
locked in cache, in order to have the contents written out to main memory in a 
cache-line burst operation, even though these are written in small amounts multiple 
times.
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Example 22. Lock Lines in the L1 Data Cache (Sheet 1 of 2)

@
@ Restrictions:
@
@  Prefetch abort handler MUST turn off lock mode bit
@  as soon as possible.
@
@  Data abort handler MUST turn off lock mode bit as
@  soon as possible.
@
@  When there are any imprecise aborts during locking
@  the result of locking is unpredictable.
@
@  NOTE: This routine always locks at least one line.
@        End address needs to be greater than start address.

@ PSR bit defines
.setPSR_I, 0x80
.setPSR_F, 0x40

@ LockDCache flags
.setL_LEN, 0x01
.setL_INV, 0x02

@ Data Cache Lock Mode
.setM_LOCKED, 0x01
.setM_NOT_LOCKED, 0x00

@ Cache Line Size
.setLINE_SIZE, 0x20
@
@ _LockDCache(Start,End_or_Length,Flags)
@
@ Inputs
@ R0 Start Address
@ R1 End Address (inclusive) or Length
@ R2 Flags
@
@ Outputs
@ R0 Success (1) / Failure (0)
@
@ Registers used
@ R1 - R3, IP
@
@ Usage:
@
@  When a region length is specified in R1 then the
@  L_LEN flag must be set. All data cache 
@  unlocked and invalidated when the L_INV flag is set.
@  When several things are to be locked into the cache
@  the L_INV flag needs to be set for the first item
@  to be locked and clear for subsequent items.
@
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The above routine in Example 22 locks lines of data from memory into the L1 data 
cache. This is useful as a high-performance method for accessing periodically used 
symbols or lookup tables in close proximity in memory. Because of the fact that way0 
of the data cache cannot be locked, a maximum of 24 KB of L1 data cache is locked. In 
practice, the maximum is less than that, depending on the addresses of the locked lines 
and due to the fact that at most 3 ways of each set are locked. The locking is 
accomplished by putting the L1 data cache in ‘lock mode’ by writing a ‘1’ to 
co-processor 15 register 9. Once the data cache is in ‘lock mode’, any newly allocated 
cache lines have the lock bit set, which prevents these from being evicted. The routine 
puts the data cache in lock mode, then proceeds to load the first word of each cache 
line using a ‘ldr’ instruction. The data being loaded into register ‘r2’ or ‘r3’ is thrown 
away, since the ‘ldr’ instruction is used just to cause the line to be fetched and locked. 
Loading the first word causes the 3rd generation microarchitecture to fetch the full 
32-bytes to fill each cache line.

.p2align 2

.global _LockDCache

.type_LockDCache,function
_LockDCache:

mrs ip, cpsr@ Save CPSR
orr r3, ip, #PSR_I | PSR_F
msr cpsr_c, r3@ Disable Interrupts

mrc p15, 0, r3, 1, 0, 0
mcr p15, 0, r3, 1, 0, 0@ Force a DCU drain

tst r2, #L_INV
mcrnep15, 0, r0, c9, c6, 1@ Unlock D-Cache
mcrnep15, 0, r0, c7, c6, 0@ Invalidate D-Cache

mov r3, #M_LOCKED
mcr p15, 0, r3, c9, c6, 0@ Set Lock Mode

tst r2, #L_LEN
addner1, r1, r0
subner1, r1, #1

CacheFill:
ldr r2, [r0], #LINE_SIZE
mrc p15, 0, r3, 1, 0, 0
mcr p15, 0, r3, 1, 0, 0@ Force a DCU drain
cmp r0, r1
ldrlsr3, [r0], #LINE_SIZE
mrclsp15, 0, r3, 1, 0, 0
mcrlsp15, 0, r3, 1, 0, 0@ Force a DCU drain
cmplsr0, r1
bls CacheFill

orr r2, r2, r3@ Create a dependency stall

mrc p15, 0, r0, c9, c6, 0@ Read Lock Mode
mov r2, #M_NOT_LOCKED
mcr p15, 0, r2, c9, c6, 0@ Clear Lock Mode

msr cpsr_f, ip@ Reset Interrupt flags

and r0, r0, #M_LOCKED@ Test lock flag
mov pc, lr

.Lfe1:
.size_LockDCache,.Lfe1-_LockDCache

Example 22. Lock Lines in the L1 Data Cache (Sheet 2 of 2)
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Note: This routine takes advantage of a special 3rd generation microarchitecture feature — 
writing the Control Register has the side effect of forcing a Data Cache Unit (DCU) 
drain. Do not depend on this behavior in other microarchitectures!

It is important to note that when any part of the data being fetched already existed in 
the L1 data cache, the data is not fetched into the cache, and the lock operation for 
that cache line does not occur. To avoid this, the code above has a flag that unlocks and 
invalidate all data in the cache before locking any new data. 

Note: Any existing data is lost so the cache needs to be cleaned before the lock routine is 
called in this case.

Additionally, care must be taken to ensure the processor is not interrupted during this 
operation. When the lock mode is on, any memory operation resulting in a data cache 
fill causes that line to be locked, and were an interrupt handler to execute during this 
time, undesired results occur. It is recommended that interrupts be disabled when 
performing this operation. For more information on interrupts in the 3rd generation 
microarchitecture, see “Disable Interrupts” on page 62, and “Enable Interrupts” on 
page 62.

Example 23. Create L1 Data Cache RAM

@ R1 contains the virtual address of a region of memory to configure as data RAM,
@ which is aligned on a 32-byte boundary.
@ MMU is configured so that the memory region is cacheable.
@ R0 is the number of 32-byte lines to designate as data RAM. In this example 16
@ lines of the data cache are re-configured as data RAM.
@ MMU and data cache are enabled prior to this code.
@ Care must be taken to ensure no interrupts occur during the time ‘lock mode’
@ is enabled. It is recommended interrupts be disabled during this operation.
.macro ALLOCATE, Rx

mcr p15, 0, \Rx, c7, c2, 5
.endm
.macro BARRIER, Rd

mcr p15, 0, \Rd, c7, c10, 5  @ DMB Operation to provide memory barrier
                             @ contents of \Rd ignored

.endm

BARRIER r0
mov r2, #0x1
mcr p15, 0, r2, c9, c6, 0   @ Put the data cache in lock mode
CPWAIT r3
mov r0, #16

LOOP1:
ALLOCATE r1                 @ Allocate and lock a tag into the data cache at
                            @ address [R1].

@ Note that newly allocated line contains unpredictable data.
@ The caller to this function ensures it writes the line with known
@ data to avoid using the unpredictable data.
add r1, r1, #32             @ Increment to the next line
subs r0, r0, #1
bne LOOP1

@ Turn off data cache locking
mov r2, #0x0
mcr p15, 0, r2, c9, c6, 0   @ Take the data cache out of lock mode.
CPWAIT r3
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This example creates “data cache RAM” by locking lines that correspond to an 
unallocated memory region in L1 data cache. This is useful when a high-performance 
scratch pad region is required, either to use as a place to store values that do not fit in 
the available registers, or as a place to consolidate and quickly access symbols which 
are widely dispersed in physical memory.

Because way0 of the L1 data cache cannot be locked, a maximum of 24 KB of L1 data 
cache is locked. The actual number of lines is less than that, due to the fact that only 
3 ways of each set are locked.

The creation of data RAM is accomplished by putting the L1 data cache into “lock 
mode”, by writing to co-processor 15 register 9. Once the data cache is in “lock mode”, 
any newly allocated cache lines have the lock bit set, which prevents these from being 
evicted. The data RAM is created by executing a cache line allocate operation for each 
line that needs to be locked. The allocate operation causes the L1 data cache to allocate 
a cache line for the specified memory region, but does not issue a fetch for the data. 
This allows the allocation of cache lines for memory regions that do not exist in the 
system.

Note, that the memory region used for data cache RAM must have valid page table 
descriptors, which are set to be cachable and writeback. This is because the page table 
entry for the address is checked when a memory operation references the data RAM, 
and it must be set so reads and writes both hit the cache and do not go out to memory. 
After this operation is complete, the lines locked are accessible for reads and writes by 
simply loading or storing to the memory region. See “L1 Data Cache Line Allocation” on 
page 40 for another example of the uses of the L1 data cache line allocate operation.

As in the previous example, it is important that the code be allowed to run without 
handling any interrupts while lock mode is enabled, or data becomes locked in cache 
that was used as part of the interrupt handler.



3rd Generation Intel XScale® Microarchitecture
July 2007 Software Design Guide
Order Number: 315058-001US 37

Memory—3rd Generation Microarchitecture

This code unlocks all lines in the L1 data cache by writing to co-processor 15, 
register 9. The contents of the L1 data cache lines (both locked and unlocked) are not 
altered. After execution of this code, any data in the L1 data cache is potentially evicted 
when a new line is fetched and there is no invalid line in the set to store the incoming 
data in. 

Note, that some L1 cache locking functions were moved on the 3rd generation 
microarchitecture, and that this code uses the new function. The old functions are 
deprecated. This operation is issued in a situation where system software wanted to 
ensure that all lines in the L1 data cache were unlocked; for example, just before a 
global invalidation during the disable sequence of the L1 data cache.

This code globally invalidates all lines in the L1 data cache by writing to 
co-processor 15, register 7. Any lines in the data cache are marked as invalid, and 
when the contents had been modified, the data was not written out to memory. 

Note, that when any of the data cache lines were locked at the time this operation was 
executed, these are not invalidated or unlocked; the contents remain locked in the L1 
data cache unaltered. When ensuring invalidation of the entire data cache is desired, 
and the possibility of locked lines exists, software must globally unlock the data cache 
before performing the global invalidation function. 

This operation is useful when the system software wanted to have a known state for 
the contents of the L1 data cache. For example, when the system is beginning its boot 
sequence after having been started by a platform boot-loader or firmware, it is better 
to invalidate the L1 data cache than clean it, because it is undesirable to have any of 
the unknown contents of the cache written out to memory.

Example 24. Globally Unlock the L1 Data Cache

mov r1, #0                    @ The data in R1 is to be zero
mcr p15, 0, r1, c9, c6, 1     @ globally unlock all lines in the d-cache
                              @ data in r1 is ignored

Example 25. Globally Invalidate the L1 Data Cache

mov r1, #0                   @ The data in R1 is to be zero
mcr p15, 0, r1, c7, c6, 0    @ globally invalidate all lines in the d-cache
                             @ data in r1 is ignored



3rd Generation Microarchitecture—Memory

3rd Generation Intel XScale® Microarchitecture
Software Design Guide July 2007
38 Order Number: 315058-001US

This code cleans, invalidates, and unlocks cache lines corresponding to a region of 
memory in the L1 data cache. This is done by writing the cache line aligned address to 
co-processor 15, register 7. When data exists in the L1 Data Cache corresponding to 
the modified virtual address being invalidated, it is written out when modified (inother 
words, the dirty bit is set), unlocked when it was locked, and invalidated. 

This operation is used during the shutdown or exit process of a device driver that had 
allocated locked lines in the L1 data cache in order to have higher performance. By 
using the clean, invalidate, and unlock operation it simultaneously writes out any 
changes to memory, then free up the cache lines for use by other code by invalidating 
and unlocking these.

This operation is used to clean both locked and unlocked lines in the L1 data cache, by 
writing the modified virtual address of the locked data to co-processor 15, register 7. 
When the lines are locked, these remain locked and unaltered after this operation 
completes, and when these are modified the contents was written out. Any modified 
virtual address that has valid page table descriptors are cleaned, and when the 
contents of the line are valid and have been modified it is written out to memory. 

This operation is typically used as both a way to ensure that writes to a memory region 
have been cleaned out of the cache (in the case of lines that are not locked) and as a 
way to exercise control over when writes are cleaned out of the cache (in the case of 
locked lines).

Example 26. Clean, Invalidate, and Unlock Lines in the L1 Data Cache

@ r1 contains the virtual address of a region of memory to clean & unlock
@ r0 is the number of 32-byte lines to clean, invalidate and unlock in
@ the data cache.
@ MMU and data cache are enabled prior to this code.

LOOP1:
mcr p15, 0, r1, c7, c14, 1 @ Clean and invalidate in one operation
add r1, r1, #32            @ increment addr in r1 to the next cache line

subs r0, r0, #1            @ Decrement loop count
bne LOOP1

@ The data at the addresses in r1 has been written out when dirty, unlocked,
@ and the cache lines are now invalid.

Example 27. Clean L1 Data Cache Lines

@ r1 contains the virtual address of a region of memory in
@ the L1 D-cache to clean.
@ r0 is the number of 32-byte lines to clean in the data cache.
@ In this example 16 lines of data are cleaned.
@ MMU and data cache are enabled prior to this code.

mov r0, #16
LOOP1:

mcr p15, 0, r1, c7, c10, 1 @ Write out the line when its dirty in the cache
add r1, r1, #32            @ increment addr in r1 to the next cache line

subs r0, r0, #1            @ Decrement loop count
bne LOOP1

@ At this point the data at address r1 has been written out
@ when it had been modified.



3rd Generation Intel XScale® Microarchitecture
July 2007 Software Design Guide
Order Number: 315058-001US 39

Memory—3rd Generation Microarchitecture

Unlike the invalidate and unlock operations, there is no single global clean operation for 
the L1 data cache. This example performs the equivalent task by iterating through all 
sets and ways in the L1 data cache and issuing a set/way clean operation by writing to 
co-processor 15, register 7. 

Depending on CRm, this operation is also invalidate the line after it has been cleaned in 
one operation (CRm=c10 just cleans, CRm=c14 cleans and invalidates). Both forms of 
the operation are shown in the example above, with the invalidate operation 
commented out. The set and way is stored in two registers and concatenated into r0. 

After this code, all modified lines in the L1 data cache are written out when the dirty bit 
was set, and all lines are invalid (when the invalidate operation was used). It is 
important to note that when any lines in the L1 data cache are locked when this 
operation is executed, the contents are not written out to main memory, and these 
remain locked. When it is desired to clean the contents of locked lines in the L1 data 
cache, it is necessary to either unlock those lines with a global unlock operation or 
clean that region by modified virtual address as shown in previous examples.

Example 28. Globally Clean (and Invalidate) L1 Data Cache by Set & Way

@ Clean (and invalidate) by set/way
@ Increment the way index in the inner loop while decrementing the set index
@ in the outer loop. Check flags to decide when to branch.
@ Number of ways per set: 4
@ Number of Sets:         256
@ Defines for number of sets, and bit position of set and way indexes:
.setNUMSETS, 256
.setWAYINDEX, 0x40000000
.setSETINDEX, 0x20

mov r0, #NUMSETS
sub r0, r0, #1
mov r0, r0, lsl #5          @ Put number of sets-1 into bits 12:5 of r0

CLEANLOOP:
mcr p15, 0, r0, c7, c10, 2  @ clean set/way specified in r0

@ The operator also uses a clean and invalidate here instead of just a clean
@ mcr p15, 0, r0, c7, c14, 2 @ clean/invalidate set/way specified in r0

adds r0, r0, #WAYINDEX      @ Increment shifted way index
bcc CLEANLOOP               @ Clean the next way when not done with this set
subs r0, r0, #SETINDEX      @ Decrement shifted set index
bpl CLEANLOOP               @ Go to next set when not at last one
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3.2.5 L1 Data Cache Line Allocation Operation

The 3rd generation microarchitecture L1 data cache allows a user-mode application to 
access the line allocation function. This function allows software to allocate a line in the 
L1 data cache, corresponding to a specified virtual address. When the cache line is 
allocated, no external memory access is performed and the operation completes 
quickly. 

After the line has been allocated, writes to that address produce a cache ‘hit’ the first 
time. Because of this, it is a useful method of preparing the cache for a series of writes 
to a memory location. Because the line is not fetched, its contents are unpredictable 
following allocation. 

Software is required to initialize the entire cache line prior to doing any reads or clean 
operations to that line. When this is not done, part or all of the data read back (or 
cleaned) is unpredictable. Since it is a user-mode accessible function, it is possible for 
user-mode applications to take advantage of the performance improvement line 
allocating provides.

In Example 29 allocating an L1 data cache line is done by writing the cache-aligned 
virtual address to co-processor 15, register 7. The instruction is issued in user mode, 
allowing user applications takes full advantage of the performance benefits of this 
function. 

It is useful for an application to allocate a cache line any time it is known that the 
memory location is written initially (with all lines involved entirely written), and not 
read first or modified. It ensures that the first write produces a write cache ‘hit’, and 
that the data is not written out until the cache lines containing the data are cleaned. 
This allows the software to ensure a burst memory transaction is generated regardless 
of the number and size of the individual writes to the cache lines. 

Note, that issuing an L1 data cache line allocate instruction when the L1 data cache is 
disabled results in a no-op, with no action being taken. It is important to note that the 
line allocation operation takes a VA (virtual address) as opposed to an MVA (modified 
virtual address). This means that the address being allocated is modified by the 
Process ID register before being translated by the MMU to a physical address.

Note: The L1 data cache line allocation function is deprecated.

Example 29. L1 Data Cache Line Allocation

@ Allocates cache lines for the specified memory address
@ The virtual address (which is PIDified) to allocate lines for is in r1,
@ The number of bytes (a multiple of 32 which is rounded up to a cache line)
@ is in r2.

add r2, r2, #31            @ round up to nearest cache line
mov r0, r2, lsr #5         @ get number of lines, put in r0

LOOP1:
mcr p15, 0, r1, c7, c2, 5  @ allocate a line at the address in r1
subs r0, r0, #1            @ Decrement loop count
add r1, r1, #32            @ Increment the address by 1 line
bne LOOP1
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3.2.6 L2 Cache

When implemented, the L2 cache on the 3rd generation microarchitecture is several 
times the size of the L1 data and instruction caches, and is organized such that 
instruction and data memory are not distinguished from each other. Instead of 4 ways, 
the L2 cache contains 8 ways and either 1024 or 2048 sets, depending on whether the 
L2 cache is 256 KB bytes or 512 KB. Some specific applications do not have an L2 
cache present.

When an instruction or data memory fetch occurs, when the address is not found in the 
L1 cache and the MMU finds that the memory region is L2 cacheable, the 
3rd generation microarchitecture attempts to produce an L2 ‘hit’ by looking for the data 
in the L2 cache. When the data is present, it is returned to the microarchitecture. This 
situation requires more microarchitecture clock cycles than when the data was present 
in the L1 cache, but takes much fewer cycles than a load from main memory. 

When a write to a region is L2 cacheable, and there is a valid line in the L2 cache 
corresponding to the address, the write always goes into the L2 cache. When the line is 
not in the L2 cache and a write occurs, the data is fetched from memory, placed in the 
cache, and the write ‘hits’ the line. 

This write-back and write-allocate behavior is always the case with the L2 cache on the 
3rd generation microarchitecture. The L2 cache is disabled at system reset, and all 
lines are invalidated and unlocked. Because the MMU is also disabled at system 
power-on reset, even after the L2 cache is enabled, the L2 cache is effectively disabled 
until the MMU is enabled.

The L2 cache is enabled by modifying the control register (co-processor 15, register 1) 
so that the U bit (bit 26) is turned on. The L2 cache is disabled at system boot and 
needs only to be enabled once, and not disabled during the normal operation of the 
system. Disabling the L2 cache once it has been enabled produces unpredictable 
results.

Example 30. Obtaining L2 cache information through the cp15 Cache Type Register

@ These macros read the L2 Cache Type Register in cp15.

@ This macro sets CPSR.z = 1 when L2 not present, else CPSR.z = 0
.macro GET_L2_PRESENT, Rd

mrc p15, 1, \Rd, c0, c0, 1 @ Read L2 Cache Type Register for Associativity
ands \Rd, \Rd, #0xf8        @ See when the L2 Cache is absent

.endm

Example 31. Enable the L2 Cache

@ Enable the L2 unified cache on the microarchitecture.
mrc p15, 0, r3, c1, c0, 0      @ Get Control Register
orr r3, r3, #0x04000000        @ Set U Bit (bit 26)
mcr p15, 0, r3, c1, c0, 0      @ Update control register
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Specific L2 cache lines are invalidated and unlocked by accessing co-processor 15, 
register 7 and writing the modified virtual address of the memory location, which 
corresponds to the cache line to unlock. 

When the cache line corresponding to the address exists and is valid in the L2 cache, it 
is invalidated, and unlocked when it had been locked. When it had been modified in the 
L2 cache, its contents were not written out to memory. 

It is important to note that this operation is weakly ordered along with all other L2 
cache access, and it is necessary to issue a bi-directional memory fence operation prior 
to this code in order to ensure all outstanding L2 memory operations have occurred in 
program order. For example, when a read had just been issued to one of the addresses 
being invalidated, it is necessary to wait for it to complete, to ensure the line was still 
valid at the time of the read, so the contents of the cache line are returned and not the 
contents of main memory.

This example performs a clean operation on specific L2 cache lines corresponding to a 
modified virtual address. When the cache line corresponding to the address exists in 
the L2 cache and has been modified (in other words, the dirty bit is set) then the 
modified line is written out of the L2 cache. The contents of the cache line is not 
modified, and when it was locked it remains locked.

Example 32. Invalidate and Unlock L2 Cache Lines

@ r1 contains the virtual address of the region of memory to invalidate and unlock
@ r0 is the number of 32-byte lines to invalidate and unlock in the L2 cache.
@ In this example 16 lines of data are invalidated
@ MMU is enabled prior to this code.

mov r0, #16               @ Number of cache lines to invalidate
LOOP1:

mcr p15, 1, r1, c7, c7, 1 @ Invalidate any lines corresponding to addr r1
add r1, r1, #32           @ increment the address in r1 to
                          @ the next cache line

subs r0, r0, #1           @ Decrement loop count
bne LOOP1

@ The data at address r1 has been unlocked, and the cache lines are now invalid.

Example 33. Clean L2 Cache Lines

@ r1 contains the virtual address of a the region of memory to clean
@ r0 is the number of 32-byte lines to clean in the L2 cache.
@ In this example 16 L2 cache lines are cleaned.
@ MMU is enabled prior to this code.

mov r0, #16
LOOP1:

mcr p15, 1, r1, c7, c11, 1 @ clean any line corresponding to addr r1
add r1, r1, #32            @ increment the address in r1 to the next
                           @ cache line

subs r0, r0, #1            @ Decrement loop count
bne LOOP1

@ The data at address r1 has been written out of the L2 cache when it was modified.
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Unlike the unlock and invalidate operations, there is no single operation that globally 
cleans the L2 cache. Code above performs this task by executing the “clean and 
invalidate by set/way” operation. 

The L2 cache line is specified by writing the set and way to co-processor 15, register 7. 
The code above issues this operation to all cache lines that are valid in the L2 cache, by 
iterating the index through all possible sets and ways. The number of sets is 
determined by calling a macro to read the L2 Cache Type Register (Example 30 on 
page 41). 

Note, when any L2 cache lines are locked, these are not cleaned, invalidated or 
modified, and the contents remains locked and unaltered. To ensure that there are no 
valid lines and no modified data in the L2 cache, it is necessary to globally unlock all 
lines in the L2 cache prior to starting this operation. 

Also note, that a memory barrier operation is used before and after the code to ensure 
that all L2 memory operations in program order are completed before the global 
clean/invalidate begins, and that none occur until all lines have been cleaned and 
invalidated. 

Although this operation is used to ensure lines in the L2 cache is marked invalid and all 
modified lines ware cleaned out, when the code in the example is in a page marked 
outer cacheable, the lines containing the code is in the L2 cache at the completion of 
this operation.

Example 34. Globally Clean and Invalidate L2 Cache by Set and Way

@ Clean and Invalidate L2 by set/way
@ Increment the way index in the inner loop while
@ Decrementing the set index in the outer loop. Check flags to decide
@ when to branch.
@ Number of ways per set: 8
@ Number of Sets:         2048

.macro BARRIER, Rd
mcr p15, 0, \Rd, c7, c10, 5  @ DMB Operation to impose memory fence.
                             @ contents of \Rd ignored

.endm

BARRIER r0
GET_L2_SIZE r0                 @ low four bits returned in r0 are the L2
                               @ cache size, starting with 64 KB (0b0000)
                               @ and increasing by powers of 2.
mov r1, #0xffffffe0
mov r2, #19
sub r2, r2, r0                 @ determine the number of sets
mov r0, r1, lsl r2             @ clear out the extra bits when configuring
mov r0, r0, lsr r2             @ the number of sets

CLEANLOOP:
mcr p15, 1, r0, c7, c15, 2 @ clean and invalidate set/way in r0
adds r0, r0, #0x20000000   @ Increment shifted way index
bcc CLEANLOOP              @ Clean the next way when not done with this set
subs r0, r0, #0x00000020   @ Decrement shifted set index
bpl CLEANLOOP              @ Go to next set when not at last one

BARRIER r0
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This code example performs a fetch and cache line fill of the data in the region 
specified, and then locks all the lines which are filled with the data. 

By writing to co-processor 15, register 9, a fetch of a modified virtual address is 
performed, and the cache line is locked with the data retrieved. Unlike the operation of 
the L1 caches, when the data is already present in the L2 cache its lock bit is simply 
set, due to the fact that any way of the L2 cache sets are locked. 

Also note, that unlike the L1 data cache, the lock operation is targeted at the line being 
loaded, as opposed to putting the cache in a ‘lock mode’ and having all fills locked while 
the mode is on. It is because of these differences that a memory barrier is not 
necessary during the course of this operation. 

After this operation is complete, the data from the memory region specified in r1 is 
present and locked in the L2 cache, and generates a cache ‘hit’ when accessed.

Example 35. Load and Lock Lines in the L2 Cache

@ r1 contains the virtual address of the region of memory to lock in L2 cache
@ r0 is the number of 32-byte lines to lock.
@ In this example 16 cache lines of data are fetched and locked in the L2 cache
@ MMU is enabled prior to this code.

mov r0, #16
LOOP1:

mcr p15, 1, r1, c9, c5, 0  @ fetch the data at addr r1, and lock
                           @ it in the l2 cache
add r1, r1, #32            @ increment the address in r1 to
                           @ the next cache line

subs r0, r0, #1            @ Decrement loop count
bne LOOP1
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This sequence includes macros that create and destroy L2 Cache RAM by locking a 
series of lines in the L2 cache, and then unlocking and invalidating these. 

The lines corresponding to the address specified in Ra are allocated and locked by 
writing to co-processor 15, register 9. No fetch from main memory is performed, so the 
data present in the lines after these are allocated is unpredictable. Since the locked 
lines are not evicted from the L2 cache, the contents of the lines are not written out, 
unless these are explicitly cleaned or unlocked. Since the lines are locked, these are not 
evicted from the L2 cache and always produce a cache ‘hit’ when read from or written 
to. By using an address space that has valid page table entries, but does not 
correspond to any physical memory, the region effectively becomes L2 RAM, which is 
read and written to - much faster than when it required accessing main memory for 
reads and writes.

Example 36. Create and Destroy L2 Cache RAM

@ These macros are used to create and destroy a section of L2
@ Cache RAM. The address is passed in as register Ra and the number of
@ 32-byte lines is passed in as register Rn for both macros.
@ The L2 Cache RAM is destroyed using the L2 Invalidate by MVA Operation,
@ which also ensures the line is unlocked.

.macro CREATEL2RAM, Ra, Rn
   1:
   mcr p15, 1, \Ra, c9, c5, 2 @ Allocate & Lock L2 Line
   add \Ra, \Ra, #32          @ Move to next cache line
   subs \Rn, \Rn, #1          @ Decrement loop count
   bne 1b
.endm

.macro DESTROYL2RAM, Ra, Rn
   1:
   mcr p15, 1, \Ra, c7, c7, 1   @ Invalidate L2 line
   add \Ra, \Ra, #32            @ Move to next cache line
   subs \Rn, \Rn, #1            @ Decrement loop count
   bne 1b
.endm

@ Note that the contents of the newly created L2 RAM are unpredictable, and
@ The caller ensures it initializes the line with data before
@ attempting to read or utilize the data.
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This operation uses co-processor 15, register 9 to globally unlock all lines in the L2 
cache. Any lines in the L2 cache with the lock bit set has it unset, but the contents of 
the L2 cache is not altered. After this operation completes, any new fetch of data 
potentially evicts any lines in the L2 cache, and the memory contents are written out 
when these had been modified. 

This operation is necessary when it was desired to globally clean and invalidate the L2 
cache when there are cache lines locked. When the global cache clean and invalidate 
sequence (by set and way) encounters a locked line, the line is not cleaned or 
unlocked, so it is necessary to issue a global unlock instruction prior to cleaning to 
ensure all modified data in the L2 cache was written out. 

Note, that while the global unlock of the L2 cache is a single operation, the global L2 
cache clean and invalidate is a loop where each set/way is individually cleaned, as 
shown in Example 34 on page 43.

Example 37. Globally Unlock the L2 Cache

mov r1, #0                    @ The data in R1 is to be zero
mcr p15, 1, r1, c9, c5, 1     @ unlock all L2 cache lines
                              @ data in R1 is ignored
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3.2.7 Branch Target Buffer (BTB)

The 3rd generation microarchitecture contains a 128-entry direct mapped branch 
target cache referred to as the branch target buffer or BTB. This cache holds the target 
address of a direct branch operation that is used as the next pipeline fetch address for 
the predictable branch. It is very desirable to enable the BTB. When a direct branch is 
predicted correctly by the BTB, the branch is taken without any penalties relating to 
flushing the instruction pipeline. With the BTB disabled, all direct predictable branches 
are assumed to be not taken, and when these are taken, program execution must stall 
while the pipeline is flushed and instructions from the branch target are fetched.

Example 38 on page 47 shows a simple code fragment that enables the BTB. The BTB is 
enabled at any time and is independent of the MMU. The addresses saved in the cache 
are virtual addresses so anytime page table mappings are changed the BTB also needs 
to be invalidated. In certain situations, such as a change to the Process ID (PID) 
register, or when invalidating the entire instruction cache, the BTB is also implicitly 
invalidated. 

Example 39 on page 48 shows the instruction to invalidate the BTB. Additionally, when 
writing self-modifying code, be sure to invalidate the BTB before executing any of the 
newly created code.

The BTB on the 3rd generation microarchitecture is enabled by modifying the ARM 
control register to have the Z bit (BTB enable) turned on. When the BTB is enabled, 
direct branches are cached along with whether or not these are taken is recorded. 
When the same branch is encountered again it is predicted and when correct, no 
pipeline flush is necessary when the branch actually occurs.

Although the BTB is mainly transparent in operation, at certain times it is necessary to 
explicitly perform operations on it to ensure correctness. These occur when data in the 
L1 instruction cache changes or is invalidated and the data in the BTB is not kept in 
synchronization. When that situation occured, the processor behaves unpredictably 
when stale branch addresses were encountered. 

Example 38. Enable the BTB

mrc, p15, 0, r0, cl, 0 @ Read the ARM control register
orr r0, r0, #0x800           @ Enable the Z (BTB) bit
mcr p15, 0, r0, c1, c0, 0    @ Write the modified value
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Example 39 shows how to specifically invalidate only the BTB using co-processor 15, 
register 7.

Although the operation above is used any time to invalidate the entire BTB, there are 
certain times when it is implicitly invalidated as well. Whenever the Process ID (PID) 
register is changed, it is affect the mapping between virtual addresses and the 
addresses of physical instructions, so the BTB is invalided. Additionally, whenever the 
entire instruction cache is invalidated, the BTB is also invalidated, because there is no 
case where the BTBs contents need to remain intact after the entire instruction cache 
has been invalidated.

However, for operations like single instruction cache line invalidation by MVA, and for 
changes being made to the page table mappings of instruction memory addresses, the 
BTB is not implicitly invalidated, and it is necessary to execute the BTB invalidate 
operation in order to ensure no stale branches are cached in the BTB.

This code disables the BTB by modifying the ARM control register to have the Z bit (BTB 
enable) turned off. 

Note, that the BTB is then invalidated as shown in the previous example after it has 
been turned off. Turning off the BTB first then invalidating it ensures that no new 
branch prediction data ise cached during the execution of the invalidation operation. It 
is also possible to disable the BTB and instruction cache simultaneously and then 
invalidate both simultaneously by issuing the L1 instruction cache and BTB invalidate 
operation as shown in Example 19 on page 30.

Example 39. Invalidate the BTB

mov r0, #0                    @ The data in R0 is to be zero
mcr p15, 0, r0, c7, c5, 6     @ Invalidate the BTB

Example 40. Disable the BTB

mrc p15, 0, r0, cl, c0, 0 @ Read the ARM control register
bic r0, r0, #0x800           @ Disable the Z (BTB) bit
mcr p15, 0, r0, c1, c0, 0    @ Write the modified value
mov r0, #0                   @ The data in R0 is to be zero
mcr p15, 0, r0, c7, c5, 6    @ Invalidate the BTB
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3.2.8 Self-modifying Code

This section describes the operations that system software invokes, in order to 
correctly execute code that has been modified or created by another running process. 
This typically involves JIT (Just In Time) compilers which are becoming increasingly 
prevalent with the advent of Java, .NET, and dynamic object code translation 
technology. It is important that after any creation of code in a buffer has taken place, 
the correct operations are performed, so that the 3rd generation microarchitecture 
view of the instructions is not stale or incorrect.

Since creating a buffer of translated or compiled instructions likely involves a lot of 
writes to a localized region of memory, it is desirable to pre-allocate the region before it 
is written, so the data is written once in a burst to main memory. See “L1 Data Cache 
Line Allocation” on page 40 for more information on the line allocation operation. After 
the code has been written to memory, some or all of it is present in the L1 data cache. 
Since the L1 instruction cache is not coherent with the data cache, simply writing the 
code and immediately branching to it generates unpredictable results. For this reason, 
a series of steps must be completed to ensure the code is first cleaned out of the data 
cache, then correctly fetched back into the instruction cache, and finally that any 
residual data from stale instructions are cleared out of the 3rd generation 
microarchitecture. An example code sequence which prepares the microarchitecture to 
execute a buffer of just-in-time compiled code is shown in Example 41 on page 49.

Example 41. Branching to Runtime Generated Code

@ This code sequence branches to a buffer of instructions
@ that has just been written by an application sach as a JIT compiler.

@ r1 contains the address of the code buffer
@ r2 contains the number of bytes in the code buffer

add r2, r2, #31             @ must be atleast 1 line
mov r0, r2, lsr #5          @ get number of lines, put in r0

@ First, clean the d-cache and invalidate the i-cache lines with this region
@ (to ensure the instruction cache sees the recent writes)

mov r3, r0                  @ put # of lines in r3
mov r4, r1                  @ put address to clean in r4

CLEANLOOP:
mcr p15, 0, r4, c7, c10, 1  @ Write out the line when dirty in the d-cache
mcr p15, 0, r4, c7, c5, 1   @ invalidate address r4 in I-cache
add r4, r4, #32             @ increment addr to clean
subs r3, r3, #1             @ decrement loop counter
bne CLEANLOOP               @ continue until done

@ Any I-cache lines at this location have been invalidated. But when the BTB
@ contained branch information it is still there and cause
@ unpredictable execution of the new code. Invalidate the BTB.

mcr p15, 0, r3, c7, c5, 6   @ Invalidate all entries in the BTB
                            @ contents of r3 ignored

@ Now before executing the code, ensure that any memory operations
@ which were invoked from the previous clean have completed so the instruction
@ fetch gets the correct data.

mcr p15, 0, r3, c7, c10, 4  @ DWB, data in r3 is ignored

@ Prefetch flush to clear the pipeline of any fetched instructions

mcr p15, 0, r3, c7, c5, 4   @ PF, data in r3 is ignored

@ Now branch directly to the address at the start of the code buffer.
mov pc, r1
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In this example, the 3rd generation microarchitecture is set up to execute code that 
has just been written to memory. Since the microarchitecture L1 instruction and data 
cache are not coherent (these are completely separate), it is important to follow certain 
steps to ensure that the instructions which have been created or modified are executed 
correctly. 

The memory region that contains the code, which was created or modified, must first 
be cleaned out of the L1 data cache, so the instruction cache fetch loads it when the 
3rd generation microarchitecture begins to execute the new code. Additionally, any 
stale instructions present in the microarchitecture pipeline must be flushed out. 

Since instruction information is present in the L1 instruction cache, the BTB, and the 
pipeline, all of these must be cleaned in order to ensure these do not interfere with the 
execution of the new code. A memory barrier operation is used to ensure the memory 
operations invoked by this procedure have completed before the compiled code begins 
to execute. 

The operations used in this example are explained in more detail in the following 
sections: Section 3.2, “Cache Management”, and Section 3.4, “Memory Barriers”.
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3.3 Aborts

Aborts in the 3rd generation microarchitecture are handled as part of the ARM standard 
exception architecture. Prefetch aborts are lower in priority than the external 
interrupts, FIQ and IRQ, while data aborts are higher priority. When an abort occurs, 
the microarchitecture branches to the appropriate abort exception vector, where it is 
then read the FSR and FAR registers to determine the type and cause. In the case of 
multiple aborts, the highest priority abort is visible first. A table of aborts, the 
attributes, and the priorities are found in the Programming Model chapter 
3rd Generation Intel XScale® Microarchitecture Developer’s Manual.

3.3.1 Prefetch Aborts

The memory system detects a memory abort on an instruction fetch and flag the 
fetched instruction(s) as invalid to the 3rd generation microarchitecture. A prefetch 
abort occurs when the microarchitecture attempts to execute an instruction that was 
flagged as invalid. There are several different causes for prefetch aborts. The memory 
management unit (MMU) reports an abort because permissions set in the page table or 
in the domain access control register for the memory region do not allow the target 
memory to be accessed. Another cause is an external error occurring outside the 
microarchitecture during the memory access. Also, when there was a parity error on 
the cache line being accessed, a prefetch abort occurs.

Prefetch aborts are precise exceptions, which means that the abort occurs before any 
subsequent instructions execute. Thus the architectural state of the 3rd generation 
microarchitecture is consistent and reflects what was happening on the 
microarchitecture up to the aborting instruction. The R14_ABORT register (which is the 
link register as viewed from the abort handler) contains the address of the instruction 
whose fetch caused the abort plus 4 bytes. Because the exact execution address is 
known, it is possible for the system to recover from a prefetch abort error by either a 
long-jump back to a known good state, or in the case that the code being executed 
needed to be paged in, paging it in and returning to the running program. In the 
second case, the code running that caused the abort is unaware it happened and 
continue executing as though it was always loaded.

 

Example 42. Recovering From an L1 Instruction Cache Parity Error

@ Prefetch abort handler
@ First Check FSR - for FS[10,3:0] = 0b11000 (IC parity)0x408

mrc p15, 0, r0, c5, c0, 0   @ Read FSR
tst r0, #0x0400             @ Check FSR for IC parity error
tstne r0, #0x08
bne icache_parity           @ branch to IC parity code
@ otherwise it was not IC parity error

@ ...

icache_parity:
sub r0, r14, #4             @ get address to invalidate in IC. 
bic r0, r0, #0x1F           @ Get cache-line that caused abort
mcr p15, 0, r0, c7, c5, 1   @ Invalidate & unlock line that caused abort
mcr p15, 0, r0, c7, c5, 6   @ Invalidate entire BTB
mcr p15, 0, r0, c7, c5, 4   @ Prefetch flush to clear any invalid
                            @ instructions out of the pipline
subs pc, r14, #4            @ Returns to the instruction that generated the
                            @ parity error
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Example 42 shows some steps that system software takes in order to recover from an 
L1 instruction cache parity error. An L1 instruction cache parity error is a precise 
prefetch abort, and when it occurs, the 3rd generation microarchitecture branches to 
the prefetch abort handler. The prefetch abort handler is checked the Fault Status 
register in co-processor 15 to determine what kind of prefetch abort occurred. In the 
case of an L1 instruction cache parity error, the error is recovered from by invalidating 
the L1 instruction cache line that caused the abort. The address to invalidate is 
determined by LR_ABORT-4 - this invalidates the entire cache line, aligned down to a 
cache line boundary. 

While it is also reasonable to use the global IC invalidate operation, locked lines are not 
unlocked in this case. Invalidating by modified virtual address (MVA) both unlocks and 
invalidates the target cache line. In either case, the BTB is also invalidated since it 
contains branch information related to code in the instruction cache. After the L1 
instruction cache line invalidation has taken effect, the instruction that encountered the 
IC parity error is executed by subtracting 4 bytes from the abort link register and 
placing it in the program counter register. This procedure applies to the instruction 
cache only, because it is known that the contents of the line that was lost was not 
modified (dirty), and therefore it is possible to simply invalidate the cache without any 
loss of dirty data.

Although some prefetch aborts occur due to errors retrieving the instruction memory 
such as parity errors, an instruction that accesses an invalid co-processor also causes a 
precise abort. In this case an undefined instruction exception is generated. Using this 
exception, it is possible to emulate a co-processor that does not exist. In that case, the 
undefined instruction exception handler reads and parses the instruction that caused 
the undefined exception; perform whatever emulation is necessary, including update of 
any destination registers; then return back to the code at the next instruction. The 
calling application is unaware that the results came from an emulated co-processor and 
not an actual co-processor in hardware.
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3.3.2 Data Aborts

Data aborts occur when the 3rd generation microarchitecture encounters an exception 
while attempting to access data memory. All data aborts fall into two categories:

Precise: On a precise abort software is determined precisely which 
instruction caused the abort by examining R14_ABORT. When 
the data abort exception handler is entered, the 3rd generation 
microarchitecture places the address of the instruction that 
caused the abort plus 8 bytes into R14_ABORT.

When a precise data abort occurs, it is possible for the system 
to recover and continue running when desired. This is because 
the exact address and state of the microarchitecture is known 
when the abort occurs, and system software is used this to 
long-jump to a known good execution location or, when the 
abort is due to an access of paged-out memory, load the page 
and continue execution.

Imprecise: For imprecise data aborts software cannot always determine the 
exact instruction that caused the abort and in some cases, there 
is not a specific instruction associated with the abort. In this 
case, the 3rd generation microarchitecture places the address of 
the next instruction to execute in the program flow (at the time 
the abort is generated) plus 4 bytes in R14_ABORT.

When an imprecise data abort occurs, it is considered 
unrecoverable. This is because the state of the 3rd generation 
microarchitecture at the time of the abort is unknown, and the 
program cannot continue execution because it is unsure which 
instructions have executed since the memory operation that 
failed. It is possible that certain instructions, which depended on 
a data operation, executed with unpredictable data. In this case 
the imprecise abort serves generally to alert the system to the 
error and to allow it to halt execution as soon as the integrity of 
the system is in doubt. It is possible to issue a soft reset or to 
somehow otherwise reset and then continue operation after an 
imprecise data abort. The exact action to take depends on what 
the products specification requires with respect to system 
integrity.

While certain data aborts occur due to errors such as data cache parity errors or errors 
on an external memory bus, some precise data aborts are used during the normal 
course of operation of the system. Since a precise data abort occurs on a virtual 
address translation when the page table entry permission bits are checked, it is 
possible for system software to mark pages which are “paged out” with the correct 
permission bits, then handle the exception when that page is accessed, by making the 
page available. Because the abort is precise and program execution stops on the 
instruction accessing the page which was paged out, the program continues when it is 
available without knowledge that the paging operation took place. This mechanism 
allows an operating system to support virtual memory.

In the case of certain bus transactions an external data abort is part of the system 
configuration and initialization procedure. For example, in order to discover devices on 
a PCI bus that are accessed by the 3rd generation microarchitecture through a bridge, 
it is necessary to issue a read operation to addresses that never return data, and use 
the result to determine what devices exist in the system.
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This code sequence illustrates how an external data abort, arising from a read of 
memory mapped device space, is used during system initialization. This code generates 
a read of an address space, where a PCI configuration space header register exists, is 
used to determine when a device is present in the slot. To higher level code calling the 
PCI access functions, a return value of binary 1s siginifies that nothing exists. However 
at a lower level, the processor in fact receives an external data abort when the PCI 
bridge experiences a time-out (master abort), while attempting to read the address. 

It is important that interrupts are disabled. When these were not, an interrupt occurs at 
any time that cause the 3rd generation microarchitecture to start executing the 
interrupt handler code. When an interrupt occured just after the read of the device and 
an external data abort came in during that time, it is impossible to determine the state 
of the system when the data abort occured. With interrupts disabled the pipeline is 
stalled, waiting for the data to be read into r1. When a data abort occurs, r1 contains 
unpredictable data. The code checks r6 (which needs to be set by the abort handler) to 
see when a data abort occured. When it did occur, it sets r1 to contain all 1s, signifying 
no device was present when the register space was read.

Example 43. Using An External Abort Handler During Device Configuration

@ This is the data abort handler, this code executes
@ When the read of a non-existent device occurs.
.dabrt_handler

mov r6, #1         @ r6 indicates whether or not an error occured.

@ Reset interrupt that is causing external data abort (write to
@ external registers to clear master abort

subs pc, lr, #4    @ return to instruction after the read

@ This code reads a memory mapped region of a device register.
@ The address of the register to read is in r0.
@ It uses the result (error or not) to determine when a device is present.
read_device:

mov r6, #0         @ r6 indicates whether or not an error occured.

mrs r3, cpsr       @ disable interrupts
orr r3, r3, #0xc0
msr cpsr_c, r3

ldr r1, [r0]       @ Read from memory mapped address
mov r1, r1
cmp r6, #0         @ Check to see when r6 is 1, meaning a data abort occured
mvnne r1, #0       @ Set read value to 0xFFFFFFFF when error

mrs r3, cpsr       @ restore interrupts
bic r3, r3, #0xc0
msr cpsr_c, r3

mov r0, r1         @ Return the read value, or 0xFFFF_FFFF when not present
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3.4 Memory Barriers

Often system software wants to ensure that a memory operation or a set of memory 
operations have achieved global observation. Because of the features which help to 
isolate the 3rd generation microarchitecture from the latency of the external busses, a 
memory operation is not necessarily globally observed when the instruction that 
initiated it has retired (See Figure 1 on page 55). For this reason, several instructions 
have been implemented, which allow the system to wait for a set of memory operations 
to be globally observed before continuing execution of other memory operations. 

The three instructions are:

• Data Memory Barrier (DMB)

• Data Write Barrier (DWB)

• Prefetch Flush (PF)

These instructions are useful and necessary when synchronization of memory needs to 
be ensured, either between multiple 3rd generation microarchitectures or within a 
single processor system. 

For example, when an application wants to ensure that a series of writes has been 
globally observed, it most likely cleans the cache lines that contain the writeback data. 
Although this ensures that the data is no longer only in the cache, it takes extra cycles 
before the data is written to the device or to memory as it leaves the memory pipeline. 
Using a memory barrier, ensures that the 3rd generation microarchitecture waits until 
the data has been globally observed before continuing program execution.

Figure 1. Global Observation vs. Program Execution
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The Data Memory Barrier instruction ensures that no memory operations, that occur in 
program order after it is globally observed, before any memory operations that were 
executed before it (See Figure 2 on page 56). Other instructions execute during this 
time when these do not issue a memory operation. 

Also, it is important to note that the DMB instruction does not affect memory 
operations relating to ‘non-explicit’ accesses, such as instruction fetches and page table 
walks. Those memory operations occur before, during, and after the invocation of the 
DMB. Refer to Example 44 on page 56 to see how a DMB operation is invoked.

As seen above, the Data Memory Barrier instruction is initiated by performing a write to 
co-processor 15, register 7. The contents of the register written are ignored.

Figure 2. Data Memory Barrier Operation

Example 44. Data Memory Barrier (DMB)
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The Data Write Barrier (DWB) operation creates a memory write barrier. This means 
that all memory write operations, that were issued before the DWB, achieves global 
observation before write operations that occur after the DWB (See Figure 3 on 
page 57). 

Similar to the DMB instruction, DWB does not provide any barrier for non-memory 
access instructions or instructions that relate to non-explicit memory accesses such as 
instruction fetches and table walks. The DWB operation does however additionally 
specify that no other instructions after the DWB executes, regardless of whether or not 
these access memory, until the DWB instruction has retired.

The Data Write Barrier instruction is initiated by performing a write to co-processor 15, 
register 7. The contents of the register written are ignored.

Both the DMB and DWB instructions provide synchronization with respect to data 
memory operations. However, neither of these have an effect on instruction-related 
memory operations such as instruction fetches and address translation table walks. In 
order to complement these instructions, a Prefetch Flush instruction exists, which 
ensures that all memory operations relating to instruction execution have completed. 
The Prefetch Flush (PF) instruction ensures that all table walks and instruction fetches 
to cache are complete before it retires. Additionally it ensures that the next instruction 
executed is fetched from cache or memory (it is not in the pipeline) because the 
pipeline was flushed. See Example 46 on page 58 for the instruction which causes a 
prefetch flush.

Figure 3. Data Write Barrier Operation

Example 45. Data Write Barrier (DWB)
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In Example 46, the Prefetch Flush instruction is initiated by performing a write to 
co-processor 15, register 7. The contents of the register written are ignored. Once this 
instruction has retired, all outstanding memory operations relating to instruction 
execution (instruction memory fetches, table walks) are completed. The next 
instruction executed is fetched from either the instruction cache or external memory, 
because the pipeline was flushed. The Prefetch Flush instruction is also useful in cases 
where the system software is modifying instruction data it is about to execute. For 
more information on self-modifying code, refer to Section 3.2.8, “Self-modifying Code” 
on page 49.

Although these operations are useful for ensuring synchronization within one 
3rd generation microarchitecture or multiple microarchitectures, these do not provide 
automatic synchronization with all components in a system. This is because, even 
though a memory operation has left the microarchitecture, it is not possible to 
automatically know when the operation has been written to an external agent on a bus 
(possibly several busses away) and when it has taken effect. 

One example of this is an interrupt handler running on a system with an external 
interrupt controller. When the interrupt initially is handled, 3rd generation 
microarchitecture external interrupts are usually disabled through the cpsr register. 
After this, the interrupt being serviced is masked at the external interrupt controller, 
and the CPSR register is restored so the system handles other interrupts while 
processing the first one. The memory operations invoked to mask the external interrupt 
most likely occur to an uncached region of memory, and a memory barrier instruction, 
as described above, is utilized to ensure that the mask write operation had been 
globally observed. However, this sequence does not ensure that the interrupt had been 
masked when the next operation, which is to re-enable interrupts to the 
microarchitecture, was performed.

This is because even though the write had completely left the 3rd generation 
microarchitecture, it is still many clock cycles before it has its effect on the external 
interrupt controller. Since the next operation is a write to a register that is inside the 
microarchitecture, it is conceivable and likely that the external interrupt is still asserted 
when interrupts were re-enabled; even though it was to be masked externally at that 
time. Since the microarchitecture is level-sensitive to interrupts, it triggers and this 
causes a condition where an interrupt was detected for a short while, but none are 
found when the handler checked for unmasked interrupts. For this reason, system 
software has to ensure the mask write operation had taken effect by utilizing some sort 
of external synchronization method, such as stalling on a read of the same memory 
location just written.

Example 46. Prefetch Flush (PF)

mov r0, #0                   @ The data in R0 is to be zero
mcr p15, 0, r0, c7, c5, 4    @ Prefetch Flush, data in R0 is ignored
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4.0 Performance Monitoring (PMU)

The 3rd generation microarchitecture hardware provides four 32-bit performance 
counters that allow up to four unique events to be monitored simultaneously. In 
addition, the microarchitecture implements a 32-bit clock counter that is used in 
conjunction with the performance counters; its main purpose is to count the number of 
microarchitecture clock cycles which is useful in measuring total execution time.

Example 47 on page 59 shows how to enable the PMU and start the clock count register 
(CCNT) running. Example 48 on page 60 shows how to modify an event counter after 
the PMU has been enabled.

Example 47 describes how the PMU is initialized and the clock counter is enabled on the 
3rd generation microarchitecture. In this example, no event counters are enabled and 
the events being tracked are set to disabled in the EVTSEL register. Setting bits 2 and 1 
of the PMNC register resets the clock counter and all performance counters to ‘0x0’. 
After this code completes, the clock counter is enabled and the CCNT register 
increments once for every microarchitecture clock cycle. 

Used by itself it is a source of highly accurate timing information. When used with the 
performance event counters it is used to calculate various system performance 
statistics such as cycles per instruction (CPI).

Example 47. Initialize the PMU and Enable CCNT

mov r0, #0x0 @ Disable all counters
mcr p14, 0, r0, c0, c1, 0 @ Write the PMNC value
mvn r0, #0x0
mcr p14, 0, r0, c8, c1, 0 @ Disable events in EVTSEL register

mov r0, #0x6 @ Reset performance and clock counters
mcr p14, 0, r0, c0, c1, 0 @ Write the PMNC value
mov r0, #0x11              @ disable event counters and enable clock counter
mcr p14, 0, r0, c0, c1, 0 @ Write the PMNC value
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This code configures the PMU on the 3rd generation microarchitecture to count certain 
events as well as generate an interrupt when the counters for event 0 overflow. 

Initially all event counters are disabled by setting bit 4 (the M bit) of the PMNC register. 
Once the counters have been disabled, it is then possible to change the events being 
counted by writing to the EVTSEL register. 

Note, that it is important the counters are stopped, either by the PMNC.M bit or the 
PMNC.E bit. 

Modifying the EVTSEL register while the event counters are running produce 
unpredictable results. In this case, event0 is changed to count event 0x7, the number 
of instructions executed. The counter for event0 is then initialized to zero, and the 
INTEN register is written so that interrupts are generated whenever the event0 counter 
overflows 32-bits. When an interrupt occurs, it is possible for the handler to record 
elsewhere the number of overflows (232 events of that type occured) and later use that 
information to calculate the total number of events that occurred over the sampling 
period. After the registers are configured to correctly count event0, the PMNC PMU 
enable bit (bit E) is turned on to ensure that the PMU is activated, and the write back to 
the PMNC register enables the counters.

Example 48. Enable PMU Event Counter 0

mrc p14, 0, r0, c0, cl, 0 @ Read PMNC register
and r1, r0, #0x0F           @ Clear unpredictable bits
orr r0, r1,#0x10            @ Disable event counters
mcr p14, 0, r0, c0, c1, 0   @ Write PMNC register

mrc p14, 0, r0, c8, c1, 0   @ Read EVTSEL register
bic r0, r0, #0xFF           @ Clear event 0
orr r0, r0,#0x07            @ Insert new event 0
mcr p14, 0, r0, c8, c1, 0   @ Write EVTSEL register

mov r0, #0x0
mcr p14, 0, r0, c0, c2, 0   @ Clear event count 0

mrc p14, 0, r0, c4, c1, 0   @ Read INTEN register
orr r0, r0,#0x02            @ Enable event 0 interrupts
mcr p14, 0, r0, c4, c1, 0   @ Write INTEN register

orr r0, r1, #0x01           @ Ensure the PMU is enabled
mcr p15, 0, r0, c0, c1, 0   @ Write the PMNC value
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This code is an example of an interrupt handler that is called whenever a counter 
overflows. In this case, it is assumed that the only interrupt that is triggered and IRQ is 
the PMU. Depending on the product, an external interrupt status register needs to be 
read to determine what caused the interrupt before determining it was the PMU. 

In this example an interrupt triggered by an overflow of either the CCNT register or one 
of the event counter registers causes the handler to be called. The handler immediately 
disables all PMU counters by clearing bit 0 (the E bit) of the PMNC register. Once the 
PMU has been stopped, the overflow flag register, event counter and clock count 
registers are read to determine what overflowed and what the total values of these are. 

It is also possible to simply record which counter overflowed without recording the 
values of the registers. Then when the sampling period ended the value of a given 
event counter is (232 * number_of_overlfows + current_register_value). Once any 
processing has taken place, the event counters are re-enabled by setting the E bit in 
the PMU and returning from the interrupt handler.

Example 49. Handling a PMU Interrupt

@ Assume that performance counting interrupts are the only IRQ in the system
external_irq_routine:

mrc p14, 0, r1, c0,c1,0  @ read the PMNC register
bic r2, r1,#1            @ clear enable bit, preserve other bits in PMNC
mcr p14, 0,r2, c0, c1,0  @ disable counting
mrc p14, 0,r3, c5, c1,0  @ read FLAG register
mrc p14, 0,r4, c1, c1,0  @ read CCNT register
mrc p14, 0,r5, c0, c2,0  @ read PMN0 register
mrc p14, 0,r6, c1, c2,0  @ read PMN1 register

@ <process the results>

mrc p14, 0, r1, c0,c1,0  @ read the PMNC register
orr r2, r1, #1           @ set the enable bit, preserve other bits in PMNC
mcr p14, 0, r2, c0, c1,0 @ re-enable counting
subs pc, r14, #4         @ return from interrupt

Example 50. Computing PMU Results

@ Assume CCNT overflow

CCNT = 0x00000020 @ Overflowed and continued counting
Number of instructions executed = PMN0 = 0x6AAAAAAA
Number of instruction cache miss requests = PMN1 = 0x05555555
Instruction Cache miss-rate = 100 * PMN1/PMN0 = 5%
CPI = (CCNT + 2^32)/Number of instructions executed = 2.4 cycles/instruction
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5.0 Interrupts

All 3rd generation microarchitecture external interrupts are handled through either IRQ 
or FIQ vectors. Internal interrupts, such as those generated by the PMU, are steered to 
either IRQ or FIQ as well. This section shows some microarchitecture examples 
pertaining to interrupts and interrupt handling.

It is necessary to disable interrupts during certain system operations. In Example 22 on 
page 33, the cache is placed into ‘lock mode’ where any data cache fetch also becomes 
locked in the cache. When an interrupt occured while the cache was in this mode and 
the handler made some memory references, unexpected lines become locked in the 
cache. With the interrupt disabled it ensures that any external interrupt that occurs 
during the lock operation is not taken until interrupts are re-enabled.

Interrupts are disabled in the 3rd generation microarchitecture by setting the I bit and 
the F bit in the CPSR register. In this case both the I and F bit are set, however it is 
only necessary to mask one of these interrupts, depending on whether or not IRQ and 
FIQ have the potential to trigger. When these bits are set, and an interrupt occurs 
(either via IRQ or FIQ), the microarchitecture does not jump to the interrupt service 
vector. This allows code to continue executing despite possible external interrupts from 
affecting the execution address. Interrupts are often disabled during critical system 
initialization and configuration code sequences, to ensure that an interrupt is not 
serviced at a time when the system state is being modified.

Interrupts are enabled by clearing the I and F bits in the CPSR register on the 
3rd generation microarchitecture. 

Once the bits are clear, any IRQ or FIQ signal asserted to the 3rd generation 
microarchitecture, either from the PMU or an external source, causes the 
microarchitecture to branch to the appropriate interrupt handler vector and begin 
executing.

Example 51. Disable Interrupts

@ disable interrupts
mrs r3, cpsr           @ copy CPSR register to r3
orr r3, r3, #0xC0        @ Set F and I bits (to disable FIQ and IRQ)
msr cpsr_c, r3         @ Copy back to CPSR

Example 52. Enable Interrupts

@ restore interrupts
mrs r3, cpsr          @ Copy the CPSR to r3
bic r3, r3, #0xC0          @ Clear the F and I bits (to enable FIQ and IRQ)
msr cpsr_c, r3        @ Copy r3 back to the CPSR
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