
Order Number: 316283-002US

3rd Generation Intel XScale®

Microarchitecture

Developer’s Manual

May 2007

3rd Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
2 Order Number: 316283-002US

Legal Lines and DisclaimersINFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS
OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING
TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for
use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics
of any features or instructions marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for
conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with
this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-
4725, or by visiting Intel’s Web Site.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different
processor families. See http://www.intel.com/products/processor_number for details.

Code Names are only for use by Intel to identify products, platforms, programs, services, etc. (“products”) in development by Intel that have not been
made commercially available to the public, i.e., announced, launched or shipped. They are never to be used as “commercial” names for products. Also,
they are not intended to function as trademarks.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino logo, Core Inside, FlashFile, i960, InstantIP, Intel, Intel logo, Intel386, Intel486, Intel740,
IntelDX2, IntelDX4, IntelSX2, Intel Core, Intel Inside, Intel Inside logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel NetMerge, Intel
NetStructure, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Viiv, Intel vPro, Intel XScale, Itanium, Itanium Inside, MCS, MMX, Oplus,
OverDrive, PDCharm, Pentium, Pentium Inside, skoool, Sound Mark, The Journey Inside, VTune, Xeon, and Xeon Inside are trademarks of Intel
Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2007, Intel Corporation. All rights reserved.

http://www.intel.com
http://www.intel.com/products/processor_number

3rd Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 3

Contents—Microarchitecture

Contents

1.0 Introduction .. 18

1.1 About This Document... 18

1.1.1 How to Read This Document .. 18

1.1.2 Other Relevant Documents .. 18

1.2 High-Level Overview of 3rd Generation Microarchitecture.. 19

1.2.1 ARM Compatibility .. 19

1.2.2 Features ... 20

1.2.2.1 Level-2 Cache .. 21
1.2.2.2 Memory Coherency ... 21
1.2.2.3 Multiply/Accumulate (MAC) .. 21
1.2.2.4 Memory Management .. 21
1.2.2.5 Instruction Cache.. 22
1.2.2.6 Branch Target Buffer ... 22
1.2.2.7 Data Cache .. 22
1.2.2.8 Performance Monitoring ... 22
1.2.2.9 Power Management... 23
1.2.2.10 Software Debug.. 23
1.2.2.11 JTAG ... 23

1.2.3 ASSP Options... 24

1.3 Terminology and Conventions ... 25

1.3.1 Number Representation... 25

1.3.2 Terminology and Acronyms.. 25

2.0 Programming Model .. 26

2.1 ARM Architecture Compatibility ... 26

2.2 ARM Architecture Implementation Options .. 26

2.2.1 Big Endian versus Little Endian... 26

2.2.2 Thumb.. 26

2.2.3 ARM Enhanced DSP Extension .. 27

2.2.4 Base Register Update.. 27

2.2.5 Multiply Operand Restriction .. 27

2.3 Extensions to ARM Architecture ... 28

2.3.1 Media Processing Co-processor (CP0).. 28

2.3.1.1 Multiply With Internal Accumulate Format 29
2.3.1.2 Internal Accumulator Access Format.. 33

2.3.2 Page Attributes .. 35

2.3.3 CP7 Functionality ... 36

2.3.4 CP14 Functionality.. 36

2.3.5 CP15 Functionality.. 36

2.3.6 Exception Architecture .. 37

2.3.6.1 Exception Summary .. 37
2.3.6.2 Exception Priority.. 37
2.3.6.3 Prefetch Aborts... 38
2.3.6.4 Data Aborts ... 39

2.3.6.4.1 Precise Data Aborts ... 40
2.3.6.4.2 Imprecise Data Aborts ... 40
2.3.6.4.3 Multiple Data Aborts .. 40

2.3.6.5 Exceptions from Preload Instructions ... 41
2.3.6.6 Debug Exceptions ... 41

3.0 Memory Management .. 42

3.1 Overview ... 42

3.2 Architecture Model... 44

3.2.1 Address Translation Process... 44

3.2.2 Page Table Descriptor Formats ... 45

3.2.2.1 Supersection Descriptor ... 46

Microarchitecture—Contents

3rd Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
4 Order Number: 316283-002US

3.2.2.2 Extended Small Page Descriptor46

3.2.3 Memory Attributes ..47

3.2.3.1 Inner/Outer Cacheability ..47
3.2.3.2 Coherent Memory Attribute (S-bit) ..47
3.2.3.3 Low Locality of Reference (LLR)...48
3.2.3.4 ASSP Specific Attribute (P-bit) ..48

3.2.4 Memory Attribute Encodings...49

3.2.5 L1 Instruction Cache, Data Cache Behavior ..55

3.2.6 L2 Cache Behavior ..56

3.2.7 Exceptions ...57

3.3 MMU Control and Management ..58

3.3.1 MMU Control ..58

3.3.2 Invalidate TLB Operations ..58

3.3.3 Locking TLB Entries...58

3.3.4 Round-Robin Replacement Algorithm...59

4.0 Instruction Cache ..60

4.1 Overview..60

4.2 Operation ...61

4.2.1 Operation When Instruction Cache is Enabled ...61

4.2.2 Operation When Instruction Cache Is Disabled..61

4.2.3 Fetch Policy ...62

4.2.4 Replacement Algorithm ...63

4.2.5 Parity Protection ...63

4.2.6 Instruction Fetch Latency...64

4.2.7 Instruction Cache Coherency..64

4.3 Instruction Cache Control ...65

4.3.1 Instruction Cache State at Reset...65

4.3.2 Enabling/Disabling ..65

4.3.3 Invalidating the Instruction Cache...65

4.3.4 Locking Instructions in the Instruction Cache..65

5.0 Branch Target Buffer..66

5.1 Branch Target Buffer (BTB) Operation ..67

5.1.1 Reset ..68

5.1.2 Update Policy ...68

5.2 BTB Control ..69

5.2.1 Disabling/Enabling ..69

5.2.2 Invalidation ...69

6.0 Data Cache...70

6.1 Overview..71

6.1.1 Organization ..71

6.1.2 Low-Locality of Reference (LLR)..72

6.1.3 Memory Buffer Overview ...73

6.1.3.1 Coalescing..74

6.2 Data Cache Operation ..75

6.2.1 Operation When Data Cache is Enabled..75

6.2.2 Operation When Data Cache is Disabled...75

6.2.3 Cache Policies ..76

6.2.3.1 Cacheability..76
6.2.3.2 Read Miss Policy..76
6.2.3.3 Write Miss Policy ...77
6.2.3.4 Write-Back Versus Write-Through..77

6.2.4 Replacement Algorithm ...78

6.2.5 Parity Protection ...78

6.2.6 Data Cache Miss Latency ...78

6.3 Data Cache Control ..79

3rd Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 5

Contents—Microarchitecture

6.3.1 Data Memory State After Reset79

6.3.2 Enabling/Disabling.. 79

6.3.3 Invalidate and Clean Operations ... 79

6.4 Data Cache Locking ... 80

6.5 Memory Buffer Operation and Control .. 81

6.6 Memory Ordering .. 81

6.7 Data Cache Coherency ... 81

7.0 Configuration .. 82

7.1 Overview ... 83

7.2 CP15 Registers.. 84

7.2.1 Register 0: ID & Cache Type Registers .. 85

7.2.2 Register 1: Control and Auxiliary Control Registers 88

7.2.3 Register 2: Translation Table Base Register ... 91

7.2.4 Register 3: Domain Access Control Register ... 92

7.2.5 Register 4: Reserved .. 93

7.2.6 Register 5: Fault Status Register .. 93

7.2.7 Register 6: Fault address Register .. 95

7.2.8 Register 7: Cache Functions... 96

7.2.8.1 Level 1 Cache and BTB Functions .. 96
7.2.8.2 Level 2 Cache Functions .. 97
7.2.8.3 Explicit Memory Barriers .. 97
7.2.8.4 Data Cache Line Allocate Function ... 98
7.2.8.5 Precise Data Aborts... 99
7.2.8.6 Interaction of Cache Functions on Locked Entries 99
7.2.8.7 Set/Way Format ... 100

7.2.9 Register 8: TLB Operations .. 101

7.2.10 Register 9: Cache Lock Down... 102

7.2.10.1 Precise Data Aborts... 103
7.2.10.2 Legacy Support .. 103

7.2.11 Register 10: TLB Lock Down .. 104

7.2.12 Register 11-12: Reserved.. 104

7.2.13 Register 13: Process ID... 105

7.2.13.1 The PID Register Effect On Addresses .. 105

7.2.14 Register 14: Breakpoint Registers... 106

7.2.15 Register 15: Co-processor Access Register... 107

7.3 CP14 Registers.. 108

7.3.1 Performance Monitoring Registers... 108

7.3.2 Clock and Power Management Registers .. 109

7.3.3 Software Debug Registers ... 110

7.4 CP7 Registers ... 111

8.0 Level 2 Unified Cache (L2) ... 112

8.1 Overviews .. 112

8.1.1 Level 2 Cache Overview .. 113

8.1.2 Bus Interface Unit Overview .. 115

8.2 Level 2 Unified Cache Operation .. 116

8.2.1 L2 Cache / BIU Operations due to Microarchitecture Requests 116

8.2.2 Level 2 Cache / BIU Operations Due to System Bus Requests 118

8.2.2.1 Snoop Probes ... 118
8.2.2.2 Push-Cache Requests .. 118

8.2.3 Memory Attributes.. 119

8.2.3.1 L2 Cacheability ... 119
8.2.3.2 L2 Write Policy ... 119
8.2.3.3 Shared Memory Attribute ... 120

8.2.4 Cache Policies .. 121

8.2.4.1 Read Miss Policy ... 121
8.2.4.2 Write Miss Policy... 121

Microarchitecture—Contents

3rd Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
6 Order Number: 316283-002US

8.2.4.3 L2 Write-Back Behavior122

8.2.5 Not Recently Used (NRU) Replacement Algorithm...................................... 123

8.2.6 ECC and Parity Protection .. 125

8.3 Level 2 Cache Control... 126

8.3.1 Level 2 Cache Memory State After Reset..126

8.3.2 Enabling the L2 Cache ... 126

8.3.3 Invalidate and Clean Operations ...127

8.3.4 Level 2 Cache Clean and Invalidate Operation... 127

8.3.5 Level 2 Cache Locking ... 128

8.3.5.1 Level 2 Cache Lock Functions.. 128
8.3.5.2 Level 2 Cache Unlock Functions... 129
8.3.5.3 L2 Cache Maintenance Function Effect on Locked Lines 129

8.4 Bus Interface Unit Operation ... 130

8.4.1 Microarchitecture Request Queue (MRQ) ..131

8.4.2 Request Scheduling... 131

8.5 Level 2 Cache and Bus Interface Unit Register Definitions...................................... 132

8.5.1 Level 2 Cache ID and Cache Type Register ... 132

8.5.2 Level 2 Cache and Bus Error Logging Registers
(ERRLOG, ERRADRL and ERRADRU) .. 133

9.0 Cache Coherence.. 136

9.1 Introduction.. 136

9.2 3rd Generation Microarchitecture Hardware Cache Coherence Solutions 137

9.2.1 Hardware Cache Coherence Configurations... 137

9.2.1.1 Configuration through Page Table Attributes137
9.2.1.2 Shared Attribute Precedence...138
9.2.1.3 Non-coherent L1 Instruction Cache .. 138
9.2.1.4 Swap Behavior..138

9.2.2 L1D Coherence... 139

9.2.2.1 Coherent Read Behavior... 139
9.2.2.2 Coherent Write Behavior .. 139
9.2.2.3 Coherent Line Allocate Instruction Behavior 139
9.2.2.4 Replacement Behavior ...139
9.2.2.5 Locking and Shared Attributes ..139

9.2.3 L2 Coherence... 140

9.2.3.1 Coherent L2 Fetch and Lock.. 140
9.2.3.2 Snoop Behavior... 140
9.2.3.3 Intervention ... 140
9.2.3.4 Push Cache .. 140

9.3 Non-Hardware Coherent Mode... 141

9.3.1 Introduction... 141

9.3.2 L1 Data Cache Operation in Non-Cache Coherent Mode.............................. 141

9.3.2.1 Read Behavior ..141
9.3.2.2 Write Behavior ..141

9.3.3 L2 Data Cache Operation in Non-Cache Coherent Mode.............................. 141

9.3.3.1 Read Behavior ..141
9.3.3.2 Write Behavior ..141

10.0 Memory Ordering ...142

10.1 Introduction.. 142

10.2 Visibility: Observation and Global Observation ...143

10.2.1 Normal (Memory-like) Memory ... 143

10.2.2 I/O-like Memory ...143

10.2.3 Memory Types.. 144

10.2.4 Data Dependence ... 144

10.3 Write Coalescing and Ordering... 145

10.4 Instructions with Ordering Constraints ..146

10.4.1 Safety Nets and Synchronization...146

3rd Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 7

Contents—Microarchitecture

10.4.2 Explicit Fence Instructions: DMB and DWB146

10.4.2.1 Data Memory Barrier (DMB) ... 146
10.4.2.2 Data Write Barrier (DWB) .. 146
10.4.2.3 Effect of DMB and DWB on Write Coalescing 146

10.4.3 Instruction Fence Instruction: Prefetch Flush (PF) 147

10.4.4 Instruction Encodings ... 147

10.4.5 Usage Examples of Fence Instructions... 148

10.4.6 Implicit Fences... 149

10.4.6.1 Swap .. 149
10.4.6.2 Explicit Accesses to Strongly Ordered Memory 149

10.5 Ordering Table .. 150

10.6 I/O Ordering... 150

10.7 Ordering Cache Management Operations .. 151

11.0 Performance Monitoring .. 152

11.1 Overview ... 152

11.2 Register Description... 154

11.2.1 Performance Monitor Control Register (PMNC).. 154

11.2.2 Clock Counter (CCNT) ... 155

11.2.3 Interrupt Enable Register (INTEN) .. 156

11.2.4 Overflow Flag Status Register (FLAG).. 157

11.2.5 Event Select Register (EVTSEL) .. 158

11.2.6 Performance Count Registers (PMN0 - PMN3)... 159

11.3 Managing the Performance Monitor .. 160

11.4 Performance Monitoring Events ... 161

11.4.1 Instruction Cache Efficiency Mode... 164

11.4.2 Data Cache Efficiency Mode ... 164

11.4.3 Instruction Fetch Latency Mode .. 164

11.4.4 Data/Bus Request Buffer Full Mode ... 165

11.4.5 Stall/Writeback Statistics... 166

11.4.6 Instruction TLB Efficiency Mode .. 166

11.4.7 Data TLB Efficiency Mode .. 167

11.4.8 Average Dynamic Block Length Mode .. 167

11.4.9 Table Walk Mode .. 167

11.4.10Microarchitecture Utilization Mode .. 167

11.4.11Exception Mode.. 167

11.4.12MAC Utilization Mode .. 168

11.4.13L2 Cache Efficiency Mode .. 168

11.4.14Data Bus Utilization Mode.. 168

11.4.15Address Bus Usage Mode... 168

11.5 Multiple Performance Monitoring Run Statistics.. 169

11.6 Examples ... 170

12.0 Software Debug... 172

12.1 Additional Debug Documentation... 172

12.2 Definitions.. 172

12.3 Microarchitecture Debug Capabilities .. 173

12.3.1 Debug Registers... 174

12.3.2 Debug Control and Status Register (DCSR) .. 175

12.3.2.1 Global Enable Bit (GE) ... 177
12.3.2.2 Halt Mode Bit (H).. 177
12.3.2.3 System-on-a-Chip (SOC) Break Flag (B) 177
12.3.2.4 Vector Trap Bits (TF,TI,TD,TA,TS,TU,TR) 177
12.3.2.5 Thumb Trace Bit (TT) .. 177
12.3.2.6 Sticky Abort Bit (SA) ... 178
12.3.2.7 Method of Entry Bits (MOE) .. 178
12.3.2.8 Trace Buffer Mode Bit (M) .. 178
12.3.2.9 Trace Buffer Enable Bit (E) ... 178

Microarchitecture—Contents

3rd Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
8 Order Number: 316283-002US

12.3.3 Debug Exceptions179

12.3.4 Halt Mode.. 180

12.3.5 Monitor Mode ... 182

12.3.6 Summary of Debug Modes ...183

12.3.7 HW Breakpoint Resources .. 184

12.3.7.1 Instruction Breakpoints .. 184
12.3.7.2 Data Breakpoints .. 185

12.3.8 Software Breakpoints .. 187

12.4 JTAG Communications .. 188

12.4.1 Transmit/Receive Control Register (TXRXCTRL)... 189

12.4.1.1 RX Register Ready Bit (RR)... 190
12.4.1.2 Overflow Flag (OV).. 191
12.4.1.3 Download Flag (D)... 191
12.4.1.4 TX Register Ready Bit (TR) ... 191
12.4.1.5 Conditional Execution Using TXRXCTRL....................................... 192

12.4.2 Transmit Register (TX) .. 193

12.4.3 Receive Register (RX).. 193

12.5 Debug JTAG Access.. 194

12.5.1 SELDCSR JTAG Register... 194

12.5.1.1 hold_reset.. 195
12.5.1.2 jtag_dbg_break .. 195
12.5.1.3 DCSR (DBG_SR[34:3]) .. 195

12.5.2 DBGTX JTAG Register.. 196

12.5.2.1 DBG_SR[0] .. 196
12.5.2.2 TX (DBG_SR[34:3])... 196

12.5.3 DBGRX JTAG Register.. 197

12.5.3.1 RX Write Logic ..197
12.5.3.2 DBG_SR[0] .. 198
12.5.3.3 flush_rr.. 198
12.5.3.4 hs_download .. 198
12.5.3.5 RX (DBG_SR[34:3]) ..198
12.5.3.6 rx_valid ... 198

12.6 Trace Buffer.. 199

12.6.1 Definitions ...199

12.6.2 Trace Buffer Registers ... 200

12.6.2.1 Checkpoint Registers ... 200
12.6.2.2 Trace Buffer Register (TBREG) ..202

12.6.3 Trace Messages .. 203

12.6.3.1 Trace Message Formats.. 203
12.6.3.2 Exception Messages... 204
12.6.3.3 Non-exception Messages .. 205
12.6.3.4 Reading Indirect Branch Messages...205

12.6.4 Tracing Thumb Code ... 206

12.6.5 Trace Buffer Usage ... 207

12.7 Debug SRAM...209

12.7.1 Debug SRAM Overview .. 209

12.7.2 LDSRAM JTAG Register.. 210

12.7.3 LDSRAM Functions ..211

12.7.3.1 Download Request / Download Complete Functions...................... 211
12.7.3.2 Load Debug SRAM Function .. 213

12.7.4 Loading Debug SRAM During Reset ... 214

12.7.5 Loading Debug SRAM After Reset.. 216

12.7.5.1 Software Synchronization for Loading Debug SRAM...................... 216
12.7.5.2 Hardware Synchronization for Loading Debug SRAM..................... 217

12.8 JTAG Device Identification Register .. 218

12.9 Debug Changes from previous generations to 3rd Generation Microarchitecture219

13.0 Performance Considerations .. 220

3rd Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 9

Contents—Microarchitecture

13.1 Interrupt Latency220

13.2 Branch Prediction .. 221

13.3 Addressing Modes ... 221

13.4 Instruction Latencies ... 221

13.4.1 Performance Terms .. 222

13.4.2 Branch Instruction Timings .. 224

13.4.3 Data Processing Instruction Timings.. 224

13.4.4 Multiply Instruction Timings ... 225

13.4.5 Saturated Arithmetic Instructions ... 227

13.4.6 Status Register Access Instructions... 227

13.4.7 Load/Store Instructions... 228

13.4.8 Semaphore Instructions .. 228

13.4.9 Coprocessor Instructions ... 229

13.4.10Miscellaneous Instruction Timing .. 233

13.4.11Thumb Instructions .. 233

13.4.12Result Latency Summary... 234

13.4.13Shifter Latency Summary .. 235

A Optimization Guide .. 236

A.1 Introduction ... 236

A.1.1 Quick Start for Optimization... 236

A.1.2 About This Guide.. 236

A.2 3rd Generation Microarchitecture Pipeline ... 237

A.2.1 General Pipeline Characteristics.. 237

A.2.1.1 Number of Pipeline Stages ... 237
A.2.1.2 Pipeline Organization... 238
A.2.1.3 Out Of Order Completion ... 239
A.2.1.4 Register Scoreboarding.. 239
A.2.1.5 Use of Bypassing .. 239

A.2.2 Instruction Flow Through the Pipeline.. 240

A.2.2.1 Instruction Execution .. 240
A.2.2.2 Pipeline Stalls... 240

A.2.3 Main Execution Pipeline ... 241

A.2.3.1 F1 / F2 (Instruction Fetch) Pipestages 241
A.2.3.2 ID (Instruction Decode) Pipestage... 241
A.2.3.3 RF (Register File / Shifter) Pipestage ... 242
A.2.3.4 X1 (Execute) Pipestage.. 242
A.2.3.5 X2 (Execute 2) Pipestage ... 242
A.2.3.6 WB (write-back) ... 242

A.2.4 Memory Pipeline... 243

A.2.4.1 D1 and D2 Pipestage ... 243

A.2.5 Multiply/Multiply Accumulate (MAC) Pipeline .. 243

A.2.5.1 Behavioral Description ... 243

A.3 Basic Optimizations ... 244

A.3.1 Conditional Instructions .. 244

A.3.1.1 Optimizing Condition Checks .. 245
A.3.1.2 Optimizing Branches ... 247
A.3.1.3 Optimizing Complex Expressions ... 251

A.3.2 Bit Field Manipulation.. 252

A.3.3 Optimizing the Use of Immediate Values ... 253

A.3.4 Optimizing Integer Multiply and Divide .. 254

A.3.5 Effective Use of Addressing Modes .. 255

A.4 Cache and preload Optimizations... 256

A.4.1 L1 Instruction Cache... 256

A.4.1.1 Cache Miss Cost.. 256
A.4.1.2 Pseudo-LRU Replacement Cache Policy 256
A.4.1.3 Code Placement to Reduce Instruction Cache Misses.................... 256
A.4.1.4 Locking Code into Instruction Cache .. 257

Microarchitecture—Contents

3rd Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
10 Order Number: 316283-002US

A.4.2 L1 Data Cache258

A.4.2.1 Cache Conflicts, Pollution and Pressure....................................... 258
A.4.2.2 Write-through and Write-back Cached Memory Regions 258
A.4.2.3 L1 Data Cache Organization.. 259
A.4.2.4 Cache Line Preallocation... 262
A.4.2.5 Creating On-chip RAM.. 262
A.4.2.6 LLR Cache Policy ...263
A.4.2.7 Data Alignment ... 264
A.4.2.8 Literal Pools.. 265

A.4.3 L2 Unified Cache...266

A.4.3.1 Locking Code or Data into L2 Unified Cache 266
A.4.3.2 Creating On-chip RAM.. 267

A.4.4 Classical Array Optimizations.. 268

A.4.5 Preload Considerations .. 268

A.4.5.1 Preload Distances .. 268
A.4.5.2 Preload Loop Scheduling .. 268
A.4.5.3 Preload Loop Limitations .. 268
A.4.5.4 Compute vs. Data Bus Bound.. 268
A.4.5.5 Low Number of Iterations ... 268
A.4.5.6 Bandwidth Limitations.. 269
A.4.5.7 Preload Unrolling ...270
A.4.5.8 Pointer Preload ... 271
A.4.5.9 Preload to Reduce Register Pressure ..273

A.5 Instruction Scheduling.. 274

A.5.1 Load and Store Instructions ... 274

A.5.1.1 Scheduling Loads .. 275
A.5.1.2 Scheduling Load and Store Double (LDRD/STRD)......................... 278
A.5.1.3 Scheduling Load and Store Multiple (LDM/STM) 280

A.5.2 Scheduling Data Processing Instructions ..281

A.5.3 Scheduling Multiply Instructions.. 282

A.5.4 Scheduling SWP and SWPB Instructions ... 283

A.5.5 Scheduling the MRA and MAR Instructions (MRRC/MCRR)........................... 284

A.5.6 Scheduling the MIA and MIAPH Instructions ...285

A.5.7 Scheduling MRS and MSR Instructions ...286

A.5.8 Scheduling CP15 Coprocessor Instructions ... 286

A.6 Optimizing C Libraries .. 287

A.7 Optimizations for Size .. 287

A.7.1 Space/Performance Trade Off ... 287

A.7.1.1 Multiple Word Load and Store ... 287
A.7.1.2 Use of Conditional Instructions ..287
A.7.1.3 Use of PLD Instructions .. 287

A.7.2 Thumb .. 287

B Microarchitecture Compatibility Guide ... 288

B.1 Overview.. 288

B.2 New Features .. 288

B.2.1 MMU Features .. 288

B.2.2 New L1 Cache Functions ..288

B.2.3 LLR... 288

B.2.4 Optional Level 2 Cache .. 288

B.2.5 Support For Hardware Cache Coherency ..289

B.2.6 Memory Ordering.. 289

B.2.7 PMU features ... 289

B.2.8 Instruction Behavior.. 289

B.3 Features No Longer Available .. 290

B.3.1 Memory Coalescing ... 290

B.3.2 Mini Data Cache ...290

B.4 Compatibility With Respect To Previous Generation Microarchitecture...................... 290

3rd Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 11

Contents—Microarchitecture

B.4.1 Page Table Memory Attributes290

B.4.2 Behavior Of Strongly Ordered Memory .. 291

B.4.2.1 Behavioral Difference .. 291
B.4.2.2 Compatibility Implication ... 291
B.4.2.3 Performance Difference ... 291

B.4.3 Behavior Of Device Memory... 292

B.4.3.1 Behavioral Difference .. 292
B.4.3.2 Compatibility Implication ... 292
B.4.3.3 Performance Difference ... 292

B.4.4 Low Locality Of Reference (LLR) Cache Usage .. 293

B.4.4.1 Behavioral Difference .. 293
B.4.4.2 Compatibility Implication ... 293
B.4.4.3 Performance Difference ... 293

B.4.5 L1 Allocation Policy... 294

B.4.5.1 Behavioral Difference .. 294
B.4.5.2 Compatibility Implication ... 294
B.4.5.3 Performance Difference ... 294

B.4.6 DC Line Allocate ... 295

B.4.6.1 Behavioral Difference .. 295
B.4.6.2 Compatibility Implication ... 295
B.4.6.3 Performance Difference ... 295

B.4.7 Translation Table Register - Page Table Memory Attribute (P) Bit 296

B.4.7.1 Behavioral Difference .. 296
B.4.7.2 Compatibility Implication ... 296
B.4.7.3 Performance Difference ... 296

B.4.8 Drain Write Buffer .. 296

B.4.8.1 Behavioral Difference .. 296
B.4.8.2 Compatibility Implication ... 296
B.4.8.3 Performance Difference ... 296

B.4.9 L1 Cache Invalidate Function ... 297

B.4.9.1 Behavioral Difference .. 297
B.4.9.2 Compatibility Implication ... 297
B.4.9.3 Performance Difference ... 297

B.4.10 Cache Organization, Locking And Unlocking ... 297

B.4.10.1 Behavioral Difference .. 297
B.4.10.2 Compatibility Implication ... 297
B.4.10.3 Performance Difference ... 297

B.4.11 Data Cache Replacement Algorithm .. 298

B.4.11.1 Behavioral Difference .. 298
B.4.11.2 Compatibility Implication ... 298
B.4.11.3 Performance Difference ... 298

B.4.12 PLD .. 298

B.4.12.1 Behavioral Difference .. 298
B.4.12.2 Compatibility Implication ... 298
B.4.12.3 Performance Difference ... 298

B.4.13 SWP ... 299

B.4.13.1 Behavioral Difference .. 299
B.4.13.2 Compatibility Implication ... 299
B.4.13.3 Performance Difference ... 299

B.4.14 Page Table Walks ... 299

B.4.14.1 Behavioral Difference .. 299
B.4.14.2 Compatibility Implication ... 299
B.4.14.3 Performance Difference ... 299

B.4.15 Coalescing... 300

B.4.15.1 Behavioral Difference .. 300
B.4.15.2 Compatibility Implication ... 300
B.4.15.3 Performance Difference ... 300

B.4.16 Buffers.. 300

B.4.16.1 Behavioral Difference .. 300

Microarchitecture—Contents

3rd Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
12 Order Number: 316283-002US

B.4.16.2 Compatibility Implication .. 300
B.4.16.3 Performance Difference.. 300

B.4.17 LDC .. 301

B.4.17.1 Behavioral Difference... 301
B.4.17.2 Compatibility Implication .. 301
B.4.17.3 Performance Difference.. 301

B.4.18 Instruction Timings ... 301

B.4.19 Debug... 301

3rd Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 13

Contents—Microarchitecture

Figures
1 3rd Generation Microarchitecture Features .. 20

2 Address Translation for Supersection .. 46

3 Example of Locked Entries in TLB ... 59

4 Instruction Cache Organization .. 60

5 BTB Entry Format .. 67

6 Branch History State Diagram.. 67

7 Data Cache Organization... 71

8 3rd Generation Microarchitecture High-Level Block Diagram... 112

9 Level 2 Cache Organization ... 113

10 High-Level Block Diagram of BIU.. 130

11 Memory Ordering Example .. 142

12 Using DMB to Enforce Ordering .. 148

13 Using PF to Enforce Data Write to Instruction Fetch Ordering 148

14 SELDCSR .. 194

15 DBGTX ... 196

16 DBGRX ... 197

17 Message Header Formats .. 203

18 Indirect Branch Message Organization .. 205

19 High Level View of Trace Buffer.. 207

20 LDSRAM JTAG Data Register.. 210

21 Format of Download Request function ... 211

22 Format of Download Complete function ... 212

23 Format of Load Debug SRAM function ... 213

24 Code Download During a Cold Reset For Debug.. 214

25 3rd Generation Microarchitecture Pipeline Data Flow ... 234

26 Pipeline Diagram.. 238

Microarchitecture—Contents

3rd Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
14 Order Number: 316283-002US

Tables
1 Terminology and Acronyms..25

2 Multiply with Internal Accumulate Format ..29

3 MIA{<cond>} acc0, Rm, Rs...30

4 MIAPH{<cond>} acc0, Rm, Rs ...31

5 MIA<T,B><T,B>{<cond>} acc0, Rm, Rs ..32

6 MIAxy Subfield Encoding ...32

7 Internal Accumulator Access Format ...33

8 MAR{<cond>} acc0, RdLo, RdHi ..34

9 MRA{<cond>} RdLo, RdHi, acc0 ..34

10 Exception Summary..37

11 Exception Priority ...37

12 Encoding of Fault Status for Prefetch Aborts ...38

13 Encoding of Fault Status for Data Aborts..39

14 First-level Descriptors ...45

15 Second-level Descriptors for Coarse Page Table ..45

16 Second-level Descriptors for Fine Page Table..45

17 Cache Attributes with L2 present, S=0 ...50

18 Cache Attributes with L2 present, S=1 ..51

20 LLR Page Attributes, L2 Present Case, S=1 ..52

19 LLR Page Attributes, L2 Present Case, S=0 ..52

22 Cache Attributes with no L2, S=1 ...53

21 Cache Attributes with no L2, S=0 ...53

24 LLR page attributes, no L2 case, S=1 ..54

23 LLR Page Attributes, no L2 case, S=0..54

25 Co-processor Instruction Accessibility to CP7, CP14 and CP15...83

26 CP15 Registers...84

27 Register 0 Functions (CRn=0) ..85

28 Main ID Register ..85

29 L2 System ID Register ..86

30 L1 Cache Type Register ...86

31 L2 Cache Type Register ...87

32 Register 1 Functions (CRn=1) ..88

33 Control Register ...89

34 Auxiliary Control Register ..90

35 Register 2 Functions (CRn=2) ..91

36 Translation Table Base Register ..91

37 Register 3 Functions (CRn=3) ..92

38 Domain Access Control Register ...92

39 Register 5 Functions (CRn=5) ..93

40 Fault Status Register...94

41 Register 6 Functions (CRn=6) ..95

42 Fault Address Register ..95

43 L1 Cache Functions...96

44 L2 Cache Functions...97

45 Explicit Memory Barrier Operations ...97

46 Line Allocate Function ...98

47 L1 Cache Functions Affect on Locked Entries ..99

48 L2 Cache Functions Affect on Locked Entries ..99

49 L1 DC Set/Way Format.. 100

50 256KB L2 Set/Way Format... 100

51 512KB L2 Set/Way Format... 100

52 TLB Functions .. 101

53 Interaction of TLB Functions with Locked Entries... 101

3rd Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 15

Contents—Microarchitecture

54 Cache Lockdown Functions .. 102

55 Data Cache Lock Register.. 102

56 Legacy Encoding for L1 Cache Lockdown Functions ... 103

57 TLB Lockdown Functions ... 104

58 Register 13 Functions (CRn=13) .. 105

59 Process ID Register .. 105

60 Register 14 Functions (CRn=14) .. 106

61 Register 15 Functions (CRn=15) .. 107

62 Co-processor Access Register .. 107

63 CP14 Registers .. 108

64 Performance Monitoring Registers .. 108

65 Clock and Power Management Functions ... 109

66 PWRMODE Register .. 109

67 CCLKCFG Register.. 109

68 SW Debug Functions .. 110

69 CP7 Registers .. 111

70 Microarchitecture Request Types .. 116

71 L2 Cache “Hit” Definition ... 117

72 System Bus Requests to L2 ... 118

73 L2 Cache Maintenance Operations .. 127

74 Level 2 Cache CP15 Lock Operations... 128

75 Level 2 Cache CP15 UnLock Operations ... 129

76 L2 Unified Cache and BIU Registers .. 132

77 L2 Cache and Bus Error Log Register Access .. 133

78 L2 Cache and BIU Error Logging Register (ERRLOG).. 134

79 L2 Cache and BIU Error Lower Address Register (ERRADRL)... 135

80 L2 Cache and BIU Error Upper Address Register (ERRADRU) .. 135

81 Page Attributes Configuring Coherence and Cacheability.. 137

82 DMB, DWB and PF Instruction Encodings ... 147

83 Ordering Rules... 150

84 Performance Monitoring Registers .. 153

85 Performance Monitor Control Functions (CRn = 0, CRm = 1).. 154

86 Performance Monitor Control Register ... 154

87 Clock Count Functions (CRn = 1, CRm = 1) ... 155

88 Clock Count Register (CCNT) ... 155

89 Interrupt Enable Functions (CRn = 4, CRm = 1) ... 156

90 Interrupt Enable Register .. 156

91 Overflow Flag Status Functions (CRn = 5, CRm = 1) ... 157

92 Overflow Flag Status Register .. 157

93 Event Select Functions (CRn = 8, CRm = 1) .. 158

94 Event Select Register.. 158

95 Performance Count Functions (CRn = 0-3, CRm = 2) .. 159

96 Performance Monitor Count Register (PMN0 - PMN3)... 159

97 Performance Monitoring Events .. 161

98 Some Common Uses of the PMU .. 163

99 Debug Terminology ... 172

100 CP15 Software Debug Registers ... 174

101 CP14 Software Debug Registers ... 174

102 Debug Control and Status Register (CRn = 10, CRm = 0) .. 175

103 Debug Control and Status Register (DCSR).. 175

104 Event Priority .. 179

105 R14_dbg Updating - Halt Mode .. 180

106 R14_abt Updating - Monitor Mode .. 182

107 Special Behavior for Halt and Monitor Mode ... 183

108 Instruction Breakpoint Resources (CRn = 14, CRm = 8,9) ... 184

Microarchitecture—Contents

3rd Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
16 Order Number: 316283-002US

109 Instruction Breakpoint Register (IBRx) .. 184

110 Data Breakpoint Resources (CRn = 14, CRm = 0,3,4) ... 185

111 Data Breakpoint Register (DBRx).. 185

112 Data Breakpoint Controls Register (DBCON)... 185

113 Transmit/Receive Control Register (CRn = 14, CRm = 0) ...189

114 TXRX Control Register (TXRXCTRL) ... 189

115 Normal RX Handshaking .. 190

116 High-Speed Download Handshaking States ..190

117 TX Handshaking ... 191

118 TXRXCTRL Mnemonic Extensions .. 192

119 Transmit Register (CRn = 8, CRm = 0).. 193

120 TX Register.. 193

121 Receive Register (CRn = 9, CRm = 0) ... 193

122 RX Register ...193

123 Trace Buffer Terminology..199

124 Checkpoint Registers (CRn = 12,13, CRm = 0) ... 200

125 Checkpoint Register (CHKPTx).. 200

126 Trace Buffer Register (CRn = 11, CRm = 0) ... 202

127 Trace Buffer Register (TBREG) ... 202

128 Trace Messages..203

129 LDSRAM JTAG Functions .. 211

130 Steps For Loading Debug SRAM During Reset ...215

131 JTAG Device Identification Register ... 218

132 Branch Latency Penalty ...221

133 Branch Instruction Timings (Those predicted by the BTB)...224

134 Branch Instruction Timings (Those not predicted by the BTB) 224

135 Data Processing Instruction Timings.. 224

136 Multiply Instruction Timings ... 225

137 Multiply Implicit Accumulate Instruction Timings ... 226

138 Implicit Accumulator Access Instruction Timings ... 226

139 Saturated Data Processing Instruction Timings ... 227

140 Status Register Access Instruction Timings ..227

141 Load and Store Instruction Timings ... 228

142 Load and Store Multiple Instruction Timings ... 228

143 Semaphore Instruction Timings ..228

144 CP15 Register Access Instruction Timings .. 229

145 CP14 Register Access Instruction Timings .. 231

146 CP7 Register Access Instruction Timings .. 232

147 Exception-Generating Instruction Timings .. 233

148 Count Leading Zeros Instruction Timings ... 233

149 Thumb Instruction Timings .. 233

150 Shifter Dependencies .. 235

151 Pipelines and Pipe Stages ..238

152 Previous Generation Microarchitecture Page Table Attribute Encoding Compatibility 290

153 Auxiliary Control Register Bits [5:4] .. 293

3rd Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 17

Contents—Microarchitecture

Revision History

Date Revision Description

May 2007 002

Table of Content corrections.

Miscellaneous typographical errors.

Reformatting of code examples.

April 2007 001 Initial release.

Microarchitecture—Introduction

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
18 Order Number: 316283-002US

1.0 Introduction

1.1 About This Document

This document is the authoritative and definitive reference for the external architecture
of the 3rd generation Intel XScale® microarchitecture
(3rd generation microarchitecture or 3rd generation), which is ARM* architecture
compliant.

Intel Corporation assumes no responsibility for any errors which appears in this
document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without
notice. In particular, descriptions of features, timings, and pin-outs does not imply a
commitment to implement.

1.1.1 How to Read This Document

It is necessary to be familiar with the ARM Architecture Version 5TE Specification
(ARMv5TE) in order to understand some aspects of this document.

Refer to Section 1.3.2, “Terminology and Acronyms” on page 25 for a description of
some of the terms used throughout this document.

1.1.2 Other Relevant Documents

• ARM Architecture Version 5TE Specification Document Number: ARM DDI 0100E
This document describes Version 5TE of the ARM Architecture, which includes the
Thumb ISA and ARM Enhanced DSP Extension. (ISBN 0 201 737191)

• 3rd Generation Intel XScale® Microarchitecture Software Design Guide
This document describes recommended code sequences useful for low level
software developers. These sequences ensure proper behavior of the
microarchitecture when using various 3rd generation features.

• 3rd Generation Intel XScale® Microarchitecture Software Debug Guide
This document supplements the Software Debug Chapter of the 3rd Generation
Intel XScale® Microarchitecture Developer’s Manual.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 19

Introduction—Microarchitecture

1.2 High-Level Overview of 3rd Generation Microarchitecture

3rd generation microarchitecture is an ARMv5TE compliant microarchitecture. It has
been designed for high-performance and low-power. The microarchitecture is not
intended to be delivered as a stand alone product, but as a building block for an ASSP
(Application Specific Standard Product) with embedded markets such as wireless,
networking, storage, remote access servers, etc.

3rd generation microarchitecture is an evolutionary enhancement to the previous
generations. Application code targeting previous generations runs without any changes
on 3rd generation microarchitecture. System code requires minimal changes (to deal
with a different cache organization for example). For information on the differences
between 3rd generation microarchitecture and previous generations refer to
Appendix B, “Microarchitecture Compatibility Guide”.

1.2.1 ARM Compatibility

3rd generation microarchitecture implements the integer instruction set architecture of
ARMv5, but does not provide hardware support of the floating point instructions (VFP).

3rd generation microarchitecture implements the Thumb instruction set (ARMv5T) and
the Enhanced DSP Extension (ARMv5E).

Microarchitecture—Introduction

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
20 Order Number: 316283-002US

1.2.2 Features

Figure 1 shows the major functional blocks of 3rd generation microarchitecture. The
following sections give a brief, high-level overview of these blocks and other features.

Figure 1. 3rd Generation Microarchitecture Features

Instruction Cache

- 32KB

- 4 way set associative

- lockable by line

Data Cache
- 32KB

- 4 way set associative

- lockable by line

- hit-under-miss

- write-back or write-through

Branch Target Buffer

- Branch prediction

 - 128 entries

Performance

Monitoring

Software Debug
- hardware breakpoints

- software trace buffer

Memory Management

- 32 entry Instruction TLB

- 32 entry Data TLB

- Lockable by entry

JTAG

Multiply / Accumulate

- single clock throughput (16*32)

- 2 way 16-bit SIMD

- 40-bit accumulator

Unified L2 Cache (optional)

- supports coherency with other ASSP blocks

- supports coherency

- portions may be used as SRAM

- accepts writes from other ASSP blocks

- Debug SRAM

- Low-Locality Reference

- No L2 / 256KB / 512KB

- 8 way set associative

- lockable by line

- write-back / write-allocate

Power

Management

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 21

Introduction—Microarchitecture

1.2.2.1 Level-2 Cache

The optional L2 cache in 3rd generation microarchitecture provides the next level of
memory hierarchy for the L1 instruction and data caches. ASSPs opts for no L2 cache,
a 256KB L2 cache or a 512KB L2 cache.

The L2 cache, when present, is 8-way set associative, write-back, write-allocate. It
allows software to create regions which act as SRAM -- these are not subject to the
normal replacement of other cache regions. Also, the L2 allows other bus agents to
write directly into the cache; this is a “push” capability.

See Chapter 8.0, “Level 2 Unified Cache (L2)” for more details.

1.2.2.2 Memory Coherency

Software opts to have hardware coherency support on shared memory regions. This
allows hardware to maintain coherency between data in the
3rd generation microarchitecture caches and main memory, ensuring that multiple
agents in the system see the proper data values.

This facility is explained in detail in Chapter 9.0, “Cache Coherence”.

1.2.2.3 Multiply/Accumulate (MAC)

The MAC unit supports early termination of multiplies/accumulates and sustains a
throughput of a MAC operation every cycle. Several architectural enhancements were
made to the MAC to support media processing algorithms, including a 40-bit
accumulator and support for 16-bit packed data.

See Section 2.3, “Extensions to ARM Architecture” for more details.

1.2.2.4 Memory Management

3rd generation microarchitecture implements an enhanced version of the Memory
Management Unit (MMU) Architecture specified in the ARM Architecture Version 5TE
Specification. The MMU on 3rd generation microarchitecture implements two new page
types to provide additional functionality, including support for a 36-bit physical address
space.

In addition to address translation and memory protection, the MMU Architecture
specifies shared memory and caching policies for the various caches. These policies are
specified as page attributes and include:

• identifying a memory region as L1 and/or L2 cacheable / non-cacheable

• identifying a data region as low-locality reference (LLR)

• write-back or write-through L1 data caching

• enabling the write buffer to coalesce stores to external memory

• identifying a memory region as shared (enabling hardware coherency for that
region).

Chapter 3.0, “Memory Management” discusses this in more detail.

Microarchitecture—Introduction

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
22 Order Number: 316283-002US

1.2.2.5 Instruction Cache

3rd generation microarchitecture provides a 4-way set associative, 32 KB instruction
cache with a cache line size of 32 bytes. All requests that “miss” the instruction cache
generate a 32-byte read request to the next level of memory. A mechanism to lock
critical code into the cache is also provided. The instruction cache uses the pseudo-LRU
replacement algorithm (assuming all four ways of target set are unlocked).

Chapter 4.0, “Instruction Cache” discusses this in more detail.

1.2.2.6 Branch Target Buffer

3rd generation microarchitecture provides a Branch Target Buffer (BTB) to predict the
outcome of branch type instructions. It provides storage for the target address of
branch type instructions and predicts the next address to present to the instruction
cache when the current instruction address is that of a branch.

The BTB holds 128 entries. See Chapter 5.0, “Branch Target Buffer” for more details.

1.2.2.7 Data Cache

3rd generation microarchitecture provides a 4-way set associative, 32 KB data cache,
with a line size of 32 bytes. The data cache supports write-through or write-back
caching and is controlled by page attributes defined in the MMU Architecture and by
coprocessor 15.

3rd generation microarchitecture allows a portion of the data cache to be used for low-
locality references (LLR). This features allows data from specified regions of memory to
be isolated in one way of the data cache, eliminating replacement of critical data in the
other ways of the same set.

A portion of the data cache is also used by applications as data RAM. Software places
data structures or frequently used variables in this RAM.

Chapter 6.0, “Data Cache” discusses all this in more detail.

1.2.2.8 Performance Monitoring

3rd generation microarchitecture provides four performance monitoring counters that
are configured to monitor various events. These events allow a software developer to
measure cache efficiency, detect system bottlenecks and reduce the overall latency of
programs.

Chapter 11.0, “Performance Monitoring” discusses this in more detail.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 23

Introduction—Microarchitecture

1.2.2.9 Power Management

3rd generation microarchitecture incorporates a power and clock management unit
which allows software to use various low power modes implemented by ASSPs.

These features are described in Section 7.3, “CP14 Registers”.

1.2.2.10 Software Debug

3rd generation microarchitecture supports software debugging through two instruction
address breakpoint registers, one data-address breakpoint register, one data-address/
mask breakpoint register, and a trace buffer.

Chapter 12.0, “Software Debug” discusses this in more detail.

1.2.2.11 JTAG

Testability is supported on 3rd generation microarchitecture through the Test Access
Port (TAP) Controller implementation, which is based on IEEE 1149.1 (JTAG) Standard
Test Access Port and Boundary-Scan Architecture. The purpose of the TAP controller is
to support test logic internal and external to 3rd generation microarchitecture such as
built-in self-test and boundary-scan.

Appendix D discusses this in more detail.

Microarchitecture—Introduction

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
24 Order Number: 316283-002US

1.2.3 ASSP Options

3rd generation microarchitecture provides a number of features which provide the
ASSP with various implementation options. For example, an ASSP chooses whether to
provide an L2 cache or not. Or the ASSP chooses to implement additional external co-
processors, in addition to 3rd generation microarchitecture’s internal co-processors.

A complete list of these ASSP options for 3rd generation microarchitecture features is
in Appendix C, “ASSP Options”.

For details on how an ASSP implements these options, refer to the relevant product
documentation.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 25

Introduction—Microarchitecture

1.3 Terminology and Conventions

1.3.1 Number Representation

All numbers in this document are assumed to be base 10 unless designated otherwise.
In text and pseudo code descriptions, hexadecimal numbers have a prefix of 0x and
binary numbers have a prefix of 0b. For example, 107 is represented as 0x6B in
hexadecimal and 0b1101011 in binary.

1.3.2 Terminology and Acronyms

Table 1. Terminology and Acronyms

Term Description

ASSP
Application Specific Standard Product: a product incorporating
3rd generation microarchitecture, often a single chip.

Clean
A clean operation writes the contents of a specified cache line out to backing memory when
that line is valid and dirty.

Coalescing

Coalescing means bringing together a new store operation with an existing store operation
already resident in the memory buffer. The new store is placed in the same memory buffer
entry as an existing store when the address of the new store falls in the eight word aligned
address of the existing entry.

Reserved
A reserved field is a field that is used by an implementation. When the initial value of a
reserved field is supplied by software, this value must be zero. Software must not modify
reserved fields or depend on any values in reserved fields.

Unpredictable

When a behavior is documented as unpredictable, it means that software cannot rely on
any specific outcome from the behavior. 3rd generation microarchitecture ensures that such
behavior does not cause a hardware lockup or a security hole. Software must avoid using
unpredictable aspects of 3rd generation microarchitecture.

Microarchitecture—Programming Model

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
26 Order Number: 316283-002US

2.0 Programming Model

This chapter describes the programming model of the 3rd generation
Intel XScale® microarchitecture (3rd generation microarchitecture or 3rd generation)1,
namely the implementation options and extensions to the ARM Architecture Version
5TE Specification (ARMv5TE).

2.1 ARM Architecture Compatibility

3rd generation microarchitecture implements the integer instruction set architecture
specified in ARM Architecture Version 5TE Specification. ‘T’ refers to the Thumb
instruction set and E refers to the Enhanced DSP Extension.

2.2 ARM Architecture Implementation Options

2.2.1 Big Endian versus Little Endian

3rd generation microarchitecture supports both Big and Little Endian data
representations. The B-bit of the Control Register (Co-processor 15, register 1, bit 7)
selects Big and Little Endian mode. To run in Big Endian mode, the B bit must be set
before attempting any sub-word accesses to memory, or the results are unpredictable.
This bit takes effect even when the MMU is disabled.

Note: ASSP chooses to implement only one endian mode. Refer to the
3rd generation microarchitecture implementation options section of the relevant
product documentation for more information about which endian modes are supported.

2.2.2 Thumb

3rd generation microarchitecture supports the Thumb instruction set.

1. ARM* architecture compliant.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 27

Programming Model—Microarchitecture

2.2.3 ARM Enhanced DSP Extension

3rd generation microarchitecture implements the ARM Enhanced DSP Extension, which
includes a set of instructions that boost the performance of signal processing
applications. The following are some implementation notes in regard to these
instructions:

• PLD is interpreted as a read operation by the MMU and is ignored by the data
breakpoint unit.

• PLD to a non-cacheable page performs no action. Also, when the targeted cache
line is already resident, this instruction has no effect.

• PLD to a memory region whose virtual-to-physical address translation is not
cached in the Translation Lookaside Buffer (TLB) results in a hardware page table
walk. However, any MMU aborts resulting from the table walk are ignored.

• Both LDRD and STRD generates an alignment aborts when address bits [2:0] is
not 0b000 and alignment checking is enabled.

MCRR and MRRC are supported by internal 3rd generation microarchitecture co-
processors only when directed to co-processor 0 to access the internal accumulator.
See Section 2.3.1.2 for more information on accessing the internal accumulator with
these instructions. Using these instructions to access any other internal
3rd generation microarchitecture co-processor (co-processors 14 and 15) results in an
undefined instruction exception. Refer to the 3rd generation microarchitecture
implementation options section of the relevant product documentation for the behavior
when accessing all other co-processors.

2.2.4 Base Register Update

When a precise data abort is signalled on a memory instruction that specifies
writeback, the contents of the base register is not updated. This holds for all load and
store instructions. This is referred to in the ARMv5TE architecture as the Base Restored
Abort Model.

2.2.5 Multiply Operand Restriction

3rd generation microarchitecture supports specifying the same ARM register as Rd and
Rm for MUL and MLA. For SMULL, SMLAL, UMULL, and UMLAL, the same ARM
register is specified for RdHi and Rm or RdLo and Rm. The results are no longer
unpredictable as defined in ARMv5TE.

Microarchitecture—Programming Model

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
28 Order Number: 316283-002US

2.3 Extensions to ARM Architecture

3rd generation microarchitecture extends the ARMv5TE architecture to meet the needs
of various markets and design requirements. The following is a list of the extensions
which are discussed in subsequent sections.

• A Media Processing Co-processor (CP0) has been added that contains a 40-bit
internal accumulator. Five new instructions have been added which access the 40-
bit accumulator.

• Page Attributes were added to the page table descriptors and the description of
existing attributes in ARMv5TE were enhanced. Note that compatibility is
maintained with software developed using page table attributes for previous
microarchitectures.

• Co-processor 7 and Co-processor 14 registers are added to
3rd generation microarchitecture.

• Co-processor 15 functionality is extended and new registers are added.

• Enhancements were made to the Exception Architecture, which include instruction
cache and data cache parity error exceptions, debug exceptions, and imprecise
external data aborts.

2.3.1 Media Processing Co-processor (CP0)

3rd generation microarchitecture adds a Media Processing co-processor to the
architecture for the purpose of increasing the performance and the precision of audio
processing algorithms. This co-processor contains a 40-bit internal accumulator and
eight new instructions.

Note: Products using 3rd generation microarchitecture extend the definition of CP0; for
example, products implement 64-bit accumulators or additional instructions are
defined. Refer to the 3rd generation microarchitecture implementation options section
of the relevant product documentation for more information on any extensions. The
remainder of this section applies only when the ASSP has not extended the definition of
CP0.

The 40-bit accumulator is referenced by several new instructions that were added to
the architecture; MIA, MIAPH and MIAxy are multiply/accumulate instructions that
reference the 40-bit accumulator instead of a register specified accumulator. MAR and
MRA provide the ability to read and write the 40-bit accumulator.

Access to CP0 is always allowed in all processor modes when bit 0 of the Co-processor
Access Register is set. Any access to CP0 when this bit is clear causes an undefined
instruction exception. (See Section 7.2.15, “Register 15: Co-processor Access Register”
for more details). Note that only privileged software sets this bit in the Co-processor
Access Register.

LDC and STC instructions that target co-processor 0 generates an undefined
instruction exception.

Software must save the 40-bit accumulator on a context switch when multiple
processes are using it.

Two new instruction formats were added for co-processor 0: Multiply with Internal
Accumulate Format and Internal Accumulator Access Format. The formats and
instructions are described next.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 29

Programming Model—Microarchitecture

2.3.1.1 Multiply With Internal Accumulate Format

A multiply format has been created to define operations on 40-bit accumulators.
Table 2, “Multiply with Internal Accumulate Format” on page 29 shows the layout of the
new format. The opcode for this format lies within the co-processor register transfer
instruction type, however a new syntax has been created for these instructions to
simplify usage.

Two new fields were created for this format, acc and opcode_3. The acc field specifies
1-of-8 internal accumulators to operate on and opcode_3 defines the operation for this
format. 3rd generation microarchitecture defines a single 40-bit accumulator referred
to as acc0; future implementations define multiple internal accumulators.
3rd generation microarchitecture uses opcode_3 to define six instructions, MIA,
MIAPH, MIABB, MIABT, MIATB and MIATT.

Table 2. Multiply with Internal Accumulate Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 1 0 0 0 1 0 opcode_3 Rs 0 0 0 0 acc 1 Rm

Bits Field Description

31:28 cond Condition under which the instruction is executeda

a. Specifying 0b1111 in the cond field results in an undefined instruction exception when the instruction
executes.

19:16 opcode_3

Type of multiply with the internal accumulate.

3rd generation microarchitecture defines the following:
0b0000 = MIA
0b1000 = MIAPH
0b1100 = MIABB
0b1101 = MIABT
0b1110 = MIATB
0b1111 = MIATT
The effect of all other encodings are unpredictable.

15:12 Rs ARM Register containing Multiplier

7:5 acc

Specifies 1 of 8 accumulators.

3rd generation microarchitecture only implements acc0; access to any
other acc has unpredictable results.

3:0 Rm ARM register containing Multiplicand

Microarchitecture—Programming Model

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
30 Order Number: 316283-002US

The MIA instruction operates similarly to MLA except that the 40-bit accumulator is
used. MIA multiplies the signed value in register Rs (multiplier) by the signed value in
register Rm (multiplicand) and then adds the result to the 40-bit accumulator (acc0).

MIA does not support unsigned multiplication; all values in Rs and Rm are interpreted
as signed data values. MIA is useful for operating on signed 16-bit data that was
loaded into a general purpose register by LDRSH.

The instruction is only executed when the condition specified in the instruction matches
the condition code status.

Table 3. MIA{<cond>} acc0, Rm, Rs

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 1 0 0 0 1 0 1 0 0 0 Rs 0 0 0 0 0 0 0 1 Rm

Operation: if ConditionPassed(<cond>) then

acc0 = Rm[31:0] * Rs[31:0] + acc0[39:0]

Exceptions:none

Qualifiers Condition Code

no condition code flags are updated

Notes: Instruction timings are found
in Section 13.4.4, “Multiply Instruction Timings” on page 225.

Specifying R15 for register Rs or Rm has unpredictable results.

acc0 is defined to be 0b000 on 3rd generation microarchitecture

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 31

Programming Model—Microarchitecture

The MIAPH instruction performs two16-bit signed multiplies on packed half-word data
and accumulates these to a single 40-bit accumulator. The first signed multiplication is
performed on the lower 16 bits of the value in register Rs with the lower 16 bits of the
value in register Rm. The second signed multiplication is performed on the upper
16 bits of the value in register Rs with the upper 16 bits of the value in register Rm.
Both signed 32-bit products are sign extended to 40 bits and then added to the value in
the 40-bit accumulator (acc0).

The instruction is only executed when condition specified in the instruction matches the
condition code status.

Table 4. MIAPH{<cond>} acc0, Rm, Rs

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 1 0 0 0 1 0 1 0 0 0 Rs 0 0 0 0 0 0 0 1 Rm

Operation: if ConditionPassed(<cond>) then

acc0 = sign_extend(Rm[31:16] * Rs[31:16]) +

sign_extend(Rm[15:0] * Rs[15:0]) +

acc0[39:0]

Exceptions:none

Qualifiers Condition Code

no condition code flags are updated

Notes: Instruction timings are found
in Section 13.4.4, “Multiply Instruction Timings” on page 225.

Specifying R15 for register Rs or Rm has unpredictable results.

acc0 is defined to be 0b000 on 3rd generation microarchitecture

Microarchitecture—Programming Model

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
32 Order Number: 316283-002US

The MIAxy instruction performs one 16-bit signed multiply and accumulates this to a
single 40-bit accumulator. x refers to either the upper half or lower half of Rm
(multiplicand) and y refers to the upper or lower half of Rs (multiplier). The upper or
lower 16-bits of each source register half is selected by specifying either the B (bottom)
or T (top) qualifier in each of the xy positions of the mnemonic.

MIAxy does not support unsigned multiplication; all values in Rs and Rm are
interpreted as signed data values. The instruction is only executed when the condition
specified in the instruction matches the condition code status.

Table 5. MIA<T,B><T,B>{<cond>} acc0, Rm, Rs

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 1 0 0 0 1 0 1 1 x y Rs 0 0 0 0 0 0 0 1 Rm

Operation: if ConditionPassed(<cond>) then

if (bit[17] == 0)

<operand1> = Rm[15:0]

else

<operand1> = Rm[31:16]

if (bit[16] == 0)

<operand2> = Rs[15:0]

else

<operand2> = Rs[31:16]

acc0[39:0] = sign_extend(<operand1> * <operand2>) + acc0[39:0]

Exceptions:none

Qualifiers Condition Code

no condition code flags are updated

Notes: Instruction timings are found
in Section 13.4.4, “Multiply Instruction Timings” on page 225.

Specifying R15 for register Rs or Rm has unpredictable results.

acc0 is defined to be 0b000 on 3rd generation microarchitecture.

Table 6. MIAxy Subfield Encoding

Qualifier Field Value

T x 1

B x 0

T y 1

B y 0

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 33

Programming Model—Microarchitecture

2.3.1.2 Internal Accumulator Access Format

3rd generation microarchitecture defines an instruction format for accessing internal
accumulators in CP0. Table 7, “Internal Accumulator Access Format” on page 33 shows
that the opcode falls into the co-processor register transfer space.

The RdHi and RdLo fields allow up to 64 bits of data transfer between
3rd generation microarchitecture registers and an internal accumulator. The acc field
specifies 1 of 8 internal accumulators to transfer data to/from.
3rd generation microarchitecture defines a single 40-bit internal accumulator referred
to as acc0; future implementations provide multiple internal accumulators of varying
size, up to 64-bits.

3rd generation microarchitecture implements two instructions MAR and MRA that
move two ARM registers to acc0 and move acc0 to two ARM registers, respectively.

Note: MAR has the same encoding as MCRR (to co-processor 0) and MRA has the same
encoding as MRRC (to co-processor 0). These instructions move 64-bits of data to/
from ARM registers from/to co-processor registers. MCRR and MRRC are defined in
ARM Enhanced DSP instruction set.

Disassemblers not aware of MAR and MRA produces the following syntax:

MCRR{<cond>} p0, 0x0, RdLo, RdHi, c0

MRRC{<cond>} p0, 0x0, RdLo, RdHi, c0

Table 7. Internal Accumulator Access Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 0 0 0 1 0 L RdHi RdLo 0 0 0 0 0 0 0 0 0 acc

Bits Field Description

31:28 cond Condition under which instruction is executeda

a. Specifying 0b1111 in the cond field results in an undefined instruction exception when the instruction
executes.

20 L

Move to / from internal accumulator

0: move to internal accumulator (MAR)
1: move from internal accumulator (MRA)

19:16 RdHi

ARM register for high order 8 bits of the internal accumulator
(acc[39:32]).

On a read from the acc, acc[39:32] are sign extended to 32-bits and
placed in this register.

On a write to the acc, the lower 8 bits of this register are written to
acc[39:32]

15:12 RdLo

ARM register for low order 32 bits of the internal accumulator.

On a read from the acc, acc[31:0] are placed in this register.

On a write to the acc, this register is written to acc[31:0]

2:0 acc

Specifies 1 of 8 internal accumulators.

3rd generation microarchitecture only implements acc0; access to any
other acc is unpredictable

Microarchitecture—Programming Model

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
34 Order Number: 316283-002US

The MAR instruction moves the value in register RdLo to bits[31:0] of the 40-bit
accumulator (acc0) and moves bits[7:0] of the value in register RdHi into bits[39:32]
of acc0. The instruction is only executed when the condition specified in the instruction
matches the condition code status.

The MRA instruction moves the 40-bit accumulator value (acc0) into two registers.
Bits[31:0] of the value in acc0 are moved into the register RdLo. Bits[39:32] of the
value in acc0 are sign extended to 32 bits and moved into the register RdHi.

The instruction is only executed when the condition specified in the instruction matches
the condition code status.

Table 8. MAR{<cond>} acc0, RdLo, RdHi

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 0 0 0 1 0 0 RdHi RdLo 0 0 0 0 0 0 0 0 0 0 0 0

Operation: if ConditionPassed(<cond>) then

acc0[39:32] = RdHi[7:0]

acc0[31:0] = RdLo[31:0]

Exceptions:none

Qualifiers Condition Code

No condition code flags are updated

Notes: Instruction timings are found in

Section 13.4.4, “Multiply Instruction Timings” on page 225

Specifying R15 as either RdHi or RdLo has unpredictable results.

Table 9. MRA{<cond>} RdLo, RdHi, acc0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 0 0 0 1 0 1 RdHi RdLo 0 0 0 0 0 0 0 0 0 0 0 0

Operation: if ConditionPassed(<cond>) then

RdHi[31:0] = sign_extend(acc0[39:32])

RdLo[31:0] = acc0[31:0]

Exceptions:none

Qualifiers Condition Code

No condition code flags are updated

Notes: Instruction timings are found in

Section 13.4.4, “Multiply Instruction Timings” on page 225

Specifying the same register for RdHi and RdLo has unpredictable
results.

Specifying R15 as either RdHi or RdLo has unpredictable results.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 35

Programming Model—Microarchitecture

2.3.2 Page Attributes

3rd generation microarchitecture implements the MMU architecture defined by
ARMv5TE, with the following extensions:

• new first-level page table descriptor format added (supersection descriptor)

• new second-level page table descriptor format added (extended small page
descriptor)

• 3-bit field in page table descriptor to define memory attributes (TEX field)

• One bit in page table descriptor to define shared memory (S bit)

• One bit in page table descriptor for ASSP defined attribute (P bit)

• Auxiliary Control Register (Low-Locality Reference attribute control)

• Translation Table Base Register extensions (P bit and outer cacheability field for
table walk)

3rd generation microarchitecture adds the super section descriptor within the first-level
descriptor format and the extended small page descriptor within the coarse second-
level descriptor format. The super section descriptor allows a 36-bit physical address
space to be supported. The extended small page descriptor allows additional memory
attributes (vs. small page) to be programmed for a 4 K page. These new formats are
described in Section 3.2.2, “Page Table Descriptor Formats”.

3rd generation microarchitecture also extends page attributes defined in ARMv5TE.
These extensions allow more attributes to be defined, including support for shared
memory and L2 caching.

The descriptor TEX field extends page attributes defined by C and B bits for additional
L1 and L2 cache attributes. When TEX is 0b000, 3rd generation microarchitecture
retains the ARMv5TE definitions of the C and B encodings for L1 cache behavior (with
some extensions to control L2 cache behavior). When the TEX field is not 0b000, these
bits provide additional control over L1 and L2 cache behavior.

One of the particular options for the L1 data cache, using the TEX field, is to define a
region of memory as having Low-Locality Reference (LLR). This features allows
3rd generation microarchitecture to provide similar functionary to the mini-data cache
found on previous microarchitectures (Section 6.1.2, “Low-Locality of Reference (LLR)”
for more information). 3rd generation microarchitecture adds the Auxiliary Control
Register (co-processor 15, register 1, opcode2=1) to control the LLR attributes. Refer
to Section 7.2.2, “Register 1: Control and Auxiliary Control Registers” for more details.

The S bit in the descriptor enables a memory region to be defined as shared. Setting
this bit to 1 allows a region of memory to be defined for multi-agent access and allows
cache coherence to be performed on accesses to that memory.

A full list of memory attribute encodings of the TEX, C, B and S bits is found in Section
3.2.2, “Page Table Descriptor Formats”. The location of the new bits with the various
descriptor types are found in Section 3.2.2, “Page Table Descriptor Formats”.

3rd generation microarchitecture adds a P bit in the first-level descriptors to allow an
ASSP to identify a new memory attribute. Refer to the 3rd generation microarchitecture
implementation options section of the relevant product documentation to find out how
the P bit has been defined. More details on the P-bit are found in Section 3.2.3.4,
“ASSP Specific Attribute (P-bit)”.

3rd generation microarchitecture also allows software to program the P bit and outer
cacheability attributes for memory accesses made during a page table walk. This is
done using the corresponding P bit and OC field in the Translation Table Base Register.
See Section 7.2.3, “Register 2: Translation Table Base Register” for more details.

Microarchitecture—Programming Model

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
36 Order Number: 316283-002US

2.3.3 CP7 Functionality

3rd generation microarchitecture uses a portion of CP7 to provide error logging
registers for reporting information on external bus errors and L2 cache parity errors.

The remaining portion of CP7 not used by 3rd generation microarchitecture is used by
ASSP specific co-processors.

The error logging registers are described in Section 7.4, “CP7 Registers”.

2.3.4 CP14 Functionality

3rd generation microarchitecture uses CP14 to provide additional co-processor
functionality related to the following areas:

• Software Debug

• Performance Monitoring

• Clock and Power Management

For more specific details on these co-processor registers refer to Chapter 7.0,
“Configuration”. Additional information on these software debug and performance
monitoring features are found in Chapter 12.0, “Software Debug” and Chapter 11.0,
“Performance Monitoring”, respectively.

2.3.5 CP15 Functionality

To accommodate the functionality in 3rd generation microarchitecture, the following
CP15 registers have been added to or changed from ARMv5TE.:

• L2 System ID and L2 Cache Type Registers

• Auxiliary Control Register

• Co-processor Access Register

• Hardware Breakpoint Resources

• Instruction Cache and Data Cache Lockdown

• Instruction TLB and Data TLB Lockdown

• Fault Status Register

• Translation Table Base

• Functions to control an L2 cache

• Expanded definition of DC Line Allocate

Refer to Chapter 7.0, “Configuration” for more specific information on these registers.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 37

Programming Model—Microarchitecture

2.3.6 Exception Architecture

2.3.6.1 Exception Summary

Table 10 shows all the exceptions that 3rd generation microarchitecture generates, and
the attributes of each. Subsequent sections give details on each exception.

2.3.6.2 Exception Priority

3rd generation microarchitecture follows the exception priority specified in the ARM
Architecture Version 5TE Specification. The processor has additional exceptions that
are generated while debugging. For information on these debug exceptions, see
Chapter 12.0, “Software Debug”.

Table 10. Exception Summary

Exception
Description

Exception Typea

a. Exception types are those described in the ARM Architecture Version 5TE Specification, Section 2.6.

Precise Updates FSR Updates FAR

Reset Reset N N N

FIQ FIQ N N N

IRQ IRQ N N N

External Instructionb

b. External Instruction includes bus errors and L2 cache parity errors on instruction fetches

Prefetch Y Y N

Instruction MMU Prefetch Y Y N

Instruction Cache Parity Prefetch Y Y N

Lock Abort Data Y Y N

Data MMU Data Y Y Y

External Datac

c. External Data includes bus errors and L2 cache parity errors on data accesses

Data N Y N

Data Cache Parity Data N Y N

Software Interrupt Software Interrupt Y N N

Undefined Instruction Undefined Instruction Yd

d. An ASSP uses an undefined instruction exception to report imprecise co-processor exceptions. Refer to the
implementation options section of the relevant product documentation for more information on any co-
processors that are defined.

N N

Debug Exceptionse

e. Refer to Chapter 12.0, “Software Debug” for more details

varies varies varies N

Table 11. Exception Priority

Exception Priority

Reset 1 (Highest)

Data Abort (Precise & Imprecise) 2

FIQ 3

IRQ 4

Prefetch Abort 5

Undefined Instruction, SWI 6 (Lowest)

Microarchitecture—Programming Model

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
38 Order Number: 316283-002US

2.3.6.3 Prefetch Aborts

3rd generation microarchitecture detects three types of prefetch aborts: Instruction
MMU abort, external instruction error, and an instruction cache parity error. These
aborts are described in Table 12.

When a prefetch abort occurs, hardware reports it in the extended Status field of the
Fault Status Register. The value placed in R14_ABORT (the link register in abort mode)
is the address of the aborted instruction + 4.

The external instruction error includes external bus errors and L2 cache parity errors
which are reported during an instruction fetch.

Table 12. Encoding of Fault Status for Prefetch Aborts

Priority Sources FS[10,3:0]a

a. All other encodings not listed in the table are reserved.

Domain FAR

Highest

Instruction MMU Exception

Several exceptions generate this encoding:
- translation faults
- external abort on translation
- domain faults, and
- permission faults

It is up to software to figure out which one occurred.

0b10000 invalid invalid

External Instruction Error Exception 0b10110 invalid invalid

Lowest Instruction Cache Parity Error Exception 0b11000 invalid invalid

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 39

Programming Model—Microarchitecture

2.3.6.4 Data Aborts

Two classes of data aborts exist in 3rd generation microarchitecture: precise and
imprecise.

On a precise data abort, execution does not proceed beyond the aborting instruction
before the microarchitecture redirects execution to the data abort handler. For precise
data aborts, R14_ABORT is the address of the aborted instruction + 8.

On an imprecise data abort, execution proceeds beyond the instruction that caused the
abort before the microarchitecture enters the data abort handler, or the reported data
abort is not associated with a specific instruction. For imprecise data aborts,
R14_ABORT is the address of the next instruction to execute in the program flow + 4.

On 3rd generation microarchitecture precise data aborts are recoverable and imprecise
data aborts are not recoverable.

Table 13. Encoding of Fault Status for Data Aborts

Priority Sources FS[10,3:0]a

a. All other encodings not listed in the table are reserved.

Domai
n

FAR

Highest Alignment 0b000x1 invalid valid

External Abort on Translation
First level

Second level
0b01100
0b01110

invalid
valid

valid
valid

Translation
Section
Page

0b00101
0b00111

invalid
valid

valid
valid

Domain
Section
Page

0b01001
0b01011

valid
valid

valid
valid

Permission
Section
Page

0b01101
0b01111

valid
valid

valid
valid

Lock Abort 0b10100 invalid invalid

Co-processor Data Abort 0b11010 invalid invalid

Imprecise External Data Abort 0b10110 invalid invalid

Lowest Data Cache Parity Error Exception 0b11000 invalid invalid

Microarchitecture—Programming Model

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
40 Order Number: 316283-002US

2.3.6.4.1 Precise Data Aborts

• Lock aborts are precise. These abort occurs when a TLB lock operation (instruction
or data TLB) or an instruction cache lock operation causes an exception due to
either a translation fault, access permission fault or external bus fault.

When a lock abort occurs, the Extended Status field of the Fault Status Register
(FSR) is set to 0b10100.

The Fault Address Register is invalid for lock aborts.

• Data MMU aborts are precise. These are due to an alignment fault, translation fault,
domain fault, permission fault or external data abort on an MMU translation.

For MMU aborts, the status field is set to values defined by ARMv5TE. These values
is shown in Table 13, “Encoding of Fault Status for Data Aborts” on page 39.

The Fault Address Register is set to the effective address of the aborting data
access.

• Co-processor Data aborts are precise. These data aborts are definable by the
ASSP; these allow a co-processor attached to the microarchitecture the ability to
generate a data abort and have it reflected in the Fault Status Register. Refer to the
3rd generation microarchitecture implementation options section of the relevant
product documentation to see whether this feature is used.

When a co-processor data abort is generated, the Extended Status field of the FSR
is set to 0b11010.

The Fault Address Register is invalid for co-processor data aborts.

2.3.6.4.2 Imprecise Data Aborts

• Data cache parity errors are imprecise; the extended Status field of the Fault
Status Register is set to 0xb11000.

• All external data aborts except for those generated on a data MMU translation are
imprecise. External data abort includes external bus errors and L2 parity errors on
data accesses. The ASSP also reports other types of external errors as external
data aborts. Refer to the implementation options section of the relevant product
documentation for additional types of errors that are reported.

The Fault Address Register for all imprecise data aborts is invalid.

Although 3rd generation microarchitecture guarantees the Base Restored Abort Model
(see Section 2.2.4, “Base Register Update” on page 27) for precise aborts, it cannot do
so in the case of imprecise aborts. Thus a memory access that uses an addressing
mode which updates the base register and generates an imprecise data abort still
updates the base register.

Imprecise data aborts create scenarios that are difficult for an abort handler to recover.
Both external data aborts and data cache parity errors result in corrupted data in the
targeted registers. Because these faults are imprecise, it is possible that the corrupted
data was used before the Data Abort handler is invoked. Thus, software treats
imprecise data aborts as unrecoverable.

2.3.6.4.3 Multiple Data Aborts

Multiple data aborts are detected by hardware but only the highest priority one is
reported. Refer to Table 13 on page 39 for the priorities of each type of data abort.
When the reported data abort is precise, software corrects the cause of the abort and
re-execute the aborted instruction. When the lower priority abort still exists, it is then
reported. Software handles each abort separately until the instruction successfully
executes.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 41

Programming Model—Microarchitecture

2.3.6.5 Exceptions from Preload Instructions

Even through the PLD instruction goes through the normal MMU address translation
and loads data from memory, it does not generate any precise data aborts. When the
PLD encounters a condition which causes a data abort, the PLD is effectively canceled,
without affecting any of the caches, and the abort is not reported. This allows software
to issue PLDs speculatively without affecting the state of the processor when an abort
is encountered.

For example, Example 1 places a PLD instruction early in the loop. This PLD is used to
fetch data for the next loop iteration. In this example, the list is terminated with a node
that has a null pointer. When execution reaches the end of the list, the PLD on address
0x0 does not cause a fault. Rather, it is ignored and the loop terminates normally.

2.3.6.6 Debug Exceptions

Debug exceptions are covered in Section 12.3.3, “Debug Exceptions”.

Example 1. Speculatively issuing PLD

; R0 points to a node in a linked list. A node has the following layout:

; Offset Contents

;----------------------------------

; 0 data

; 4 pointer to next node

; This code computes the sum of all nodes in a list. The sum is placed into R9.

;

MOV R9, #0 ; Clear accumulator

sumList:

LDR R1, [R0, #4] ; R1 gets pointer to next node

LDR R3, [R0] ; R3 gets data from current node

PLD [R1] ; Speculatively start load of next node

ADD R9, R9, R3 ; Add into accumulator

MOVS R0, R1 ; Advance to next node. At end of list?

BNE sumList ; If not then loop

;

; Note that the end of the list is marked with a NULL pointer (0x0).

; The descriptor for this page of memory is valid, but

; disallow access. If an invalid descriptor is used, then it

; will not be cached in the TLB and will require a table walk

; each time it is PLDed.

;

Microarchitecture—Memory Management

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
42 Order Number: 316283-002US

3.0 Memory Management

Together with the ARM Architecture Version 5TE Specification, this chapter describes
the memory management unit implemented by the 3rd generation
Intel XScale® microarchitecture (3rd generation microarchitecture or 3rd generation).

3.1 Overview

3rd generation microarchitecture implements the ARM Memory Management Unit
(MMU) defined by the ARM Architecture Version 5TE Specification with some
extensions, including support for shared memory, an L2 cache, and 36-bit physical
addressing. This chapter describes the 3rd generation microarchitecture specific MMU
features and assumes the reader has prior knowledge of the ARM MMU Architecture.

3rd generation microarchitecture supports the multi-level page table structure and
page table entries defined by the ARM MMU Architecture. The page table allows various
size regions of memory to be defined with similar attributes. The individual entries in
the table (known as descriptors) specify the virtual to physical address translation,
memory protection, and memory attribute information for a specific region of memory.

3rd generation microarchitecture extends the ARM MMU Architecture with two new
descriptor types: supersection and extended small page. A supersection allows a 32-bit
virtual address to be mapped to a 36-bit physical address space (see Section 3.2.2.1);
the extended small page is similar to a small page, except it allows additional memory
attributes to be specified for 4KB pages of memory (see Section 3.2.2.2).

The memory protection used by 3rd generation microarchitecture is the same as that
defined by the ARM MMU Architecture (see ARM Architecture Version 5TE
Specification).

3rd generation microarchitecture extends the memory attributes defined by the ARM
MMU Architecture to support additional capabilities such as an L2 cache and shared
memory. The 3rd generation microarchitecture page tables allow system software to
associate the following attributes with regions of memory:

• cacheable in Level 1 (L1) instruction cache and data cache (see Section 3.2.5)

• cacheable in L2 cache (see Section 3.2.6)

• shared memory (hardware supported coherency) (see Section 3.2.3.2)

• write-back vs. write-through L1 data cache write policy (see Section 3.2.4)

• coalescing (see Section 3.2.4)

• an ASSP definable attribute (see Section 3.2.3.4)

• low locality of reference (LLR) for L1 data cache (see Section 3.2.3.3)

To accelerate virtual to physical address translation, 3rd generation microarchitecture
uses both an instruction Translation Lookaside Buffer (TLB) and a data TLB to cache the
latest translations. In addition to the address translation, the TLBs contain memory
access permissions and memory region attributes.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 43

Memory Management—Microarchitecture

On an instruction or data TLB miss, the microarchitecture invokes a hardware
mechanism, known as a table walk. The table walk reads the page table in backing
memory to get the virtual to physical address mapping, as well as memory attributes
for the region of memory being accessed.

When a Level 2 (L2) cache is present and enabled, 3rd generation microarchitecture is
configured to cache all table walks in the L2 cache to help improve performance when
fetching descriptors on a TLB miss.

Following a table walk, the address translation and memory attribute information is
placed in the TLB.

For additional details on the address translation process refer to Section 3.2.1.

The MMU reports prefetch aborts (for instruction fetches) or data aborts (for data
accesses) during the address translation process. The types of aborts which are
generated are described in Section 3.2.7.

Software controls and manage the MMU using registers and functions in Co-processor
15 (CP15). More information on the control and management functions are found in
Section 3.3.

Microarchitecture—Memory Management

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
44 Order Number: 316283-002US

3.2 Architecture Model

3.2.1 Address Translation Process

3rd generation microarchitecture uses separate TLBs for instruction and data accesses
to speed up the address translation process. Both the instruction TLB and data TLB
contain 32 entries and are fully associative. These are managed using the TLB functions
available in CP15, register 8 and register 10 (see Section 3.3).

The MMU accesses the TLB and does table walks based on the modified virtual address
(MVA). This means that all operations which operate on a virtual address (instruction
fetches, data accesses, DC line allocate) are first remapped by the Process ID register,
as described in Section 7.2.13, “Register 13: Process ID”. It is this remapped address,
the MVA, that is used when searching the TLB or, in the case of a TLB miss, for reading
the page table in memory.

When an MVA does not hit in the TLB, a table walk is required. During a page table
walk, bits in the Translation Table Base Register are used to specify certain memory
attributes to use during the table walk. In particular, the ASSP specific attribute and L2
cacheability - are applied to the table walk. For more information on programming
these attributes, refer to Section 7.2.3, “Register 2: Translation Table Base Register”.

The L2 cacheability of page table walks is used to control whether page table walks are
cached in the L2 or not. When the L2 cacheability is programmed for non-L2-cacheable,
table walks do not get cached in the L2 cache. When the L2 cacheability for table walks
is programmed to be L2 cacheable, then all table walks when the L2 cache is present
and enabled, gets cached into the L2 cache.

Thus, when page table walks are configured to be L2 cacheable, on a TLB miss (with
the L2 cache present and enabled), page table walks first check the L2 cache before
going to main memory. When the table walk hits the L2 cache, the descriptor is read
from the cache. When it misses the L2 cache, then the descriptor is loaded from
external memory, caching it in the L2 cache in the process. When a descriptor is cached
in the L2 cache, an entire cache line is written, so additional page table entries are also
cached starting at the previous cache line boundary. Note that caching descriptors in
the L2 cache on a table walk leads to an existing line in the cache being replaced or
evicted.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 45

Memory Management—Microarchitecture

3.2.2 Page Table Descriptor Formats

3rd generation microarchitecture extends the descriptors defined in ARM MMU
Architecture with the supersection and extended small page descriptors. Table 14
through Table 16 show the page table descriptor formats supported by
3rd generation microarchitecture.

Table 14. First-level Descriptors

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SBZ 0 0

Coarse page table base address P Domain SBZ 0 1

Section base Address
S
B
Z

0
S
B
Z

S
S
B
Z

TEX AP P Domain 0 C B 1 0

Supersection base
address

Base
address
[35:32]

S
B
Z

1
S
B
Z

S
S
B
Z

TEX AP P SBZ 0 C B 1 0

Fine page table base address SBZ P Domain SBZ 1 1

Table 15. Second-level Descriptors for Coarse Page Table

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SBZ 0 0

Large page base address S TEX AP3 AP2 AP1 AP0 C B 0 1

Small page base address AP3 AP2 AP1 AP0 C B 1 0

Extended small page base address SBZ S TEX AP C B 1 1

Table 16. Second-level Descriptors for Fine Page Table

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SBZ 0 0

Large page base address S TEX AP3 AP2 AP1 AP0 C B 0 1

Small page base address AP3 AP2 AP1 AP0 C B 1 0

Tiny Page Base Address
S
B
Z

TEX AP C B 1 1

Microarchitecture—Memory Management

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
46 Order Number: 316283-002US

3.2.2.1 Supersection Descriptor

3rd generation microarchitecture defines a first-level descriptor, known as a
supersection, to support 36-bit physical addressing. The supersection descriptor, shown
in Table 14 is based on the section descriptor format, with bit 18 of the descriptor used
to differentiate between the two.

Figure 2, “Address Translation for Supersection” on page 46 shows the process for
translating a 32-bit virtual address into a 36-bit physical address using a supersection
descriptor. A supersection defines a 16 MB region of memory and must start on a
16 MB boundary. Supersections always use Domain 0.

Note in Figure 2, the virtual address shows the lower 4 bits of the first-level table index
overlapping with the upper four bits of the supersection index. Since a supersection
covers 16 MB of memory, it consumes 16 consecutive descriptor entries in the first
level page table. All 16 entries must be programmed with the same descriptor value,
otherwise the results are unpredictable.

3.2.2.2 Extended Small Page Descriptor

3rd generation microarchitecture defines a second level descriptor, known as an
extended small page, to allow memory attributes to be specified on a 4 KB page size.
Note that the extended small page is only defined for a coarse second level page table
(refer to Table 15).

The address translation for an extended small page is the same as for a small page
(refer to the ARM Architecture Version 5TE Specification).

Figure 2. Address Translation for Supersection

31 1413

31 14 13 2 1 0

Translation base SBZ

First-level
table index Supersection index

0

Translation base
First-level
table index 0 0

First-level

descriptor

Virtual
Address

Translation

table base

Address of

first-level
descriptor

First-level fetch

31 2019 02324

Supersection
1 0

31 23 5 4 3 211 10 98 1 0

AP
Base

C B

14

TEX P 0

201918171615

addr
[35:32]

S1
S
B
Z

SBZ

24

base address

S
B
Z

S
B
Z

Supersection
Supersection index

Physical

Address

31 24 23 03235

Base
addr

[35:32] base address

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 47

Memory Management—Microarchitecture

3.2.3 Memory Attributes

The attributes associated with a region of memory are configured in the page table and
control the behavior of accesses to the L1 caches (instruction and data), L2 cache, and
write-buffers.

When the MMU is disabled, memory attributes defined in the page table are ignored. All
instruction fetches default to L1 cacheable and L2 uncacheable. Data accesses default
to strongly ordered (refer to Section 3.2.4 for a definition of strongly ordered).

Refer to Section 3.2.5, “L1 Instruction Cache, Data Cache Behavior” on page 55 and
Section 3.2.6, “L2 Cache Behavior” on page 56 for more information on L1 and L2
cache behavior.

3.2.3.1 Inner/Outer Cacheability

3rd generation microarchitecture provides support for multiple layers of cache, referred
to as the inner and outer caches. Inner/Outer refers to the levels of caches that are
built in a system. Inner refers to the inner-most caches, including L1. Outer refers to
the outer-most caches. Inner cache on 3rd generation microarchitecture is defined to
be the L1 instruction and data caches. The outer cache is defined to be the L2 cache,
when present.

The inner/outer cacheability attributes are not controlled by any individual bits but
rather by a combination of descriptor bits and also by whether the L2 is present or not.
For memory regions defined as Low Locality Reference (see Section 3.2.3.3) attribute
bits in the Auxiliary Control Register (see Section 7.2.2, “Register 1: Control and
Auxiliary Control Registers”) also control inner/outer cacheability.

3.2.3.2 Coherent Memory Attribute (S-bit)

The coherent memory attribute is used to define a region of memory as being shared
by multiple agents. 3rd generation microarchitecture provides hardware cache
coherence support for the L1 data cache and the L2 cache based on whether the region
is defined to be shared. Hardware based cache coherency is not supported for the L1
instruction cache. For shared memory, 3rd generation microarchitecture employs the
MOESI protocol to maintain L2 cache coherence and VI protocol for the L1 data cache.

The shared attribute is supported for all page types, except for small pages and tiny
pages. It is represented by the S bit in the descriptors (Table 14, Table 15, and
Table 16).

Setting the S bit to 1 does not ensure that a page is both cacheable and coherent. At a
minimum, the following conditions must be also be met:

• The MMU must be enabled AND

• The L2 cache must be present and enabled AND

• The page must be defined as L2 cacheable/write-back in the descriptor

• ASSP coherence support must be present and enabled (Refer to the relevant
product documentation for more information on whether any additional coherency
support is provided). When the S-bit is set for an ASSP that does not support
coherency, the results are unpredictable.

Do not lock data from shared memory regions in the L1 data cache. Doing so results in
unpredictable behavior of the system.

Note: Setting the S-bit in the descriptor is not the only way to define a shared region of
memory. Non-cacheable memory regions are coherent since the data is not cached for
these memory regions.

Microarchitecture—Memory Management

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
48 Order Number: 316283-002US

3.2.3.3 Low Locality of Reference (LLR)

Certain page table encodings define the L1 data cache to be LLR. This feature allows an
application to confine data in LLR memory regions to a single way of the L1 data cache,
instead of polluting the entire cache.

The L1 and L2 cache write policies for LLR regions are defined in the Auxiliary Control
Register. (Section 34, “Auxiliary Control Register”).

For more LLR feature details see Section 6.1.2, “Low-Locality of Reference (LLR)”.

3.2.3.4 ASSP Specific Attribute (P-bit)

3rd generation microarchitecture provides a method for allowing ASSPs to define their
own attribute for a region of memory. ASSPs use the P bit in the 1st level descriptors to
assign its own page attribute to a memory region.

This bit is only present in the first level descriptors, so the attribute is only used to
specify behavior at 1 megabyte and 16 megabyte (supersection) memory granularity.

Refer to the relevant product documentation for usage details.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 49

Memory Management—Microarchitecture

3.2.4 Memory Attribute Encodings

The memory attributes are encoded within the page table descriptors using the C, B,
and shared (S) bits, and type extension (TEX) field. Table 14, Table 15, and Table 16
show the location of these bits in the descriptors.

Table 17 through Table 24 are complete listing of the 3rd generation microarchitecture
page attributes. These tables use the following terms for non-cacheable memory:

• Strongly ordered defines a non-cacheable, non-coalesceable memory region to
which memory accesses behave as bi-directional fences. This means that all agents
in a system sees explicit memory accesses in program order relative to a strongly
ordered memory access. Explicit memory access refers instructions which do loads
and/or stores. Also note that strongly ordered memory is implied to be shared
(regardless of the S bit value in the descriptor).

• Device memory is non-cacheable memory well suited for memory mapped
peripherals. The processor does not coalesce writes to device memory. Instruction
fetches to non-shared device memory results in unpredictable behavior. However,
for compatibility with previous processors, instruction fetches are done to shared
device memory.

• Inner/Outer Uncacheable is non-cacheable memory which allows writes to coalesce
and be re-ordered.

Additional information on the ordering behavior of access to various types of memory
regions is described in Chapter 10.0, “Memory Ordering”.

Microarchitecture—Memory Management

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
50 Order Number: 316283-002US

The following table usage of ‘X’ in a bit position (in other words, 1X0) indicates a bit is
1 or 0.

Table 17. Cache Attributes with L2 present, S=0

TEX C B
L1 I-cache
Cacheable

L1 D-cache
Cacheable

L1 DC
Write
Policy

L2
Cacheable

Writes
Coalesce

Description

000 0 0 N N - N N Strongly ordered (shared)

000 0 1 N N - N Y Shared Inner/Outer uncacheablea

a. The inner/outer uncacheable behavior for TEX CB encoding ‘000 01’ is deprecated on 3rd generation microarchitecture. Use TEX
CB encoding ‘001 00’ instead when inner/outer uncacheable memory is required.

000 1 0 Y Y WT N Y
Inner write-through, read-allocate;
Outer uncacheable

000 1 1 Y Y WB Y Y
Inner write-back, read allocate;
Outer write-back, write allocate

001 0 0 N N - N Y Inner/Outer uncacheable

001 0 1 N N - N N Shared Device

001 1 0 Y Y
See

Description
See

Description
Y

Low Locality of Reference (LLR) Memory

Auxiliary Control Register specifies L1 D-
cache write policy and L2 cacheability.

See Table 19 for details

001 1 1 Y Y WB Y Y
Inner write-back, read-allocate;
Outer write-back, write-allocate

010 0 0 N N - N N Non-shared device

010 0 1 N/A N/A N/A N/A N/A Reserved

010 1 0 N/A N/A N/A N/A N/A Reserved

010 1 1 N/A N/A N/A N/A N/A Reserved

011 X X N/A N/A N/A N/A N/A Reserved

1X0 0 0 N N - N Y Inner/Outer uncacheable

1X0 0 1 Y Y WB N Y
Inner write-back, read-allocate;
Outer uncacheable

1X0 1 0 Y Y WT N Y
Inner write-through, read allocate;
Outer uncacheable

1X0 1 1 Y Y WB N Y
Inner write-back, read allocate;
Outer uncacheable

1X1 0 0 N N - Y Y
Inner uncacheable;
Outer write-back, write allocate

1X1 0 1 Y Y WB Y Y
Inner write-back, read-allocate;
Outer write-back, write-allocate

1X1 1 0 Y Y WT Y Y
Inner write-through, read allocate;
Outer write-back, write allocate

1X1 1 1 Y Y WB Y Y
Inner write-back, read allocate;
Outer write-back, write allocate

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 51

Memory Management—Microarchitecture

Table 18. Cache Attributes with L2 present, S=1

TEX C B
L1 I-cache
Cacheable

L1 D-cache
Cacheable

L1 D-cache
Write
Policy

L2
Cacheable

Writes
Coalesce

Description

000 0 0 N N - N N Strongly ordered (shared)

000 0 1 N N - N Y Shared Inner/Outer uncacheablea

000 1 0 Y N - N Y
Inner IC cacheable, DC uncacheable
Outer uncacheable

000 1 1 Y Y WT Y Y
Inner write-through, read-allocate
Outer write-back, write-allocate

001 0 0 N N - N Y Inner/Outer uncacheable

001 0 1 N N - N N Shared Device

001 1 0 Y
See

Description
See

Description
See

Description
Y

Low Locality of Reference (LLR) memory

Auxiliary Control Register specifies L1 D-cache
cacheability/write policy and L2 cacheability

See Table 20 for details.

001 1 1 Y Y WT Y Y
Inner write-through, read-allocate;
Outer write-back, write allocate

010 0 0 N N - N N Non-shared device

010 0 1 N/A N/A N/A N/A N/A RESERVED

010 1 0 N/A N/A N/A N/A N/A RESERVED

010 1 1 N/A N/A N/A N/A N/A RESERVED

011 X X N/A N/A N/A N/A N/A RESERVED

1X0 0 0 N N - N Y Inner/Outer uncacheable

1X0 0 1 Y N - N Y
Inner IC cacheable, DC uncacheable;
Outer uncacheable

1X0 1 0 Y N - N Y
Inner IC cacheable, DC uncacheable;
Outer uncacheable

1X0 1 1 Y N - N Y
Inner IC cacheable, DC uncacheable;
Outer uncacheable

1X1 0 0 N N - Y Y
Inner uncacheable;
Outer write-back, write allocate

1X1 0 1 Y Y WT Y Y
Inner write-through, read-allocate;
Outer write-back, write allocate

1X1 1 0 Y Y WT Y Y
Inner write-through, read-allocate;
Outer write-back, write allocate

1X1 1 1 Y Y WT Y Y
Inner write-through, read-allocate;
Outer write-back, write allocate

a. The inner/outer uncacheable behavior for TEX CB encoding ‘000 01’ is deprecated on 3rd generation microarchitecture. Use TEX
CB encoding ‘001 00’ instead when inner/outer uncacheable memory is required.

Microarchitecture—Memory Management

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
52 Order Number: 316283-002US

Table 19. LLR Page Attributes, L2 Present Case, S=0

Auxiliary Control Register
Setting

L1 I-cache
Cacheable

L1 D-cache
Cacheable

L1 D-Cache
Write Policy

L2
Cacheable

Writes
Coalesce

Description

inner write-through
outer uncacheable

Y Y WT N Y -

inner write-through
outer write-back, write allocate

Y Y WT Y Y -

inner write-back
outer uncacheable

Y Y WB N Y -

inner write-back
outer write-back, write allocate

Y Y WB Y Y -

Table 20. LLR Page Attributes, L2 Present Case, S=1

Auxiliary Control Register
Setting

L1 I-cache
Cacheable

L1 D-cache
Cacheable

L1 D-cache
Write Policy

L2
Cacheable

Writes
Coalesce

Description

inner write-through
outer uncacheable

Y N - N Y
L1 DC downgrades to
uncacheable

inner write-through
outer write-back, write allocate

Y Y WT Y Y -

inner write-back
outer uncacheable

Y N - N Y
L1 DC downgrades to
uncacheable

inner write-back
outer write-back, write allocate

Y Y WT Y Y
L1 DC downgrades to
write-through

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 53

Memory Management—Microarchitecture

Table 21. Cache Attributes with no L2, S=0

TEX C B
L1 I-cache
Cacheable

L1 D-cache
Cacheable

L1 D-cache
Write
Policy

Writes
Coalesce

Description

000 0 0 N N - N Strongly Ordered (shared)

000 0 1 N N - Y Shared Inner uncacheablea

000 1 0 Y Y WT Y Inner write-through, read-allocate

000 1 1 Y Y WB Y Inner write-back, read-allocate

001 0 0 N N - Y Inner uncacheable

001 0 1 N N - N Shared Device

001 1 0 Y Y
See

Description
Y

Low Locality of Reference (LLR) memory

Auxiliary Control Register specifies L1 D-cache write policy.

See Table 23 for details.

001 1 1 Y Y WB Y Inner write-back, read-allocate

010 0 0 N N - N Non-shared device

010 0 1 N/A N/A N/A N/A RESERVED

010 1 0 N/A N/A N/A N/A RESERVED

010 1 1 N/A N/A N/A N/A RESERVED

011 X X N/A N/A N/A N/A RESERVED

1XX 0 0 N N - Y Inner uncacheable

1XX 0 1 Y Y WB Y Inner write-back, read allocate

1XX 1 0 Y Y WT Y Inner write-through, read allocate

1XX 1 1 Y Y WB Y Inner write-back, read allocate

a. The inner/outer uncacheable behavior for TEX CB encoding ‘000 01’ is deprecated on 3rd generation microarchitecture. Use TEX
CB encoding ‘001 00’ instead when inner/outer uncacheable memory is required.

Table 22. Cache Attributes with no L2, S=1

TEX C B
L1 I-cache
Cacheable

L1 D-cache
Cacheable

L1 D-cache
Write
Policy

Writes
Coalesce

Description

000 0 0 N N - N Strongly ordered (shared)

000 0 1 N N - Y Shared Inner uncacheablea

a. The inner/outer uncacheable behavior for TEX CB encoding ‘000 01’ is deprecated on 3rd generation microarchitecture. Use TEX
CB encoding ‘001 00’ instead when inner/outer uncacheable memory is required.

000 1 0 Y N - Y Inner IC cacheable, DC uncacheable

000 1 1 Y N - Y Inner IC cacheable, DC uncacheable

001 0 0 N N - Y Inner uncacheable

001 0 1 N N - N Shared Device

001 1 0 Y N - Y

Low Locality of Reference (LLR) memory

L1 D-cache downgrades to uncacheable.

See Table 24 for details.

001 1 1 Y N - Y Inner IC cacheable, DC uncacheable

010 0 0 N N - N Non-shared device

010 0 1 N/A N/A N/A N/A RESERVED

010 1 0 N/A N/A N/A N/A RESERVED

010 1 1 N/A N/A N/A N/A RESERVED

011 X X N/A N/A N/A N/A RESERVED

1XX 0 0 N N - Y Inner uncacheable

1XX 0 1 Y N - Y Inner IC cacheable, DC uncacheable

1XX 1 0 Y N - Y Inner IC cacheable, DC uncacheable

1XX 1 1 Y N - Y Inner IC cacheable, DC uncacheable

Microarchitecture—Memory Management

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
54 Order Number: 316283-002US

Table 23. LLR Page Attributes, no L2 case, S=0

Auxiliary Control Register
Setting

L1 I-cache
Cacheable

L1 D-cache
Cacheable

L1 D-cache
Write
Policy

Writes
Coalesce

Description

inner write-through
outer uncacheable

Y Y WT Y -

inner write-through
outer write-back, write allocate

Y Y WT Y -

inner write-back
outer uncacheable

Y Y WB Y -

inner write-back
outer write-back, write allocate

Y Y WB Y -

Table 24. LLR page attributes, no L2 case, S=1

Auxiliary Control Register
Setting

L1 I-cache
Cacheable

L1 D-cache
Cacheable

L1 D-cache
Write
Policy

Writes
Coalesce

Description

inner write-through
outer uncacheable

Y N - Y L1 DC downgrades to uncacheable

inner write-through
outer write-back, write allocate

Y N - Y L1 DC downgrades to uncacheable

inner write-back
outer uncacheable

Y N - Y L1 DC downgrades to uncacheable

inner write-back
outer write-back, write allocate

Y N - Y L1 DC downgrades to uncacheable

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 55

Memory Management—Microarchitecture

3.2.5 L1 Instruction Cache, Data Cache Behavior

While the MMU is disabled all page table attributes are ignored. All instruction accesses
are considered to be cacheable and are cached in the L1 instruction cache when it is
enabled. Data accesses are treated as strongly ordered.

When the MMU is enabled, the following conditions must be met in order to enable L1
instruction caching:

• instruction cache must be enabled (bit 12, register 1 of CP15 Control Register is
set)

• specified address must be marked as L1 cacheable in the page table attributes

Similarly, the following conditions must be met in order to enable L1 data caching:

• data cache must be enabled (bit 2, register 1 of CP15 Control Register is set)

• specified address must be marked as L1 cacheable in the page table attributes

• When S bit is set, must be marked as L2 cacheable/write-back in the page table
attributes, and the L2 cache must be present and enabled.

When the S bit is set for a memory region that is defined as L1 cacheable in the page
table, there are several scenarios in which 3rd generation microarchitecture
automatically downgrades that memory region to be non-cacheable in the L1 data
cache, to ensure coherency of shared data (assumes MMU enabled and L1 data cache
enabled):

• L2 is not present OR

• L2 is present but disabled OR

• L2 is present and enabled BUT the region is non-cacheable in L2

The cache attributes in the page table also tell the caches how to handle write data that
hits the L1 data cache. The two methods of handling write data are write-back and
write-through. Write-back updates the data only in the L1 data cache, while write-
through updates the data both in the L1 data cache and the backing memory. When the
S bit is set for a memory region that meets the above requirements for cacheability in
the L1 data cache, L1 data cache defaults to write-through.

The L1 caches only allocate a line in the cache for instruction or data reads that miss
the cache (in other words, L1 caches only support read-allocate). Writes to addresses
not contained in the L1 data cache never causes a cache line to be allocated. For
microarchitectures in which the L2 does not exist, all write misses are placed directly
on the internal bus.

For more information on the L1 caches refer to Chapter 4.0, “Instruction Cache” and
Chapter 6.0, “Data Cache”.

Microarchitecture—Memory Management

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
56 Order Number: 316283-002US

3.2.6 L2 Cache Behavior

3rd generation microarchitecture offers the option of an L2 cache. The discussion in
this section assumes that the L2 is present. When the L2 cache is not present, ignore
this section.

When the MMU is disabled or the L2 cache is disabled, neither instructions nor data are
cached in the L2 cache. Accesses to addresses previously cached in the L2 cache do not
result in a cache hit.

When the MMU and the L2 cache are enabled, instructions and data are cached in the
L2 cache when the target region is defined as L2 cacheable/write-back by the page
table attributes.

Page table accesses by the hardware table walk mechanism are cached in the L2 when
the following conditions are met:

• MMU is enabled AND

• L2 cache is enabled AND

• Table Walk Outer Cache Attributes field (in the Translation Table Base Register)
enables the caching of table walks in the L2 cache. See Section 7.2.3, “Register 2:
Translation Table Base Register”.

The page tables dictate the cacheability for associated memory regions. However, all
cacheable accesses to the L2 is write-back and allocate a cache line on any cacheable
miss (in other words, L2 cache is always write-back and write-allocate).

For more information on the L2 Cache refer to Chapter 8.0.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 57

Memory Management—Microarchitecture

3.2.7 Exceptions

The MMU generates aborts on instruction fetches or data accesses.

For an instruction fetch, the MMU generates a prefetch abort for:

• translation faults

• external abort on translation

• domain faults

• permission faults

On a data access, the MMU generates a data abort for:

• alignment faults

• translation faults

• external abort on translation

• domain faults

• permissions faults.

• lock abort (data abort on TLB lock or IC fetch and lock)

Data address alignment checking is enabled by setting bit 1 of the Control Register
(CP15, register 1). Alignment faults are still reported when the MMU is disabled. No
other MMU exceptions are generated when the MMU is disabled.

Specific information about which abort was generated is reported in the Fault Status
Register. In some cases, the target address is also reported in the Fault Address
Register. More information on these registers is found in Chapter 7.0, “Configuration”.

See Section 2.3.6, “Exception Architecture” on page 37 for additional information on
3rd generation microarchitecture exception reporting.

Microarchitecture—Memory Management

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
58 Order Number: 316283-002US

3.3 MMU Control and Management

3.3.1 MMU Control

Following a reset, the MMU Enable bit (bit 0) in coprocessor 15, register 1 (Control
Register) is cleared and the MMU is disabled. In addition, the TLBs are unlocked and
invalidated.

Software enables the MMU by setting this bit.

Software also clears this bit to disable MMU. While the MMU is disabled, no page table
walks or TLB accesses occur.

Disabling and re-enabling the MMU in software does not affect the contents of the
TLBs; valid TLB entries remain valid, locked TLB entries remain locked.

3.3.2 Invalidate TLB Operations

The instruction and data TLB are invalidated using TLB functions in CP15. The TLB
functions allow the entire instruction and data TLBs to be invalidated (individually or
both with a single command). In addition, individual entries within either TLB are
invalidated based on a specified address. See Section 7.2.9, “Register 8: TLB
Operations” for more details on these TLB invalidation operations.

3.3.3 Locking TLB Entries

Individual entries are locked into the instruction and data TLBs to improve performance
of critical code. See Section 7.2.11, “Register 10: TLB Lock Down” for more information
on the TLB lock/unlock functions.

When a lock operation finds the virtual address translation already resident in the TLB,
the results are unpredictable. To ensure proper operation, software executes an
invalidate by entry command before the lock command. Software also accomplishs this
by invalidating all entries.

Locking entries into either the instruction TLB or data TLB reduces the available number
of entries (by the number that was locked down) for hardware to cache other virtual to
physical address translations.

When an MMU abort is generated during an instruction or data TLB lock operation, the
Fault Status Register is updated to indicate a Lock Abort, and the exception is reported
as a precise data abort.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 59

Memory Management—Microarchitecture

3.3.4 Round-Robin Replacement Algorithm

The line replacement algorithm for the TLBs is round-robin; there is a round-robin
pointer that keeps track of the next entry to replace. The next entry to replace is the
one sequentially after the last entry that was written. For example, when the last
virtual to physical address translation was written into entry 5, the next entry to
replace is entry 6.

At reset, the round-robin pointer is set to entry 31. Once a translation is written into
entry 31, the round-robin pointer gets set to the next available entry, beginning with
entry 0 when no entries have been locked down. Subsequent translations move the
round-robin pointer to the next sequential entry until entry 31 is reached, where it
wraps back to entry 0 upon the next translation. The round-robin algorithm does not
search for the next available invalid entry in the TLB. Valid entries are replaced even
when there are invalid entries in the TLB.

A lock pointer is used for locking entries into the TLB and is set to entry 0 at reset. A
TLB lock operation places the specified translation at the entry designated by the lock
pointer, moves the lock pointer to the next sequential entry, and resets the round-robin
pointer to entry 31. Locking entries into either TLB effectively reduces the available
entries for updating. For example, when the first three entries were locked down, the
round-robin pointer is entry 3 after it rolled over from entry 31.

Only entries 0 through 30 are locked in either TLB; entry 31 is never locked. When the
lock pointer is at entry 31, a lock operation updates the TLB entry with the translation
and ignore the lock. In this case, the round-robin pointer stays at entry 31.

Figure 3. Example of Locked Entries in TLB

entry 0
entry 1

entry 7
entry 8

entry 22
entry 23

entry 30
entry 31

Lo
ck

ed

Eight entries locked, 24 entries
available for round robin replacement

Microarchitecture—Instruction Cache

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
60 Order Number: 316283-002US

4.0 Instruction Cache

3rd generation Intel XScale® microarchitecture (3rd generation microarchitecture or
3rd generation) implements an instruction cache that is in the first level of the memory
hierarchy. (This is referred to as Level 1). 3rd generation is configured with a unified
level 2 (L2) cache, such that accesses that miss the instruction cache is directed to the
L2 cache. The instruction cache enhances performance by reducing the number of
instruction fetches from external memory. It also provides software the ability to lock
down performance critical code.

4.1 Overview

Figure 4 shows cache organization and how the instruction address is used to access
the cache.

The instruction cache is a 32 Kbyte, 4-way set associative cache. There are 256 sets
with each set containing four ways. Each way of a set contains eight 32-bit words and
one valid bit (or line). The cache supports the ability to lock and unlock data on a line
granularity (Section 4.3.4 has more information on locking.) The replacement policy
used when all four ways are available (in other words, no lines are locked) is a
pseudo-LRU algorithm. See Section 4.2.4 for more details about the replacement
algorithm. The instruction cache is virtually addressed.

Note: The virtual address presented to the instruction cache is remapped by the PID register,
which creates a modified virtual address (MVA). See Section 7.2.13, “Register 13:
Process ID” for a description of the PID register.

Figure 4. Instruction Cache Organization

Tag 32-bytes

Tag 32-bytes

Tag 32-bytes

Tag 32-bytes

Tag 32-bytes

Tag 32-bytes

Tag 32-bytes

Tag 32-bytes

Tag 32-bytes

Tag 32-bytes

Tag 32-bytes

Tag 32-bytes

Set 000

Set 001

Set 254

Set 255

Way 0 Way 1 Way 2 Way 3

Address[4:0]Set Index

Address[31:13]

(Select Set) (Select Bytes in line selected by Set & Way)

(For selected set, select the way whose Tag matches Address[31:13])

Instruction Address (Virtual) - 32K byte cache
Note: in ARM mode Bits[1:0]=0b00, Thumb mode Bit[0]=0

31 13 12 5 4 2 1 0

Tag Set Index Word Byte

Tag 32-bytes

Tag 32-bytes

Tag 32-bytes

Tag 32-bytes

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 61

Instruction Cache—Microarchitecture

4.2 Operation

4.2.1 Operation When Instruction Cache is Enabled

When the cache is enabled, it compares every instruction request address against the
addresses of instructions that it is currently holding. When the cache contains the
requested instruction and is valid, the access hits the cache, and the cache returns the
requested instruction. When the cache does not contain the requested instruction, the
access misses the cache, and the cache requests a fetch from backing memory of the
8-word line (32 bytes) that contains the requested instruction. As the fetch returns
instructions to the cache, these are placed in one of two fetch buffers and the
requested instruction is delivered to the instruction decoder.

A fetched line is written into the cache when it is cacheable and the cache is enabled.
Code is designated as cacheable when the Memory Management Unit (MMU) is disabled
or when the MMU is enabled and the page referenced is L1 cacheable. See Chapter 3.0,
“Memory Management” for a discussion on page attributes.

Note: An instruction fetch misses the cache but hit one of the fetch buffers. This happens
before a requested line is written into the cache. (See Section 4.2.3 for more details.)
When a fetch buffer hit occurs, the requested instruction is delivered to the instruction
decoder in the same manner as a cache hit.

4.2.2 Operation When Instruction Cache Is Disabled

Disabling the cache prevents any lines from being written into the instruction cache.
Although the cache is disabled, it is still accessed and generates a hit when the data is
already in the cache.

Note: This behavior (hitting the cache when disabled) is deprecated on
3rd generation microarchitecture, meaning it is supported in
3rd generation microarchitecture but not in future microarchitectures. Software must
not rely on this feature after 3rd generation microarchitecture.

Disabling the instruction cache does not disable instruction buffering that occurs
within the instruction fetch buffers. Two 8-word instruction fetch buffers are always
enabled in the cache disabled mode. So long as instruction fetches continue to hit
within either buffer (even in the presence of forward and backward branches), no
external fetches for instructions are generated. A miss causes one or the other buffer to
be filled from external memory. Note that these fetch buffers are invalidated. (See
Section 4.3.3 for more details.)

Enabling the cache, after it has been disabled, does not modify the contents of the
cache. For example, when a line is placed into the cache and then it is disabled and
then re-enabled, the line is still in the cache.

Microarchitecture—Instruction Cache

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
62 Order Number: 316283-002US

4.2.3 Fetch Policy

An instruction cache miss occurs when the requested instruction is not found in the
instruction fetch buffers or instruction cache. A fetch request is then made to the next
level of memory (in other words, the L2 or memory external to
3rd generation microarchitecture). The fetch size is always 32 bytes, whether it is
cacheable or non-cacheable and the fetch address is always aligned on a 32-byte
boundary. The instruction cache handles up to two “misses”. Each external fetch
request uses a fetch buffer that holds 32 bytes.

A miss causes the following:

1. A fetch buffer is allocated

2. The instruction cache sends a fetch request to the next level of memory. This
request is for a 32-byte line.

3. When the line requested is delivered from the L2, all 32 bytes are returned in one
transfer. When the line is returned from memory external to
3rd generation microarchitecture, the transfer rate depends on the product
configuration. Please refer to the ASSP product architecture specification for more
information. As the bytes return, these are written into the fetch buffer.

4. As soon as the fetch buffer receives the requested instruction, it forwards the
instruction to the instruction decoder for execution. As other instructions in the
requested line return from external memory, these are placed in the fetch buffer.
While there, these generate a hit when that instruction address is requested.

5. When all words have returned, the fetched line is written into the instruction cache,
when cacheable and when the instruction cache is enabled. The line chosen for
update in the cache is controlled by the replacement algorithm (see Section 4.2.4).
This update replaces a valid line at that location.

6. Once the cache is updated, the fetch buffer is invalidated.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 63

Instruction Cache—Microarchitecture

4.2.4 Replacement Algorithm

The line replacement algorithm for a set in the instruction cache is pseudo LRU when
there are no lines locked. When one or more lines are locked in a set, the replacement
algorithm become true LRU for that set.

Pseudo LRU works by keeping track of which pair of lines in each set was least-recently
accessed and within each pair of lines which one was least-recently accessed. This
requires three bits per set:

• One to designate either the first two lines (way 0 and way 1) or the last two lines
(way 2 and way 3) as the least recently used pair

• Another bit to indicate which of the first two lines is least-recently used with
respect to each other

• One more bit to indicate which of the last two lines is least-recently used with
respect to each other.

Pseudo LRU doesn’t always select the least-recently used line as the next one to
replace. Consider the access sequence (in ways) 0-1-2-3-0, the line selected for
replacement is line 2, not line 1 as is done in the true LRU algorithm. However, the
algorithm does ensure that the line selected for replacement is either the least-recently
or the second least-recently used line.

When three or fewer lines in a set are available for replacement (due to some lines
being locked), true LRU are used to determine which line gets replaced. True LRU
means the least-recently used line accessed in the set (ignoring locked lines) are
replaced.

Lines are allocated in the following order after reset or global invalidation (assuming no
lines were locked): way 0, way 2, way 1, way 3.

The “invalidate I cache line” function modifies the LRU bits to point to the line that was
just invalidated. No other cache functions (Table 43) affect the LRU bits.

4.2.5 Parity Protection

The instruction cache is protected by parity to ensure data integrity. Each instruction
cache word has one parity bit. (The instruction cache tag is not parity protected.) When
a parity error is detected on an instruction cache access, a prefetch abort exception
occurs when 3rd generation microarchitecture attempts to execute the instruction.
Before servicing the exception (branching to the exception vector), hardware updates
the Fault Status Register (Coprocessor 15, register 5). See Section 2.3.6.3, “Prefetch
Aborts” on page 38 for the exact encoding.

A software exception handler recovers from an instruction cache parity error. This is
accomplished by invalidating the instruction cache and the branch target buffer and
then returning to the instruction that caused the prefetch abort exception. A more
complex handler chooses to invalidate the specific line that caused the exception and
then invalidate the BTB.

When a parity error occurs on an instruction that is locked in the cache, the software
exception handler unlocks and invalidates the offending instruction cache line (by using
“Invalidate Instruction Cache Line by MVA” function) and then re-lock the line in before
it returns to the faulting instruction.

Microarchitecture—Instruction Cache

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
64 Order Number: 316283-002US

4.2.6 Instruction Fetch Latency

The minimum fetch latency for an L1 instruction cache miss, L2 cache hit is 15 cycles.

When the instruction fetch is to memory external to 3rd generation microarchitecture
the latency is dependent on the microarchitecture to external memory frequency ratio,
system bus bandwidth, system memory, etc., which are all particular to each ASSP.

4.2.7 Instruction Cache Coherency

The instruction cache does not detect modification to program memory by stores or
actions of other bus masters. Several situations requires program memory
modification, such as just-in-time compilation.

The application program is responsible for synchronizing code modification and
invalidating the instruction cache and BTB. In general, software must ensure that
modified code space is not accessed until modifications and invalidations are
completed.

To achieve instruction cache coherence, the cache contents are invalidated after code
modification in external memory is complete. Refer to Section 4.3.3, “Invalidating the
Instruction Cache” on page 65 for more details on invalidating the instruction cache.

When the instruction cache is not enabled, or code is being written to a non-cacheable
region, software must still invalidate the instruction cache, invalidate the BTB and
execute a Prefetch Flush before using the newly-written code. This precaution ensures
that state associated with the new code is not buffered elsewhere in the processor,
such as the fetch buffers or the BTB.

When writing code as data, care must be taken to force it completely out of the L1 data
cache and into the L2 cache or external memory before attempting to execute it. When
writing into a non-cacheable or write-through region, executing a DWB
(Section 7.2.8.3) is sufficient precaution. When writing to a cacheable writeback
region, then the data cache is subjected to a Clean/Invalidate operation (see
Section 7.2.8.1) to ensure coherency.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 65

Instruction Cache—Microarchitecture

4.3 Instruction Cache Control

4.3.1 Instruction Cache State at Reset

After reset, the instruction cache is always disabled, unlocked, and invalidated.

4.3.2 Enabling/Disabling

The instruction cache is enabled by setting bit 12 in coprocessor 15, register 1 (see
Section 7.2.2, “Register 1: Control and Auxiliary Control Registers”).

4.3.3 Invalidating the Instruction Cache

The entire instruction cache along with the fetch buffers are invalidated by writing to
coprocessor 15, register 7. (See Table 43 for the exact command.) This command does
not unlock any lines that were locked in the instruction cache nor does it invalidate
those locked lines. To invalidate the entire cache including locked lines, the unlock
instruction cache command needs to be executed before the invalidate command. This
unlock command is also found in Table 54.

3rd generation microarchitecture also supports invalidating an individual line in the
instruction cache, specified by an MVA. See Table 43 for the exact command. This
command also unlocks the entry when it was previously locked.

The Prefetch Flush function, Invalidate Instruction Cache function and Invalidate I
Cache Line function invalidates the contents of the fetch buffers.

4.3.4 Locking Instructions in the Instruction Cache

Software has the ability to lock performance critical routines into the instruction cache.
Lines are locked into the instruction cache by the “Fetch and Lock I Cache Line”
function located in coprocessor 15, register 9, see Table 54 for exact command.
Register Rd contains the modified virtual address of the line locked into the cache.

Lines are only locked in way1, way2 and way3, which means no more than 24K bytes of
code is locked in the instruction cache. The “Fetch and Lock I Cache Line” function uses
the replacement algorithm to decide which of the three ways (within the specified set)
to allocate and lock. Attempting to lock a line in a set with 3 ways already locked result
in the line being allocated in way0 and it is not locked.

3rd generation microarchitecture allows software to unlock individual lines or the entire
instruction cache. The “Invalidate I Cache Line” function invalidates and unlocks the
specified line and the “Unlock Instruction Cache” function unlocks the entire cache.
(See Table 46 and Table 54 respectively, for the exact command.)

There are two requirements for locking down code:

1. The code being locked into the cache must be cacheable in the instruction cache.

2. The instruction cache must be enabled and lines targeted to be locked must not
already be in the cache.

Failure to follow these requirements produces unpredictable results.

Software locks down several different routines located at different memory locations.
This causes some sets to have more locked lines than others (for example, set 2 has
way 1 and way 2 locked while set 34 only has way 3 locked).

Note: It is possible to receive an exception, known as a lock abort, while locking code (see
Section 2.3.6, “Exception Architecture” on page 37).

Microarchitecture—Branch Target Buffer

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
66 Order Number: 316283-002US

5.0 Branch Target Buffer

The 3rd generation Intel XScale® microarchitecture (3rd generation microarchitecture
or 3rd generation) uses dynamic branch prediction to reduce the penalties associated
with changing the flow of program execution. 3rd generation features a branch target
buffer that provides the instruction cache with the target address of branch type
instructions. The branch target buffer is implemented as a 128-entry, direct mapped
cache.

This chapter is primarily intended for those optimizing their code for performance. An
understanding of the branch target buffer is needed in this case so that code is
scheduled to best utilize the performance benefits of the branch target buffer.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 67

Branch Target Buffer—Microarchitecture

5.1 Branch Target Buffer (BTB) Operation

The BTB stores the history of branches that have executed along with their targets.
Figure 5 shows an entry in the BTB, where the tag is the instruction address of a
previously executed branch and the data contains the target address of the previously
executed branch along with two bits of history information.

The BTB takes the current instruction address and checks to see when this address is a
branch that was previously seen. It uses bits [8:2] of the current address to read out
the tag and then compares this tag to bits [31:9,1] of the current instruction address.
When the current instruction address matches the tag in the cache and the history bits
indicate that this branch has usually been taken in the past, the BTB uses the data
(target address) as the next instruction address to send to the instruction cache.

Instruction address Bit[1] is included in the tag comparison for Thumb execution
support. This organization means that two consecutive Thumb branch (B) instructions,
with instruction address bits[8:2] the same, contend for the same BTB entry. Thumb
also requires 31 bits for branch target address. ARM mode = bit[1] is zero.

The history bits represent four possible prediction states for a branch entry in the BTB.
Figure 6, “Branch History State Diagram” on page 67 shows these states along with the
possible transitions. Every time a branch that exists in the BTB is executed, the history
bits are updated to reflect the latest outcome of the branch, either taken or not-taken.

Chapter 13.0, “Performance Considerations” describes instructions that are dynamically
predicted by the BTB and the performance penalty for mispredicting a branch.

The BTB is disabled by default following a reset and must be explicitly enabled. Once
enabled, the BTB does not generally need to be managed by software; it is
automatically invalidated by a global instruction cache invalidation or Process ID
Register (Section 7.2.13) changes. However, certain situations require explicit
management of the BTB. For example, modifying code in external memory and then
invalidating an individual cache line to allow the modified code to execute requires
explicit invalidation of the BTB. Section 5.2.2 describes BTB management methods.

Figure 5. BTB Entry Format

Branch Address[31:9,1] Target Address[31:1] History

DATATAG

Bits[1:0]

Figure 6. Branch History State Diagram

SN WN WT ST

Taken

Not Taken

Taken

Taken

Not Taken

Not Taken

Not Taken

Taken

SN: Strongly Not Taken
WN: Weakly Not Taken

ST: Strongly Taken
WT: Weakly Taken

Microarchitecture—Branch Target Buffer

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
68 Order Number: 316283-002US

5.1.1 Reset

After Processor Reset, the BTB is disabled and all entries are invalidated.

5.1.2 Update Policy

The following branch instructions update the BTB:

• B (ARM and Thumb)

• BL (ARM and Thumb)

A new entry is stored into the BTB when the following conditions are met:

• the BTB is enabled

• AND the branch instruction has executed

• AND the branch was taken

• AND the branch is not currently in the BTB.

The entry is then marked valid and the history bits are set to WT. When another valid
branch exists at the same entry in the BTB, it is replaced by the new branch.

Once a branch is stored in the BTB, the history bits are updated upon every execution
of the branch as shown in Figure 6.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 69

Branch Target Buffer—Microarchitecture

5.2 BTB Control

5.2.1 Disabling/Enabling

The BTB is disabled following reset. Software enables the BTB by setting a bit in the
coprocessor 15 control register (see Section 7.2.2).

5.2.2 Invalidation

There are four ways the contents of the BTB are invalidated.

1. The BTB is invalidated by a processor reset.

2. Software directly invalidates the BTB via a CP15, register 7 function. Refer to
Section 7.2.8, “Register 7: Cache Functions”.

3. The BTB is invalidated by a software write to the Process ID Register.

4. The BTB is invalidated by a global invalidation of the instruction cache via CP15,
register 7 functions.

Microarchitecture—Data Cache

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
70 Order Number: 316283-002US

6.0 Data Cache

The 3rd generation Intel XScale® microarchitecture (3rd generation microarchitecture
or 3rd generation) implements a data cache that is in the first level of the memory
hierarchy. (This is referred to as Level 1). 3rd generation is configured with a unified
level 2 (L2) cache, such that accesses that miss the data cache are directed to the L2
cache.

The data cache enhances performance by reducing the number of data accesses to and
from external memory. The data cache is non-blocking, which means instruction
execution proceeds when a data request is not serviced by the data cache. There is a
12 entry data request buffer (referred to as the memory buffer) to further decouple
instruction execution from external memory accesses, which increases overall system
performance.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 71

Data Cache—Microarchitecture

6.1 Overview

6.1.1 Organization

The data cache is a 32 Kbyte, 4-way set associative cache; there are 256 sets with
each set containing four ways. Each way of a set contains eight 32-bit words and one
valid bit. The line size is 8 words. There also exists a dirty bit for every line; when a
store hits the cache for a memory region marked as writeback, the dirty bit associated
with that line is set. The cache supports the ability to lock and unlock data on a line
granularity. (See Section 6.4 for more information on locking.) The replacement policy
used when all four ways are available (in other words, no lines are locked) is a pseudo-
LRU algorithm. (More details about the replacement algorithm is found in
Section 6.2.4.)

Figure 7, “Data Cache Organization” on page 71 shows the cache organization and how
the data address is used to access the cache.

Cache policies are specified by the page attribute bits in the page table descriptors. See
Section 3.2.3, “Memory Attributes” on page 47 for a description of these bits.

The data cache is virtually addressed. It supports write-back and write-through caching
policies. The data cache only allocates a line in the cache when a cacheable read miss
occurs (which includes a PLD instruction) or when the line-allocate command is used.
Write allocation is not supported in the L1 data cache.

Note: The virtual address presented to the data cache is remapped by the PID register, which
creates a modified virtual address (MVA). See Section 7.2.13, “Register 13: Process ID”
for a description of the PID register.

Figure 7. Data Cache Organization

Tag 32-bytes
Tag 32-bytes

Tag 32-bytes
Tag 32-bytes

Tag 32-bytes
Tag 32-bytes

Tag 32-bytes
Tag 32-bytes

Tag 32-bytes
Tag 32-bytes

Tag 32-bytes
Tag 32-bytes

Set 000
Set 001

Set 254
Set 255

Way 0 Way 1 Way 2 Way 3

Address[4:0]Set Index

Address[31:13]

(Select Set) (Select Byte(s) in line selected by Set & Way)

(For selected set, select the way whose Tag matches Address[31:13])

Data Address (Virtual) - 32K byte cache

31 13 12 5 4 2 1 0

Tag Set Index Word Byte

Tag 32-bytes
Tag 32-bytes

Tag 32-bytes
Tag 32-bytes

Microarchitecture—Data Cache

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
72 Order Number: 316283-002US

6.1.2 Low-Locality of Reference (LLR)

3rd generation microarchitecture provides unique caching for data that has a low
temporal locality. This type of data is accessed for only a short period of time and when
there is a large amount of data being processed, it pollutes the entire data cache.
3rd generation microarchitecture only allows this type of data to allocate in way 0 of
the data cache, thus preserving the contents of other ways of the cache.

LLR caching is enabled through the attribute bits in the page table. (See Section
3.2.3.3, “Low Locality of Reference (LLR)” on page 48 for the exact encoding.) When
LLR caching is specified, hardware looks in the Auxiliary Control Register to find out
how the LLR data is cached in the data cache and L2 cache. (See the OC and IC fields of
Table 34.)

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 73

Data Cache—Microarchitecture

6.1.3 Memory Buffer Overview

3rd generation microarchitecture implements a 12-entry memory buffer that holds
data requests to the next level of memory. Each entry holds up to 32 bytes of data, all
data being contained within a cache line boundary. Each entry generates only one
request to external memory (or L2 cache) and each entry holds up to four cacheable
load requests when the request is for an address that resides in the same cache line of
the fill. In this case, all data requests share this one buffer.

The memory buffer supports the coalescing of multiple store requests to external
memory. A store request that is marked as coalescable in the page table coalesces with
any one of the 12 entries. The new store request is placed in the same entry as the
existing store request when the address of the new store falls in the eight word aligned
address of the existing entry. The data is updated in the memory buffer entry and no
pend entry is used. (See Section 1.3.2, “Terminology and Acronyms” on page 25 for a
definition of coalescing.)

The memory buffer is always enabled which means stores to external memory are
buffered. The page attributes TEX[2:0], C, and B are used to defined whether
coalescing is enabled for each region of memory. See Section 3.2.4, “Memory Attribute
Encodings” on page 49 for more information on these attributes.

Data requests that allocate a new entry in the memory buffer are:

• a data cache line fill, due to a cacheable load, PLD instruction, or a swap
instruction.

• a cacheable store when configured as write-through and doesn’t coalesce with
another store already in the memory buffer.

• a cacheable store when configured as writeback that misses the data cache and
doesn’t coalesce with another store already in the memory buffer.

• a data cache eviction of dirty data.

• a non-cacheable load.

• a non-cacheable store that doesn’t coalesce with another store already in the
memory buffer.

Data requests that pend against an existing entry in the memory buffer:

• an L1 cacheable load, that misses the data cache, and is for an address that resides
in an existing data cache line fill.

• an L1 uncacheable, L2 cacheable load, that is for an address that resides in an
existing data cache line fill.

There are several cases where the microarchitecture stalls due to the behavior of the
memory buffer. Some of the more visible ones are:

• A cacheable store request that hits an outstanding fill in the memory buffer causes
the microarchitecture to stall until the fill is complete.

• A cacheable load request that misses the cache and maps to an outstanding store
in the memory buffer causes the microarchitecture to stall until the store is globally
observed. See Chapter 10.0, “Memory Ordering” for a definition of globally
observed.

• The next memory request causes the memory buffer to overflow meaning all 12
entries are occupied or the memory request coalesces to an entry that already has
four pending requests.

Microarchitecture—Data Cache

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
74 Order Number: 316283-002US

6.1.3.1 Coalescing

3rd generation microarchitecture allows more opportunities for stores to coalesce in the
memory buffer by delaying stores to the next level of memory. The oldest store is held
in the memory buffer until one of the following occurs:

• The high-water mark is exceeded. Specifically, there are more than two coalescable
store entries in the memory buffer.

• An explicit fence instruction is executed, which includes DMB and DWB. See
Chapter 10.0, “Memory Ordering” for a description explicit fence instructions.

• The store part of a SWP instruction is written in the memory buffer.

• The time-out counter, associated with the oldest store, expires.The purpose of the
time-out counter is to ensure that the oldest store is eventually sent to the next
level of memory hierarchy, when none of the previously described events occur.

The time-out counter counts when an instruction is executed and there is a
coalescable store in the memory buffer. The count is associated with the oldest
store and after approximately 127 instructions have executed the oldest store is no
longer held in the memory buffer.

After the oldest store is removed from the buffer, the timer starts again (at zero)
for the next oldest store.

Note: This is not an exhaustive list. The conditions listed above are ones that are most visible
to software.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 75

Data Cache—Microarchitecture

6.2 Data Cache Operation

6.2.1 Operation When Data Cache is Enabled

When the data cache is enabled for an access, the data cache compares the address of
requests against the addresses of data that it is currently holding. When the line
containing the address of the request is resident in the cache, the access hits the
cache. For a load operation the cache returns the requested data to the destination
register and for a store operation the data is stored into the cache. The data associated
with the store is also written to the next level of memory when write-through caching is
specified for that area of memory. When the cache does not contain the requested
data, the access misses the cache, and the sequence of events that follows depends on
the configuration of the cache, the configuration of the MMU and the page attributes,
which are described in Section 6.2.3.2, “Read Miss Policy” on page 76 and Section
6.2.3.3, “Write Miss Policy” on page 77.

6.2.2 Operation When Data Cache is Disabled

3rd generation microarchitecture allows the data cache to be disabled after it is
enabled. The data cache management operations (Table 43) work as defined when the
cache is disabled. However, when the data cache is accessed when it’s disabled with
load or store instructions, including the line allocate function (Table 46), the data
associated with those accesses has unpredictable values.

When the data cache is re-enabled after it has been disabled, the contents remains
since these were prior to it being disabled, as long as it was not accessed while it was
disabled.

Microarchitecture—Data Cache

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
76 Order Number: 316283-002US

6.2.3 Cache Policies

6.2.3.1 Cacheability

Data at a specified address is cacheable given the following:

• the MMU is enabled

• the address is designated as L1 cacheable in the page table (see Chapter 3.0,
“Memory Management”, for more details)

• the data cache is enabled.

6.2.3.2 Read Miss Policy

The following sequence of events occurs when a cacheable (see Section 6.2.3.1,
“Cacheability” on page 76) load operation misses the cache:

1. The data memory buffer is checked to see when an outstanding fill request already
exists for that line.

When so, the current request is placed in the same entry and waits until its
requested data (being retrieved from the previously requested fill) returns, after
which it writes the requested data to the destination register and the operation is
complete.

When there is no outstanding fill request for that line, the current load request is
placed in a new memory buffer entry and a 32-byte read request is made to the
next level of memory (in other words, L2 or memory external to
3rd generation microarchitecture). When the memory buffer is full,
3rd generation microarchitecture stalls until an entry is available.

2. A line is selected in the cache to receive the 32-bytes of fill data. The line selected
is determined by the replacement algorithm. (See Section 6.2.4 for details on the
replacement algorithm.)

3. When the data requested by the load is returned from external memory, it is
immediately sent to the destination register specified by the load. A system that
returns the requested data back first, with respect to the other bytes of the line,
obtains the best performance. (This is commonly referred to as critical word first.)

4. After the entire line is returned from external memory it is written into the cache in
the previously selected line. The line chosen contains a valid line previously
allocated in the cache. In this case the dirty bit is examined and when set, the dirty
line is evicted from the cache and written into the memory buffer. From there it is
written to the next level of memory as an eight word burst operation.

A load operation that misses the L1 data cache and is not cacheable in the data cache
but is cacheable in the L2 cache makes a line request to the L2 cache. The behavior is
the same as mentioned above for cacheable misses except that data won’t be written
into the data cache (step #2 and step #4).

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 77

Data Cache—Microarchitecture

6.2.3.3 Write Miss Policy

An L1 data cacheable write miss is placed in the memory buffer and once it is removed
from the memory buffer it generates a write request to the next level of memory for
the exact data size specified by the store operation, assuming the write request doesn’t
coalesce with another write operation in the memory buffer.

The L1 data cache never allocates a line on a write miss.

6.2.3.4 Write-Back Versus Write-Through

3rd generation microarchitecture supports write-back caching or write-through
caching, controlled through the MMU page attributes. When write-through caching is
specified, all store operations not only update the data cache (when it hits and is
cacheable), but are written to the next level of memory. This feature keeps the next
level of memory coherent with the data cache, in other words, no dirty bits are set for
this region of memory in the data cache.

Note: When shared memory is specified for a region of memory, the data cache defaults to
write-through caching when the page table attributes had write-back caching
designated and it defaults to uncacheable in the data cache when the memory region is
marked as L2 uncacheable, L2 write-through, or there is no L2.

When write-back caching is specified for non-shared memory, a store operation that
hits the cache does not generate a write to the next level of memory, thus reducing
external memory traffic. It also sets the dirty bit for that line when it isn’t already set.

Microarchitecture—Data Cache

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
78 Order Number: 316283-002US

6.2.4 Replacement Algorithm

The line replacement algorithm for a set in the data cache is pseudo LRU when there
are no lines locked. When one or more lines are locked in a set, the replacement
algorithm becomes true LRU for that set.

Pseudo LRU works by keeping track of which pair of lines in each set was least-recently
accessed, and within each pair of lines which one was least-recently accessed. This
requires three bits per set: one to designate either the first two lines (way 0 and way 1)
or the last two lines (way 2 and way 3) as the least recently used pair, another bit to
indicate which of the first two lines is least-recently used with respect to each other,
and one more bit to indicate which of the last two lines is least-recently used with
respect to each other.

Pseudo LRU doesn’t always select the least-recently used line as the next one to
replace. Consider the access sequence (in ways) 0-1-2-3-0, the line selected for
replacement is line 2, not line 1 as is done in the true LRU algorithm. However, the
algorithm does ensure that the line selected for replacement is either the least-recently
or the second least-recently used line.

When three or fewer lines in a set are available for replacement (due to some lines
being locked), true LRU are used to determine which line gets replaced. True LRU
means the least-recently used line in the set (ignoring locked lines) gets replaced.

LLR caching always allocates to way 0 of the data cache; this gives the appearance of a
direct mapped cache for LLR data. The LRU bits are updated after the allocation to
identify way 0 as the most recently used line in the set.

6.2.5 Parity Protection

The data cache is protected by parity to ensure data integrity; there is one parity bit
per byte of data. The tags are not parity protected. When a parity error is detected on
a data cache read access or eviction, a data abort exception occurs. Before servicing
the exception, hardware updates the Fault Status Register.

A data cache parity error causes an imprecise data abort, which means R14_ABORT
does not point to the instruction that caused the parity error.

A data cache parity error is unrecoverable. For example, when the parity error occurred
during a load, the targeted register is updated with incorrect data. Also when the error
occurred on a line in the cache that has a writeback caching policy, prior updates to this
line is lost.

6.2.6 Data Cache Miss Latency

The minimum result latency for load and store instructions that incur a L1 data cache
miss, L2 cache hit is 15 cycles. Refer to Section 13.4.1, “Performance Terms” on
page 222 for definition of minimum result latency.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 79

Data Cache—Microarchitecture

6.3 Data Cache Control

6.3.1 Data Memory State After Reset

After processor reset the data cache is disabled, all valid bits are set to zero (invalid),
all lines are unlocked, outstanding requests in the memory buffer are discarded and the
replacement algorithm is reset.

6.3.2 Enabling/Disabling

The data cache is enabled by setting bit 2 in coprocessor 15, register 1 (Control
Register). See Section 7.2.2, “Register 1: Control and Auxiliary Control Registers”, for a
description of this register.

The MMU must be enabled to use the data cache. Enabling the data cache and not the
MMU produces unpredictable results.

6.3.3 Invalidate and Clean Operations

Individual entries are invalidated and cleaned in the data cache via coprocessor 15,
register 7. Note that a line locked into the data cache is unlocked with invalidate by line
functions that use a modified virtual address. Those functions that use set/way do not
unlock lines. See Section 7.2.8.6, “Interaction of Cache Functions on Locked Entries”
for more details.

This same register also provides the command to invalidate the entire data cache.
Refer to Table 43 for a listing of the commands. These global invalidate commands
have no effect on lines locked in the data cache. Locked lines must be unlocked before
the cache is globally invalidated. This is accomplished by the Unlock Data Cache
command found in Table 54.

There is no explicit command for globally cleaning the data cache. Software iterates
through the cache using the clean by set/way command. See Table 44 for the proper
usage.

Microarchitecture—Data Cache

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
80 Order Number: 316283-002US

6.4 Data Cache Locking

Software has the ability to lock lines in the data cache, thus creating the appearance of
data RAM. Any subsequent access to this locked line always hits the cache unless it is
invalidated. Once a line is locked into the data cache it is no longer available for
replacement. Way 0 is not available for locking which means that the maximum locked
size is 24 KB for the 32 KB cache.

There are two methods for locking lines into the data cache; method of choice depends
on the application. One method is used to lock data that resides in external memory
into the data cache, the other method is used to re-configure data cache lines as data
RAM. Locking data from external memory into the data cache is useful for lookup
tables, constants, and other data that is frequently accessed. Re-configuring a data
cache portion as data RAM is useful when an application needs scratch memory (> the
register file provides) for frequently used variables, which is strewn across memory,
making it advantageous for software to pack these into data RAM memory.

Software maps any area of memory as data RAM. This is accomplished by using the
“Data Cache Line Allocate” function. The line-allocate function does validate the target
address with the MMU, so system software must ensure the memory has a valid
descriptor in the page table that designates the area of memory as L1 cacheable. The
32 bytes of data located in a newly allocated line in the cache must be initialized by
software before it is read. The line allocate operation does not initialize the 32 bytes
and therefore reading from that line returns unpredictable values.

Note: The Data Cache Line Allocate function is deprecated on
3rd generation microarchitecture.

Lines are locked into the data cache by enabling the data cache lock mode bit located in
coprocessor 15, register 9. (See Table 54 for the exact command.) Once enabled, any
new lines allocated into the data cache are locked down.

To avoid undesirable locking behavior, software must use the Data Cache locking
routine provided in the 3rd Generation Intel XScale® Microarchitecture Software Design
Guide. Any deviation from this routine result in unpredictable locking behavior. The 3rd
Generation Intel XScale® Microarchitecture Software Design Guide provides additional
information on issues which the programmer must handle in their code.

Lines are only locked in way 1, way 2 and way 3, which means no more than 24 KB of
data is locked in the data cache. The replacement algorithm is used to decide which of
the three ways (within the specified set) to allocate and lock. Attempting to lock a line
in a set with three ways already locked result in the line being allocated in way 0 and it
is not locked.

Software locks down data sections located at different memory locations. This causes
some sets to have more locked lines than others (for example, set 2 has way 1 and
way 2 locked while set 34 has only way 3 locked).

3rd generation microarchitecture allows software to unlock individual lines or all the
lines locked in the data cache. See Section 7.2.10, “Register 9: Cache Lock Down” and
Table 47 for more information about locking and unlocking the data cache.

Before locking, the programmer must ensure that no part of the target data range is
already resident in the cache. 3rd generation microarchitecture does not re-fetch such
data, which results in it not being locked into the cache. When there is any doubt as to
the location of the targeted memory data, clean the cache and invalidated to prevent
this scenario. When the cache contains a locked region which the programmer wishes
to lock again, then the cache must be unlocked before being cleaned and invalidated.

Attempting to lock data from a memory region marked as shared or LLR in the page
tables, produces unpredictable results.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 81

Data Cache—Microarchitecture

6.5 Memory Buffer Operation and Control

See Section 1.3.2, “Terminology and Acronyms” on page 25 for a definition of
coalescing.

The memory buffer is always enabled. This means all writes to the next level of
memory (L2 or memory external to 3rd generation microarchitecture) are buffered.
See Section 6.1.3 for more details on the memory buffer.

The page attributes TEX[2:0], C, and B are examined to see when coalescing is enabled
for each region of memory.

Software explicitly drains all buffered writes. For details on this operation, see the
description of Data Write Barrier in Section 7.2.8, “Register 7: Cache Functions”.

6.6 Memory Ordering

3rd generation microarchitecture implements a weakly ordered memory model, which
means memory operations are reordered by the microarchitecture and explicit memory
barrier instructions are required to keep program order when that is the desired effect.
Refer to Chapter 10.0, “Memory Ordering”for more details.

6.7 Data Cache Coherency

The data cache provides hardware coherency for regions of memory that are marked as
shared in the page table. It uses a Valid/Invalid protocol to maintain coherency. For
more details, refer to Chapter 9.0, “Cache Coherence”.

The data cache never operates in writeback mode when shared memory is referenced.
It either defaults to write-through or non-cacheable, depending on the page table
attributes. Refer to Chapter 3.0, “Memory Management” for more details.

3rd generation microarchitecture does not support hardware cache coherency when the
L1 data cache is disabled.

Microarchitecture—Configuration

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
82 Order Number: 316283-002US

7.0 Configuration

This chapter describes the internal co-processors within the 3rd generation
Intel XScale® microarchitecture (3rd generation microarchitecture or 3rd generation).
These internal co-processors include the System Control Co-processor (CP15), Co-
processor 14 (CP14) and a portion of Co-processor 7 (CP7).

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 83

Configuration—Microarchitecture

7.1 Overview

CP7, CP14 and CP15 contain internal co-processor registers used to configure various
3rd generation microarchitecture parts.

CP15 is used to configure the 3rd generation microarchitecture MMU, caches, buffers
and other system attributes. CP14 contains the 3rd generation microarchitecture
performance monitor registers, clock and power management registers and the debug
registers.

In CP7, a portion of the co-processor registers are defined by
3rd generation microarchitecture. These 3rd generation microarchitecture CP7 co-
processor registers are used for error logging for the L2 cache and BIU. The remaining
registers in CP7 are defined as part of an ASSP specific co-processor.

Through the remainder of this chapter, references to CP7 only refer to the
3rd generation microarchitecture CP7 co-processor registers, unless otherwise noted.

For a description of any ASSP specific co-processors which are defined, refer to the
relevant product documentation.

Table 25 shows the accessibility of each of the co-processor instructions to CP7, CP14
and CP15 co-processor registers.

There are four CP15 functions allowed in user mode (see Section 7.2.8, “Register 7:
Cache Functions” on page 96); all other CP15 functions and registers must be accessed
from privileged modes. Access to CP14 and CP7 registers is allowed only in privileged
modes. Any access to CP7, CP14 or privileged CP15 co-processor registers in user
mode causes an undefined instruction exception.

3rd generation microarchitecture includes an extra level of virtual address translation
in the form of a Process ID (PID). For a detailed description of this facility, see Section
7.2.13, “Register 13: Process ID” on page 105. Privileged mode software must be
aware of this facility when accessing CP15 because some addresses are modified by the
PID and others are not. An address that has yet to be modified by the PID (“PIDified”)
is known as a virtual address (VA). An address that has been through the PID logic, but
not translated into a physical address, is a modified virtual address (MVA).

Table 25. Co-processor Instruction Accessibility to CP7, CP14 and CP15

CP# MCR/MRC CDP LDC/STC MCRR/MRRC MRC2/MCR2 CDP2 LDC2/STC2 MCRR2/MRRC2

CP7a

a. CP7 registers are only accessed with instructions that are capable of specifying CRn and CRm. “N/A” indicates these instructions
cannot be used to access the CP7 registers.

Allowed UNDEFb

b. “UNDEF” indicates an undefined instruction exception is generated.

N/A N/A UNDEF UNDEF N/A N/A

CP14 Allowed UNDEF Variesc

c. LDC/STC are only used to access CP14 registers for which CRm = 0.

UNDEF UNDEF UNDEF UNDEF UNDEF

CP15 Allowed UNDEF UNDEF UNDEF UNDEF UNDEF UNDEF UNDEF

Microarchitecture—Configuration

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
84 Order Number: 316283-002US

7.2 CP15 Registers

Table 26 lists the CP15 registers implemented in 3rd generation microarchitecture.

Table 26. CP15 Registers

Registe
r (CRn)

Opc_1 CRm Opc_2 Access Description
Cross-

Reference

0 0 0 0 Read / Write-Ignored Main ID

Section 7.2.1,
page 85

0 0 0 1 Read / Write-Ignored L1 Cache Type

0 1 0 0 Read / Write-Ignored L2 System ID

0 1 0 1 Read / Write-Ignored L2 Cache Type

1 0 0 0 Read / Write Control Section 7.2.2,
page 881 0 0 1 Read / Write Auxiliary Control

2 0 0 0 Read / Write
Translation Table

Base
Section 7.2.3,

page 91

3 0 0 0 Read / Write
Domain Access

Control
Section 7.2.4,

page 92

4 - - - Unpredictable Reserved

5 0 0 0 Read / Write Fault Status
Section 7.2.6,

page 93

6 0 0 0 Read / Write Fault Address
Section 7.2.7,

page 95

7 Variesa

a. The value varies depending on the specified function. Refer to the register description for a list of values.

Variesa Variesa
Read-unpredictable /

Write
Cache Operations

Section 7.2.8,
page 96

8 0 Variesa Variesa
Read-unpredictable /

Write
TLB Operations

Section 7.2.9,
page 101

9 Variesa Variesa Variesa Variesa Cache Lock Down
Section 7.2.10,

page 102

10 0 Variesa Variesa
Read-unpredictable /

Write
TLB Lock Down

Section 7.2.11,
page 104

11 - 12 - - - Unpredictable Reserved

13 0 0 0 Read / Write Process ID (PID)
Section 7.2.13,

page 105

14 0 Variesa 0 Read / Write Breakpoint Registers
Section 7.2.14,

page 106

15 0 1 0 Read / Write Co-processor Access
Section 7.2.15,

page 107

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 85

Configuration—Microarchitecture

7.2.1 Register 0: ID & Cache Type Registers

Register 0 houses four read-only registers that are used for part identification: the Main
ID Register, the L1 Cache Type Register, the L2 System ID Register and the L2 Cache
Type Register.

These registers are only readable from privileged modes. User mode access results in
an undefined instruction exception.

The Main ID Register returns a code for the target product. A portion of the code is
defined by the ASSP. Refer to the 3rd generation microarchitecture implementation
options section of the relevant product documentation for the exact encoding.

Table 27. Register 0 Functions (CRn=0)

Function Opc_1 CRm Opc_2 Instruction

Main ID Register (ID) 0b0000 0b0000 0b000 MRC p15, 0, Rd, c0, c0, 0

L1 Cache Type Register (CTYPE) 0b0000 0b0000 0b001 MRC p15, 0, Rd, c0, c0, 1

L2 System ID Register (L2ID) 0b0001 0b0000 0b000 MRC p15, 1, Rd, c0, c0, 0

L2 Cache Type Register
(L2CTYPE)

0b0001 0b0000 0b001 MRC p15, 1, Rd, c0, c0, 1

Table 28. Main ID Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 1 0 1 1
Revisio

n
Product Number

Product
Revision

reset value: As Shown

Bits Access Description

31:24 Read / Write Ignored
Implementation trademark

0x69: ‘i’= Intel Corporation

23:16 Read / Write Ignored
Architecture version

0x05: ARM Architecture Version 5TE Specification

15:13 Read / Write Ignored

Microarchitecture Generation

0b011 = 3rd generation microarchitecture

This field reflects a specific set of architecture features
supported by the microarchitecture. When new features
are added/deleted/modified this field changes. This
allows software that is not dependent on ASSP features
to target code at a specific microarchitecture generation.

12:10 Read / Write Ignored

Microarchitecture Revision:

This field reflects revisions of microarchitecture
generations. Differences include errata that dictate
different operating conditions, software work-around, etc.

9:4 Read / Write Ignored
Product Number

Defined by the ASSP

3:0 Read / Write Ignored
Product Revision

Defined by the ASSP

Microarchitecture—Configuration

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
86 Order Number: 316283-002US

In the L2 System ID Register, only the implementation trademark field is valid. The rest
of the bits are reserved and returns unpredictable values when read.

The L1 Cache Type Register and the L2 Cache Type Register describe the configuration
of the 3rd generation microarchitecture L1 and L2 caches, respectively.

Table 29. L2 System ID Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 0 0 1 Reserved

reset value: As Shown

Bits Access Description

31:24 Read / Write Ignored
Implementation trademark

0x69: ‘i’= Intel Corporation

23:0
Read-unpredictable / Write-
unpredictable

Reserved

Table 30. L1 Cache Type Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 1 1 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 0

reset value: As Shown

Bits Access Description

31:29 Read-as-Zero / Write Ignored Reserved

28:25 Read / Write Ignored

Cache Class

0b0101: The caches support locking, write back and
clean by Register 7 operations.

24 Read / Write Ignored Harvard Cache

23:21 Read-as-Zero / Write Ignored Reserved

20:18 Read / Write Ignored
Data Cache Size

0b110: 32 KB

17:15 Read / Write Ignored
Data Cache Associativity

0b010: 4-way

14 Read-as-Zero / Write Ignored Reserved

13:12 Read / Write Ignored
Data Cache Line Length

0b10: 32 bytes/line

11:9 Read-as-Zero / Write Ignored Reserved

8:6 Read / Write Ignored
Instruction Cache Size

0b110: 32 KB

5:3 Read / Write Ignored
Instruction Cache Associativity

0b010: 4-way

2 Read-as-Zero / Write Ignored Reserved

1:0 Read / Write Ignored
Instruction Cache Line Length

0b10: 32 bytes/line

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 87

Configuration—Microarchitecture

For the L2 Cache Type Register, note that the bits 23:12 and bits 11:0 are duplicated.
Bits 23:12 are defined as the data cache configuration and bits 11:0 are defined as the
instruction cache configuration. However, since 3rd generation microarchitecture
implements a unified L2 cache the information in bits 23:12 is required to be duplicated
in both fields.

Table 31. L2 Cache Type Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 1 0 Way Size Associativity 0 0 0 Way Size Associativity 0 0 0

reset value: As Shown

Bits Access Description

31:29 Read-as-Zero / Write Ignored Reserved

28:25 Read / Write Ignored

Cache Class

0b0101: The caches support locking, write back and
clean by Register 7 operations.

24 Read / Write Ignored Unified Cache

23:20 Read / Write Ignored

L2 Unified Cache Way Size

0b0010: 32KB
0b0011: 64KB

19:15 Read / Write Ignored

L2 Unified Cache Associativity

0b00000: L2 not present
0b01000: 8-way

14 Read-as-Zero / Write Ignored Reserved

13:12 Read / Write Ignored
L2 Unified Cache Line Length

0b00: 32 bytes/line

11:8 Read / Write Ignored

L2 Unified Cache Way Size

0b0010: 32KB
0b0011: 64KB

7:3 Read / Write Ignored

L2 Unified Cache Associativity

0b00000: L2 not present
0b01000: 8-way

2 Read-as-Zero / Write Ignored Reserved

1:0 Read / Write Ignored
L2 Unified Cache Line Length

0b00: 32 bytes/line

Microarchitecture—Configuration

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
88 Order Number: 316283-002US

7.2.2 Register 1: Control and Auxiliary Control Registers

Register 1 is made up of two registers; the Control Register is specified by the ARM
Architecture; the Auxiliary Control Register is defined by
3rd generation microarchitecture.

These registers are only accessible from privileged modes. User mode access results in
an undefined instruction exception.

The Exception Vector Relocation bit (bit 13 of the Control Register) allows the virtual
address of the exception vectors to be mapped into high memory (starting at
0xffff0000) rather than their default location starting at address 0. This is useful for an
application that uses the PID (see Section 7.2.13, “Register 13: Process ID” on
page 105). Relocating the vector table to high memory prevents the vector address
from being remapped via the usual translation mechanism involving the PID.

The L2 Unified Cache Enable bit (bit 26 of the Control Register) allows software to
enable the L2 Cache. Following reset, the L2 Unified Cache Enable bit is cleared (in
other words L2 Cache is disabled). To enable the L2 Cache, software sets this bit to a ‘1’
before or at the same time as enabling the MMU. Enabling the L2 Cache after the MMU
has been enabled or disabling the L2 Cache after the L2 Cache has been enabled,
results in unpredictable behavior of the processor.

The definition of all other bits in the Control Register are found in the ARM Architecture
Version 5TE Specification. Refer to the 3rd Generation Intel XScale® Microarchitecture
Software Design Guide for the proper method of programming the Control Register.

Table 32. Register 1 Functions (CRn=1)

Function Opc_1 CRm Opc_2 Instruction

Control Register (CTRL) 0b000 0b0000 0b000
MRC p15, 0, Rd, c1, c0, 0

MCR p15, 0, Rd, c1, c0, 0

Auxiliary Control Register
(AUXCTRL)

0b000 0b0000 0b001
MRC p15, 0, Rd, c1, c0, 1

MCR p15, 0, Rd, c1, c0, 1

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 89

Configuration—Microarchitecture

Table 33. Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

L
2

V I Z 0 R S B 1 1 1 1 C A M

reset value: writable bits set to 0

Bits Access Description

31:27
Read-Unpredictable /
Write-as-Zero

Reserved

26 Read / Write

L2 Unified Cache Enable (L2)

0 = Disabled
1 = Enabled

25:14
Read-Unpredictable /
Write-as-Zero

Reserved

13 Read / Write

Exception Vector Relocation (V).

0 = Base address of exception vectors is 0x0000,0000
1 = Base address of exception vectors is 0xFFFF,0000

12 Read / Write

Instruction Cache Enable (I)

0 = Disabled
1 = Enabled

11 Read / Write

Branch Target Buffer Enable (Z)

0 = Disabled
1 = Enabled

10 Read-as-Zero / Write-as-Zero 0

9 Read / Write

ROM Protection (R)
This selects the access checks performed by the memory
management unit. See the ARM Architecture Version 5TE
Specification for more information.

8 Read / Write

System Protection (S)
This selects the access checks performed by the memory
management unit. See the ARM Architecture Version 5TE
Specification for more information.

7 Read / Write

Big Endian Enable (B)

0 = Little-endian operation
1 = Big-endian operation

6:3 Read-as-One / Write-as-One 0b1111

2 Read / Write

Data Cache Enable (C)

0 = Disabled
1 = Enabled

1 Read / Write

Alignment Fault Enable (A)

0 = Disabled
1 = Enabled

0 Read / Write

Memory Management Unit Enable (M)

0 = Disabled
1 = Enabled

Microarchitecture—Configuration

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
90 Order Number: 316283-002US

The Auxiliary Control Register contains the cache attribute bits for the L1 data cache
and L2 cache for Low-Locality of Reference (LLR) memory regions. (See Section 6.1.2,
“Low-Locality of Reference (LLR)” on page 72 for more details on LLR.). This register
also contains a bit which allows an ASSP defined memory attribute to be applied to
translation table walks.

The configuration of LLR cache attributes are setup before any data access is made that
is cached in the L1 data cache or L2 cache. Once data is cached, software must ensure
that the L1 data cache and L2 cache have been cleaned and invalidated before the LLR
cache attributes are changed. Software must also invalidate the ITLB and DTLB.

The Page Table Memory Attribute (P) bit allows an ASSP defined attribute to be applied
for memory requests generated by the hardware when doing a translation table walk.
Example behavior is enforcing ECC (error correction) on the memory access. Hardware
logically OR this bit with Translation Table Base Register P bit. The P bit in the Auxiliary
Control Register is deprecated on 3rd generation microarchitecture; the page table
memory attribute is programmed through the Translation Table Base Register.

Table 34. Auxiliary Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OC IC P

reset value: writable bits set to 0

Bits Access Description

31:12
Read-Unpredictable /
Write-as-Zero

Reserved

11:10 Read / Write

LLR Outer Cache Attributes (OC)

0b00 = Outer Non-cacheable
0b01 = Outer Write back, Write allocate
0b10 = Reserved
0b11 = Reserved

9:6
Read-Unpredictable /
Write-as-Zero

Reserved

5:4 Read / Write

LLR Inner (Data) Cache Attributes (IC)

All configurations of LLR caching are cacheable, stores
are buffered in the write buffer and stores coalesce in the
write buffer.

Mapping LLR caching to shared memory changes the
definition of this field on
3rd generation microarchitecture.” See Chapter 3.0,
“Memory Management” for details.

0b00 = Inner Write back, Read allocate
0b01 = Inner Write back, Read allocate
0b10 = Inner Write through, Read allocate
0b11 = Inner Write back, Read allocate

3:2
Read-Unpredictable /
Write-as-Zero

Reserved

1 Read / Write

Page Table Memory Attribute (P)

Hardware logically OR the value of this bit with TTBASE.P.
The P bit in the Auxiliary Control Register is deprecated
on 3rd generation microarchitecture.

The effect of this bit is defined by the ASSP. Refer to the
3rd generation microarchitecture implementation options
section of the relevant product documentation for more
information.

0 = ASSP attribute not applied during page table access
1 = ASSP attribute is applied during page table access

0
Read-Unpredictable /
Write-as-Zero

Reserved

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 91

Configuration—Microarchitecture

7.2.3 Register 2: Translation Table Base Register

The Translation Table Base Register specifies the location of the first level translation
table, as well as, memory attributes used while accessing the table. This register is only
accessible from privileged modes. User mode access results in an undefined instruction
exception.

The Translation Table Base field specifies the physical address of the first level page
table used when the MMU is enabled. The first level page table must be aligned to a
16KB boundary.

The Table Walk Outer Cache Attributes (OC) field controls the L2 cacheability of the
table walk. When the L2 cache is present and enabled and the OC field is programmed
to make the table walk L2 cacheable, page table descriptors loaded during a table walk
are cached in the L2. When the target descriptor is already cached in the L2, the table
walk hits in the L2. On a miss, the table walk loads an entire cache line (8 descriptors)
into the L2. When this field indicates L2 non-cacheable, table walks do not cache
descriptors in the L2 cache and read page table descriptors directly from main memory.

The Table Walk Memory Attribute (P) bit allows an ASSP to define specific behavior for
memory requests generated by the hardware when doing a translation table walk.
Example behavior is enforcing ECC (error correction) on the memory access. Hardware
logically OR this bit with Auxiliary Control Register P bit. The P bit in the Auxiliary
Control Register is deprecated on 3rd generation microarchitecture; the page table
memory attribute is programmed through this register.

Table 35. Register 2 Functions (CRn=2)

Function Opc_1 CRm Opc_2 Instruction

Translation Table Base Register
(TTBASE)

0b000 0b0000 0b000
MRC p15, 0, Rd, c2, c0, 0

MCR p15, 0, Rd, c2, c0, 0

Table 36. Translation Table Base Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Translation Table Base OC P

reset value: unpredictable

Bits Access Description

31:14 Read / Write
Translation Table Base

Physical address of the base of the first-level table

13:5 Read-unpredictable / Write-as-Zero Reserved

4:3 Read / Write

Table Walk Outer Cache Attributes (OC)

0b00 = Outer Non-cacheable
0b01 = Reserved
0b10 = Outer Non-cacheable0b11 = Outer Write back

2 Read / Write

Table Walk Memory Attribute (P)

Hardware logically OR the value of this bit with the
Auxiliary Control Register P bit. The P bit in the Auxiliary
Control Register is deprecated on
3rd generation microarchitecture.

The effect of this bit is defined by the ASSP. Refer to the
3rd generation microarchitecture implementation options
section of the relevant product documentation for more
information.

0 = ASSP attribute not applied during page table access
1 = ASSP attribute is applied during page table access

1:0 Read-unpredictable / Write-as-Zero Reserved

Microarchitecture—Configuration

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
92 Order Number: 316283-002US

7.2.4 Register 3: Domain Access Control Register

The ARM Architecture supports 16 domains. Each domain is a collection of sections and
pages that share common access permissions. The Domain Access Control Register
specifies the access permissions for each of the 16 domains. Refer to the ARM
Architecture Version 5TE Specification for more information on domains.

This register is only accessible from privileged modes. User mode access results in an
undefined instruction exception.

Table 37. Register 3 Functions (CRn=3)

Function Opc_1 CRm Opc_2 Instruction

Domain Access Control Register
(DACR)

0b000 0b0000 0b000
MRC p15, 0, Rd, c3, c0, 0

MCR p15, 0, Rd, c3, c0, 0

Table 38. Domain Access Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

reset value: unpredictable

Bits Access Description

31:0 Read / Write

Access permissions for all 16 domains

The meaning of each field is found in the ARM
Architecture Version 5TE Specification.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 93

Configuration—Microarchitecture

7.2.5 Register 4: Reserved

Register 4 is reserved. Reading and writing this register yields unpredictable results.

7.2.6 Register 5: Fault Status Register

3rd generation microarchitecture updates the Fault Status Register (FSR) when a
prefetch abort or data abort occurs. The data abort and prefetch abort handlers then
use the FSR value to determine the specific type of abort reported.

This register is only accessible from privileged modes. User mode access results in an
undefined instruction exception.

The ARM Architecture defines the encoding of the Domain and Status field for MMU
generated data aborts. The Status Field Extension (X) bit extends the encoding of the
status field for include prefetch aborts and additional types of data aborts. The ARM
Architecture encodings and extended 3rd generation microarchitecture encodings are
found in Section 2.3.6, “Exception Architecture” on page 37

The Debug Event (D) bit indicates when a debug exception has occurred. The exact
source of the debug exception is found in the Debug Control and Status Register (see
Section 7.3.3, “Software Debug Registers” on page 110). When bit 9 is set, the domain
and extended status field are unpredictable.

Table 39. Register 5 Functions (CRn=5)

Function Opc_1 CRm Opc_2 Instruction

Fault Status Register (FSR) 0b000 0b0000 0b000
MRC p15, 0, Rd, c5, c0, 0

MCR p15, 0, Rd, c5, c0, 0

Microarchitecture—Configuration

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
94 Order Number: 316283-002US

Upon entry into the prefetch abort or data abort handler, this register is updated with
the source of the exception. Software is not required to clear these fields.

Table 40. Fault Status Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X D 0 Domain Status

reset value: unpredictable

Bits Access Description

31:11 Read-unpredictable / Write-as-Zero Reserved

10 Read / Write

Status Field Extension (X)

This bit extends the encoding of the Status field for
prefetch aborts and certain types of data aborts. The
encoding of this field is found in Section 2.3.6, “Exception
Architecture” on page 37

9 Read / Write

Debug Event (D)

This bit indicates a debug event has occurred. The cause
of the debug event is found in the MOE field of the Debug
Control and Status Register (Section 12.3.2, “Debug
Control and Status Register (DCSR)”)

8 Read-as-zero / Write-as-Zero 0

7:4 Read / Write

Domain

Specifies which of the 16 domains was being accessed
when a data abort occurred

3:0 Read / Write

Status

Type of prefetch or data abort that occurred. The
encoding of this field is found in Section 2.3.6, “Exception
Architecture” on page 37

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 95

Configuration—Microarchitecture

7.2.7 Register 6: Fault address Register

The Fault Address Register (FAR) indicates the MVA of the data access that caused the
previous data abort.

This register is only accessible from privileged modes. User mode access results in an
undefined instruction exception.

The FAR is only valid for certain causes of data aborts. The specific types of aborts
which update the FAR are found in Section 2.3.6, “Exception Architecture” on page 37.

Upon entry into the data abort handler, this register is updated with the source of the
exception. Software is not required to clear these fields.

Table 41. Register 6 Functions (CRn=6)

Function Opc_1 CRm Opc_2 Instruction

Fault Address Register (FAR) 0b000 0b0000 0b000
MRC p15, 0, Rd, c6, c0, 0

MCR p15, 0, Rd, c6, c0, 0

Table 42. Fault Address Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Fault Virtual Address

reset value: unpredictable

Bits Access Description

31:0 Read / Write

Fault Virtual Address

Contains the MVA of the data access that caused the data
abort

Microarchitecture—Configuration

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
96 Order Number: 316283-002US

7.2.8 Register 7: Cache Functions

Register 7 contains functions for managing the instruction cache, data cache, L2 cache
and branch target buffer (BTB). It also provides explicit memory barrier functions.
Register 7 is accessed only with MCR, using MRC produces unpredictable results.
Writing to register 7 with opc_1, CRm and opc_2 values other than those specified in
the following tables produces unpredictable results.

7.2.8.1 Level 1 Cache and BTB Functions

Table 43 lists out the functions for controlling the instruction cache, data cache and
BTB. These functions are only allowed in privileged mode; accessing these functions in
user mode generates an undefined instruction exception.

These functions do not cause a page translation nor do these check permissions on the
MVA, which means no precise data aborts are reported.

The invalidate instruction cache line command does not invalidate the BTB. When
software invalidates a line from the instruction cache and modifies the same location in
external memory, it must also invalidate the BTB. Failure to invalidate the BTB in this
case causes unpredictable results.

All operations defined in Table 43 work regardless of whether the cache is enabled or
disabled. When a function that operates on a line by MVA misses the cache it has no
effect on the cache. When any clean function hits a line that is not dirty it also has no
effect on the cache. The instruction cache functions work whether the MMU is enabled
or disabled. The data cache functions only work when the MMU is enabled, and are
unpredictable when the MMU is disabled.

Table 43. L1 Cache Functions

Function Opc_1 CRm Opc_2 Data Instruction

Invalidate I cache & BTB 0b000 0b0101 0b000 Ignored MCR p15, 0, Rd, c7, c5, 0

Invalidate I cache line 0b000 0b0101 0b001 MVA MCR p15, 0, Rd, c7, c5, 1

Invalidate BTB 0b000 0b0101 0b110 Ignored MCR p15, 0, Rd, c7, c5, 6

Invalidate D cache 0b000 0b0110 0b000 Ignored MCR p15, 0, Rd, c7, c6, 0

Invalidate D cache line 0b000 0b0110 0b001 MVA MCR p15, 0, Rd, c7, c6, 1

Invalidate I&D cache & BTB 0b000 0b0111 0b000 Ignored MCR p15, 0, Rd, c7, c7, 0

Clean D cache line 0b000 0b1010 0b001 MVA MCR p15, 0, Rd, c7, c10, 1

Clean D cache line 0b000 0b1010 0b010 set / waya

a. Refer to Section 7.2.8.7, page 100 for details on the set/way format.

MCR p15, 0, Rd, c7, c10, 2

Clean & Invalidate Dcache Line 0b000 0b1110 0b001 MVA MCR p15, 0, Rd, c7, c14, 1

Clean & Invalidate Dcache Line 0b000 0b1110 0b010 set / waya MCR p15, 0, Rd, c7, c14, 2

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 97

Configuration—Microarchitecture

7.2.8.2 Level 2 Cache Functions

Table 44 lists out the functions for controlling the L2 cache. Refer to Chapter 8.0, “Level
2 Unified Cache (L2)” for more information on the Level 2 cache on
3rd generation microarchitecture.

The L2 cache functions are only allowed in privileged mode; user mode access
generates an undefined instruction exception.

Functions which use an MVA cause a virtual to physical address page translation and
generates data aborts. Refer to Section 7.2.8.5, “Precise Data Aborts” on page 99 for
more information about the types of data abort generated.

7.2.8.3 Explicit Memory Barriers

3rd generation microarchitecture provides three explicit memory barrier functions.
These functions allow software to restrict the order in which certain types of memory
accesses complete, before and after the functions. The type of memory accesses
affected by the instruction depends on the function. These functions are described in
detail in Chapter 10.0, “Memory Ordering”.

These functions are available in user and privileged modes.

Table 44. L2 Cache Functions

Function Opc_1 CRm Opc_2 Data Instruction

Invalidate L2 Cache Line 0b001 0b0111 0b001 MVA MCR p15, 1, Rd, c7, c7, 1

Clean L2 Cache Line 0b001 0b1011 0b001 MVA MCR p15, 1, Rd, c7, c11, 1

Clean L2 Cache Line 0b001 0b1011 0b010 set / waya MCR p15, 1, Rd, c7, c11, 2

Clean & Invalidate L2 Cache Line 0b001 0b1111 0b010 set / waya

a. Refer to Section 7.2.8.7, page 100 for details on the set/way format.

MCR p15, 1, Rd, c7, c15, 2

Table 45. Explicit Memory Barrier Operations

Function Opc_1 CRm Opc_2 Data Instruction

Prefetch Flush (PF) 0b000 0b0101 0b100 Ignored MCR p15, 0, Rd, c7, c5, 4

Data Write Barrier (DWB) 0b000 0b1010 0b100 Ignored MCR p15, 0, Rd, c7, c10, 4

Data Memory Barrier (DMB) 0b000 0b1010 0b101 Ignored MCR p15, 0, Rd, c7, c10, 5

Microarchitecture—Configuration

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
98 Order Number: 316283-002US

7.2.8.4 Data Cache Line Allocate Function

3rd generation microarchitecture provides a “Data Cache Line Allocate” function as a
performance hint. This function allocates the line (in other words, write a tag) into the
L1 data cache and causes a cache line eviction as a result of the allocation. The 32
bytes of data associated with the newly allocated line are not initialized so subsequent
reads return unpredictable data until software writes to the line.

Note: The Data Cache Line Allocation Function is deprecated on
3rd generation microarchitecture.

The line allocate function does not affect the L2 cache, in other words, the function
never allocates a line in the L2 cache. Thus, a line allocated in the L1 data cache does
not allocate the line in the L2 cache, even when the target memory is L2 cacheable.
However, when the allocated line is in a write-through region of memory (this includes
a shared memory region which is L1 and L2 cacheable), stores to initialize the allocated
line write through to the L2 cache. The line is then allocated in the L2 cache with a line
fill from external memory. In the L2 cache, only the stored data is relied upon, the data
in the rest of the L2 cache line is unpredictable until written to by software. When the
allocated line is in shared memory, the value of uninitialized words in the cache line are
also unpredictable to all other agents in the system.

Note: The unpredictability of the uninitialized data also includes the possibility that
subsequent reads from the same address (from 3rd generation microarchitecture or
when in a shared system, from other agents) returns different results.

Even though the data is unpredictable, hardware guarantees that the data in the newly
allocated line won’t be from another context that the current context doesn’t have
access rights to.

This function is available in user and privileged modes.

The Line Allocate Function takes a VA as the data (unlike other cache functions which
take an MVA). As a result, the specified address is remapped by the Process ID (see
Section 7.2.13, “Register 13: Process ID” on page 105). The final MVA value then goes
through the normal MMU address translation mechanism, generating a table walk on a
Data TLB miss. The line allocate function is interpreted as a write operation by the MMU
for permission checking purposes.

Performing a line allocate function while the data cache is disabled or to a non-
cacheable region of memory, has no effect on the cache. A line allocate that hits the
cache has no effect. However, aborts are still reported.

On 3rd generation microarchitecture the DC Line Allocate function is treated as a store
for data breakpoint purposes. When breakpoints are enabled, the function triggers a
data breakpoint when an address match and access type match occurs. An address
match occurs when the breakpoint address matches any byte within the cache line
being allocated.

Table 46. Line Allocate Function

Function
User
Mode

Opc_1 CRm Opc_2 Data Instruction

Data Cache Line Allocate Y 0b000 0b0010 0b101 VA MCR p15, 0, Rd, c7, c2, 5

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 99

Configuration—Microarchitecture

7.2.8.5 Precise Data Aborts

None of the L1 cache functions, listed in Table 43, generate precise data aborts. (See
Section 2.3.6.4, “Data Aborts” on page 39 for more information on precise data
aborts.) The MMU is not accessed with these commands.

The L2 cache functions, listed in Table 44, that use an MVA, cause a virtual to physical
address page translation and generate precise data aborts. This includes: translation
aborts or external abort on translation. However, the functions do not generate domain,
permission, alignment or lock aborts. L2 cache functions that generate an abort do not
affect the L2 cache.

The explicit memory barrier functions, listed in Table 45, does not generate precise
data aborts.

The Data Cache Line Allocate function requires a VA and performs a virtual to physical
address translation, which means precise data aborts is generated. This includes:
translation aborts, external abort on translation, domain aborts and permission aborts,
but does not include alignment or lock aborts. A Data Cache Line Allocate function that
generates an abort does not affect the data cache.

7.2.8.6 Interaction of Cache Functions on Locked Entries

Table 47 and Table 48 list the affect the L1 and L2 cache functions have on locked
entries. In summary, functions that operate on a line by set/way have no effect when
the line is locked. Functions that invalidate a line by MVA unlocks the line and perform
the function.

Table 47. L1 Cache Functions Affect on Locked Entries

Function Affect on Locked Entries

Invalidate I cache & BTB Entries remain locked and valid

Invalidate I cache line (MVA) Entry is unlocked and invalidated

Invalidate Branch Target Buffer n/a

Invalidate D cache Entries remain locked and valid

Invalidate D cache line (MVA) Entry is unlocked and invalidated

Invalidate I&D cache & BTB Entries remain locked and valid

Clean D cache line (MVA) Entry is cleaned and remain locked

Clean D cache line (set/way) Entry is not cleaned and remain locked

Clean & Invalidate Dcache Line (MVA) Entry is cleaned and invalidated and unlocked

Clean & Invalidate Dcache Line (set/way) Entry is not cleaned or invalidated and remain locked

DC Line Allocate (VA) No effect on target line

Table 48. L2 Cache Functions Affect on Locked Entries

Function Affect on Locked Entries

Invalidate L2 Cache Line (MVA) Entry is unlocked and invalidated

Clean L2 Cache Line (MVA) Entry is cleaned and remain locked

Clean L2 Cache Line (set/way) Entry is not cleaned and remain locked

Clean & Invalidate L2 Cache Line (set/way) Entry is not cleaned or invalidated and remain locked

Microarchitecture—Configuration

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
100 Order Number: 316283-002US

7.2.8.7 Set/Way Format

The format of the set/way register, which is used by several cache functions, is
dependent on the organization and size of the target cache.

Table 49 shows the set/way format for the L1 D-cache set/way operations. The way
field selects one of 4 ways (0-3) and the set field selects of 256 sets (0-255)

Table 50 and Table 51 show the set/way format for the L2 Unified cache set/way
operations The way field selects one of 8 ways (0-7), regardless of the L2 cache size.
The number of sets is dependant on the target cache size. For a 256KB L2 cache, the
set field selects one of 1024 sets (0-1023). For a 512KB L2 cache, the set field selects
on of 2048 sets (0-2047).

Table 49. L1 DC Set/Way Format

31 30 29 13 12 5 4 0

way SBZ set SBZ

Table 50. 256KB L2 Set/Way Format

31 29 28 15 14 5 4 0

way SBZ set SBZ

Table 51. 512KB L2 Set/Way Format

31 29 28 16 15 5 4 0

way SBZ set SBZ

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 101

Configuration—Microarchitecture

7.2.9 Register 8: TLB Operations

Register 8 contains functions for managing the 3rd generation microarchitecture TLBs.
These allow the TLBs to be globally invalidated or invalidated by entry based on a
specified modified virtual address.

These functions are only allowed in privileged mode; accessing these functions in user
mode generates an undefined instruction exception. Also, these functions are accessed
as write-only; accessing these functions with an MRC has unpredictable results.

All operations defined in Table 52 work regardless of whether the MMU is enabled or
disabled. These operations do not generate precise data aborts.

Table 53 shows how these commands affect locked entries.

Table 52. TLB Functions

Function Opc_1 CRm Opc_2 Data Instruction

Invalidate I&D TLB 0b000 0b0111 0b000 Ignored MCR p15, 0, Rd, c8, c7, 0

Invalidate I TLB 0b000 0b0101 0b000 Ignored MCR p15, 0, Rd, c8, c5, 0

Invalidate I TLB entry 0b000 0b0101 0b001 MVA MCR p15, 0, Rd, c8, c5, 1

Invalidate D TLB 0b000 0b0110 0b000 Ignored MCR p15, 0, Rd, c8, c6, 0

Invalidate D TLB entry 0b000 0b0110 0b001 MVA MCR p15, 0, Rd, c8, c6, 1

Table 53. Interaction of TLB Functions with Locked Entries

Function Affect on Locked Entries

Invalidate I&D TLB Locked entry is not invalidated and not unlocked

Invalidate I TLB Locked entry is not invalidated and not unlocked

Invalidate I TLB entry Result is unpredictable when entry was locked

Invalidate D TLB Locked entry is not invalidated and not unlocked

Invalidate D TLB entry Result is unpredictable when entry was locked

Microarchitecture—Configuration

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
102 Order Number: 316283-002US

7.2.10 Register 9: Cache Lock Down

Register 9 is used for locking down entries into the instruction cache, data cache and L2
cache as shown in Table 54. The protocol for locking down entries is found in
Chapter 4.0, “Instruction Cache”, Chapter 6.0, “Data Cache” and Chapter 8.0, “Level 2
Unified Cache (L2)” respectively.

These functions are only accessible in privileged mode; accessing these functions in
user mode generates an undefined instruction exception. Also, all functions, except the
DC Lock Register, are accessed as write-only; accessing these functions with an MRC
has unpredictable results. For the DC Lock Register, the Data Cache Lock Mode bit is
readable and writable by privileged software.

Fetch and lock commands for the instruction cache and L2 cache explicitly specify a
modified virtual address in Rd as the line to lock. The data cache locking mechanism
follows a different procedure than the instruction cache and L2 cache. The data cache is
placed in lock down mode such that all subsequent line fills to the data cache result in
that line being locked in, as controlled by Table 55.

The “Allocate and Lock L2 Cache Line” command does not perform a fill operation.
Instead the tag is written into the L2 cache and then locked. The data associated with
the line has an unpredictable value, meaning subsequent reads returns unpredictable
values.

Unlock Instruction Cache, Unlock Data Cache and Unlock L2 Cache are global
operations; these unlock the entire target cache.

Lock/unlock operations on a disabled cache have an unpredictable effect. Lock
operations by MVA to a non L2 cacheable memory location have unpredictable effect on
the L2 cache.

Cache lockdown functions which operate on an MVA require an address translation
when the MMU is enabled, and generates precise data aborts (see Section 7.2.10.1).

Table 54. Cache Lockdown Functions

Function Opc_1 CRm Opc_2 Data Instruction

Fetch and Lock I Cache Line 0b000 0b0101 0b000 MVA MCR p15, 0, Rd, c9, c5, 0

Fetch and Lock L2 Cache Line 0b001 0b0101 0b000 MVA MCR p15, 1, Rd, c9, c5, 0

Unlock Instruction Cache 0b000 0b0101 0b001 Ignored MCR p15, 0, Rd, c9, c5, 1

Unlock L2 Cache 0b001 0b0101 0b001 Ignored MCR p15, 1, Rd, c9, c5, 1

Allocate and Lock L2 Cache Line 0b001 0b0101 0b010 MVA MCR p15, 1, Rd, c9, c5, 2

Read Data Cache Lock Register 0b000 0b0110 0b000 lock mode value MRC p15, 0, Rd, c9, c6, 0

Write Data Cache Lock Register 0b000 0b0110 0b000 lock mode value MCR p15, 0, Rd, c9, c6, 0

Unlock Data Cache 0b000 0b0110 0b001 Ignored MCR p15, 0, Rd, c9, c6, 1

Table 55. Data Cache Lock Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

L

reset value: writable bits set to 0

Bits Access Description

31:1 Read-unpredictable / Write-as-Zero Reserved

0 Read / Write

Data Cache Lock Mode (L)

0 = fills to the data cache are not locked
1 = fills into the data cache get locked in

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 103

Configuration—Microarchitecture

7.2.10.1 Precise Data Aborts

The L2 cache lock functions that operate by MVA cause a virtual to physical address
translation and generates precise data aborts. This includes: translation aborts and
external abort on translation. These functions do not generate domain, permission,
alignment or lock aborts. L2 cache lock functions that generate an abort do not affect
the L2 cache.

The Fetch and Lock I Cache Line function also operate by MVA and cause a virtual to
physical address translation. Data aborts detected during the address translation or
fetch of the target line are reported as lock aborts. Only translation aborts, external
abort on translation, or external bus errors are detected. The MMU does not do any
access permission, domain or address alignment checking on a Fetch and Lock IC Line
function. A Fetch and Lock IC Line function that generates an abort does not affect the
instruction cache.

7.2.10.2 Legacy Support

The L1 cache lock/unlock functions have been moved for
3rd generation microarchitecture, however the previous encoding is also supported for
legacy reasons. The legacy encoding is deprecated on
3rd generation microarchitecture; new software uses the encoding specified in
Table 54.

Table 56. Legacy Encoding for L1 Cache Lockdown Functions

Function Opc_1 CRm Opc_2 Data Instruction

Fetch and Lock I Cache Line 0b000 0b0001 0b000 MVA MCR p15, 0, Rd, c9, c1, 0

Unlock Instruction Cache 0b000 0b0001 0b001 Ignored MCR p15, 0, Rd, c9, c1, 1

Read Data Cache Lock Register 0b000 0b0010 0b000 lock mode value MRC p15, 0, Rd, c9, c2, 0

Write Data Cache Lock Register 0b000 0b0010 0b000 lock mode value MCR p15, 0, Rd, c9, c2, 0

Unlock Data Cache 0b000 0b0010 0b001 Ignored MCR p15, 0, Rd, c9, c2, 1

Microarchitecture—Configuration

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
104 Order Number: 316283-002US

7.2.11 Register 10: TLB Lock Down

Register 10 is used for locking down entries into the instruction TLB and data TLB

These functions are only accessible in privileged mode; accessing these in user mode
generates an undefined instruction exception. All TLB lock down functions are accessed
as write-only. Access with an MRC produces unpredictable results.

Table 57 shows the command for locking down entries in the instruction TLB, and data
TLB. The entry to lock is specified by the modified virtual address in Rd.

The “Translate and Lock” commands produces unpredictable results when the virtual
address translation already exists in the TLB.

The TLB Lock and Unlock commands have an unpredictable effect when the MMU is
disabled.

The Translation and Lock Functions operate by MVA and cause a virtual to physical
address translation. Any data abort detected during the translation is reported as lock
aborts. Only external abort on translation or translation abort is detected. The MMU
does not do any access permission, domain or address alignment checking on these
functions. Operations that generate an abort do not affect the target TLB.

7.2.12 Register 11-12: Reserved

These registers are reserved. Reading and writing these yields unpredictable results.

Table 57. TLB Lockdown Functions

Function Opc_1 CRm Opc_2 Data Instruction

Translate and Lock I TLB entry 0b000 0b0100 0b000 MVA MCR p15, 0, Rd, c10, c4, 0

Unlock I TLB 0b000 0b0100 0b001 Ignored MCR p15, 0, Rd, c10, c4, 1

Translate and Lock D TLB entry 0b000 0b1000 0b000 MVA MCR p15, 0, Rd, c10, c8, 0

Unlock D TLB 0b000 0b1000 0b001 Ignored MCR p15, 0, Rd, c10, c8, 1

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 105

Configuration—Microarchitecture

7.2.13 Register 13: Process ID

3rd generation microarchitecture supports the remapping of virtual addresses through
a Process ID (PID) register. This remapping occurs before the instruction cache,
instruction TLB, data cache and data TLB are accessed. The address resulting from the
remapping of the PID with the VA is referred to as the modified virtual address (MVA).

The PID Register is only accessible in privileged mode; accessing it in user mode
generates an undefined instruction exception.

The PID register is a 7-bit value that replaces bits 31:25 of the virtual address when
these are zero. This effectively remaps the address to one of 128 “slots” in the
4 Gbytes of virtual address space. When bits 31:25 of the virtual address are not zero
or the PID value is 0, no remapping occurs. This feature is useful for operating system
management of processes that maps to the same virtual address space. In those
cases, the virtually mapped caches on 3rd generation microarchitecture does not
require invalidating on a process switch since the MVA in the cache tag contains the
PID.

Any write to the PID register automatically invalidates the BTB.

7.2.13.1 The PID Register Effect On Addresses

Any address on a data access or instruction fetch is modified by the PID when the
conditions described in the previous section are met. The only CP15 function to be
remapped by the PID is the DC Line Allocate function. All other CP15 functions that
require an address as data, require an MVA. The address provided must have the PID
appropriately combined with the target VA by software

In general, addresses generated and used by User Mode code are eligible for being
remapped by the PID. Privileged code, however, must be aware of certain special cases
in which address generation does not follow the usual flow. Cache and TLB operations
which require an MVA are not remapped by the PID. In addition CP15 registers such as
the instruction and data breakpoint registers require an MVA and are not remapped by
the PID.

Table 58. Register 13 Functions (CRn=13)

Function Opc_1 CRm Opc_2 Instruction

Process ID Register (PID) 0b000 0b0000 0b000
MRC p15, 0, Rd, c13, c0, 0

MCR p15, 0, Rd, c13, c0, 0

Table 59. Process ID Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Process ID

reset value: 0x0000,0000

Bits Access Description

31:25 Read / Write

Process ID

This field is used for remapping the virtual address when
bits 31-25 of the virtual address are zero.

24:0 Read-as-Zero / Write-as-Zero Reserved

Microarchitecture—Configuration

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
106 Order Number: 316283-002US

7.2.14 Register 14: Breakpoint Registers

3rd generation microarchitecture contains two instruction breakpoint address registers
(IBR0 and IBR1), one data breakpoint address register (DBR0), one configurable data
breakpoint mask/address register (DBR1), and one data breakpoint control register
(DBCON).

These breakpoint resources are only accessible in privileged mode; accessing these in
user mode generates an undefined instruction exception.

Refer to Chapter 12.0, “Software Debug” for more information on using the
3rd generation microarchitecture breakpoint resources.

Table 60. Register 14 Functions (CRn=14)

Function Opc_1 CRm Opc_2 Instruction

Instruction Breakpoint Register 0
(IBR0)

0b000 0b1000 0b000
MRC p15, 0, Rd, c14, c8, 0

MCR p15, 0, Rd, c14, c8, 0

Instruction Breakpoint Register 1
(IBR1)

0b000 0b1001 0b000
MRC p15, 0, Rd, c14, c9, 0

MCR p15, 0, Rd, c14, c9, 0

Data Breakpoint Register 0
(DBR0)

0b000 0b0000 0b000
MRC p15, 0, Rd, c14, c0, 0

MCR p15, 0, Rd, c14, c0, 0

Data Breakpoint Register 1
(DBR1)

0b000 0b0011 0b000
MRC p15, 0, Rd, c14, c3, 0

MCR p15, 0, Rd, c14, c3, 0

Data Breakpoint Control Register
(DBCON)

0b000 0b0100 0b000
MRC p15, 0, Rd, c14, c4, 0

MCR p15, 0, Rd, c14, c4, 0

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 107

Configuration—Microarchitecture

7.2.15 Register 15: Co-processor Access Register

The Co-processor Access Register (CPAR) controls access rights to all the co-processors
in the system except for CP15, CP14 and part of CP7. In CP7, the register only controls
the rights for ASSP co-processor register, and not the 3rd generation microarchitecture
defined co-processor registers. For more information on which co-processors are
implemented in an ASSP see the 3rd generation microarchitecture implementation
options section of the relevant product documentation.

CPAR also controls access to the 40-bit internal accumulator located in CP0 (see
Section 2.3.1, “Media Processing Co-processor (CP0)” on page 28 for more information
about the internal accumulator).

Table 62 shows the register format. The CPAR is only accessible in privileged mode;
accessing it in user mode generates an undefined instruction exception.

Table 61. Register 15 Functions (CRn=15)

Function Opc_1 CRm Opc_2 Instruction

Co-processor Access Register
(CPAR)

0b000 0b0001 0b000
MRC p15, 0, Rd, c15, c1, 0

MCR p15, 0, Rd, c15, c1, 0

Table 62. Co-processor Access Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C
P
1
3

C
P
1
2

C
P
1
1

C
P
1
0

C
P
9

C
P
8

C
P
7

C
P
6

C
P
5

C
P
4

C
P
3

C
P
2

C
P
1

C
P
0

reset value: 0x0000,0000

Bits Access Description

31:14 Read-unpredictable / Write-as-Zero Reserved

13:1 Read / Write

Co-processor Access Rights

Each bit in this field corresponds to the access rights for
each co-processor.a Refer to the
3rd generation microarchitecture implementation options
section of the relevant product documentation to find out
which, when any, co-processors exist and for the
definition of these bits.

a. For CP7, this bit only controls access to ASSP defined registers, not the 3rd generation microarchitecture CP7
registers defined in Section 7.4

0 Read / Write

Co-processor 0 Access Rights

This bit corresponds to the access rights for CP0.

0 = Access denied. Any attempt to access the
corresponding co-processor generates an undefined
instruction exception.

1 = Access allowed. Includes read and write accesses.

Microarchitecture—Configuration

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
108 Order Number: 316283-002US

7.3 CP14 Registers

Table 63 lists the CP14 registers implemented in 3rd generation microarchitecture.

All other registers are reserved in CP14. Reading and writing these yields unpredictable
results.

All CP14 registers are only accessible in privileged mode; accessing these in user mode
generates an undefined instruction exception.

7.3.1 Performance Monitoring Registers

The performance monitoring unit contains a control register (PMNC), a clock counter
(CCNT), interrupt enable register (INTEN), overflow flag register (FLAG), event
selection register (EVTSEL) and four event counters (PMN0 through PMN3). The format
of these registers is found in Chapter 11.0, “Performance Monitoring”, along with a
description on how to use the performance monitoring facility.

These registers are not accessed by LDC and STC co-processor instructions.

Table 63. CP14 Registers

Register
(CRn)

Opc_1 CRm Opc_2 Access Description

0,1,4,5,8 0 1 0
Read / Write Performance Monitoring

0-3 0 2 0

6,7 0 0 0 Read / Write Clock and Power Management

8-14 0 0 0 Variesa

a. Access varies depending on the specified register.

Software Debug

Table 64. Performance Monitoring Registers

Description Opc_1 CRn CRm Opc_2 Instruction

Performance Monitor Control Register (PMNC) 0b000 0b0000 0b0001 0b000
MRC p14, 0, Rd, c0, c1, 0

MCR p14, 0, Rd, c0, c1, 0

Clock Counter Register (CCNT) 0b000 0b0001 0b0001 0b000
MRC p14, 0, Rd, c1, c1, 0

MCR p14, 0, Rd, c1, c1, 0

Interrupt Enable Register (INTEN) 0b000 0b0100 0b0001 0b000
MRC p14, 0, Rd, c4, c1, 0

MCR p14, 0, Rd, c4, c1, 0

Overflow Flag Register (FLAG) 0b000 0b0101 0b0001 0b000
MRC p14, 0, Rd, c5, c1, 0

MCR p14, 0, Rd, c5, c1, 0

Event Selection Register (EVTSEL) 0b000 0b1000 0b0001 0b000
MRC p14, 0, Rd, c8, c1, 0

MCR p14, 0, Rd, c8, c1, 0

Performance Count Register 0 (PMN0) 0b000 0b0000 0b0010 0b000
MRC p14, 0, Rd, c0, c2, 0

MCR p14, 0, Rd, c0, c2, 0

Performance Count Register 1 (PMN1) 0b000 0b0001 0b0010 0b000
MRC p14, 0, Rd, c1, c2, 0

MCR p14, 0, Rd, c1, c2, 0

Performance Count Register 2 (PMN2) 0b000 0b0010 0b0010 0b000
MRC p14, 0, Rd, c2, c2, 0

MCR p14, 0, Rd, c2, c2, 0

Performance Count Register 3 (PMN3) 0b000 0b0011 0b0010 0b000
MRC p14, 0, Rd, c3, c2, 0

MCR p14, 0, Rd, c3, c2, 0

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 109

Configuration—Microarchitecture

7.3.2 Clock and Power Management Registers

These registers allow software to manage the microarchitecture clock and power
management modes.

Power management modes are supported through the PWRMODE Register. The function
and definition of these modes is defined by the ASSP. The user refers to the
3rd generation microarchitecture implementation options section of the relevant
product documentation for specifics on the use of these registers.

Software enters a specific low power mode by writing the appropriate value to the
register.

Software reads this register, but since software only runs during ACTIVE mode, it
always reads zeros from the M field.

Software changes the microarchitecture clock frequency by writing to the CCLKCFG
register. This function informs the clocking unit (located external to
3rd generation microarchitecture) to change the microarchitecture clock frequency.
Software reads CCLKCFG to determine current operating frequency. Exact definition of
this register is determined by the ASSP and is found in the
3rd generation microarchitecture implementation option sections of the relevant
product documentation.

Table 65. Clock and Power Management Functions

Function Opc_1 CRn CRm Opc_2 Instruction

Power Mode Register
(PWRMODE)

0b000 0b0111 0b0000 0b000
MRC p14, 0, Rd, c7, c0, 0

MCR p14, 0, Rd, c7, c0, 0

Microarchitecture Clock
Configuration Register

(CCLKCFG)
0b000 0b0110 0b0000 0b000

MRC p14, 0, Rd, c6, c0, 0

MCR p14, 0, Rd, c6, c0, 0

Table 66. PWRMODE Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M

reset value: writable bits set to 0

Bits Access Description

31:4 Read-unpredictable / Write-as-Zero Reserved

3:0 Read / Write

Mode (M)

0 = ACTIVE mode

All other values are defined by the ASSP

Table 67. CCLKCFG Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCLKCFG

reset value: unpredictable

Bits Access Description

31:4 Read-unpredictable / Write-as-Zero Reserved

3:0 Read / Write

Microarchitecture Clock Configuration (CCLKCFG)

This field is used to configure the microarchitecture clock
frequency and is defined by the ASSP.

Microarchitecture—Configuration

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
110 Order Number: 316283-002US

7.3.3 Software Debug Registers

Software debug is supported by address breakpoint registers (Co-processor 15,
register 14), serial communication over the JTAG interface and a trace buffer.
Registers 8, 9 and 14 are used for the serial interface, register 10 is for general control
and registers 11 through 13 support a 256 entry trace buffer. These registers are
explained in more detail in Chapter 12.0, “Software Debug”.

Table 68. SW Debug Functions

Function opc_1 CRn CRm opc_2 Instruction

Transmit Register (TX) 0b000 0b1000 0b0000 0b000 MCR p14, 0, Rd, c8, c0, 0

Receive Register (RX) 0b000 0b1001 0b0000 0b000 MRC p14, 0, Rd, c9, c0, 0

Debug Control and Status Register
(DCSR)

0b000 0b1010 0b0000 0b000
MRC p14, 0, Rd, c10, c0, 0

MCR p14, 0, Rd, c10, c0, 0

Trace Buffer Register (TBREG) 0b000 0b1011 0b0000 0b000 MRC p14, 0, Rd, c11, c0, 0

Checkpoint 0 Register (CHKPT0) 0b000 0b1100 0b0000 0b000
MRC p14, 0, Rd, c12, c0, 0

MCR p14, 0, Rd, c12, c0, 0

Checkpoint 1 Register (CHKPT1) 0b000 0b1101 0b0000 0b000
MRC p14, 0, Rd, c13, c0, 0

MCR p14, 0, Rd, c13, c0, 0

Transmit/Receive Control Register
(TXRXCTRL)

0b000 0b1110 0b0000 0b000
MRC p14, 0, Rd, c14, c0, 0

MCR p14, 0, Rd, c14, c0, 0

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 111

Configuration—Microarchitecture

7.4 CP7 Registers

The CP7 registers defined by 3rd generation microarchitecture use CRm=2. Registers
with CRm!=2 are reserved to ASSP usage. Refer to the implementation options section
of the relevant product documentation for details on ASSP specific co-processor
registers. The details in this section only apply to the 3rd generation microarchitecture
defined CP7 registers.

All registers with CRm=2 which are not defined in Table 69 are reserved. Reading and
writing these yields unpredictable results.

The 3rd generation microarchitecture CP7 registers are accessible only in privileged
mode, with MRC and MCR co-processor instructions. Accessing these in user mode
generates an undefined instruction exception.

These registers listed in Table 69 are explained in more detail in Section 8.5, “Level 2
Cache and Bus Interface Unit Register Definitions” on page 132.

Table 69. CP7 Registers

Description Opc_1 CRn CRm Opc_2 Instruction

L2 Cache and BIU Error Logging Register
(ERRLOG)

0b000 0b0000 0b0010 0b000
MRC p7, 0, Rd, c0, c2, 0

MCR p7, 0, Rd, c0, c2, 0

Error Lower Address Register (ERRADRL) 0b000 0b0001 0b0010 0b000
MRC p7, 0, Rd, c1, c2, 0

MCR p7, 0, Rd, c1, c2, 0

Error Upper Address Register (ERRADRU) 0b000 0b0010 0b0010 0b000
MRC p7, 0, Rd, c2, c2, 0

MCR p7, 0, Rd, c2, c2, 0

Microarchitecture—Level 2 Unified Cache (L2)

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
112 Order Number: 316283-002US

8.0 Level 2 Unified Cache (L2)

This chapter describes the behavior of the on-chip Level 2 Unified Cache (L2) and the
Bus Interface Unit (BIU) of the 3rd generation Intel XScale® microarchitecture
(3rd generation microarchitecture or 3rd generation).

8.1 Overviews

The L2 Unified Cache and Bus Interface Unit (BIU) work together to provide a high-
performance memory subsystem for 3rd generation microarchitecture. The L2 and BIU
are tightly coupled to the microarchitecture. Furthermore, the BIU interfaces to a high-
performance on-chip system bus. Figure 8 shows the L2 cache and BIU in
3rd generation microarchitecture from a high-level perspective.

Figure 8. 3rd Generation Microarchitecture High-Level Block Diagram

Bus

Interface

Logic

Level 2

Cache

System Bus

 Microarchitecture

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 113

Level 2 Unified Cache (L2)—Microarchitecture

8.1.1 Level 2 Cache Overview

3rd generation microarchitecture implements an 8-way set associative L2 cache. The
cache line size is 32 bytes. The L2 cache controller supports two cache sizes: 256 KB or
512 KB. The size determines the number of sets; a 256 KB cache has 1024 sets, while
the 512 KB cache has 2048 sets. Each way of a set contains a cache line and three
corresponding state bits indicating the state of the cache line (valid, modified, invalid,
etc.). The replacement policy uses a NRU (not recently used) algorithm. The L2 cache
is a fully pipelined, non-blocking cache, and operates at half the
3rd generation microarchitecture frequency. The L2 cache is unified in that it provides
the ability to cache both instructions and data. The L2 cache is physically addressed
using a 36-bit address, providing up to 64 GB of addressable memory.

Note: The 3rd generation microarchitecture is also available as an option without the L2
cache. Refer to the relevant product documentation to determine whether an L2 cache
is supported or not.

Figure 9, “Level 2 Cache Organization” on page 113 shows the cache organization for a
512 KB cache and how the data or instruction address is used to access the cache. The
256 KB cache has the same organization, but there are half as many sets as in the
512 KB cache. Note that all accesses to the L2 array occur at a full cache line width.

Figure 9. Level 2 Cache Organization

way 0
way 1

way 31

32 bytes (cache line)
Set 2047

... L2 DATA

way 0
way 1

way 31

32 bytes (cache line)
Set 1

CAM DATA

way 0
way 1

way 7

32 bytes (cache line)

Set Index

Set 0

Tag

Data Address (Physical) - 256K byte Level 2 cache

35 15 14 5 4 0

Tag Set Index

... L2 DATA

This example shows

Set 0 being selected

by the set index.

 Full Cache Line

256

Data Address (Physical) - 512K byte Level 2 cache

35 16 15 5 4 0

Tag Set Index

Example: 512K byte cache

Microarchitecture—Level 2 Unified Cache (L2)

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
114 Order Number: 316283-002US

L2 Cache policies such as cacheability and coherence, are adjusted for particular
regions of memory by programming page attribute bits in the MMU descriptor that
controls that memory. See Section 8.2.3, “Memory Attributes” on page 119 for a
description of these bits.

The L2 cache supports write-back only caching. The L2 cache does not support write-
through caching. Accesses to L2 cacheable memory marked as write-through are
treated as L2 un-cacheable (see Section 8.2.3.2, “L2 Write Policy” on page 119). Data
written to the L2 cache is only written to system memory when a line victimization due
to replacement occurs, when a clean operation occurs on a modified line, or when a
snoop probe forces a modified line to be written back to memory. The L2 cache always
allocates a line into the cache in the event of a cacheable read-miss, or a cacheable
write-miss.

The L2 cache supports hardware cache coherence, using the MOESI cache coherence
protocol (Modified, Owned, Exclusive, Shared, Invalid). Hardware cache coherence
allows multiple 3rd generation microarchitecture processors and I/O devices to share
data without software intervention. In a coherent system, the L2 also supports a push-
cache capability. This allows specially tagged write transactions on the system bus to
push data directly into shared memory in the L2.

3rd generation microarchitecture provides several L2 cache maintenance operations to
help manage the cache, including invalidate, clean, and clean & invalidate. In addition,
there are special operations that allow the L2 cache to be locked on a per-line basis.
These operations are describe more in Section 8.3, “Level 2 Cache Control” on
page 126.

The L2 data array is ECC protected. Single bit errors are detected and corrected when
encountered, while double bit errors are detected only. The L2 tag and state arrays are
parity protected. This is described more in Section 8.2.6, “ECC and Parity Protection”
on page 125.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 115

Level 2 Unified Cache (L2)—Microarchitecture

8.1.2 Bus Interface Unit Overview

The Bus Interface Unit (BIU) accepts 3rd generation microarchitecture requests and
schedules these to the L2 cache and/or the system bus. The BIU directs return data to
3rd generation microarchitecture to fulfill microarchitecture requested loads,
instruction fetches or TLB table walks, and also to the L2 cache in the case of L2
cacheable memory accesses.

All microarchitecture requests to the BIU are physically addressed. During coherent
memory operations, any snooping in the BIU and L2 cache is performed with physical
addresses and a physical address is passed back to the microarchitecture for L1 cache
invalidations as appropriate.

3rd generation microarchitecture supports a weakly ordered memory consistency
model. As a result, the BIU reorders any cacheable requests from the
microarchitecture. However, uncacheable requests are issued to the system bus in
strict program order. There are no ordering dependencies between cacheable and
uncacheable requests (in other words, cacheable requests in between uncacheable
requests are reordered and/or issued prior to pending uncacheable requests). When
ordering is desired, fence operations are used. For a full description of the
3rd generation microarchitecture memory ordering model and the available fencing
operations, please see Chapter 10.0, “Memory Ordering”

Microarchitecture—Level 2 Unified Cache (L2)

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
116 Order Number: 316283-002US

8.2 Level 2 Unified Cache Operation

The L2 cache and BIU receive access requests from two places, either the
microarchitecture, or from the system bus. Each of these types of requests is discussed
in the subsequent sections.

8.2.1 L2 Cache / BIU Operations due to Microarchitecture Requests

The L2 cache and BIU receive many different types of requests from the
microarchitecture. These requests include instruction fetches, data read and data write
operations. These microarchitecture request types are briefly outlined in Table 70.
These requests are either L2 cacheable or L2 uncacheable depending upon the memory
attributes of the request. When L2 cacheable, these are presented to the L2;
otherwise, these are forwarded to the system bus. The L2 cache and BIU also support
many L2 cache maintenance operations. These are not listed in Table 70, but are
described in more detail in Section 8.3.3, “Invalidate and Clean Operations” on
page 127

Table 70. Microarchitecture Request Types

Read Requests Description

Instruction fetches
Request to load an instruction from a particular address. When L2
cacheable, this request is presented to the L2 cache as a read request.

Data loads
Request to load data from a particular address. When L2 cacheable, this
request is presented to the L2 cache as a read request.

Instruction/Data TLB fetches

Request to load TLB data needed for a virtual to physical address
translation. When the L2 is enabled, TLB information is cached in the L2
for higher performance. These types of requests are presented to the L2
cache as read requests.

SWAP
Request to perform the read portion of an atomic swap operation. When
L2 cacheable, this request is presented to the L2 cache as a read
request.

Write Requests Description

L1 stores to write-through memory
Request to store data to L1 write-through memory. When L2 cacheable,
this request is presented to the L2 cache as a write request.

L1 uncacheable stores
Request to store data when L1 is uncacheable. When L2 cacheable, this
request is presented to the L2 cache as a write request.

L1 store miss requests to write-
back memory

Request to store data to L1 write-through memory. When L1 misses, and
the request is L2 cacheable, it is presented to the L2 cache as a write
request. This is because the L1 cache does not support write allocate on
miss.

L1 cache victimizations of lines in
write-back memory

Request to store victim data when L1 victimizes a line from write back
memory. When the request is L2 cacheable, it is presented to the L2
cache as a write request.

SWAP
Request to perform the write portion of an atomic swap operation. When
L2 cacheable, this request is presented to the L2 cache as a write
request.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 117

Level 2 Unified Cache (L2)—Microarchitecture

When an L2 cacheable read or write request is received from the microarchitecture, the
L2 cache compares the address of the request against the addresses of the data
currently in the cache. It also checks the state information in addition to the address.
This information is used to determine whether or not the access results in a cache hit or
a cache miss. The expected L2 cache behavior for each of these types of results is
outlined in Table 71.

When a given request type does not meet the cache hit criteria defined Table 71, then
the access results in a cache miss, and the L2 cache and BIU take the necessary steps
to process the request. The sequence of these steps depends on the configuration of
the cache and the configuration of the MMU and the page attributes. This is further
described in Section 8.2.4.1, “Read Miss Policy”” and Section 8.2.4.2, “Write Miss
Policy”” for a read miss and write miss respectively.

Note that some microarchitecture requests (such as stores) to shared memory finds
the data in the L2 cache in the shared or owned state. These states do not give right to
modify, and require a system bus transaction to maintain coherence.

Accesses to and from the actual L2 array occur only at line granularity (32 bytes). This
means that any load requests for data cause the L2 cache to return the entire cache
line to the microarchitecture. Any store requests that are less than the cache line width
(32 bytes) cause a read-modify-write operation to occur in the L2 cache. When the line
is present in the cache, it is first read out, and then it is merged with the write data
provided by the microarchitecture in a merge buffer before writing it back into the L2
cache.

When the L2 cache is not present in an ASSP implementation, all microarchitecture
requests are forwarded directly to the system bus.

When the L2 cache is disabled, all microarchitecture requests bypass the L2 cache and
are forwarded directly to the system bus and the L2 cache are not accessed or updated
in any way. The details of enabling the L2 cache are described in more detail in
Chapter 7.0, “Configuration”.

Table 71. L2 Cache “Hit” Definition

Request
Type

Cache Hit Definition Resulting Behavior

Read

Request address matches the address of the data
currently in the L2 cache AND the line is present in
one of [M,O,E,S] states. Note that for a swap
operation, a “hit” is only true when the line is
present in one of [M,E] states.

The L2 cache returns the requested
data to the
3rd generation microarchitecture.

Write
Request address matches the address of the data
currently in the L2 cache AND the line is present in
one of [M,E] states.

The provided data from the
3rd generation microarchitecture is
written into the L2 cache.

Microarchitecture—Level 2 Unified Cache (L2)

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
118 Order Number: 316283-002US

8.2.2 Level 2 Cache / BIU Operations Due to System Bus Requests

The L2 cache and BIU also receive access requests from the system bus. These request
types are outlined in Table 72.

8.2.2.1 Snoop Probes

These types of requests only occurs to coherent memory (see Section 8.2.4.1, “Read
Miss Policy” on page 121). When an L2 cacheable, coherent memory request is
received from the system bus, the L2 cache compares the address of the request
against the addresses of data currently in the cache. This is known as a snoop probe.
When the cache line associated with the snoop is resident in the L2 cache in a valid
state [M,O,E or S], then the access results in a cache hit. The status of the line is then
reported to the bus as part of the snoop response protocol. In these cases, the data is
provided from the L2 cache to the bus. When the L2 cache does not contain the
requested data, then no snoop response is provided to the bus, indicating to the
requesting agent that the line is not present in the L2 cache.

8.2.2.2 Push-Cache Requests

These types of requests allow a non-3rd generation microarchitecture agent on the
system bus to push data into the L2. This allows bus agents to move critical data closer
to the microarchitecture prior to use to reduce the new-data cache miss penalty. Push
requests are only supported to coherent memory. As such, these types of transactions
also results in a snoop probe. For non-target 3rd generation microarchitecture agents,
when the cache line associated with the push request is resident in the L2 cache in a
valid state [M,O,E or S], that cache line is invalidated [I]. For target
3rd generation microarchitecture agents, a cache line is allocated in a modified state,
and the push data is written into the L2. More details on the push operations are also
found in Chapter 9.0, “Cache Coherence.”

Note: It is assumed that the push operation takes write precedence. When a push operation
encounters any modified data in any 3rd generation microarchitecture agent L2 cache,
that data is invalidated, without writing the modified data back to memory.

Table 72. System Bus Requests to L2

Request Type Description

Snoop Probes

A system bustransaction to coherent memory probes the L2 cache to see
when it contains the desired cache line. This is the result of another
system agent making a coherent memory request to the line. These types
of requests only occurs to coherent (or shared) memory.

Push-Cache Requests
A specially tagged “push” transaction allows an agent on the system bus
to push or write a full cache line of data directly into the L2 cache. These
types of requests only occurs to coherent (or shared) memory.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 119

Level 2 Unified Cache (L2)—Microarchitecture

8.2.3 Memory Attributes

To support the L2 cache as well as hardware cache coherency for
3rd generation microarchitecture based products, 3rd generation microarchitecture
uses a new memory attribute encoding. The new memory attributes affect aspects of
L2 operation, including whether or not the access is L2 Cacheable, the L2 Write Policy,
and whether or not the access is to Shared memory. These attributes also allow
independent configuration of outer and inner caches. For
3rd generation microarchitecture, the L2 cache is considered an “outer” cache. All of
these memory attributes are effectively ignored when the MMU is disabled. Full details
of the outer and inner cache memory attribute encoding is found in Chapter 3.0,
“Memory Management”.

8.2.3.1 L2 Cacheability

The outer cacheable memory attribute encoding specifies that the associated memory
is cacheable by the L2 cache.

When the MMU is disabled, the L2 unified cache is effectively disabled from caching.
When the MMU is enabled, the L2 unified cache caches data for a region of memory
when:

• the outer cacheable memory attribute encoding is set for the accessed address and

• the L2 unified cache is enabled.

When the outer cacheable memory attribute encoding is not set, access to that
memory page is considered non-cacheable in the L2 cache, and the L2 cache is
bypassed.

8.2.3.2 L2 Write Policy

The outer write policy memory attribute encoding allows outer caches to be configured
as follows:

• Write-Back vs. Write-Through

• Write-Allocate vs. Read-Allocate

As previously mentioned, the only write policy the 3rd generation microarchitecture L2
cache supports is write-back, write-allocate. As a result of this, the
3rd generation microarchitecture L2 interprets the below attribute encodings as
follows:

• Outer Write-through - on 3rd generation microarchitecture, an access of this type
is L2 uncacheable

• Outer Read-Allocate - on 3rd generation microarchitecture, an access of this type is
L2 write-allocate

For more details of the 3rd generation microarchitecture memory attribute encoding,
please refer to Chapter 3.0, “Memory Management.”

Microarchitecture—Level 2 Unified Cache (L2)

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
120 Order Number: 316283-002US

8.2.3.3 Shared Memory Attribute

The shared (S) memory attribute indicates that the memory region is shared by
multiple processors or agents. From an L2 cache perspective, this means that any
system bus transaction targeting memory that is marked shared and L2 cacheable
causes the L2 cache to be snooped to see when it contains the desired cache line.
When the cache line is present in the L2 cache, notification of this is sent to the bus,
and the data is provided directly from the L2 cache to the requesting agent. When the
S memory attribute is not set for a given transaction, then the system bus transaction
does not trigger any snoop activity in the L2 cache. In this case, when it is desired to
keep memory coherent, all accesses to memory being shared by multiple agents must
be explicitly handled by software. See Chapter 9.0, “Cache Coherence” for more details
on programming 3rd generation microarchitecture for hardware cache coherence.

In summary, hardware cache coherence and L2 snooping occurs on system bus
transactions in a 3rd generation microarchitecture-based system with L2 given the
following conditions:

• The MMU is enabled

• The L2 is present and enabled

• The bus transaction is L2 cacheable (as specified by the outer memory attribute
encoding)

• The bus transaction is to shared memory (S=1)

When hardware cache coherence is supported, bus transactions are snooped, as is
described in Section 8.2.2, “Level 2 Cache / BIU Operations Due to System Bus
Requests” on page 118. Coherent memory is also supported without an L2 cache, but
in this case, all requests are downgraded to both L1 and L2 uncacheable, thereby
keeping memory coherent without hardware cache coherence support.

When an access is L1 cacheable, hardware cache coherence is only supported in a
3rd generation microarchitecture-based system when the L1 cache access is treated as
write-through, and the access is L2 cacheable. Coherent memory transactions (S=1)
on 3rd generation microarchitecture forces the L1 cache to be write-through for the
given transaction, even though the page table specifies that the memory location in the
L1 cache is write-back. Hardware cache coherence is also supported for L1 uncacheable
accesses, just so long as the access is to a memory location that is specified as L2
cacheable.

When a memory access is marked shared (S=1), but the Level 2 cache is either
disabled, or the access is L2 non-cacheable, the access is also forced to be L1
uncacheable. This ensures that shared memory remains coherent by making the access
entirely uncacheable.

Please refer to Chapter 3.0, “Memory Management” for a full description of the format
of the memory management page table.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 121

Level 2 Unified Cache (L2)—Microarchitecture

8.2.4 Cache Policies

8.2.4.1 Read Miss Policy

The following sequence of events occurs when a L2 cacheable (see Section 8.2.3.1, “L2
Cacheability” on page 119) read operation from the microarchitecture misses the L2
cache:

1. The read operation is promoted to a line fill and a request for the data is made to
system memory.

2. A line is allocated in the L2 cache to receive the 32-bytes of fill data. The line
selected for replacement is determined by the NRU replacement algorithm (see
Section 8.2.5, “Not Recently Used (NRU) Replacement Algorithm” on page 123).
When the line chosen for replacement is dirty (M or O state), then the line is
scheduled to be written back to memory.

3. When the data requested by the load or instruction fetch is returned from system
memory, the data is buffered in the BIU and then forwarded to the
microarchitecture.

4. As the data returns from system memory it is also written to the allocated line in
L2.

A read operation that is not cacheable in both the L1 and L2 cache issues a read
request to system memory via the internal system bus for the exact data size of the
original load request. For example, LDRH results in a request for exactly two bytes
from system memory, LDR results in a request for 4 bytes from system memory, etc.

A L1 instruction or data cache line fill that is not L2 cacheable results in a request to
system memory for a cache line.

8.2.4.2 Write Miss Policy

The following sequence of events occurs when a L2 cacheable (see Section 8.2.3.1, “L2
Cacheability” on page 119) write operation misses the L2 cache. This request is either
L1 cacheable, or L1 uncacheable:

1. The write operation is promoted to a line fill and a request for the data is made to
system memory, since write allocation is supported by the L2 cache. When the
access is to shared memory, the invalidating request is snooped by all system bus
caching agents and any data are invalidated when found. Note that when the write
operation is to a full cache line (either from a L1 victim or a coalesced store), the
write miss allocates a line in the L2 cache, but does not cause a fill request to be
made to memory.

2. A line is allocated in the L2 cache after the miss occurs. The line selected for
replacement is determined by the NRU replacement algorithm (see Section 8.2.5,
“Not Recently Used (NRU) Replacement Algorithm” on page 123). When the line
chosen for replacement is dirty (M or O state), then the line is scheduled to be
written back to memory.

3. When the line fill data returns, it is merged with the microarchitecture write data
(for less than full line width stores), and written to the allocated line in L2.

A write operation that is not cacheable in both the L1 and L2 cache issues a write
request to system memory via the internal system bus for the exact data size of the
original store operation, assuming the write request does not coalesce with another
write operation in the buffers of the L1 data cache.

Microarchitecture—Level 2 Unified Cache (L2)

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
122 Order Number: 316283-002US

8.2.4.3 L2 Write-Back Behavior

The L2 cache supports write-back caching only. This means that store operations from
the L2 cache to memory only occur in the following cases:

• L2 Cache Victimizations - An L2 cache line is evicted. When the evicted line is dirty
(M or O state), then it is written back to memory.

• L2 Clean and Clean and Invalidate Cache Maintenance Operations. These types of
operations check to see when the requested data is dirty (M or O state) in the L2
cache. When so, the L2 writes the modified data back to memory, and
appropriately update the state of the line. For clean ops, M state is updated to E,
and O is updated to S, while for clean and invalidate ops, the state is updated to I.

• Snoop Write-Backs - When a cache coherent memory transaction occurs on the
internal system bus, a snoop probe checks the L2 cache to see when the requested
data is valid in the L2 cache. When so, it is possible for the L2 cache to intervene,
and provide the data directly to the requesting agent via the internal system bus.
In some cases, the snoop probe requires the L2 cache to write modified data back
to memory (for example, when the requesting agent is not capable of cache
ownership and wants to modify the line).

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 123

Level 2 Unified Cache (L2)—Microarchitecture

8.2.5 Not Recently Used (NRU) Replacement Algorithm

The L2 cache is an 8-way set associative cache. Whenever an L2 cacheable access
misses the L2 cache, a line is allocated in the cache so that the requested line is
brought in. This allocated line must come from one of the eight ways in the set. The
choice of which way to select for replacement is determined by the Not Recently Used
(NRU) replacement algorithm.

This algorithm targets for replacement the ways within a set that have not been
recently used as a priority above those ways that have been accessed more recently.
Every cache line has a Used bit associated with it. On every microarchitecture access,
the Used bit corresponding to the line accessed is set. When all ways but one of the
selected set have their Used bits set, then access to the line with the Used bit not set
clears the Used bits on the remaining lines of the set, and sets the Used bit of the line
just accessed.

To select a replacement candidate in a set on an allocation on miss, two parallel find-
firsts are done across the ways of the set. The first looks for an invalid line to overwrite
in one of the eight ways. The other looks for a line with the Used bit being clear in one
of the eight ways. When an invalid line is found, then that line is used for replacement.
Otherwise, the first line with the Used bit not set is used. When a locked line is found in
one of the eight ways, then that line is not considered for replacement. Locking is
covered in more detail in Section 8.3.5, “Level 2 Cache Locking” on page 128. In
summary, for replacement, the L2 cache does the following when performing an line
allocate due to a cache miss:

if all of the non-locked ways in the selected set are valid

Use the set’s Used bits (one per way) to identify the line to replace

Update the new line’s Used bit to mark the replaced way as used (Used=1)

If all other ways in the set are marked used, clear all used bits except the one

 for the way that was just replaced.

Read entire 32 byte line from system memory

Write the 32 bytes of data from the line fill into that line

Set the state bits to the appropriate fill state for this line

else {Invalid Lines Exist in the non-locked ways}

Starting with way 0, identify the first invalid line

Update the set’s Used bits to mark the way as used (Used=1)

If all other ways in the set are marked used, clear all used bits except the one

 for the way that was just replaced.

Read entire 32 byte line from system memory

Write the 32 bytes of data from the line fill into this line

Set the state bits to the appropriate fill state for this line

Note: Every time a line in a set is either accessed or filled due to a microarchitecture or push
access, the NRU used bits for that set are updated. The exception to this is for snoop
probes, the NRU used bits are not updated, as the replacement policy is determined by
the microarchitecture usage patterns only.

Microarchitecture—Level 2 Unified Cache (L2)

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
124 Order Number: 316283-002US

After reset, way 0 is filled first for all the sets, followed in order by way 1 through
way 7. Also note that when a line is brought into memory, the state that it is filled in
depends upon whether or not the line was from coherent or non-coherent memory. For
non-coherent memory, the line is filled in exclusive (E) state, essentially acting like a
“valid” state. For coherent memory, the line is filled in any of the [M,O,E,S,I] states,
depending upon the situation.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 125

Level 2 Unified Cache (L2)—Microarchitecture

8.2.6 ECC and Parity Protection

The L2 cache contains Error Checking and Correction (ECC) and Parity Protection to
ensure data integrity on its various arrays as follows:

• The L2 data array is protected by ECC

• The L2 tag array is parity protected.

• The L2 MOESI state array is parity protected

For the data array, there are 10 ECC bits which are calculated and stored each time
there is a store operation to the data array. These 10 bits are calculated for the entire
256-bit (32-Byte) line, and are stored along with that line. When a line is read from the
L2 cache, the 10-bit ECC syndrome is recomputed on the read data, and then is
compared with the stored ECC value. When a single bit error is detected in one of the
256 data bits, the error is seamlessly corrected, and the corrected data is returned to
the requester. When a double bit error is detected in the data array, the error is not
correctable.

For a single bit error (which has been detected and corrected), the hardware
appropriately sets the Single Bit Error (bit 7) of the L2 Cache and BIU Error Logging
Register 1, indicating that a single bit ECC error has been detected and corrected. In
addition to this, the hardware signals an interrupt request to the
3rd generation microarchitecture. (see Section 8.5.2, page 8.0-133).

For a double-bit error (which has been detected only), the hardware appropriately sets
the Double Bit Error (bit 2) of the L2 Cache and BIU Error Logging Register, indicating
that a double-bit ECC error has been detected. In addition to this, the hardware signals
a data abort or exception to the microarchitecture. The type of error reporting depends
on what type of transaction actually caused the error. (see Section 8.5.2,
page 8.0-133).

Note that for either type of ECC error (single or double bit), the physical address is not
logged in the Error Address field of the L2 Cache and BIU Error Logging
Registers 1 and 2.

For the tag array, there is a single parity bit protecting all 21 (20 for 512 KB) tag bits.
Tag parity is checked against the tags from all eight ways on a miss, while only the
accessed way’s tag is checked on a hit. This ensures that any false miss conditions are
detected. When a parity error is detected on a L2 cache access, a data abort or
exception is signaled to the microarchitecture for this access. Before reporting the
error, the hardware sets bit 0 of the L2 Cache and BIU Error Logging Register (see
Section 8.5.2, page 8.0-133). This indicates that a tag parity error has occurred.

For the state/NRU array, there is a single parity bit protecting the 3 state bits. The NRU
and lock bits are not parity protected. When a state parity error is detected on an L2
cache access, a data abort or exception is signaled to the microarchitecture for this
access. Before reporting the error, the hardware sets bit 1 of the L2 Cache and BIU
Error Logging Register (see Section 8.5.2, page 8.0-133). This indicates that a state
parity error has occurred.

Microarchitecture—Level 2 Unified Cache (L2)

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
126 Order Number: 316283-002US

8.3 Level 2 Cache Control

8.3.1 Level 2 Cache Memory State After Reset

After processor reset, the L2 cache is disabled, and the state bits are reset such that all
lines are invalid, and the NRU bits are all set to zero (not used). Any lines in the L2
cache that were locked before reset are unlocked after reset and therefore is available
for replacement.

The L2 cache size configuration after processor reset is determined by reading bits
[11:3] of the L2CTYPE register (see Section 7.2.1, “Register 0: ID & Cache Type
Registers”). The actual L2 cache size is ASSP specific, but when the L2 is present, it is
either 256 KB, or 512 KB.

8.3.2 Enabling the L2 Cache

The L2 cache is enabled by writing to bit [26] of the ARM Control register (CP15,
register 1). This is the L2 unified cache enable bit (see Section 7.2.2, “Register 1:
Control and Auxiliary Control Registers” for more details). This bit resets to 0 on power-
up reset. Once written to 1, the L2 cache is enabled. The L2 cache behavior, when
switched from the enabled to disabled state is architecturally unpredictable. Therefore,
once enabled, the cache must remain enabled. Note that the L2 must be enabled to
prior to, or at the same time as the MMU.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 127

Level 2 Unified Cache (L2)—Microarchitecture

8.3.3 Invalidate and Clean Operations

The L2 cache provides several invalidate and clean operations which are controlled via
coprocessor 15, register 7. These operations are performed on an individual line, either
by specifying the address, or by directly specifying the set and way. Refer to Table 73
for a listing of the available L2 cache maintenance operations. Full details of the L2
invalidate and clean operations are found in the Chapter 7.0, “Configuration”.

All of the L2 cache maintenance operations that operate on a modified virtual address
(MVA) as shown in Table 73 honor address dependencies with other memory
operations. However, L2 cache maintenance operations that operate on the entire L2
cache or directly on a set/way do not explicitly honor address dependencies. Therefore,
when any specific ordering of these operations is desired with relation to each other, or
with relation to other memory operations, an explicit data memory barrier (DMB)
operation must be used. For example, when a Clean & Invalidate L2 Cache Line by Set/
Way operation is followed by a read operation to the same address, it is strongly
suggested that the Clean & Invalidate operation be globally observed before allowing
the read operation to proceed. Otherwise, the read operation results in stale data being
returned from memory instead of the data that was just “cleaned” from the L2 cache.
The way to ensure this is to use a DMB between the Clean & Invalidate operation and
the read operation. Full details of the memory ordering model are found in the
Chapter 10.0, “Memory Ordering”.

Note: The behavior of these operations is unpredictable when the L2 cache is disabled. When
the L2 is not present, these operations perform no-ops.

8.3.4 Level 2 Cache Clean and Invalidate Operation

A simple software routine is used to clean and invalidate the entire L2 cache, by using
the Clean and Invalidate operations listed in Table 73. Specifically, the Clean and
Invalidate Level 2 Cache by Line by Set/Way operation is used to evict any dirty cache
data back to system memory, and to mark all lines as invalid. This operation is used to
specifically clean and invalidate a line directly, by providing a set and way. An example
of code that cleans and invalidates the cache is found in the 3rd Generation Intel
XScale® Microarchitecture Software Design Guide. Note that when it is desired to clean
and invalidate the entire cache, including locked entries, that the entire cache must be
first unlocked, prior to the clean and invalidate routine. This is explained in more detail
starting in Section 8.3.5.2, “Level 2 Cache Unlock Functions” on page 129.

When the clean and invalidate operation encounters a modified line in the L2 cache, the
line is written to system memory before being marked as invalid. As a result, the time
it takes to execute a clean and invalidate operation on the entire L2 cache depends on
the number of modified lines in present in the L2 cache.

Table 73. L2 Cache Maintenance Operations

Function Opc_1 CRm Opc_2 Data Instruction

Invalidate L2 Cache Line 0b001 0b0111 0b001 MVA MCR p15, 1, Rd, c7, c7, 1

Clean L2 Cache Line 0b001 0b1011 0b001 MVA MCR p15, 1, Rd, c7, c11, 1

Clean L2 Cache Line 0b001 0b1011 0b010 set/waya

a. Refer to Section 7.2.8.7, page 7.0-100 for details on the set/way format.

MCR p15, 1, Rd, c7, c11, 2

Clean and Invalidate L2 Cache Line 0b001 0b1111 0b010 set/waya MCR p15, 1, Rd, c7, c15, 2

Microarchitecture—Level 2 Unified Cache (L2)

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
128 Order Number: 316283-002US

8.3.5 Level 2 Cache Locking

Software has the ability to lock lines in the L2 cache. Once a line has been locked in the
cache, any access to the line always hits the cache unless it is invalidated. When a line
is locked, in general, it is not considered for replacement. However, a locked line is in
shared or non-shared memory. Since shared memory lines are invalidated by certain
snoop operations including push transactions, it is possible for a locked line to be
invalidated by an invalidating snoop operation. To prevent cache holes caused by
locked invalid lines, when a line is invalidated, the line becomes unlocked. Therefore,
when it is desirable to ensure that a cache line remains locked and not replaced, this
line is mapped to non-shared memory.

The NRU algorithm is slightly modified to handle locked lines. In addition to the used
bit, each cache line has a lock bit associated with it. The NRU algorithm first looks for
any invalid lines in a given set, regardless of the lock bit state of the lines. The first
invalid line, starting from way 0 and searching incrementally through the ways, is
chosen for replacement. When no invalid lines are found, the NRU algorithm looks for
the first line in a given set that is not-used and not-locked, starting from way 0 and
searching incrementally through the ways.

There is no restriction with regard to which of the eight ways in a given set are locked.
However, at most, only seven out of eight ways are available for locking in a given set.
Thus, at least one way of the cache is left available for unlocked caching. When eight
ways are attempted to be locked, the subsequent replacement behavior is
architecturally unpredictable.

8.3.5.1 Level 2 Cache Lock Functions

Level 2 cache locking is line granular and is initiated by having software issue one of
two special CP15 instructions:

• fetch & lock

• allocate & lock

When either of these two different methods of locking is used, a line is allocated in the
L2 (when not already present), its lock bit is set, and the appropriate action on the data
taken, depending upon the lock method.

The CP15 lock instructions are listed below in Table 74.

The Fetch and Lock L2 Cache Line instruction serves to prime the L2 cache for future
read operations (loads, instruction fetches, etc.). When the line is already present in
the L2 cache, this instruction sets the lock bit for the line. When the line is not present
in the L2 cache, this instruction fetches the line from system memory, places it in the
L2 cache, and sets the lock bit for the line.

The Allocate and Lock L2 Cache Line instruction serves to prime the L2 cache for future
write operations. When the line is already present in the L2 cache, this instruction sets
the lock bit for the line. When the line is not present in the L2 cache, this instruction
allocates a line in the L2 cache, and sets the lock bit for the line. Note that for shared
memory, any matching lines in other agents are invalidated in this case. Also note that
the data associated with the allocate and lock instruction has an unpredictable value,
until explicitly written to, meaning subsequent reads before any write reads an
unpredictable value.

Table 74. Level 2 Cache CP15 Lock Operations

Operation Opc_1 CRm Opc_2 Data Instruction

Fetch and Lock L2 Cache Line 0b001 0b0101 0b000 MVA MCR p15, 1, Rd, c9, c5, 0

Allocate and Lock L2 Cache Line 0b001 0b0101 0b010 MVA MCR p15, 1, Rd, c9, c5, 2

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 129

Level 2 Unified Cache (L2)—Microarchitecture

8.3.5.2 Level 2 Cache Unlock Functions

Since an L2 line is unlocked by invalidating the line, the L2 invalidate operations are
used to unlock lines in the L2 cache. An unlock entire L2 cache instruction is also
provided. The CP15 unlock instructions are listed below in Table 75.

The Invalidate Line by MVA instruction invalidates and thereby unlock any lines that
have a matching address. Note that when it is desired to preserve any modified data in
a locked line, a Clean Line by MVA instruction is used prior to invalidating/unlocking the
line to ensure that the modified data gets written back to memory. To ensure that the
clean happens prior to the invalidation, a DMB memory fence must be used, as
previously described in Section 8.3.3, “Invalidate and Clean Operations” on page 127.

The Unlock L2 Cache instruction is used to unlock the entire L2 cache, without having
to invalidate the entire L2 cache.

8.3.5.3 L2 Cache Maintenance Function Effect on Locked Lines

The remaining L2 cache maintenance operations as described in Table 73 on page 127
each interact with locked lines in different ways.

The Clean L2 Cache Line by MVA instruction writes back modified data to system
memory when the specified address matches a cache entry with modified data. This
behavior is the same, regardless of whether or not the entry is locked. Note that when
the line is locked prior to the clean, it remains locked after the clean.

The Clean L2 Cache Line by Set/Way instruction does not impact the state of locked
lines. This operation appears as a NOP to a locked line.

The Clean & Invalidate L2 Cache Line by Set/Way instruction also does not impact the
state of locked lines. This operation also appears as a no-op to a locked line.

Since the Clean and Clean & Invalidate operations by set/way do not affect locked
entries, these are used to clean or clean and invalidate entire sections of the cache,
without affecting the status of locked lines.

Table 75. Level 2 Cache CP15 UnLock Operations

Operation Opc_1 CRm Opc_2 Data Instruction

Invalidate L2 Cache Line 0b001 0b0111 0b001 MVA MCR p15, 1, Rd, c7, c7, 1

Unlock L2 Cache 0b001 0b0101 0b001 Ignored MCR p15, 1, Rd, c9, c5, 1

Microarchitecture—Level 2 Unified Cache (L2)

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
130 Order Number: 316283-002US

8.4 Bus Interface Unit Operation

The BIU contains several queues and data structures to track
3rd generation microarchitecture requests through completion. These units are
illustrated in Figure 10.

Figure 10. High-Level Block Diagram of BIU

Microarchitecture BIU Data

Buffers

L2
Schedule

FIFO’s

Address
 Schedule

 FIFO’s

Microarchitecture
Return
Logic

Data
Schedule

Logic

BIU/L2

BIU/microarchitecture
interface

interface

Split

Address
 Issue

Data
Issue

Request
Queue

Request
Queue

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 131

Level 2 Unified Cache (L2)—Microarchitecture

8.4.1 Microarchitecture Request Queue (MRQ)

The Microarchitecture Request Queue (MRQ) contains the address and control fields to
track a request from the 3rd generation microarchitecture through completion. The
MRQ has four types of entries:

• fill entries

• merge entries

• victim entries

• push entries

For each of these types, there is a dedicated number of queue entries:

• Eight Fill Entries to track microarchitecture load requests (data cache load,
instruction fetch, uncacheable load, TLB table walks, etc.)

• Four Merge Entries to track outstanding store requests (partial line stores, L1 data
cache line evictions, uncacheable stores, etc.)

• Four Victim Entries to track L2 cache line evictions (in other words, modified lines
evicted from the L2 cache due to way replacement)

• Two Push Entries to track system bus push cache line requests

All MRQ entries contain a 1:1 correspondence to a particular data buffer entry: fill
buffer, merge buffer, victim buffer, or push buffer.

8.4.2 Request Scheduling

All microarchitecture requests requiring service by either the L2 cache and/or the
system bus are scheduled into specific request FIFOs. Pending requests (in other
words, those requests entered into a scheduling FIFO) are prioritized by the associated
logic and issued to the L2 cache or the system bus. All cacheable requests are
reordered in the BIU due to scheduling priority and/or due to being rejected or retried
by the L2 or internal system bus respectively. Ordering is discussed in greater detail in
Chapter 10.0, “Memory Ordering”. Uncacheable requests are issued to the system bus
strictly in-order.

Requests to the bus are prioritized as follows:

1. Victim Buffer Request (only when the victim buffer is full)

2. L2 Cache Miss Request

3. L2 Uncacheable Request

4. System Bus Address Issue Retry Request

5. Uncacheable Request

6. Victim Buffer Request

Microarchitecture—Level 2 Unified Cache (L2)

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
132 Order Number: 316283-002US

8.5 Level 2 Cache and Bus Interface Unit Register Definitions

Table 76 lists the registers necessary to support the L2 cache and bus interface unit
operation.

8.5.1 Level 2 Cache ID and Cache Type Register

The L2 Cache Type Register (L2CTYPE) and L2 System ID Register (L2ID) provide
information regarding the configuration of the L2 Cache. These are used to determine
whether the L2 cache is present, the size of the cache, the set and way configuration,
etc.

The instruction encoding needed to access this register and the format of this register
are found in Section 7.2.1, “Register 0: ID & Cache Type Registers”.

Table 76. L2 Unified Cache and BIU Registers

Section, Register Name - Acronym (Page)

Section 8.5.1, “Level 2 Cache ID and Cache Type Register” on page 132

Section 8.5.2, “Level 2 Cache and Bus Error Logging Registers (ERRLOG, ERRADRL and ERRADRU)” on
page 133

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 133

Level 2 Unified Cache (L2)—Microarchitecture

8.5.2 Level 2 Cache and Bus Error Logging Registers
(ERRLOG, ERRADRL and ERRADRU)

The L2 cache and bus error logging registers are used to log error information for any
error that occurs in the L2 cache or the internal system bus as the result of
3rd generation microarchitecture transactions. ERRLOG contains error logging
information, while ERRADRL and ERRADRU contain the physical address associated
with the error. Note that addresses are only logged in ERRADRL and ERRADRU for
implicit and explicit system bus address errors. When an error occurs, either an
interrupt request or an imprecise abort to the microarchitecture occurs, as defined in
Table 78, “L2 Cache and BIU Error Logging Register (ERRLOG)” on page 134. The error
information associated with any error is logged in ERRLOG. All of the fields in the table
are sticky, meaning that once any of the fields are set by hardware, these remain set
until cleared by software.

Table 77. L2 Cache and Bus Error Log Register Access

Function Opc_1 CRn CRm Opc_2 Instruction

L2 Cache and BIU Error Logging
Register (ERRLOG)

0b000 0b0000 0b0010 0b000
MRC p7, 0, Rd, c0, c2, 0

MCR p7, 0, Rd, c0, c2, 0

Error Lower Address Register
(ERRADRL)

0b000 0b0001 0b0010 0b000
MRC p7, 0, Rd, c1, c2, 0

MCR p7, 0, Rd, c1, c2, 0

Error Upper Address Register
(ERRADRU)

0b000 0b0010 0b0010 0b000
MRC p7, 0, Rd, c2, c2, 0

MCR p7, 0, Rd, c2, c2, 0

Microarchitecture—Level 2 Unified Cache (L2)

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
134 Order Number: 316283-002US

Table 78. L2 Cache and BIU Error Logging Register (ERRLOG)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S
B
E

O
V

D
A

E
A
E

I
A
E

D
B
E

S
P

T
P

reset value: Writeable bits set to 0

Bits Access Description

31:8 Read-Unpredictable / Write-as-Zero Reserved

7 Read/Write

L2 Data Array Single Bit Error (SBE)

When set, this indicates that an L2 single bit ECC error
has been detected and corrected as the result of a
request to L2, and that an interrupt request was sent to
the microarchitecture interface.

6 Read/Write

Overflow (OV)

When set, this indicates a second error has occurred after
a prior error has already been logged. The overflow
pertains to errors captured in bits [5:0] only. In this case,
only the overflow bit is set, but all logged error
information pertains to the previous error. Note that
when two errors occur simultaneously, both errors are
logged, and the overflow bit is not set.

5 Read/Write

Data Abort Error on the system bus (DA)

When set, this indicates that a data abort has occurred on
the bus as the result of a request to the bus.

4 Read/Write

Explicit Address Error on the system bus EAE)

When set, this indicates that an explicit address error has
occurred on the bus as the result of a request to the bus.

3 Read/Write

Implicit Address Error on the system bus (IAE)

When set, this indicates that an implicit address error has
occurred on the bus as the result of a request to the bus.

2 Read/Write

L2 Data Array Double Bit Error (DBE)

When set, this indicates that an L2 double bit ECC error
has been detected as the result of a request to L2.

1 Read/Write

L2 State Parity Error (SP)

When set, this indicates that an L2 state parity error has
occurred as the result of a request to L2.

0 Read/Write

L2 Tag Parity Error (TP)

When set, this indicates that an L2 tag parity error has
occurred as the result of a request to L2.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 135

Level 2 Unified Cache (L2)—Microarchitecture

Note that when any of the errors logged in bits[5:0] occur, these get reported as an
Instruction MMU exception, an External Instruction Error exception, an External Abort
on translation, or an Imprecise External Data abort. The type of error reporting
depends on what type of transaction actually caused the error, in other words, whether
or not the request was a load, store, code fetch, or table walk. More details on the
3rd generation microarchitecture exception handling are found in Chapter 2.0,
“Programming Model”. Note that when an error is detected as the result of an external
snoop transaction, the resulting behavior is unpredictable in this case.

Certain system configurations also generate an imprecise external data abort to the
microarchitecture via the use of an asynchronous system bus error pin. Please note
that this type of error is not logged in the ERRLOG register, nor is this type of error set
the overflow bit. Systems that use this pin must log the source of the error in a
separate system error logging register, such as a memory mapped register, for
example. Abort handlers in these systems must not only check the
3rd generation microarchitecture ERRLOG register, but also the appropriate system
error register to determine the source of the error, since the ERRLOG register does not
capture this type of error. Refer to the 3rd generation microarchitecture
implementation options section of the relevant product documentation for more
information about whether this pin is used.

When a single bit L2 ECC error occurs (as logged in bit 7), this generates an interrupt
request to the microarchitecture interface. It is up to system interrupt controller logic
to decide whether or not to take or mask the interrupt.

For address errors on the internal system bus, the physical address associated with the
transaction is captured in the error address registers, as shown in Table 79 and
Table 80.

Table 79. L2 Cache and BIU Error Lower Address Register (ERRADRL)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ErrAdrl

reset value: Writeable bits set to 0

Bits Access Description

31:0 Read/Write

ErrAdrL

Error Low Address[31:0] - when an internal system bus
address error occurs, this field contains the lower 32 bits
of the physical address of the transaction that generated
the error.

Table 80. L2 Cache and BIU Error Upper Address Register (ERRADRU)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ErrAdrU

reset value: Writeable bits set to 0

Bits Access Description

31:4 Read Unpredictable/Write-as-Zero Reserved

3:0 Read/Write

ErrAdrU

Error High Address[35:32] - when an internal system bus
address error occurs, this field contains the upper 4 bits
of the physical address of the transaction that generated
the error.

Microarchitecture—Cache Coherence

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
136 Order Number: 316283-002US

9.0 Cache Coherence

9.1 Introduction

This chapter defines the hardware-based cache coherence support in the
3rd generation Intel XScale® microarchitecture (3rd generation microarchitecture or
3rd generation).

Whenever writeable data in memory is placed in a cache for faster access, the issue of
maintaining coherence between the data in the cache and that in main memory arises.
For uniprocessor systems where only the processor accesses memory, this problem is
typically solved in one of two ways:

• The first method is forcing all memory writes to update both cache and memory.
This scheme is typically called write-through caching.

• The other common alternative is by tracking the modification (or dirty) status of
the cached data, and ensuring dirty data is written back to memory when the cache
line is replaced. This method is typically called write-back caching.

Cache coherence maintenance gets more complicated in systems where multiple
agents access memory, and one or more agents have private cache(s) that contain
copies of writeable data that multiple agents access.

A common example of such a system is a uniprocessor system, where non-processor
agents, such as Direct Memory Access (DMA) agents, access memory. Hardware-based
cache coherency ensures that the processor always reads the fresh data written by
DMA, rather than a stale copy the processor has cached earlier.

Depending on the particular ASSP, 3rd generation microarchitecture is accompanied
with a Level-2 cache (L2). Only products that include an L2 provide hardware cache
coherency. Products without an L2 cache do not have hardware support for cache
coherency. 3rd generation microarchitecture always have an L1D (Level-1 Data cache)
and an L1I (Level-1 Instruction cache).

An L2 cache is a necessary, but not sufficient condition for hardware coherency
support. Consult the relevant relevant product documentation to see whether the ASSP
supports hardware coherency.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 137

Cache Coherence—Microarchitecture

9.2 3rd Generation Microarchitecture Hardware Cache
Coherence Solutions

3rd generation microarchitecture with L2 cache supports hardware cache coherence
when enabled in a product. This section describes how that coherency operates.

9.2.1 Hardware Cache Coherence Configurations

9.2.1.1 Configuration through Page Table Attributes

Hardware coherence support is configured at a page granular basis in memory, allowing
ASSPs, operating systems, and other solution providers to partition memory into
hardware coherent and non-hardware coherent areas.

When hardware based cache coherence is desired, the Shared memory attribute needs
to be set in the page table entry (PTE) by writing ‘1’ to its S bit and the PTE needs to be
configured to enable L2 caching.

For a memory page where the Shared attribute is not set, all data coherence needs to
be guaranteed by software, for example, by explicit cleaning of modifications.

Table 81 lists the page attribute encodings for cache coherence and the resulting
coherence behavior when L2 is present and enabled.

Table 81. Page Attributes Configuring Coherence and Cacheability

Shared
Attribute

PTE: L1
Cacheable

PTE: L2
Cacheable

Coherence Type

0 0 0 Coherent due to no cachinga

a. For forward compatibility, it is recommended pages of this type be instead replaced with the Shared Attribute
= ‘1’ analog

0 0 1 Non-Coherent

0 1 0 Non-Coherent

0 1 1 Non-Coherent

1 0 0 Coherent due to no caching

1 0 1 Coherent: hardware enforces L2 cache coherency

1 1 0
L1D defaults to uncacheable
Coherent due to no caching

1 1 1
Coherent: hardware enforces L1 and L2 cache
coherency

Microarchitecture—Cache Coherence

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
138 Order Number: 316283-002US

9.2.1.2 Shared Attribute Precedence

The Shared attribute takes precedence over cacheability.
3rd generation microarchitecture does not support cache coherent operation for pages
cacheable only in the L1D. When such a page is marked as shared, it is in fact treated
as uncacheable in the L1D, and thus be made coherent by being made uncacheable.

For pages cacheable in both the L1D and L2, whenever the page attribute indicates
shared, the L1D defaults to a write-through mode of operation.

9.2.1.3 Non-coherent L1 Instruction Cache

The L1 instruction cache is not hardware coherent with the L1 data cache. Any memory
modification that needs to be visible to the instruction cache requires explicit software
control. More details on software controlled instruction coherence is found
in3rd generation microarchitecture EAS, Chapter 4.0, “Instruction Cache”.

9.2.1.4 Swap Behavior

The SWP and SWPB instructions are fully supported to cache coherent space, and
architecturally behave similarly to a write except that these also returns the memory
value being swapped back to the register file. The swap is actually executed as a read
followed by a write with 3rd generation microarchitecture guaranteeing atomicity of the
swap by preventing accesses by other agents to the swapped memory location between
the read and the write.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 139

Cache Coherence—Microarchitecture

9.2.2 L1D Coherence

In the cache coherent mode of operation, the 3rd generation microarchitecture L1 data
cache operates in write-through mode. This means that instruction writing memory
updates both the L1D and the L2. Instructions that read memory still obtain their value
from the L1D cache.

9.2.2.1 Coherent Read Behavior

All ARM load instructions addressing shared memory cacheable in both L1D and L2
access the L1D for a read operation. When the read hits (in other words, finds a
matching line, then the value from the cache is simply returned to the appropriate
register.

When the read misses, a read request propagates to the L2. When the L2 or memory
returns the data, a line in the L1 is filled and the read data is returned to the
appropriate register.

A read due to a swap (SWP) instruction is forced to miss L1D, regardless of the
presence of the accessed line in L1D.

9.2.2.2 Coherent Write Behavior

All ARM store instructions addressing shared memory cacheable in both L1D and L2
accesses the L1D for a write operation. All such writes eventually propagate out of the
L1D and writes through to L2 since L1D is write-through for cacheable shared memory.
The L1D coalesces writes, so several writes are coalesced before being written through.
More details on L1D write coalescing behavior is found in Chapter 6.0, “Data Cache”.

9.2.2.3 Coherent Line Allocate Instruction Behavior

3rd generation microarchitecture features a line allocate instruction that allocates an
L1D cache line with a specified address when the line is not already valid in L1D. Reads
and writes to the allocated line are handled like other coherent reads and writes.

Note, that after an allocation, a read to any location contained within the allocated line
by any agent in the system, returns unpredictable data value, unless a prior write to
that location has been observed by the reading agent.

9.2.2.4 Replacement Behavior

A valid L1D line is overwritten on replacement without a memory write-back because
the write-through policy ensures the replaced line is coherent with either L2 or
memory.

When 3rd generation microarchitecture notices another agent reading or writing data in
the L1D, then it invalidates that line in the L1D. This action never results in data loss
because the L1D is write-through.

9.2.2.5 Locking and Shared Attributes

The L1 caches allow lines to be locked to prevent replacements. Chapter 4.0,
“Instruction Cache” and Chapter 6.0, “Data Cache” have the full details. Memory
locations configured as sharable in their PTEs are not locked in the L1 data cache. The
result of attempting to lock shared memory locations in the L1 data cache is
unpredictable.

Microarchitecture—Cache Coherence

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
140 Order Number: 316283-002US

9.2.3 L2 Coherence

In the cache coherent mode of operation (shared memory, cacheable in L2), the
3rd generation microarchitecture L2 data cache operates in write-back mode utilizing
the MOESI coherence protocol.

9.2.3.1 Coherent L2 Fetch and Lock

features an L2 Fetch and Lock instruction, that results in the addressed line becoming
locked in the L2. When executed on a cache coherent location, from a coherence
perspective, this instruction appears as and is treated like a read.

9.2.3.2 Snoop Behavior

Writes by external agents, when these hit L2, cause a write-back and invalidation of a
targeted line. Writes by an external agent to a line locked into the L2 results in
unlocking that line. The contents of the line are valid but, like other lines, eligible for
eviction.

9.2.3.3 Intervention

When a memory request from another agent is snooped and found to hit in a

L2, microarchitecture features the capability to intervene and provide the line to the
requestor instead of the line being provided from memory. This is both a power and a
performance optimization because of the resulting reduced memory traffic.

9.2.3.4 Push Cache

allows the L2 cache to be directly allocated and/or updated from another agent. This
mode of L2 cache operation is referred to as a push cache. The size of the data pushed
must be

cache line size (32B) and must be aligned on a a cache line (32B) boundary. Pushing is
only allowed to memory locations marked as shared and L2 cacheable in their page
attributes.

The data associated with the “push” becomes the value for the addressed locations.

See the relevant product documentation for information about how peripherals take
advantage of push cache.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 141

Cache Coherence—Microarchitecture

9.3 Non-Hardware Coherent Mode

9.3.1 Introduction

Prior generations of Intel XScale® microarchitecture, as well as other existing ARM
Architecture Version 5TE Specification or earlier architecture implementations, do not
support hardware-based cache coherence. When desired,

supports this non-hardware coherent mode by allowing pages to be marked as non-
shared (see Section 9.2.1). Existing operating systems use this mode by default.

In this mode, coherence among multiple caching agents, when desired, needs to be
maintained by software. For example, dirty data needs to be explicitly flushed by
software at synchronization points. In this usage model, writeable data is only shared
through synchronization.

9.3.2 L1 Data Cache Operation in Non-Cache Coherent Mode

9.3.2.1 Read Behavior

The read behavior is identical to cache coherent mode.

9.3.2.2 Write Behavior

The write behavior in write-through non-coherent mode, is similar to the coherent
mode, in the sense that all writes propagate out of the L1 data cache regardless of hit
status, and that write misses do not allocate. In non-coherent mode, the L1D also
supports a write-back mode of operation, where a write hit to aline sets a dirty state for
the line.

9.3.3 L2 Data Cache Operation in Non-Cache Coherent Mode

9.3.3.1 Read Behavior

Software issuing reads to the L2 see the same behavior in both coherent and non-
coherent memory.

9.3.3.2 Write Behavior

The L1D uses a write-through policy when acting on a non-coherent memory region.
Unlike the cache coherent L2 write behavior described previously, writes to L2 in non-
coherent memory space also result from dirty L1D lines written back. These are treated
as any other write.

Microarchitecture—Memory Ordering

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
142 Order Number: 316283-002US

10.0 Memory Ordering

10.1 Introduction

Memory ordering models, also known as memory consistency models, specify the order
and visibility of memory accesses in systems where multiple processors and agents
access shared memory and memory-mapped I/O devices. A variety of memory
ordering models have been proposed in academia and implemented in commercial
processors.

In this chapter, the memory ordering model supported by the 3rd generation
Intel XScale® microarchitecture (3rd generation microarchitecture or 3rd generation)
is specified. 3rd generation implements a weak consistency model, because it normally
rearranges memory operations as needed to realize better performance. 3rd generation
automatically honors data dependencies; programmers also explicitly force ordering
with fence instructions.

Figure 11 is an example of how 3rd generation microarchitecture reorders memory
operations. Assume that code fragment (a) in the example represents the memory
operations of a program. The programmer has specified that memory pointed to by R0
is updated, followed by the location four bytes beyond the address in R0.

Because it implements a weak consistency model, 3rd generation microarchitecture
updates memory in the order implied by fragment (b) of Figure 11. The
microarchitecture chooses to do this for efficiency reasons. When the programmer is
writing a device register, for example, then this results in unexpected behavior. Thus, a
programmer doing system-level programming (interacting with devices) needs to be
aware of 3rd generation microarchitecture consistency model.

Subsequent sections of this chapter describe the ordering model more formally, and
give information on how programmers enforce a particular order when needed.
Programmers writing “normal” application code need not be concerned with these
issues. Programmers that need to understand the 3rd generation microarchitecture
ordering model include those dealing with features like the following:

• Memory-mapped I/O

• Peripherals with side effects

• Memory shared by multiple peripherals

Figure 11. Memory Ordering Example

(a) Program Order (b) Effect of Reordering

STR R4, [R0] STR R5, [R0, #4]

STR R5, [R0, #4] STR R4, [R0]

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 143

Memory Ordering—Microarchitecture

10.2 Visibility: Observation and Global Observation

A precise definition of visibility of a memory access is necessary for defining an
ordering model. In 3rd generation microarchitecture, there are two notions of visibility:
observation and global observation.

In the following definitions of observation and global observation, a memory system
agent is any agent that reads from or write to memory including one or more
3rd generation microarchitecture processor agents as well as non-processor agents
such as Direct Memory Access (DMA) agents.

10.2.1 Normal (Memory-like) Memory

The following apply to accesses to memory that does not contain I/O devices.

• A write to a location in normal memory is said to be observed by a memory system
agent when a subsequent read of the location by the same memory system agent
returns the value written by the write.

• A write to a location in normal memory is said to be globally observed when a
subsequent read of the location by any memory system agent returns the value
written by the write.

• A read from a location in normal memory is said to be observed by a memory
system agent when a subsequent write to the location by the same memory
system agent does not affect the value returned by the read.

• A read from a location in normal memory is said to be globally observed when a
subsequent write to the location by any memory system agent does not affect the
value returned by the read.

Note: The concept of observation applies to both shared and non-shared normal memory,
while the concept of global observation only applies to shared normal memory.

10.2.2 I/O-like Memory

• A read or write to a location in I/O-like memory is said to be observed by a memory
mapped peripheral device when the read or write begin to affect the state of the
peripheral device and trigger any side effects that affect other peripheral devices
and/or memory.

• A read or write to a location in I/O-like memory is said to be globally observed
when the read or write has updated the state of the target peripheral device(s),
and all resulting side effects that affect other peripheral devices and/or memory
have become visible to the entire system.

Note: 3rd generation microarchitecture cannot ensure global observation of transactions to
memory-mapped I/O because completion of side effects are not visible to the
processor. See specific product documentation for information on how software ensures
a memory-mapped I/O device has completed side effects.

Microarchitecture—Memory Ordering

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
144 Order Number: 316283-002US

10.2.3 Memory Types

Memory is generally segregated into three types: Normal, Device, and Strongly
Ordered. Each addressed page in memory is placed into one of these categories by
settings in the MMU descriptor of that page. See Section 3.2.4 for information on how
these memory type attributes are specified in a page table.

Normal memory is, as the name implies, the type of memory used for regular program
code and data. This memory type has the weakest ordering restrictions on it: hardware
rearranges memory operations with impunity unless doing so violates the data
dependencies implicit in the program. Normal memory is cacheable or uncacheable.

Device memory is intended for use with memory-mapped peripherals. Memory
operations directed to this type of memory do not pass others directed to the same
type of memory. However, the hardware permits Normal memory operations to pass
Device memory operations.

Strongly Ordered memory has the most exacting ordering requirements. No memory
operations of any type are allowed to pass memory operations to Strongly Ordered
memory.

Device memory and Strongly Ordered memory are used when the programmer wishes
to treat the target as I/O. In this chapter, sometimes these memory types are
collectively called I/O-like.

Section 3.2.4 explicitly calls out page table entry encodings for Device memory and
Strongly ordered memory. All other memory types are considered Normal.

10.2.4 Data Dependence

Accesses to the same normal memory location from the same
3rd generation microarchitecture honors data dependence. So, reads to a normal
memory location subsequent in program order to a prior write to the same location, see
the value updated by the write (Read after Write). When there are two writes in
program order to a normal memory location, the final value of the memory location
after the two writes complete is the value updated by the second write in program
order (Write after Write). When reads to a normal memory location precede a write in
program order, the reads sees the value prior to the update by the write (Write after
Read).

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 145

Memory Ordering—Microarchitecture

10.3 Write Coalescing and Ordering

3rd generation microarchitecture allows write coalescing, which allows writes to Normal
memory to be coalesced to improve write bandwidth. The effect of coalescing on
ordering is two fold:

• First, writes coalesce around intervening reads in program order, thereby
reordering the writes with respect to the reads.

• Second, multiple writes are globally observed simultaneously due to coalescing.

Write coalescing is one reason that Normal memory accesses are weakly ordered. Note
that Normal memory is further specified as cacheable or uncacheable in a page table
entry. In both cases 3rd generation microarchitecture uses write coalescing, so
ordering is weak.

Microarchitecture—Memory Ordering

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
146 Order Number: 316283-002US

10.4 Instructions with Ordering Constraints

10.4.1 Safety Nets and Synchronization

Programs and systems often depend on certain memory operations to complete and
become visible in a specified order and thus mechanisms are available in the
3rd generation microarchitecture memory ordering model to enforce a specified
ordering where needed. These mechanisms are referred to as fences, to show that
reordering is restricted “across” these fences. This section describes two explicit
ordering fence instructions that impose an order, and also describes implicit fencing
behavior of other instructions of 3rd generation microarchitecture.

10.4.2 Explicit Fence Instructions: DMB and DWB

An explicit ordering fence instruction restricts the order in which memory operations
complete before and after it. The instruction itself does not access memory.

10.4.2.1 Data Memory Barrier (DMB)

The Data Memory Barrier (DMB), specifies that all explicit normal memory accesses by
instructions in program order prior to the DMB must be globally observed and all
explicit I/O-like memory accesses must be observed by the target devices prior to any
explicit memory accesses by instructions subsequent to the DMB in the program being
observed.

Note that non-explicit accesses, such as instruction fetches and page walks, are not
ordered by the DMB instruction. The DMB has no execution ordering constraint on non-
memory access instructions.

10.4.2.2 Data Write Barrier (DWB)

The Data Write Barrier (DWB) instruction specifies that completion of this instruction
implies that all explicit Normal memory writes in program order prior to the DWB must
be globally observed, and all I/O-like memory writes prior to the DWB must be
observed. No instruction subsequent to DWB executes until DWB completes. Also, like
the DMB, DWB does not impose any restrictions on non-explicit accesses.

10.4.2.3 Effect of DMB and DWB on Write Coalescing

Because both of these fences require all prior writes be globally observed, before
subsequent accesses, an implication of these fence executions is that no write prior in
program order to a DMB or DWB coalesce with a write subsequent in program order.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 147

Memory Ordering—Microarchitecture

10.4.3 Instruction Fence Instruction: Prefetch Flush (PF)

The Prefetch Flush (PF) instruction is needed in addition to a data memory fence
instruction to enforce ordering between data and instruction accesses. The retirement
of a PF guarantees the following:

• all outstanding instruction memory accesses and instruction page table walks have
completed.

• all younger instructions in the processor pipeline after the PF are flushed.

• the next instruction to execute after the PF is fetched from cache or memory only
after the above two conditions are satisfied.

In 3rd generation microarchitecture, a PF is required to be used in conjunction with a
DWB to ensure any data memory hierarchy modifications (by STR, SWP, etc.) are
visible to instruction memory hierarchy accesses as well as page table walks for both
instruction and data page table entries.

10.4.4 Instruction Encodings

DMB, DWB and PF are encoded as these move to the coprocessor registers. The
encodings are shown in Table 82.

DMB, DWB and PF are encoded as these move to coprocessor registers.

Table 82. DMB, DWB and PF Instruction Encodings

Fence opcode_2 CRm Rd Instruction

Date Memory Barrier (DMB) 0b101 0b1010 Ignored MCR p15, 0, Rd, c7, c10, 5

Data Write Barrier (DWB) 0b100 0b1010 Ignored MCR p15, 0, Rd, c7, c10, 4

Prefetch Flush (PF) 0b100 0b0101 Ignored MCR p15, 0, Rd, c7, c5, 4

Microarchitecture—Memory Ordering

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
148 Order Number: 316283-002US

10.4.5 Usage Examples of Fence Instructions

Compare the instruction sequence of Figure 11 with Figure 12. The code stream now has
a DMB inserted between the stores. These accesses are now guaranteed to take effect in
program order.

Note: The same program behavior is also achieved by replacing the DMB in the code a DWB.
Had a memory-read been involved, then DMB is mandatory (DWB is only guaranteed to
operate on memory-writes).

A programmer that wishes to ensure a specific order of observed memory accesses
must utilize the appropriate fencing instructions. For example, when Figure 12 were
updating device registers, then the system does not operate correctly when the stores
were reordered.

Figure 13 shows an example of using PF to make visible an instruction modification.
Note that in this example invalidation of the instruction cache and the BTB is also done,
because it is assumed that the modified code location is cacheable and branch
prediction has been enabled. Note that the DWB cannot be replaced by a DMB in this
case, because unlike the DMB, the DWB disallows any instructions later in program
order from executing until all stores prior in program order have been globally
observed. Thus, only a DWB ensures that the NewCode update be observed by the
instruction fetch to NewCode.

Figure 12. Using DMB to Enforce Ordering

(a) Program Order (b) Observed Order

STR R4, [R0] STR R4, [R0]

DMB

STR R5, [R0, #4] STR R5, [R0, #4]

Figure 13. Using PF to Enforce Data Write to Instruction Fetch Ordering

STR R1, [NewCode];

INVIC [NewCode]; Invalidate I-Cache line containing code

INVBTB; Invalidate BTB, in case a branch moved

DWB ; Will not retire until STR observed

PF ; Ensures any speculatively fetched...

; instructions are flushed

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 149

Memory Ordering—Microarchitecture

10.4.6 Implicit Fences

There are Intel XScale® microarchitecture instructions that have implicit fencing
behavior. Unlike the explicit fence instructions, these instructions actually operate on
memory but in addition have fencing behavior.

10.4.6.1 Swap

The SWP (or SWPB) instruction exchanges a value in a general register with a value in
memory. When SWP operates on cache coherent memory space, the exchange is
guaranteed to be atomic with respect to other memory agents.

A prevalent use of the SWP instruction is to implement semaphore-based thread
synchronization. In this type of usage, it is important that memory operations
subsequent to the SWP instruction in program order are not reordered to be observed
prior to the SWP being globally observed, because doing so inadvertently allows code
in a protected critical section to be executed when such execution is not allowed when
program order was observed. The implicit fencing behavior of a SWP is defined to be
that no explicit memory access subsequent in program order to a SWP to a memory
location is observed until the SWP is globally observed.

A SWP to a memory region with Shared attributes in the page table are an implicit
fencing operation. See Section 3.2.4 for information on how a page table entry is used
to express a Shared region of memory. When SWP targets a Shared memory region, it
is equivalent to the sequence: READ, WRITE, DMB.

A SWP to a region not configured as Shared does not ensure an implicit fence and is
equivalent to: READ, WRITE.

10.4.6.2 Explicit Accesses to Strongly Ordered Memory

Explicit accesses to Strongly Ordered memoryact as implicit DMB fences, requiring all
prior explicit normal memory accesses in program order to be globally observed and all
prior explicit I/O-like memory accesses to be observed by the target device before the
Strongly Ordered access is observed. Further, all subsequent explicit memory accesses
in program order are only observed after the Strongly Ordered access is globally
observed. Thus strongly ordered memory accesses are not only ordered among these,
but are ordered with respect to all explicit.

Microarchitecture—Memory Ordering

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
150 Order Number: 316283-002US

10.5 Ordering Table

Table 83 summarizes the 3rd generation microarchitecture memory ordering rules
described in this chapter.

• “-” indicates no ordering requirement exists.

• “O” indicates the operation subsequent in program order is ordered with respect to
the operation prior in program order.

As noted in Section 10.4.6, SWP instructions also act as fences. See that section for
details.

10.6 I/O Ordering

Use of a fencing instruction (implicit or explicit) is not sufficient to ensure ordered
execution of accesses to memory mapped locations which have side effects. The fences
only ensure observation to the target devices for I/O like memory accesses, but not
global observation, so there is no constraint placed on the side-effects in these devices.
For these cases, software polling is required to determine when the side effects have
completed. See your relevant product documentation for details on how to ensure
peripheral accesses have taken effect.

Memory accesses are not ordered with respect to coprocessor accesses. Software
ensures that a coprocessor write has occurred by reading from the CP location and
creating a dependency by using the value.

Table 83. Ordering Rules

Prior in Program Order

Subsequent in Program Order

Normal
Device

Strongly
Ordered

DMB DWBa

a. Ordered with respect to prior writes only (not prior reads)

Non-Shared Shared

Normal - - - O O O

Device
Non-Shared - O - O O O

Shared - - O O O O

Strongly Ordered O O O O O O

DMB O O O O O O

DWB O O O O O O

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 151

Memory Ordering—Microarchitecture

10.7 Ordering Cache Management Operations

3rd generation microarchitecture has instructions to perform cache management
operations, such as Clean, Invalidate, and Clean and Invalidate that operate either on a
cacheable memory location or on a specified cache index. Chapter 7.0, “Configuration”,
details all these instructions.

All of the L2 cache management operations that operate on a modified virtual address
(MVA) as shown in Table 73 in the EAS honor address dependencies with other memory
operations. However, the L2 cache maintenance operations that operate on the entire
L2 cache or directly on a set/way do not honor data dependencies. Therefore, when any
specific ordering of these operations is desired with relation to each other, or with
relation to other memory operations, an explicit data memory barrier (DMB) operation
must be used.

This requirement is illustrated by the following example. When a Clean&Invalidate L2
Cache Line by Set/Way operation is followed by a LDR to a location within the cleaned
line, the only method to ensure data dependency is honored between the two
operations is to enforce that Clean&Invalidate operation be globally observed before
allowing the LDR operation to proceed. Otherwise, the LDR reads in stale data from
memory instead of the data that was just cleaned from the L2 cache. The way to
ensure this is to use a DMB between the Clean&Invalidate operation and the LDR
operation.

Clean & Invalidate L2 by Set/Way ; line at address X

DMB ; enforces ordering

LDR ; loads from address XX

Microarchitecture—Performance Monitoring

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
152 Order Number: 316283-002US

11.0 Performance Monitoring

This chapter describes the performance monitoring unit (PMU) facility of the
3rd generation Intel XScale® microarchitecture (3rd generation microarchitecture or
3rd generation). The events that are monitored provide performance information for
compiler writers, system application developers and software programmers.

11.1 Overview

3rd generation microarchitecture hardware provides four 32-bit performance counters
that allow four unique events to be monitored simultaneously. In addition,
3rd generation microarchitecture implements a 32-bit clock counter that is used in
conjunction with the performance counters; its main purpose is to count the number of
microarchitecture clock cycles which is useful in measuring total execution time.

3rd generation microarchitecture monitors either occurrence events or duration events.
When counting occurrence events, a counter is incremented each time a specified
event takes place; when measuring duration, a counter counts the number of clocks
(microarchitecture, bus or L2) that occur while a specified condition is true. When any
of the five counters overflow, an interrupt request occurs when enabled.

Subsequent handling of PMU interrupt requests is ASSP defined, which typically
contains an interrupt controller to manage interrupt priority, masking, steering to FIQ
or IRQ, etc. Refer to the 3rd generation microarchitecture implementation options
section of the relevant product documentation for more details.

Each counter has its own interrupt request enable. The counters continue to monitor
events even after an overflow occurs, until disabled by software. Each of these counters
are programmed to monitor any one of various events.

To further augment performance monitoring, the 3rd generation microarchitecture
clock counter is used to measure the execution time of an application. This information
combined with a duration event feeds back a percentage of time the event occurred
with respect to overall execution time.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 153

Performance Monitoring—Microarchitecture

All of the performance monitoring registers are accessible through Coprocessor 14
(CP14). Refer to Table 84 for more details on accessing these registers with MRC and
MCR coprocessor instructions. These registers are only accessible from privileged
modes. User mode access results in an undefined instruction exception. Note that these
registers cannot be accessed with LDC or STC coprocessor instructions.

Table 84. Performance Monitoring Registers

CRn CRm Access Description Cross-Reference

0 1 Read / Write Performance Monitor Control Register Section 11.2.1, page 11.0-154

1 1 Read / Write Clock Counter Register Section 11.2.2, page 11.0-155

4 1 Read / Write Interrupt Enable Register Section 11.2.3, page 11.0-156

5 1 Read / Write Overflow Flag Register Section 11.2.4, page 11.0-157

8 1 Read / Write Event Selection Register Section 11.2.5, page 11.0-158

0 2 Read / Write Performance Count Register 0

Section 11.2.6, page 11.0-159
1 2 Read / Write Performance Count Register 1

2 2 Read / Write Performance Count Register 2

3 2 Read / Write Performance Count Register 3

Microarchitecture—Performance Monitoring

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
154 Order Number: 316283-002US

11.2 Register Description

11.2.1 Performance Monitor Control Register (PMNC)

The performance monitor control register (PMNC) is a coprocessor register that:

• contains the PMU ID

• extend CCNT counting by six more bits (cycles between counter rollover = 238)

• reset all counters to zero

• enables the clock count and all performance counters

Table 86 shows the format of the PMNC register.

Table 85. Performance Monitor Control Functions (CRn = 0, CRm = 1)

Function CRn CRm Instruction

Performance Monitor Control Register (PMNC) 0b0000 0b0001
MRC p14, 0, Rd, c0, c1, 0

MCR p14, 0, Rd, c0, c1, 0

Table 86. Performance Monitor Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID M D C P E

reset value: [2:0] = 0b0000, [31:24] = 0b00100100, others unpredictable

Bits Access Description

31:24 Read / Write-Ignored
Performance Monitor Identification (ID)

3rd generation microarchitecture = 0x24

23:5 Read-Unpredictable / Write-As-Zero Reserved

4 Read/Write

Performance Counter Disable (M)

0 = performance counters are enabled (the E bit must
also be enabled)

1 = performance counters are disabled

3 Read / Write

Clock Counter Divider (D)

0 = CCNT counts every clock cycle
1 = CCNT counts every 64th clock cycle

2 Read-as-0 / Write

Clock Counter Reset (C)

0 = no action
1 = reset the clock counter to ‘0x0’

1 Read-as-0 / Write

Performance Counter Reset (P)

0 = no action
1 = reset all performance counters to ‘0x0’

0 Read / Write

Enable (E)

0 = all counters are disabled
1 = all counters are enabled

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 155

Performance Monitoring—Microarchitecture

11.2.2 Clock Counter (CCNT)

The clock counter is a counter that increments once for every microarchitecture clock
or every 64 microarchitecture clocks when enabled (depending on the setting of the
PMNC.D bit). The format of CCNT is shown in Table 88. The clock counter is reset to ‘0’
by writing a ‘1’ to the PMNC.C bit or is set to a predetermined value by directly writing
to it. When CCNT reaches its maximum value 0xFFFFFFFF, the next increment causes it
to roll over to zero and set the CCNT overflow flag bit (FLAG.C) in the Overflow Flag
Status Register. An interrupt request occurs when enabled via the INTEN.C bit in the
Interrupt Enable Register.

Table 87. Clock Count Functions (CRn = 1, CRm = 1)

Function CRn CRm Instruction

Clock Counter Register (CCNT) 0b0001 0b0001
MRC p14, 0, Rd, c1, c1, 0

MCR p14, 0, Rd, c1, c1, 0

Table 88. Clock Count Register (CCNT)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Clock Counter

reset value: unpredictable

Bits Access Description

31:0 Read / Write

32-bit clock counter

Reset to ‘0’ by PMNC register. When the clock counter
reaches its maximum value 0xFFFFFFFF, the next
increment causes it to roll over to zero and generate an
interrupt request when enabled.

Microarchitecture—Performance Monitoring

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
156 Order Number: 316283-002US

11.2.3 Interrupt Enable Register (INTEN)

Each counter generates an interrupt request when it overflows. The Interrupt Enable
Register (INTEN) controls the interrupt request for each counter.

Table 89. Interrupt Enable Functions (CRn = 4, CRm = 1)

Function CRn CRm Instruction

Interrupt Enable Register (INTEN) 0b0100 0b0001
MRC p14, 0, Rd, c4, c1, 0

MCR p14, 0, Rd, c4, c1, 0

Table 90. Interrupt Enable Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P
3

P
2

P
1

P
0

C

reset value: [4:0] = 0b00000, others unpredictable

Bits Access Description

31:5 Read-Unpredictable / Write-As-Zero Reserved

4 Read / Write

PMN3 Interrupt Enable (P3)

0 = disable interrupt
1 = enable interrupt

3 Read / Write

PMN2 Interrupt Enable (P2)

0 = disable interrupt
1 = enable interrupt

2 Read / Write

PMN1 Interrupt Enable (P1)

0 = disable interrupt
1 = enable interrupt

1 Read / Write

PMN0 Interrupt Enable (P0)

0 = disable interrupt
1 = enable interrupt

0 Read / Write

CCNT Interrupt Enable (C)

0 = disable interrupt
1 = enable interrupt

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 157

Performance Monitoring—Microarchitecture

11.2.4 Overflow Flag Status Register (FLAG)

The Overflow Flag Status Register (FLAG) identifies which counter has overflowed and
also indicates an interrupt has been requested when the corresponding interrupt enable
bit (contained within INTEN) of the overflowing counter is asserted. An overflow is
cleared by writing a ‘1’ to the corresponding overflow bit.

Table 91. Overflow Flag Status Functions (CRn = 5, CRm = 1)

Function CRn CRm Instruction

Overflow Flag Status Register (FLAG) 0b0101 0b0001
MRC p14, 0, Rd, c5, c1, 0

MCR p14, 0, Rd, c5, c1, 0

Table 92. Overflow Flag Status Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P
3

P
2

P
1

P
0

C

reset value: [4:0] = 0b00000, others unpredictable

Bits Access Description

31:5 Read-Unpredictable / Write-As-Zero Reserved

4 Read / Write

PMN3 Overflow Flag (P3)

Read Values:

0 = no overflow
1 = overflow has occurred

Write Values:

0 = no change
1 = clear this bit

3 Read / Write

PMN2 Overflow Flag (P2)

Read Values:

0 = no overflow
1 = overflow has occurred

Write Values:

0 = no change
1 = clear this bit

2 Read / Write

PMN1 Overflow Flag (P1)

Read Values:

0 = no overflow
1 = overflow has occurred

Write Values:

0 = no change
1 = clear this bit

1 Read / Write

PMN0 Overflow Flag (P0)

Read Values:

0 = no overflow
1 = overflow has occurred

Write Values:

0 = no change
1 = clear this bit

0 Read / Write

CCNT Overflow Flag (C)

Read Values:

0 = no overflow
1 = overflow has occurred

Write Values:

0 = no change
1 = clear this bit

Microarchitecture—Performance Monitoring

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
158 Order Number: 316283-002US

11.2.5 Event Select Register (EVTSEL)

EVTSEL is used to select events for PMN0, PMN1, PMN2 and PMN3. Refer to Table 97,
“Performance Monitoring Events” on page 161 for a list of possible events. The event
for a performance counter must be programmed while the PMU is disabled, otherwise
the results are unpredictable.

Table 93. Event Select Functions (CRn = 8, CRm = 1)

Function CRn CRm Instruction

Event Select Register (EVTSEL) 0b1000 0b0001
MRC p14, 0, Rd, c8, c1, 0

MCR p14, 0, Rd, c8, c1, 0

Table 94. Event Select Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

evtCount3 evtCount2 evtCount1 evtCount0

reset value: unpredictable

Bits Access Description

31:24 Read / Write

Event Count 3 (evtCount3)

Identifies the source of events that PMN3 counts. See
Table 97 for a description of the values this field
contains.

23:16 Read / Write

Event Count 2 (evtCount2)

Identifies the source of events that PMN2 counts. See
Table 97 for a description of the values this field
contains.

15:8 Read / Write

Event Count 1 (evtCount1)

Identifies the source of events that PMN1 counts. See
Table 97 for a description of the values this field
contains.

7:0 Read / Write

Event Count 0 (evtCount0)

Identifies the source of events that PMN0 counts. See
Table 97 for a description of the values this field
contains.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 159

Performance Monitoring—Microarchitecture

11.2.6 Performance Count Registers (PMN0 - PMN3)

There are four 32-bit event counters; their format is shown in Table 96. The event
counters are reset to ‘0’ by writing a ‘1’ to bit PMNC.P or is set to a predetermined value
by directly writing to these. When an event counter reaches its maximum value
0xFFFFFFFF, the next event it needs to count causes it to roll over to zero and set its
corresponding overflow flag (bit 1, 2, 3 or 4) in FLAG. An interrupt request is generated
when its corresponding interrupt enable (bit 1, 2, 3 or 4) is set in INTEN.

Table 95. Performance Count Functions (CRn = 0-3, CRm = 2)

Function CRn CRm Instruction

Performance Count Register 0 (PMN0) 0b0000 0b0010
MRC p14, 0, Rd, c0, c2, 0

MCR p14, 0, Rd, c0, c2, 0

Performance Count Register 1 (PMN1) 0b0001 0b0010
MRC p14, 0, Rd, c1, c2, 0

MCR p14, 0, Rd, c1, c2, 0

Performance Count Register 2 (PMN2) 0b0010 0b0010
MRC p14, 0, Rd, c2, c2, 0

MCR p14, 0, Rd, c2, c2, 0

Performance Count Register 3 (PMN3) 0b0011 0b0010
MRC p14, 0, Rd, c3, c2, 0

MCR p14, 0, Rd, c3, c2, 0

Table 96. Performance Monitor Count Register (PMN0 - PMN3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Event Counter

reset value: unpredictable

Bits Access Description

31:0 Read / Write

32-bit event counter

Reset to ‘0’ by PMNC register. When an event counter
reaches its maximum value 0xFFFFFFFF, the next event it
needs to count causes it to roll over to zero and generate
an interrupt request when enabled.

Microarchitecture—Performance Monitoring

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
160 Order Number: 316283-002US

11.3 Managing the Performance Monitor

The following are a few notes about controlling the performance monitoring
mechanism:

• An interrupt request is generated when a counter overflow flag is set and its
associated interrupt enable bit is set in INTEN. The interrupt request remains
asserted until software clears the overflow flag by writing a one to the flag that is
set. (Note that the product specific interrupt unit and the CPSR must have enabled
the interrupt in order for software to receive it.) The interrupt request is also de-
asserted by clearing the corresponding interrupt enable bit. Disabling the facility
(by setting PMNC.E to ‘0’) doesn’t de-assert the interrupt request. The count
register must be cleared before enabling its corresponding interrupt.

• The counters continue to record events even after these overflow.

• To change an event for a performance counter, first disable the facility (by setting
PMNC.M to “1” or PMNC.E to ‘0’) and then modify EVTSEL. Not doing so causes
unpredictable results.

• Resetting the performance counters while simultaneously disabling these (setting
PMNC.P to ‘1’ and either PMNC.E to ‘0’ or PMNC.M to ‘1’) causes unpredictable
results. These must either be disabled and then separately reset or these reset at
the time these are enabled.

• To increase the monitoring duration, software extends the count duration beyond
32 bits by counting the number of overflow interrupts each 32-bit counter
generates. This is done in the interrupt service routine (ISR) where an increment to
some memory location every time the interrupt occurs enables longer durations of
performance monitoring. This does intrude slightly upon program execution but is
negligible, since the ISR execution time is in the order of tens of cycles compared
to the number of cycles it takes to generate an overflow interrupt (232).

• Power is saved by selecting event 0xFF for any unused event counter. This only
applies when other event counters are in use. When the performance monitor is not
used at all disable it by setting PMNC.E to ‘0’. The hardware then ensures minimal
power consumption. The clock counter is used without the performance counters
by setting PMNC.E to ‘1’ and PMNC.M to ‘1’.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 161

Performance Monitoring—Microarchitecture

11.4 Performance Monitoring Events

Table 97 lists events that are monitored. Each of the Performance Monitor Count
Registers (PMN0, PMN1, PMN2, and PMN3) counts any listed event. Software selects
which event is counted by each count register by programming the corresponding
event select field in EVTSEL. Other than the ASSP defined events (Events 0x80-0x87),
the events in the table only count activity within the microarchitecture or activity which
directly affects the microarchitecture (such as Event 0x17). The ASSP defined events
are used to count activity outside of the microarchitecture as defined in the
3rd generation microarchitecture implementation options section of the relevant
product documentation.

Table 97. Performance Monitoring Events (Sheet 1 of 2)

Event
Number

(evtCountn)

Duratio
n

Occurrence Event Definition

0x00 x L1 Instruction cache miss requires fetch from external memory.

0x01 x
L1 Instruction cache cannot deliver an instruction. This indicates an instruction cache
or TLB miss. This event occurs every cycle in which the condition is present.

0x02 x
Stall due to a microarchitecture register data dependency. This event occurs every
cycle in which the condition is present. NOTE: this event does not count stalls due to
co-processor register dependency.

0x03 x Instruction TLB miss.

0x04 x Data TLB miss.

0x05 x
Branch instruction retired, branch has or does not have changed program flow.
(Counts only B and BL instructions, in both ARM and Thumb mode)

0x06 x
Branch mispredicted. (Counts only B and BL instructions, in both ARM and Thumb
mode)

0x07 x
Instruction retired. This event results in a count of the number of executed
instructions.

0x08 x
L1 Data cache buffer full stall. This event occurs every cycle in which the condition is
present.

0x09 x
L1 Data cache buffer full stall. This event occurs once for each contiguous sequence
of this type of stall.

0x0A x
L1 Data cache access, not including Cache Operations (defined in Section 7.2.8). All
data accesses are treated as cacheable accesses and are counted here even when the
cache is not enabled.

0x0B x
L1 Data cache miss, not including Cache Operations (defined in Section 7.2.8). All
data accesses are treated as cacheable accesses and are counted as misses when the
data cache is not enabled.

0x0C x
L1 Data cache write-back. This event occurs once for each line (32 bytes) that is
written back from the cache.

0x0D x

Software changed the PC (‘b’, ‘bx’, ‘bl’, ‘blx’, ‘and’, ‘eor’, ‘sub’, ‘rsb’, ‘add’, ‘adc’, ‘sbc’,
‘rsc’, ‘orr’, ‘mov’, ‘bic’, ‘mvn’, ‘ldm Rn, {..., pc}’, ‘ldr pc, [...]’, pop {..., pc} is counted).
The count does not increment when an exception occurs and the PC changes to the
exception address (for example, IRQ, FIQ, SWI, etc...).

0x0E x
Branch instruction retired. Branch has or does not have changed program flow.
(Count ALL branch instructions, indirect as well as direct).

0x0F x
Instruction issue cycle of retired instruction. This event is a count of the number of
microarchitecture cycles each instruction requires to issue.

0x17 x
Coprocessor stalled the instruction pipeline. This event occurs every cycle in which
the condition is present.

0x18 x All changes to the PC. (includes software changes and exceptions)

0x19 x Pipeline flush due to branch mispredict or exception.

0x1A x
The microarchitecture does not issue an instruction due to a backend stall. This event
occurs every cycle in which the condition is present.

0x1B x
Microarchitecture multiplier in use. This event occurs every cycle in which the
multiplier is active.

0x1C x
Microarchitecture multiplier stalled the instruction pipeline due to a resource stall.
This event occurs every cycle in which the condition is present.

Microarchitecture—Performance Monitoring

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
162 Order Number: 316283-002US

0x1E x
Data Cache stalled the instruction pipeline. This event occurs every cycle in which the
condition is present.

0x20 x
Unified L2 cache request, not including cache operations (defined in Section 7.2.8).
This event includes table walks, data and instruction requests.

0x23 x Unified L2 cache miss, not including Cache Operations (defined in Section 7.2.8).

0x40 x Address bus transaction.

0x41 x Self initiated (microarchitecture generated) address bus transaction.

0x43 x Bus clock. This event occurs once for each bus cycle.

0x47 x
Self initiated (microarchitecture generated) data bus transaction. This event occurs
once for each self initiated data bus cycle.

0x48 x Data bus transaction. This event occurs once for each data bus cycle.

0x80 – 0x87 ? ?
ASSP Defined. See 3rd generation microarchitecture implementation options section
of the relevant product documentation for more details.

0xFF - - Power savings event. This event deactivates the corresponding PMU event counter.

all others - - Reserved, unpredictable results.

Table 97. Performance Monitoring Events (Sheet 2 of 2)

Event
Number

(evtCountn)

Duratio
n

Occurrence Event Definition

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 163

Performance Monitoring—Microarchitecture

Some typical combinations of counted events are listed in this section and summarized
in Table 98. In this section, such an event combination is called a mode.

Note: PMN0 and PMN1 were used for illustration purposes only. Given there are four event
counters, more elaborate combination of events is constructed. For example, one
performance run selects 0xA, 0xB, 0xC, 0x9 events from which data cache
performance statistics are gathered (like hit rates, number of writebacks per data
cache miss, and number of times the data cache buffers fill up per request).

Table 98. Some Common Uses of the PMU

Mode EVTSEL.evtCount0 EVTSEL.evtCount1

Instruction Cache Efficiency 0x07 (instruction count) 0x00 (I-cache miss)

Data Cache Efficiency 0x0A (D-cache access) 0x0B (D-cache miss)

Instruction Fetch Latency 0x01 (I-cache cannot deliver) 0x00 (I-cache miss)

Data/Bus Request Buffer Full 0x08 (D-buffer stall duration) 0x09 (D-buffer stall)

Stall/Writeback Statistics 0x02 (data stall) 0x0C (D-cache writeback)

Instruction TLB Efficiency 0x07 (instruction count) 0x03 (I-TLB miss)

Data TLB Efficiency 0x0A (D-cache access) 0x04 (D-TLB miss)

Dynamic Block Length 0x0D (software changed PC) 0x07 (instruction count)

Table Walks 0x03 (I-TLB miss) 0x04 (D-TLB miss)

Microarchitecture Utilization 0x0F (instruction issue cycles) -

Exceptions 0x18 (all changes to PC) 0x0D (software changes to PC)

MAC Utilization 0x1B (multiplier cycles) 0x1C (multiplier stalled)

L2 Cache Efficiency 0x20 (L2 cache access) 0x23 (L2 cache miss)

Data Bus Utilization 0x47 (initiated data bus cycles) 0x48 (data bus cycles)

Address Bus Usage
0x41 (self initiated address bus
transactions)

0x40 (address bus transactions)

Microarchitecture—Performance Monitoring

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
164 Order Number: 316283-002US

11.4.1 Instruction Cache Efficiency Mode

PMN0 totals the number of instructions that were executed (event 0x07), which does
not include instructions fetched from the instruction cache that were never executed.
This happens when a branch instruction changes the program flow; the instruction
cache retrieves the next sequential instructions after the branch, before it receives the
target address of the branch.

PMN1 counts the number of instruction fetch requests to external memory (event
0x00). Each of these requests loads 32 bytes at a time.

Statistics derived from these two events:

• Instruction cache miss-rate. This is derived by dividing PMN1 by PMN0.

• The average number of cycles it took to execute an instruction or commonly
referred to as cycles-per-instruction (CPI). CPI is derived by dividing CCNT by
PMN0, where CCNT was used to measure total execution time.

11.4.2 Data Cache Efficiency Mode

PMN0 totals the number of data cache accesses (event 0x0A), which includes cacheable
and non-cacheable accesses and accesses made to locations configured as data RAM.

Note: STM and LDM each count as multiple accesses to the data cache depending on the
number of registers specified in the register list. LDRD counts as two accesses.

PMN1 counts the number of data cache misses (event 0x0B). Cache operations do not
contribute to this count. See Section 7.2.8 for a description of these operations.

The statistic derived from these two events is:

• Data cache miss-rate. This is derived by dividing PMN1 by PMN0.

• Data cache hit-rate. This is derived by subtracting PMN1 from PMN0 and dividing
this result by PMN0.

11.4.3 Instruction Fetch Latency Mode

PMN0 accumulates the number of cycles when the instruction-cache is not able to
deliver an instruction to 3rd generation microarchitecture due to an instruction-cache
miss or instruction-TLB miss (event 0x01). This event means that the processor
microarchitecture is stalled.

PMN1 counts the number of instruction fetch requests to external memory (event
0x00). Each of these requests loads 32 bytes at a time. This is the same event as
measured in instruction cache efficiency mode.

Statistics derived from these two events:

• The average number of cycles the processor stalled waiting for an instruction fetch
from external memory to return. This is calculated by dividing PMN0 by PMN1.
When the average is high then 3rd generation microarchitecture is starved of the
bus external to 3rd generation microarchitecture.

• The percentage of total execution cycles the processor stalled waiting on an
instruction fetch from external memory to return. This is calculated by dividing
PMN0 by CCNT, which was used to measure total execution time.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 165

Performance Monitoring—Microarchitecture

11.4.4 Data/Bus Request Buffer Full Mode

The Data Cache has buffers available to service cache misses or uncacheable accesses.
For every memory request the Data Cache receives from the processor a buffer is
speculatively allocated in case an external memory request is required or temporary
storage is needed for an unaligned access. When no buffers are available, the Data
Cache stalls the processor microarchitecture. How often the Data Cache stalls depends
on the performance of the bus external to 3rd generation microarchitecture and what
the memory access latency is for Data Cache miss requests to external memory. When
3rd generation microarchitecture memory access latency is high, possibly due to
starvation, these Data Cache buffers becomes full. This performance monitoring mode
is provided to see when 3rd generation microarchitecture is being starved off the bus
external to 3rd generation microarchitecture, which affects the performance of the
application running on the microarchitecture.

PMN0 accumulates the number of clock cycles the processor is being stalled due to this
condition (event 0x08) and PMN1 monitors the number of times this condition occurs
(event 0x09).

Statistics derived from these two events:

• The average number of cycles the processor stalled on a data-cache access that
overflows the data-cache buffers. This is calculated by dividing PMN0 by PMN1. This
statistic shows when the duration event cycles are due to many requests or are
attributed to just a few requests. When the average is high then
3rd generation microarchitecture is starved of the bus external to
3rd generation microarchitecture.

• The percentage of total execution cycles the processor stalled because a Data
Cache request buffer was not available. This is calculated by dividing PMN0 by
CCNT, which was used to measure total execution time.

Microarchitecture—Performance Monitoring

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
166 Order Number: 316283-002US

11.4.5 Stall/Writeback Statistics

When an instruction requires the result of a previous instruction and that result is not
yet available, 3rd generation microarchitecture stalls in order to preserve the correct
data dependencies. PMN0 counts the number of stall cycles due to data-dependencies
(event 0x02). Not all data-dependencies cause a stall; only the following dependencies
cause such a stall penalty:

• Load-use penalty: attempting to use the result of a load before the load completes.
To avoid the penalty, software must delay using the result of a load until the load
data is available. This penalty shows the latency effect of data-cache access.

• Multiply/Accumulate-use penalty: attempting to use the result of a multiply or
multiply-accumulate operation before the operation completes. Again, to avoid the
penalty, software must delay using the result until the load data is available.

• ALU use penalty: there are a few isolated cases where back to back ALU operations
results in one cycle delay in the execution. These cases are defined in
Chapter 13.0, “Performance Considerations”.

PMN1 counts the number of writeback operations emitted by the data cache (event
0x0C). These writebacks occur when the data cache evicts a dirty line of data to make
room for a newly requested line or as the result of clean operation (P15, register 7).

Statistics derived from these two events:

• The percentage of total execution cycles the processor stalled because of a data
dependency. This is calculated by dividing PMN0 by CCNT, which was used to
measure total execution time. Often a compiler reschedules code to avoid these
penalties when given the right optimization switches.

• Total number of data writeback requests to external memory are derived solely
with PMN1.

11.4.6 Instruction TLB Efficiency Mode

PMN0 totals the number of instructions that were executed (event 0x07), which does
not include instructions that were translated by the instruction TLB and never executed.
This happens when a branch instruction changes the program flow; the instruction TLB
translates the next sequential instructions after the branch, before it receives the
target address of the branch.

PMN1 counts the number of instruction TLB table-walks (event 0x03), which occurs
when there is a TLB miss. When the instruction TLB is disabled PMN1 does not
increment.

The statistic derived from these two events:

• Instruction TLB miss-rate. This is derived by dividing PMN1 by PMN0.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 167

Performance Monitoring—Microarchitecture

11.4.7 Data TLB Efficiency Mode

PMN0 totals the number of data cache accesses (event 0x0A), which includes cacheable
and non-cacheable accesses and accesses made to locations configured as data RAM.

Note: STM and LDM each count as several accesses to the data TLB depending on the
number of registers specified in the register list. LDRD registers two accesses.

PMN1 counts the number of data TLB table-walks (event 0x04), which occurs when
there is a TLB miss. When the data TLB is disabled PMN1 does not increment.

The statistic derived from these two events is:

• Data TLB miss-rate. This is derived by dividing PMN1 by PMN0.

11.4.8 Average Dynamic Block Length Mode

PMN0 totals the number of changes to the PC which indicates a program flow change
(event 0x18). PMN1 totals the number of instructions executed (event 0x07).

The statistic derived from these two events is:

• Average Dynamic Block Length. This is derived by dividing PMN1 by PMN0.

11.4.9 Table Walk Mode

PMN0 counts the number of instruction TLB table-walks, which occurs when there is an
instruction TLB miss (event 0x03). PMN1 counts the number of data TLB table-walks,
which occurs when there is a data TLB miss (event 0x04).

The statistic derived from these two events is:

• Table Walks. This is derived by adding PMN0 to PMN1.

11.4.10 Microarchitecture Utilization Mode

The Microarchitecture Utilization Mode is used to determine software efficiency. PMN0
totals the number of instruction issue cycles (event 0x0F). CCNT totals the number of
microarchitecture cycles. This statistic is used to determine how efficiently code is
using the microarchitecture. This does not indicate code performance.

The statistic derived from these two events is:

• Microarchitecture Utilization. This is derived by dividing PMN0 by CCNT.

11.4.11 Exception Mode

PMN0 totals all changes to the program counter (event 0x18). PMN1 totals software
changes to the program counter (event 0x0D).

The statistic derived from these two events is:

• Exceptions. This is derived by subtracting PMN1 from PMN0.

Microarchitecture—Performance Monitoring

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
168 Order Number: 316283-002US

11.4.12 MAC Utilization Mode

PMN0 totals the number of active multiplier cycles (event 0x1B). PMN1 totals the
number of stalled multiplier cycles (event 0x1C).

The statistic derived from these two events is:

• MAC Utilization. This is derived by subtracting PMN1 from PMN0 and dividing this
result by PMN0.

11.4.13 L2 Cache Efficiency Mode

PMN0 totals the number of L2 cache accesses, which includes cacheable and non-
cacheable accesses and accesses made to locations configured as data RAM (event
0x20).

Note: STM and LDM each count as several accesses to the data cache depending on the
number of registers specified in the register list. LDRD registers two accesses.

PMN1 counts the number of L2 cache misses (event 0x23). Cache operations do not
contribute to this count. See Section 7.2.8 for a description of these operations.

The statistic derived from these two events is:

• Data cache miss-rate. This is derived by dividing PMN1 by PMN0.

• Data cache hit-rate. This is derived by subtracting PMN1 from PMN0 and dividing
this result by PMN0.

11.4.14 Data Bus Utilization Mode

PMN0 counts the number of self initiated data bus cycles (event 0x47). PMN1 counts
the number of total data bus cycles (event 0x48).

The statistic derived from these two events is:

• Data Bus Utilization. This is derived by dividing PMN0 by PMN1.

11.4.15 Address Bus Usage Mode

PMN0 counts the number of self initiated address bus transactions (event 0x41). PMN1
counts the total number of address bus transactions (event 0x40).

The statistic derived from these two events is:

• Address Bus Usage. This is derived by dividing PMN0 by PMN1.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 169

Performance Monitoring—Microarchitecture

11.5 Multiple Performance Monitoring Run Statistics

There are times when more than four events need to be monitored for performance
tuning. In this case, multiple performance monitoring runs are done, capturing
different events from each run. For example, the first run monitors the events
associated with instruction cache performance and the second run monitors the events
associated with data cache performance. By combining the results, statistics like total
number of memory requests are derived.

Microarchitecture—Performance Monitoring

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
170 Order Number: 316283-002US

11.6 Examples

In this example, the events selected with the Instruction Cache Efficiency mode are
monitored and CCNT is used to measure total execution time. Sampling time ends
when PMN0 overflows which generates an IRQ interrupt.

Counter overflow is dealt with in the IRQ interrupt service routine as shown below:

Example 2. Configuring the Performance Monitor

; Configure the performance monitor with the following values:

; EVTSEL.evtCount0 = 7, EVTSEL.evtCount1 = 0 instruction cache efficiency

; INTEN.inten = 0x7 set all counters to trigger an interrupt on overflow

; PMNC.C = 1 reset CCNT register

; PMNC.P = 1 reset PMN0 and PMN1 registers

; PMNC.E = 1 enable counting

MOV R0,#0x0007

MCR P14,0,R0,C8,c1,0 ; setup EVTSEL

MOV R0,#0x7

MCR P14,0,R0,C4,c1,0 ; setup INTEN

MCR P14,0,R0,C0,c1,0 ; setup PMNC, reset counters & enable

; Counting begins

Example 3. Interrupt Handling

IRQ_INTERRUPT_SERVICE_ROUTINE:

; Assume that performance counting interrupts are the only IRQ in the system

MRC P14,0,R1,C0,c1,0 ; read the PMNC register

BIC R2,R1,#1 ; clear the enable bit, preserve other bits in PMNC

MCR P14,0,R2,C0,c1,0 ; disable counting

MRC P14,0,R3,C1,c1,0 ; read CCNT register

MRC P14,0,R4,C0,c2,0 ; read PMN0 register

MRC P14,0,R5,C1,c2,0 ; read PMN1 register

; <process the results here>

MRC p14, 0, R2, C5, C1, 0 ; Clear interrupt source by read/write of...

MCR p14, 0, R2, C5, C1, 0 ; ...FLAG register

SUBS PC,R14,#4 ; return from interrupt

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 171

Performance Monitoring—Microarchitecture

As an example, assume the following values in CCNT, PMN0, PMN1 and PMNC:

In the contrived example above, the instruction cache had a miss-rate of 5% and CPI
was 2.4.

Example 4. Computing the Results

; Assume CCNT overflowed

CCNT = 0x00000020 ;Overflowed and continued counting

Number of instructions executed = PMN0 = 0x6AAAAAAA

Number of instruction cache miss requests = PMN1 = 0x05555555

Instruction Cache miss-rate = 100 * PMN1/PMN0 = 5%

CPI = (CCNT + 2^32)/Number of instructions executed = 2.4 cycles/instruction

Microarchitecture—Software Debug

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
172 Order Number: 316283-002US

12.0 Software Debug

This chapter describes the software debug and related features implemented in the
3rd generation Intel XScale® microarchitecture (3rd generation microarchitecture or
3rd generation), namely:

• debug modes, registers, exceptions, breakpoint resources.

• a serial debug communication link via the JTAG interface.

• an on-microarchitecture trace buffer.

• on-microarchitecture Debug SRAM and a mechanism to load it via JTAG.

12.1 Additional Debug Documentation

In addition to the software debug features described in this chapter, additional
documentation is available for debugger developers.

• 3rd Generation Intel XScale® Microarchitecture Software Debug Guide
This document describes additional software debug capabilities available on
3rd generation microarchitecture. It also provides information on developing a
3rd generation microarchitecture debug handler and porting handlers from a
previous microarchitecture.

12.2 Definitions

Table 99. Debug Terminology

Term Meaning

debug handler
The debug handler is the routine that runs on 3rd generation microarchitecture when
a debug exception occurs.

debugger
The debugger is software that runs on a host system outside of
3rd generation microarchitecture.

hot-debug
Hot-debug refers to connecting a debugger and starting a debug session on a target
system, while an application is already running on the target.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 173

Software Debug—Microarchitecture

12.3 Microarchitecture Debug Capabilities

The 3rd generation microarchitecture debug capabilities, when used with a debugger
application, allow software running on a 3rd generation microarchitecture to be
debugged. The 3rd generation microarchitecture breakpoint resources allow a
debugger to stop program execution and re-direct execution to a debug handling
routine. Once program execution has stopped, the debugger examines or modify
processor state, co-processor state, or memory. The debugger then restarts execution
of the application.

3rd generation microarchitecture runs in one of two debug modes:

• Halt Mode

Halt Mode is a JTAG debug mode which uses an on-microarchitecture Debug SRAM,
separate from the application memory space, to hold a debug handler routine. A
debugger loads the debug handler into the Debug SRAM through JTAG prior to
starting a debug session. Having the debug handler reside in the on-
microarchitecture RAM allows initial debug in a non-functional system, since
functional external memory is not required.

During Halt Mode, all debug exceptions vector to the debug handler, at address 0 of
the Debug SRAM. The processor switches into DEBUG mode (CPSR[4:0] = 0x15)
and enters Special Debug State. Once in the debug handler, a debugger
communicates with the handler through JTAG, and send commands to examine or
modify processor or system state.

• Monitor Mode

Monitor Mode is a software debug mode used for debugging software such as
interrupt handlers and other system-level routines, as well as systems that have
real-time requirements. In this mode, debug exceptions are handled as prefetch
aborts or data aborts, depending on the cause of the exception.

When a debug exception occurs in Monitor Mode, the processor switches to abort
mode and branches to a debug monitor loaded in system memory. The monitor
then enables interrupts to allow real-time handling of system events.

NOTE: System-on-a-chip (SOC) debug exceptions in Monitor Mode are handled
differently than other Monitor Mode debug exceptions: the processor enters DEBUG
mode and Special Debug State, which is similar to debug exceptions in Halt Mode.
However, in Monitor Mode the processor branches to address 0 (or 0xffff0000,
when vector table is relocated) in the application space, instead of address 0 of the
Debug SRAM.

Microarchitecture—Software Debug

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
174 Order Number: 316283-002US

12.3.1 Debug Registers

The debug registers reside in CP14 and CP15. CP15 contains the HW breakpoint
resources. CP14 contains the global debug control and status register, the JTAG
communications registers and trace buffer registers. Table 100 and Table 101 show the
software debug registers.

CP15 registers are only accessible via software, using MRC and MCR. CRn and CRm
specify the register to access. The opcode_1 and opcode_2 fields are not used and
need to be set to 0. Direct access to these registers through JTAG is not supported.

CP14 registers are accessible using MRC and STC (for software readable registers) and
MCR and LDC (for software writable registers). CDP to any CP14 registers causes an
undefined instruction exception. CRn and CRm specify the register to access. The
opcode_1 and opcode_2 fields are not used and need to be set to 0.

Within CP14, the TX and RX registers, certain bits in the TXRXCTRL register, and certain
bits in the DCSR is also accessed by a debugger directly through the JTAG interface.
Refer to the description of these registers for complete details.

Software access to all debug registers must be done from a privileged mode. User
mode access generates an undefined instruction exception. Specifying registers which
do not exist has unpredictable results.

Table 100. CP15 Software Debug Registers

CRn CRm Access Register Cross-Reference

14 8 Read / Write Instruction Breakpoint Register 0 (IBR0)

See Section 12.3.7, “HW Breakpoint
Resources” on page 184

14 9 Read / Write Instruction Breakpoint Register 1 (IBR1)

14 0 Read / Write Data Breakpoint Register 0 (DBR0)

14 3 Read / Write Data Breakpoint Register 1 (DBR1)

14 4 Read / Write Data Breakpoint Control Register (DBCON)

Table 101. CP14 Software Debug Registers

CRn CRm Accessa

a. Unless otherwise stated, access refers to software access and direct JTAG access is not supported.

Register Cross-Reference

8 0
SW Read / Write

JTAG Read-Only
Transmit Register (TX)

See Section 12.4.2, “Transmit
Register (TX)” on page 193

9 0
SW Read-Only

JTAG Write-Only
Receive Register (RX)

See Section 12.4.3, “Receive Register
(RX)” on page 193

10 0 Variesb

b. JTAG and software access to these registers varies depending on the bit, refer to the register description for further details.

Debug Control and Status Register (DCSR)
See Section 12.3.2, “Debug Control

and Status Register (DCSR)” on
page 175

11 0 Read-Only Trace Buffer Register (TBREG)
See Section 12.6.2.2, “Trace Buffer
Register (TBREG)” on page 202

12 0 Read / Write Checkpoint 0 Register (CHKPT0) See Section 12.6.2.1, “Checkpoint
Registers” on page 20013 0 Read / Write Checkpoint 1 Register (CHKPT1)

14 0 Variesb TXRX Control Register (TXRXCTRL)
See Section 12.4.1, “Transmit/

Receive Control Register (TXRXCTRL)”
on page 189

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 175

Software Debug—Microarchitecture

12.3.2 Debug Control and Status Register (DCSR)

The DCSR register is the main debug control register. Table 103 shows the format of
the register. The register is accessed in privileged modes by software running on the
microarchitecture or by a debugger through the JTAG interface. Refer to Section
12.5.1, “SELDCSR JTAG Register” on page 194 for details about accessing the DCSR
through JTAG.

Table 102. Debug Control and Status Register (CRn = 10, CRm = 0)

Function CRn CRm Instruction

Debug Control and Status Register (DCSR) 0b1010 0b0000
MRC p14, 0, Rd, c10, c0, 0

MCR p14, 0, Rd, c10, c0, 0

Table 103. Debug Control and Status Register (DCSR) (Sheet 1 of 2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GE H B TF TI TD TA TS TU TR TT SA MOE M E

reset value: unpredictable

Bits Access Description Reset Value TRST Value

31
SW Read / Write
JTAG Read-Only / Write-Ignored

Global Enable (GE)

0 = disables all debug functionality
1 = enables all debug functionality

0 unchanged

30
SW Read-Only / Write-Ignored
JTAG Read / Write

Halt Mode (H)

0 = Monitor Mode
1 = Halt Mode

unchanged 0

29
SW Read-Only / Write-Ignored
JTAG Read-Only / Write-Ignored

SOC Break (B)

value of SOC break input pin
unpredictable unpredictable

28:24
Read-Unpredictable / Write-As-
Zero

Reserved unpredictable unpredictable

23
SW Read-Only / Write-Ignored
JTAG Read / Write

Trap FIQ (TF) unchanged 0

22
SW Read-Only / Write-Ignored
JTAG Read / Write

Trap IRQ (TI) unchanged 0

21
Read-Unpredictable / Write-As-
Zero

Reserved unpredictable unpredictable

20
SW Read-Only / Write-Ignored
JTAG Read / Write

Trap Data Abort (TD) unchanged 0

19
SW Read-Only / Write-Ignored
JTAG Read / Write

Trap Prefetch Abort (TA) unchanged 0

18
SW Read-Only / Write-Ignored
JTAG Read / Write

Trap Software Interrupt (TS) unchanged 0

17
SW Read-Only / Write-Ignored
JTAG Read / Write

Trap Undefined Instruction (TU) unchanged 0

16
SW Read-Only / Write-Ignored
JTAG Read / Write

Trap Reset (TR) unchanged 0

15:7
Read-Unpredictable / Write-As-
Zero

Reserved unpredictable unpredictable

6
SW Read / Write
JTAG Read-Only / Write-Ignored

Thumb Trace (TT)

0 = Disable Thumb Trace
1 = Enable Thumb Trace

0 unchanged

5
SW Read / Write
JTAG Read-Only / Write-Ignored

Sticky Abort (SA) 0 unchanged

Microarchitecture—Software Debug

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
176 Order Number: 316283-002US

4:2
SW Read / Write
JTAG Read-Only / Write-Ignored

Method Of Entry (MOE)

000: Processor Reset
001: Instruction Breakpoint Hit
010: Data Breakpoint Hit
011: BKPT Instruction Executed
100: JTAG Debug Break OR
SOC Debug Break Occurred
101: Vector Trap Occurred
110: Trace-Buffer-Full Break Occurred
111: Reserved

0b000 unchanged

1
SW Read / Write
JTAG Read-Only / Write-Ignored

Trace Buffer Mode (M)

0 = Wrap around mode
1 = fill-once mode

0 unchanged

0
SW Read / Write
JTAG Read-Only / Write-Ignored

Trace Buffer Enable (E)

0 = Disabled
1 = Enabled

0 unchanged

Table 103. Debug Control and Status Register (DCSR) (Sheet 2 of 2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GE H B TF TI TD TA TS TU TR TT SA MOE M E

reset value: unpredictable

Bits Access Description Reset Value TRST Value

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 177

Software Debug—Microarchitecture

12.3.2.1 Global Enable Bit (GE)

The Global Debug Enable bit disables and enables all debug functionality, except reset
vector trap and JTAG debug breaks. Following a processor reset, this bit is clear so all
debug functionality is disabled. When debug functionality is disabled, the BKPT
instruction becomes a NOP and hardware breakpoints, and non-reset vector traps are
ignored.

Reset vector traps and JTAG debug breaks are not qualified by the Global Debug Enable
bit. The reset vector trap allows a debugger to gain control of the system following a
processor reset. The JTAG debug break allows the debugger to stop the
microarchitecture to initiate a hot-debug session.

12.3.2.2 Halt Mode Bit (H)

The Halt Mode bit configures the debug unit for either Halt Mode or Monitor Mode.

12.3.2.3 System-on-a-Chip (SOC) Break Flag (B)

Reading the SOC Break flag returns the value of the SOC break input to the
microarchitecture1.

12.3.2.4 Vector Trap Bits (TF,TI,TD,TA,TS,TU,TR)

The Vector Trap bits allow the debugger to set breakpoints on exception vectors without
using the HW breakpoint resources. When a bit is set, the processor acts like when an
instruction breakpoint was set up on the corresponding exception vector. A debug
exception is generated before the instruction in the exception vector executes.

The Vector Trap bits are only set by a debugger through the JTAG interface. A non-reset
vector trap exception only occurs when the processor is configured for Halt Mode and
the Global Debug Enable bit is set.

A reset vector trap is not qualified by global debug enable. However, the processor
must be in Halt Mode. The reset vector trap and Halt Mode bits are set up before or
during a processor reset. When processor reset is de-asserted, a debug exception
occurs before the instruction in the reset vector executes.

12.3.2.5 Thumb Trace Bit (TT)

The Thumb Trace Bit, when set, enables the trace buffer to provide Thumb/ARM
information as part of branch target addresses in the Trace Buffer and Checkpoint
registers. Refer to Section 12.6.4, “Tracing Thumb Code” on page 206 for more details
on using this bit to trace Thumb code.

The reset value of the Thumb Trace Bit is ‘0’, disabling this feature.

To use this feature software must set this bit before (or at the same time as) enabling
the Trace Buffer. Once this bit is set, software must not change it while tracing is
enabled, otherwise the Trace Buffer contents are unpredictable.

1. Use of the SOC break input (for system-on-a-chip debug) is ASSP specific. Refer to the
3rd generation microarchitecture implementation options section of the relevant product
documentation to determine whether this feature is used.

Microarchitecture—Software Debug

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
178 Order Number: 316283-002US

12.3.2.6 Sticky Abort Bit (SA)

The Sticky Abort bit is only valid in Halt Mode. It indicates a data abort occurred during
Special Debug State (see Section 12.3.4, “Halt Mode” on page 180). The
microarchitecture does not generate exceptions during SDS, thus, for data aborts, it
sets the Sticky Abort bit to indicate a data abort was detected.

The processor also sets up the Fault Status Register (FSR) and Fault Address Register
(FAR) since it normally is for data aborts. The debugger uses the Sticky Abort bit and
the fault information to determine when a data abort was detected during the Special
Debug State and take appropriate actions.

The Sticky Abort bit must be cleared by SW before exiting the debug handler.

12.3.2.7 Method of Entry Bits (MOE)

The Method of Entry field specifies the cause of the most recent debug exception. When
multiple exceptions occur in parallel, the processor places the highest priority exception
(based on the priorities in Table 104) in the MOE field.

12.3.2.8 Trace Buffer Mode Bit (M)

The Trace Buffer Mode bit selects one of two trace buffer modes:

• Wrap-around mode - Trace buffer fills up and wraps around until a debug exception
occurs.

• Fill-once mode - Trace buffer fills up and generates a trace-buffer-full break.

The Trace Buffer Mode bit must not be modified while tracing is enabled, otherwise the
contents of the trace buffer are unpredictable.

12.3.2.9 Trace Buffer Enable Bit (E)

The Trace Buffer Enable bit enables and disables the trace buffer. Both DCSR.e and
DCSR.ge must be set to enable the trace buffer. The processor automatically clears this
bit, disabling the trace buffer, when any debug exception occurs. For more details on
the trace buffer refer to Section 12.6, “Trace Buffer” on page 199.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 179

Software Debug—Microarchitecture

12.3.3 Debug Exceptions

A debug exception causes the processor to re-direct execution to a debug event
handling routine. The 3rd generation microarchitecture debug architecture defines the
following debug exceptions:

• instruction breakpoint

• data breakpoint

• software breakpoint

• JTAG debug break

• exception vector trap

• trace-buffer-full break

• SOC debug break

When a debug exception occurs, the processor actions depend on whether the debug
unit is configured for Halt Mode or Monitor Mode.

Table 104 shows the priority of debug exceptions relative to other processor
exceptions.

Table 104. Event Priority

Event Priority

Vector Trap 1 (highest)

Reset 2

data abort (precise) 3

data breakpoint 4

data abort (imprecise) 5

JTAG debug break; SOC debug break;
trace-buffer-full break

6

FIQ 7

IRQ 8

instruction breakpoint 9

pre-fetch abort 10

undef, SWI, software breakpoint 11

Microarchitecture—Software Debug

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
180 Order Number: 316283-002US

12.3.4 Halt Mode

For Halt Mode debugging, the debugger must load a debug handler into the Debug
SRAM starting at address 0, prior to beginning a debug session. For more details on
using the Debug SRAM refer to Section 12.7, “Debug SRAM” on page 209. When a
debug exception occurs in Halt Mode, the processor executes the debug handler out of
Debug SRAM, allowing the debugger to examine or modify state in the target system.

During Halt Mode, writes to the HW breakpoint resources and the DCSR are ignored,
unless the processor is in Special Debug State (SDS). For more details on SDS, refer to
the SDS description below.

When a debug exception occurs during Halt Mode, or an SOC debug break occurs in
Monitor Mode, the processor takes the following actions:

• disables the trace buffer

• sets DCSR.MOE encoding

• enters Special Debug State (SDS)

• R14_dbg is updated as follows:

• SPSR_dbg = CPSR

• CPSR[4:0] = 0b10101 (DEBUG mode)

• CPSR[5] = 0

• CPSR[6] = 1

• CPSR[7] = 1

• PC is determined as follows:

For all debug exceptions in Halt Mode: PC = 0 of Debug SRAM;

For SOC debug break from Monitor Mode: PC = VA 0 in application space (or
0xffff0000, when exception vector table is relocated).

The FSR.D bit, which is set for all debug exceptions during Monitor Mode (including the
SOC debug break) to indicate that a debug exception occurred, is unaffected by debug
exceptions during Halt Mode.

Table 105. R14_dbg Updating - Halt Mode

Debug Exception
R14_dbg Value

ARM Mode THUMB Mode

Data Breakpoint PC of next instruction to execute + 4 PC of next instruction to execute + 4

Instruction Breakpoint,
SW Breakpoint

PC of breakpointed instruction + 4 PC of breakpointed instruction + 4

Vector Trap PC of trapped exception vector + 4 NA

Trace-buffer-full Break,
SOC debug Break,
JTAG Debug Break

PC of next instruction to execute + 4 PC of next instruction to execute + 4

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 181

Software Debug—Microarchitecture

Entering SDS following a Halt Mode debug exception has the following effect:

• The processor ignores all exceptions. SWI and undefined instructions have
unpredictable results. The processor ignores pre-fetch aborts, FIQ and IRQ (SDS
disables FIQ and IRQ regardless of the enable values in the CPSR) and all debug
exceptions. The processor reports data aborts detected during SDS by setting the
Sticky Abort bit in the DCSR, but does not generate an exception.

• The hardware breakpoint resources and DCSR are software writable.

SDS remains in effect regardless of the processor mode. This allows the debug handler
to switch to other modes, maintaining SDS functionality. However, entering User mode
causes unpredictable behavior.

The processor exits SDS following a CPSR restore operation. When exiting, the debug
handler uses:

subs pc, lr, #4

This restores the CPSR, turns off all of SDS functionality, and branches to the target
instruction.

Microarchitecture—Software Debug

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
182 Order Number: 316283-002US

12.3.5 Monitor Mode

In Monitor Mode, the processor handles debug exceptions like normal ARM exceptions
(except for SOC debug breaks; refer to the Section 12.3.4, “Halt Mode” on page 180 to
see how Monitor Mode SOC debug breaks are handled). The processor generates a data
abort or a pre-fetch abort depending on the type of debug exception.

The following debug exceptions cause data aborts:

• data breakpoint

• JTAG debug break

• trace-buffer full break

The following debug exceptions cause prefetch aborts:

• instruction breakpoint

• BKPT instruction

The processor ignores vector traps during Monitor Mode.

When a debug exception occurs in Monitor Mode, the processor takes the following
actions:

• disables the trace buffer

• sets DCSR.MOE encoding

• sets Fault Status Register (FSR) bit 9 (see Chapter 7.0, “Register 5: Fault Status
Register”)

• R14_abt is updated as follows:

• SPSR_abt = CPSR

• CPSR[4:0] = 0b10111 (ABORT mode)

• CPSR[5] = 0

• CPSR[6] = unchanged

• CPSR[7] = 1

• PC = 0xc or 0xffff000c (for Prefetch Aborts) OR
PC = 0x10 or 0xffff0010 (for Data Aborts)

During abort mode, the processor pends JTAG debug breaks and trace buffer full
breaks. When the processor exits abort mode, either through a CPSR restore or a write
directly to the CPSR, the pended debug breaks immediately generates a debug
exception. Any pending debug breaks are cleared out when any type of debug
exception occurs. Note that SOC debug breaks are not pended in abort mode; these
occur immediately when detected.

To return to the application after handling the debug exception the handler uses:

subs pc, lr, #4

Table 106. R14_abt Updating - Monitor Mode

Debug Exception
R14_abt Value

ARM Mode THUMB Mode

Data Breakpoint PC of next instruction to execute + 4 PC of next instruction to execute + 4

Instruction Breakpoint, SW Breakpoint PC of breakpointed instruction + 4 PC of breakpointed instruction + 4

Trace-buffer-full Break, JTAG Debug Break PC of next instruction to execute + 4 PC of next instruction to execute + 4

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 183

Software Debug—Microarchitecture

12.3.6 Summary of Debug Modes

Table 107 summarizes special 3rd generation microarchitecture behavior for Halt and
Monitor Modes.

Table 107. Special Behavior for Halt and Monitor Mode

Feature

Monitor Mode Halt Mode

non-SDS SDSa

a. In Monitor Mode, SDS is only entered when an SOC debug break occurs. All other debug exceptions in Monitor
Mode are either prefetch or data aborts.

non-SDS SDS

Debug SRAM used NO NO NO YES

instruction address translation disabled NO NO NO YES

data address translation disabled NO NO NO NO

instruction protection checking disabled NO NO NO YES

data protection checking disabled NO NO NO NO

BTB disabled NO NO NO YES

PID disabled on instruction accesses NO NO NO YES

PID disabled on data accesses NO NO NO NO

all exceptions ignored NO YES NO YES

access to debug registers allowed
(DCSR, IBR[0,1], DBR[0,1], DBCON)

YES YES NO YES

Microarchitecture—Software Debug

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
184 Order Number: 316283-002US

12.3.7 HW Breakpoint Resources

On 3rd generation microarchitecture, two instruction and two data breakpoint
registers, denoted IBR0/IBR1 and DBR0/DBR1, are available. The data breakpoint
address registers also have a separate control register, DBCON.

The instruction and data breakpoint registers are 32-bit registers. The instruction
breakpoint causes a break before execution of the target instruction. The data
breakpoint causes a break after the memory access has been issued.

In this section the term Modified Virtual Address (MVA) is used to refer to the virtual
address modified with the PID. Refer to Section 7.2.13, “Register 13: Process ID” on
page 105 for more details on the PID. The processor does not OR the PID with the
specified breakpoint address prior to doing address comparison. The programmer must
write the MVA to the breakpoint address register. This applies for instruction and data
breakpoints.

12.3.7.1 Instruction Breakpoints

3rd generation microarchitecture defines two instruction breakpoint registers (IBR0,
IBR1). The format of these registers is shown in Table 109. In ARM mode, the upper 30
bits contain a word aligned MVA to break on. In Thumb mode, the upper 31 bits contain
a half-word aligned MVA to break on. In both modes, bit 0 enables and disables that
instruction breakpoint register.

Enabling instruction breakpoints while debug is globally disabled results in
unpredictable behavior.

When an address match occurs, the processor generates a debug exception before the
instruction at the address specified in the matching IBRx executes.

Software must disable the breakpoint before exiting the handler. This allows the
breakpointed instruction to execute after the exception is handled.

Single step execution is accomplished using the instruction breakpoint registers and is
handled in software.

Table 108. Instruction Breakpoint Resources (CRn = 14, CRm = 8,9)

Function CRn CRm Instruction

Instruction Breakpoint Register 0 (IBR0) 0b1110 0b1000
MRC p15, 0, Rd, c14, c8, 0

MCR p15, 0, Rd, c14, c8, 0

Instruction Breakpoint Register 1 (IBR1) 0b1110 0b1001
MRC p15, 0, Rd, c14, c9, 0

MCR p15, 0, Rd, c14, c9, 0

Table 109. Instruction Breakpoint Register (IBRx)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Address E

reset value: address unpredictable, disabled

Bits Access Description

31:1 Read / Write
Address

Instruction Breakpoint MVA

0 Read / Write

IBRx Enable (E)

0 = Breakpoint disabled
1 = Breakpoint enabled

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 185

Software Debug—Microarchitecture

12.3.7.2 Data Breakpoints

3rd generation microarchitecture provides two data breakpoint registers (DBR0,
DBR1). The format of the registers is shown in Table 111.

DBR0 is a dedicated data address breakpoint register. DBR1 is programmed for 1 of 2
operations: Address mask for DBR1, OR Second data address breakpoint

The DBCON register controls the behavior of the data address breakpoint registers.

Table 110. Data Breakpoint Resources (CRn = 14, CRm = 0,3,4)

Function CRn CRm Instruction

Data Breakpoint Register 0 (DBR0) 0b1110 0b0000
MRC p15, 0, Rd, c14, c0, 0

MCR p15, 0, Rd, c14, c0, 0

Data Breakpoint Register 1 (DBR1) 0b1110 0b0011
MRC p15, 0, Rd, c14, c3, 0

MCR p15, 0, Rd, c14, c3, 0

Data Breakpoint Control Register (DBCON) 0b1110 0b0100
MRC p15, 0, Rd, c14, c4, 0

MCR p15, 0, Rd, c14, c4, 0

Table 111. Data Breakpoint Register (DBRx)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Address/Mask

reset value: unpredictable

Bits Access Description

31:0 Read / Write

Address/Mask

DBR0: Data Breakpoint MVA

DBR1: Address Mask or Data Breakpoint MVA

Table 112. Data Breakpoint Controls Register (DBCON)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M E1 E0

reset value: 0x00000000

Bits Access Description

31:9 Read-Unpredictable / Write-As-Zero Reserved

8 Read / Write

DBR1 Mode (M)

0 = DBR1 = Data Address Breakpoint
1 = DBR1 = Data Address Mask

7:4 Read-Unpredictable / Write-As-Zero Reserved

3:2 Read / Write

DBR1 Enable (E1)

When DBR1 = Data Address Breakpoint
0b00: DBR1 disabled
0b01: DBR1 enabled, Store only
0b10: DBR1 enabled, Any data access, load or store
0b11: DBR1 enabled, Load only

When DBR1 = Data Address Mask this field has no effect

1:0 Read / Write

DBR0 Enable (E0)

0b00: DBR0 disabled
0b01: DBR0 enabled, Store only
0b10: DBR0 enabled, Any data access, load or store
0b11: DBR0 enabled, Load only

Microarchitecture—Software Debug

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
186 Order Number: 316283-002US

When DBR1 is programmed as a data address mask, it is used in conjunction with the
address in DBR0. Using DBR1 as a data address mask allows a range of addresses to
generate a data breakpoint. The bits set in DBR1 causes the processor to ignore those
bits when comparing the address of a memory access with the address in DBR0. The
processor ignores the E1 field of DBCON when DBR1 is selected as a data address
mask. The mask is used only when DBR0 is enabled.

When DBR1 is programmed as a second data address breakpoint, it functions
independently of DBR0. In this case, the DBCON.E1 controls DBR1.

Only program data breakpoint address registers while that address register is disabled
in DBCON. Programming a DBR register while it is enabled results in unpredictable
behavior.

A data breakpoint is triggered when the memory access matches the access type and
the address of any byte within the memory access matches the address in DBRx. For
example, LDR triggers a breakpoint when DBCON.E0 is 0b10 or 0b11, and the address
of any of the 4 bytes accessed by the load matches the address in DBR0.

The processor does not trigger data breakpoints for the PLD instruction or any CP15,
register 7, 8, 9, or 10 functions (with the exception of Allocate L1 Data Cache Line).
Any other type of memory access triggers a data breakpoint.

The Allocate L1 Data Cache Line function in CP15, register 7 is treated as store for data
breakpoint purposes. This function takes a VA as an operand, but the address
comparison occurs on the MVA. Thus, an address match occurs when any MVA within
the allocated cache line matches the programmed data breakpoint address.

For data breakpoint purposes the SWP and SWPB instructions are treated as stores -
these do not cause a data breakpoint when the breakpoint is set up to break on loads
only and an address match occurs.

On unaligned memory accesses, the addresses used for the breakpoint address
comparison are aligned down to the natural boundary of the instruction (in other
words, half-word access aligned down to half-word boundary, word access aligned
down to word-boundary, etc.).

When a memory access triggers a data breakpoint, the breakpoint is reported after the
access is issued. The memory access is not aborted by the processor. However, the
data breakpoint generates an exception before the next instruction executes. The
actual timing of when the access completes with respect to the start of the debug
handler depends on the memory configuration.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 187

Software Debug—Microarchitecture

12.3.8 Software Breakpoints

Software breakpoints are generated using the BKPT instruction.

Mnemonic: BKPT (See ARM Architecture Version 5TE Specification)

Operation: When DCSR[31] = 0, BKPT is a NOP;
When DCSR[31] =1, BKPT causes a debug exception

Microarchitecture—Software Debug

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
188 Order Number: 316283-002US

12.4 JTAG Communications

A debug handler running on 3rd generation microarchitecture communicates with a
host debugger using the transmit (TX) and receive (RX) registers on the
microarchitecture. A debugger accesses these registers through the JTAG interface,
using the DBGTX and DBGRX JTAG instructions.

Handshaking between a debug handler and a debugger ensures synchronized access of
the TX and RX registers. Handshaking bits are available on the microarchitecture
transmit/receive control register (TXRXCTRL). A debugger accesses the same
handshaking bits through the DBGRX and DBGTX JTAG registers.

Note: While the following sections specifically refer to communications between a debug
handler and a debugger, it really applies to communications between any privileged SW
running on 3rd generation microarchitecture and an external JTAG controller.

This section discusses the JTAG communications registers and capabilities from the
point of view of SW running on 3rd generation microarchitecture. Section 12.5, “Debug
JTAG Access” on page 194 discusses the JTAG communications from the point of view
of an external JTAG controller.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 189

Software Debug—Microarchitecture

12.4.1 Transmit/Receive Control Register (TXRXCTRL)

The TXRXCTRL register contains handshaking bits used by the debug handler to
synchronize access to the TX and RX registers. The TX and RX registers have individual
synchronization bits.

The TXRXCTRL register also contains two other bits to support high-speed download.
One bit indicates an overflow condition that occurs when the debugger attempts to
write the RX register before the debug handler has read the previous data written to
RX. The other bit is used by the debug handler as a branch flag during high-speed
download.

All of the bits in the TXRXCTRL register are placed such that these are read directly into
the CC flags in the CPSR with an MRC (with Rd = PC). The subsequent instruction then
conditionally executes based on the updated CC value.

Table 113. Transmit/Receive Control Register (CRn = 14, CRm = 0)

Function CRn CRm Instruction

Transmit/Receive Control Register
(TXRXCTRL)

0b1110 0b0000
MRC p14, 0, Rd, c14, c0, 0
MCR p14, 0, Rd, c14, c0, 0

Table 114. TXRX Control Register (TXRXCTRL)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
R

O
V

D
T
R

Bits Access Description
Reset
Value

TRST Value

31
SW Read-Only / Write-Ignored
JTAG Read / Write

RX Ready Flag (RR) 0 0

30 SW Read / Write RX overflow flag (OV) 0 unchanged

29
SW Read-Only / Write-Ignored
JTAG Write-Only

High-speed download flag (D) unchanged 0

28
SW Read-Only / Write-Ignored
JTAG Read-Only

TX Ready (TR) 0 unchanged

27:0
Read-Unpredictable / Write-As-
Zero

Reserved
unpredictabl

e
unpredictabl

e

Microarchitecture—Software Debug

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
190 Order Number: 316283-002US

12.4.1.1 RX Register Ready Bit (RR)

The debugger and debug handler use the RR bit to synchronize accesses to RX.
Normally, the debugger and debug handler use a handshaking scheme that requires
both sides to poll the RR bit. To support higher download performance for large
amounts of data, a high-speed download handshaking scheme is used. In this scheme,
only the debug handler polls the RR bit before accessing the RX register, while the
debugger continuously downloads a stream of data.

Table 115 shows the normal handshaking used to access the RX register.

When data is being downloaded by the debugger, part of the normal handshaking is
bypassed to allow the download rate to be increased. Table 116 shows the handshaking
used when the debugger is doing a high-speed download. Note that before the high-
speed download starts, both the debugger and debug handler must be synchronized,
such that the debug handler is executing a routine that supports the high-speed
download.

Although it is similar to the normal handshaking, the debugger polling of RR is
bypassed with the assumption that the debug handler reads the previous data from RX
before the debugger scans in the new data.

Table 115. Normal RX Handshaking

Debugger Actions

Debugger wants to send data to debug handler.

Before writing new data to the RX register, the debugger polls RR through JTAG until the bit is cleared.

After the debugger reads a ‘0’ from the RR bit, it scans data into JTAG to write to the RX register and sets the
valid bit. The write to the RX register automatically sets the RR bit.

Debug Handler Actions

Debug handler is expecting data from the debugger.

The debug handler polls the RR bit until it is set, indicating data in the RX register is valid.

Once the RR bit is set, the debug handler reads the new data from the RX register. The read operation
automatically clears the RR bit.

Table 116. High-Speed Download Handshaking States

Debugger Actions

Debugger wants to transfer code into 3rd generation microarchitecture system memory.

Prior to starting download, the debugger must poll RR bit until it is clear. Once the RR bit is clear, indicating the
debug handler is ready, the debugger starts the download.

The debugger scans data into JTAG to write to the RX register with the download bit and the valid bit set.
Following the write to RX, the RR bit and D bit are automatically set in TXRXCTRL.

Without polling of RR to see whether the debug handler has read the data just scanned in, the debugger
continues scanning in new data into JTAG for RX, with the download bit and the valid bit set.

An overflow condition occurs when the debug handler does not read the previous data before the debugger
completes scanning in the new data, (see Section 12.4.1.2, “Overflow Flag (OV)” on page 191 for more details
on the overflow condition).

After completing the download, the debugger clears the D bit allowing the debug handler to exit the download
loop.

Debug Handler Actions

Debug handler is in a routine waiting to write data out to memory. The routine loops based on the D bit in
TXRXCTRL.

The debug handler polls the RR bit until it is set. It then reads the Rx register, and writes it out to memory. The
handler loops, repeating these operations until the debugger clears the D bit.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 191

Software Debug—Microarchitecture

12.4.1.2 Overflow Flag (OV)

The Overflow flag is a sticky flag that is set when the debugger writes to the RX register
while the RR bit is set.

The flag is used during high-speed download to indicate that some data was lost. The
assumption during high-speed download is that the time it takes for the debugger to
shift in the next data word is greater than the time necessary for the debug handler to
process the previous data word. So, before the debugger shifts in the next data word,
the handler is polling for that data.

However, when the handler incurs stalls that are long enough such that the handler is
still processing the previous data when the debugger completes shifting in the next
data word, an overflow condition occurs and the OV bit is set.

Once set, the overflow flag remains set, until cleared by a write to TXRXCTRL by
software. After the debugger completes the download, it examines the OV bit to
determine when an overflow occurred. The debug handler software is responsible for
saving the address of the last valid store before the overflow occurred.

12.4.1.3 Download Flag (D)

The value of the download flag is set by the debugger through JTAG. The debug handler
uses this flag during high-speed download in place of a loop counter.

The download flag becomes especially useful when an overflow occurs. When a loop
counter is used, and an overflow occurs, the debug handler cannot determine how
many data words overflowed. Therefore the debug handler counter gets out of sync
with the debugger - the debugger finishes downloading the data, but the debug handler
counter indicates there is more data to be downloaded - this results in unpredictable
behavior of the debug handler.

Using the download flag, the debug handler loops until the debugger clears the flag.
Therefore, when doing a high-speed download, for each data word downloaded, the
debugger sets the D bit.

12.4.1.4 TX Register Ready Bit (TR)

The debugger and debug handler use the TR bit to synchronize accesses to the TX
register. The debugger and debug handler must poll the TR bit before accessing the TX
register. Table 117 shows the handshaking used to access the TX register.

Table 117. TX Handshaking

Debugger Actions

Debugger is expecting data from the debug handler.

Before reading data from the TX register, the debugger polls the TR bit through JTAG until the bit is set. NOTE:
while polling TR, the debugger must scan out the TR bit and the TX register data.

Reading a ‘1’ from the TR bit, indicates that the TX data scanned out is valid

The action of scanning out data when the TR bit is set, automatically clears TR.

Debug Handler Actions

Debug handler wants to send data to the debugger (in response to a previous request).

The debug handler polls the TR bit to determine when the TX register is empty (any previous data has been
read out by the debugger). The handler polls the TR bit until it is clear.

Once the TR bit is clear, the debug handler writes new data to the TX register. The write operation
automatically sets the TR bit.

Microarchitecture—Software Debug

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
192 Order Number: 316283-002US

12.4.1.5 Conditional Execution Using TXRXCTRL

All of the bits in TXRXCTRL are placed such that these are read directly into the CC
flags using an MCR instruction. To simplify the debug handler, read the TXRXCTRL
register using the following instruction:

mrc p14, 0, r15, C14, C0, 0

This instruction directly updates the condition codes in the CPSR. The debug handler
then conditionally executes based on each CC bit. Table 118 shows the mnemonic
extension to conditionally execute based on whether the TXRXCTRL bit is set or clear.

The following example is a code sequence in which the debug handler polls the
TXRXCTRL handshaking bit to determine when the debugger has completed its write to
RX and the data is ready for the debug handler to read.

loop: mrc p14, 0, r15, c14, c0, 0# read the handshaking bit in TXRXCTRL

mrcmi p14, 0, r0, c9, c0, 0 # if RX is valid, read it

bpl loop # if RX is not valid, loop

Table 118. TXRXCTRL Mnemonic Extensions

TXRXCTRL Bit
Mnemonic Extension to Execute When

Bit Sset
Mmnemonic Eextension to Execute

When Bit Clear

31 (to N flag) MI PL

30 (to Z flag) EQ NE

29 (to C flag) CS CC

28 (to V flag) VS VC

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 193

Software Debug—Microarchitecture

12.4.2 Transmit Register (TX)

The TX register is the debug handler transmit buffer. The debug handler sends data to
the debugger through this register.

Since the TX register is accessed by the debug handler (using MCR) and the debugger
(through JTAG), handshaking is required to prevent the debug handler from writing
new data before the debugger reads the previous data.

The TX register handshaking is described in Table 117, “TX Handshaking” on page 191.

12.4.3 Receive Register (RX)

The RX register is the receive buffer used by the debug handler to get data sent by the
debugger through the JTAG interface.

Since the RX register is accessed by the debug handler (using MRC) and the debugger
(through JTAG), handshaking is required to prevent the debugger from writing new
data to the register before the debug handler reads the previous data out. The
handshaking is described in Section 12.4.1.1, “RX Register Ready Bit (RR)” on
page 190.

Table 119. Transmit Register (CRn = 8, CRm = 0)

Function CRn CRm Instruction

Transmit Register (TX) 0b1000 0b0000 MCR p14, 0, Rd, c8, c0, 0

Table 120. TX Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TX

reset value: unpredictable TRST Value: unchanged

Bits Access Description

31:0
SW Read / Write
JTAG Read-Only

Debug handler writes data to send to debugger

Table 121. Receive Register (CRn = 9, CRm = 0)

Function CRn CRm Instruction

Receive Register (RX) 0b1001 0b0000 MRC p14, 0, Rd, c9, c0, 0

Table 122. RX Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RX

reset value: unpredictable TRST value: unpredictable

Bits Access Description

31:0
SW Read-Only / Write-Unpredictable

JTAG Write-Only

Software reads to receives data/commands from
debugger

Microarchitecture—Software Debug

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
194 Order Number: 316283-002US

12.5 Debug JTAG Access

There are four JTAG instructions used by the debugger during software debug:
LDSRAM, SELDCSR, DBGTX and DBGRX. LDSRAM is described in Section 12.7, “Debug
SRAM” on page 209. The other three JTAG instructions are described in this section.
SELDCSR, DBGTX and DBGRX each use a 36-bit shift register to scan in new data and
scan out captured data.

12.5.1 SELDCSR JTAG Register

The ‘SELDCSR’ JTAG instruction selects the DCSR JTAG data register. The JTAG opcode
is ‘0b0001001’. When the SELDCSR JTAG instruction is in the JTAG instruction register,
the debugger directly accesses the Debug Control and Status Register (DCSR). The
debugger only modifies certain bits through JTAG but reads the entire register.

The SELDCSR instruction also allows the debugger to generate an external debug break
and set the hold_reset signal, which is used when downloading code into the Debug
SRAM during reset.

A Capture_DR loads the current DCSR value into DBG_SR[34:3]. The other bits in
DBG_SR are loaded as shown in Figure 14.

A new DCSR value is scanned into DBG_SR, and the previous value out, during the
Shift_DR state. When scanning in a new DCSR value into the DBG_SR, care must be
taken to also set up DBG_SR[2:1] to prevent undesirable behavior.

Update_DR parallel loads the new DCSR value into the DCSR. All bits defined as JTAG
writable in Table 103, “Debug Control and Status Register (DCSR)” on page 175 are
updated.

Access to the DCSR must be synchronized between the debugger and debug handler.
When one side writes the DCSR at the same side the other side reads the DCSR, the
results are unpredictable.

Figure 14. SELDCSR

TDOTDI

DBG_SR

Capture_DR

Update_DR

1233435

031

software read/write

DCSR

TCK

Microarchitecture CLK

0 0

0

1 0

ignored

hold_reset

jtag_dbg_break

ignored

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 195

Software Debug—Microarchitecture

12.5.1.1 hold_reset

The debugger uses hold_reset when loading code into the Debug SRAM during a
processor reset. Details about loading code into the Debug SRAM are in Section 12.7,
“Debug SRAM” on page 209.

The debugger must set hold_reset before or during assertion of the reset pin. Once
hold_reset is set, the reset pin is de-asserted, and the processor internally remains in
reset. The debugger then loads debug handler code into the Debug SRAM before the
processor begins executing any code.

Once the code download is complete, the debugger must clear hold_reset. This allows
the processor to come out of reset, and execution begins at the reset vector.

A debugger sets hold_reset in one of two ways:

• Either by taking the JTAG state machine into the Capture_DR state, which
automatically loads DBG_SR[1] with ‘1’, then the Exit2 state, followed by the
Update_Dr state. This sets the hold_reset, clear jtag_dbg_break, and leave the
DCSR unchanged (the DCSR bits captured in DBG_SR[34:3] are written back to the
DCSR on the Update_DR).

• Alternatively, a ‘1’ is scanned into DBG_SR[1], with the appropriate value scanned
in for the DCSR and ext_dbg_break. The hold_reset bit updates following entry into
the Update_DR state.

The hold_reset bit is cleared by scanning in a ‘0’ to DBG_SR[1] and scanning in the
appropriate values for the DCSR and jtag_dbg_break. The hold_reset bit is also cleared
following a JTAG Reset.

12.5.1.2 jtag_dbg_break

The jtag_dbg_break allows the debugger to asynchronously generate a JTAG debug
break and re-direct execution on the microarchitecture to a debug handling routine.
Note that jtag_dbg_break is not qualified with global debug enable. This allows a
debugger to generate a debug break at anytime (for example, to initiate a hot-debug
session).

A debugger sets a JTAG debug break by scanning a ‘1’ into DBG_SR[2] (and scanning
in the desired value for the DCSR JTAG writable bits in DBG_SR[34:3]) and entering
the Update_DR state.

Once jtag_dbg_break is set, it remains set internally until a debug exception occurs or
a new value is scanned in which clears the bit. In Monitor Mode, JTAG debug breaks
detected during abort mode are pended until the processor exits abort mode. In Halt
Mode, JTAG debug breaks detected during SDS are pended until the processor exits
SDS. When a JTAG debug break is detected outside of these two cases, the processor
ceases executing instructions as quickly as possible, clears the internal jtag_dbg_break
bit, and branches to the debug handler (Halt Mode) or abort handler (Monitor Mode).

12.5.1.3 DCSR (DBG_SR[34:3])

The JTAG writable bits in the DCSR are updated with the value loaded into
DBG_SR[34:3] following an Update_DR.

Microarchitecture—Software Debug

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
196 Order Number: 316283-002US

12.5.2 DBGTX JTAG Register

The ‘DBGTX’ JTAG instruction selects the DBGTX JTAG data register. The JTAG opcode
for this instruction is ‘0b0010000’. The debug handler uses the DBGTX data register to
send data to the debugger. A protocol is setup between the debugger and debug
handler to allow the debug handler to signal an entry into debug mode, and once in
debug mode to transmit data requested by the debugger.

A Capture_DR loads the TX register value into DBG_SR[34:3] and TXRXCTRL.TR into
DBG_SR[0]. The other bits in DBG_SR are loaded as shown in Figure 15.

The captured TX value is scanned out during the Shift_DR state. Entering Shift_DR
after capturing a ‘1’ in DBG_SR[0] automatically clears TXRXCTRL.TR. Note that the
Shift_DR must immediately follow the Capture_DR to ensure that TXRXCTRL.TR gets
cleared.

Data scanned in is ignored on an Update_DR.

12.5.2.1 DBG_SR[0]

DBG_SR[0] is used for part of the synchronization that occurs between the debugger
and debug handler for accessing TX. The debugger polls DBG_SR[0] to determine when
the TX register contains valid data from the debug handler.

A ‘1’ captured in DBG_SR[0] indicates valid captured TX data. After capturing valid
data, the act of shifting out the data automatically clears TXRXCTRL.TR. Therefore, the
debugger must not go through the Update_DR state when the TX data is valid, without
first scanning out the entire TX register value.

A ‘0’ indicates there is no new data from the debug handler in the TX register.

12.5.2.2 TX (DBG_SR[34:3])

DBG_SR[34:3] is updated with the contents of the TX register following an Update_DR.
When DBG_SR[0] is ‘0’ following an Update_DR, the contents of DBG_SR[34:3] are
unpredictable.

Figure 15. DBGTX

TDOTDI

DBG_SR

Capture_DR

Update_DR

1233435

031
TXRXCTRLTX

Microarchitecture

software read-only

0 0

0

1

28

set by SW write to TX

cleared by Debugger read

Ignored

software write

TCLK

CLK

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 197

Software Debug—Microarchitecture

12.5.3 DBGRX JTAG Register

The ‘DBGRX’ JTAG instruction selects the DBGRX JTAG data register. The JTAG opcode
for this instruction is ‘0b0000010’. The debug handler uses the DBGRX data register to
receive information from the debugger. A protocol is setup between the debugger and
debug handler to allow the handler to identify data values and commands.

The DBGRX data register also contain bits to support high-speed download and to
“invalidate” the contents of the RX register.

A Capture_DR loads the value of TXRXCTRL.RR into DBG_SR[0]. The other bits in
DBG_SR are loaded as shown in Figure 16.

The captured data is scanned out during the Shift_DR state. Care must be taken while
scanning in data. While polling TXRXCTRL.RR, incorrectly setting rx_valid or flush_rr
causes unpredictable behavior following an Update_DR.

Following an Update_DR the scanned in data takes effect.

12.5.3.1 RX Write Logic

The RX write logic (Figure 16) serves the following functions:

1. RX Write Enable: RX register only gets updated when rx_valid is set and unaffected
when rx_valid is clear or an overflow occurs. In particular, when the debugger is
polling DBG_SR[0], as long as rx_valid is 0, Update_DR does not modify RX.

2. Set TXRXCTRL.RR: When debugger writes new data to RX, TXRXCTRL.RR is
automatically set signalling to debug handler that RX register contains valid data.

3. Set TXRXCTRL.OV: When debugger scans in a value with rx_valid set and
TXRXCTRL.RR already set, TXRXCTRL.OV is automatically set. For instance, during
high-speed download, the debugger does not poll to see when the handler has read
previous data. When the debug handler stalls long enough, the debugger tries to
write a new data to RX before the handler has read previous data. When occurs, RX
write logic sets TXRXCTRL.OV and blocks the RX register write.

Figure 16. DBGRX

TDOTDI

DBG_SR

Capture_DR

Update_DR

1233435

031

software read

TXRXCTRL

RX

TCK

Microarchitecture

software read/write

0 0

0

1

3031 29

RX

Write
Logic

flush_rr
hs_download

TXRXCTRL.RR

set TXRXCTRL.RR

cleared by SW read of RX
set by Debugger Write

undefined

enable

set overflow
rx_valid

cleared by flush_rr
CLK

Microarchitecture—Software Debug

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
198 Order Number: 316283-002US

12.5.3.2 DBG_SR[0]

DBG_SR[0] is used for part of the synchronization that occurs between the debugger
and debug handler for accessing RX. The debugger polls DBG_SR[0] to determine
when the handler has read the previous data from RX, and it is safe to write new data.

A ‘1’ read in DBG_SR[0] indicates that the RX register contains valid data which has not
yet been read by the debug handler. A ‘0’ indicates it is safe for the debugger to write
new data to the RX register.

12.5.3.3 flush_rr

The flush_rr bit allows the debugger to flush a previous data value written to RX,
assuming the debug handler has not read that value yet. Setting flush_rr clears
TXRXCTRL.RR.

12.5.3.4 hs_download

The hs_download bit is provided for use during high speed download. This bit is written
directly to TXRXCTRL.D. The debugger uses this bit to improve performance when
downloading a block of code or data to the target system memory.

A protocol is setup between the debugger and debug handler using this bit. For
example, while this bit is set, the debugger continuously downloads new data without
polling TXRXCTRL.RR. The debug handler uses TXRXCTRL.D as a branch flag to loop
while there is more data to come. The debugger clears this bit to indicate the end of the
block and allow the debug handler to exit its loop.

Using hs_download as a branch flags eliminates the need for a loop counter in the
debug handler code. This avoids the problem where the debugger loop counter is out of
synchronization with the debug handler counter because of overflow conditions that
have occurred.

12.5.3.5 RX (DBG_SR[34:3])

DBG_SR[34:3] is written to RX following an Update_DR when the RX Write Logic
enables the RX register to be updated.

12.5.3.6 rx_valid

The debugger sets the rx_valid bit to indicate the data scanned into DBG_SR[34:3] is
valid data to be written to RX. When this bit is set, the data scanned into the DBG_SR
is written to RX following an Update_DR. When rx_valid is not set Update_DR does not
affect RX.

Note: The actions of flush_rr and hs_download are not qualified with rx_valid.

Note: Setting rx_valid and flush_rr at the same time result in unpredictable behavior.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 199

Software Debug—Microarchitecture

12.6 Trace Buffer

3rd generation microarchitecture has a 256 entry trace buffer that provides the ability
to capture control flow information for debugging an application. Two modes are
supported:

1. Fill-once Mode: The trace buffer fills up completely and generates a debug
exception.

2. Wrap-around Mode: The trace buffer continuously fills up and wraps around until it
is disabled (either by a debug exception or by software).

12.6.1 Definitions

In the description of the trace buffer, the following terminology is used:

Table 123. Trace Buffer Terminology

Term Meaning

trace buffer entry
an individual 8-bit unit of the trace buffer. The trace buffer contains 256 of these 8-bit
units.

trace message
a group of 1 or more entries. Trace messages indicate a type of program flow change and
any related address information

message header
a specific entry which contains the encoding and incremental instruction count value of the
current trace message. A 1-entry trace message is just a message header.

Microarchitecture—Software Debug

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
200 Order Number: 316283-002US

12.6.2 Trace Buffer Registers

A summary of trace buffer registers is shown in Table 101, “CP14 Software Debug
Registers” on page 174. The following sections provide a detailed description of these
registers.

12.6.2.1 Checkpoint Registers

The two checkpoint registers (CHKPT0, CHKPT1) provide a reference address to the
debugger for reconstructing a trace history.

The debugger reconstructs a trace history, starting at the oldest trace message going
forward, to the most recent trace message. In fill-once mode and wrap-around mode,
before the trace buffer wraps around, the trace is reconstructed by starting from the
point in the code where the trace buffer was first enabled (typically this occurs at the
end of the debug handler, where the exit of the debug handler is traced as an indirect
branch, providing a reference starting address).

The difficulty occurs in wrap-around mode when the trace buffer wraps around at least
once. In this case the debugger gets a snapshot of the last N control flow changes in
the program, where N <= size of buffer. The debugger does not know the starting
address of the oldest trace message read from the trace buffer. In this case, the
checkpoint registers are used to identify a starting address for reconstructing the trace
history.

Table 124. Checkpoint Registers (CRn = 12,13, CRm = 0)

Function CRn CRm Instruction

Checkpoint Register 0 (CHKPT0) 0b1100 0b0000
MRC p14, 0, Rd, c12, c0, 0
MCR p14, 0, Rd, c12, c0, 0

Checkpoint Register 1 (CHKPT1) 0b1101 0b0000
MRC p14, 0, Rd, c13, c0, 0
MCR p14, 0, Rd, c13, c0, 0

Table 125. Checkpoint Register (CHKPTx)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CHKPTx T

reset value: Unpredictable

Bits Access Description

31:1 Read / Write
CHKPTx

target address for corresponding entry in trace buffer

0 Read / Write

Thumb/ARM (T)

indicates whether target address is in ARM or Thumb
mode. (see Section 12.6.4, “Tracing Thumb Code” on
page 206)

0 = ARM target
1 = Thumb target

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 201

Software Debug—Microarchitecture

When the trace buffer is enabled, reading and writing to either checkpoint register has
unpredictable results. When the trace buffer is disabled, writing to a checkpoint register
sets the register to the value written. Reading the checkpoint registers returns the
value of the register.

In normal usage, the checkpoint registers hold target addresses of checkpointed trace
messages in the trace buffer. Only direct and indirect trace messages are checkpointed.
Exception and roll-over messages are never checkpointed. The processor sets bit 6 of
the message header to indicate that a trace message has been checkpointed (refer to
Table 128).

The trace buffer contains no more than two checkpointed trace messages at any given
time. When the trace buffer contains only one checkpointed message, the
corresponding checkpoint register is CHKPT0. When the trace buffer wraps around, two
messages typically are checkpointed, usually about half a buffers length apart. In this
case, the first (oldest) checkpointed message read from the trace buffer corresponds to
CHKPT1, the second checkpointed message corresponds to CHKPT0.

Although the checkpoint registers are provided for wrap-around mode, these are still
valid in fill-once mode.

Microarchitecture—Software Debug

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
202 Order Number: 316283-002US

12.6.2.2 Trace Buffer Register (TBREG)

Software reads the contents of the trace buffer through TBREG. Software only reads
the trace buffer when it is disabled. Reading the trace buffer while it is enabled, causes
unpredictable behavior of the trace buffer. Writes to the trace buffer have unpredictable
results.

Reading TBREG pops the oldest trace buffer entry in the least significant 8 bits of the
register. The entry is either a message header or part of the 32-bit address associated
with an indirect branch message.

Table 127 shows the format of the Trace Buffer Register.

Table 126. Trace Buffer Register (CRn = 11, CRm = 0)

Function CRn CRm Instruction

Trace Buffer Register (TBREG) 0b1011 0b0000 MRC p14, 0, Rd, c11, c0, 0

Table 127. Trace Buffer Register (TBREG)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data

reset value: Unpredictable

Bits Access Description

31:8
Read-Unpredictable / Write-
Unpredictable

Reserved

7:0 Read / Write-Unpredictable
Data

Trace Buffer Data

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 203

Software Debug—Microarchitecture

12.6.3 Trace Messages

Trace messages consist of one or more trace buffer entries. Most messages are a single
entry consisting of a message header indicating a type of control flow change or a
counter rollover.

The target address for single entry trace messages is either encoded in the message
header (as for exceptions), or determined by looking at the instruction word in system
memory (as for direct branches).

Indirect branch messages require five entries. One entry is the message header
identifying it as an indirect branch. The target address of the indirect branch makes up
the other four entries.

The following sections describe the trace messages in detail.

12.6.3.1 Trace Message Formats

There are two message header formats, (exception and non-exception) as shown in
Figure 17.

Table 128 shows the individual types of trace messages and their formats.

Figure 17. Message Header Formats

VM C C C CV V MM C C C CM M

Exception Format Non-exception Format

M = Message Type Bit
VVV = exception vector[4:2]
CCCC = Incremental Word Count

MMMM = Message Type Bits
CCCC = Incremental Word Count

7 07 0

Table 128. Trace Messages

Message Name Message Type
Message Header

Format
address

bytes

Exception exception 0b0VVV CCCC 0

Direct Brancha

a. Direct branches include ARM and THUMB bl, b

non-exception 0b1000 CCCC 0

Checkpointed Direct Brancha non-exception 0b1100 CCCC 0

Indirect Branchb

b. Indirect branches include ARM ldm, ldr, and dproc to PC; ARM and THUMB bx, blx(1) and blx(2); and THUMB
pop.

non-exception 0b1001 CCCC 4

Checkpointed Indirect Branchb non-exception 0b1101 CCCC 4

Roll-over non-exception 0b1111 1111 0

Microarchitecture—Software Debug

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
204 Order Number: 316283-002US

12.6.3.2 Exception Messages

When any kind of exception occurs, an exception message, consisting simply of a
message header is placed in the trace buffer. In the message header, the message type
bit (M) is always set to 0. The exception vector (VVV) field specifies bits[4:2] of the
vector address (offset from the base of default or relocated vector table). This
information allows the debugger to determine which exception occurred.

The incremental word count (CCCC) is the instruction count since the last control flow
change (not including the current instruction for undef, SWI, and pre-fetch abort). The
instruction count includes instructions that were executed and conditional instructions
that were not executed due to the condition of the instruction not matching the CC
flags.

An incremental word count of 0 indicates that 0 instructions executed since the last
control flow change and the current exception. For example, when a branch is
immediate followed by a SWI, a direct branch message (for the branch) is followed by
an exception message (for the SWI) in the trace buffer. The incremental word count in
the exception message is 0, meaning that 0 instructions executed after the last control
flow change (the branch) and before the current control flow change (the SWI). Instead
of the SWI, when an IRQ was handled immediately after the branch (before any other
instructions executed), the incremental word count is still be 0, since no instructions
executed after the branch and before the interrupt was handled.

An incremental word count of 0b1111 indicates that 15 instructions executed between
the last branch and the exception. In this case, an exception was either caused by the
16th instruction (when it is an undefined instruction exception, pre-fetch abort, or SWI)
or generated before the 16th instruction executed (for FIQ, IRQ, or data abort).

Note: There is an incremental word count special case related with precise data aborts. For a
precise data abort on a load to the PC (LDR or LDM), the incremental word count is
consistent with the above description (in other words aborting instruction is not
counted). For all other precise data aborts, the instruction that causes the data abort is
included in the incremental word count in the exception message.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 205

Software Debug—Microarchitecture

12.6.3.3 Non-exception Messages

Non-exception messages used for direct and indirect branches, and rollover messages.
The 4-bit message type field (MMMM) specifies type of message (Table 128).

The incremental word count (CCCC) is the instruction count since the last control flow
change (excluding current branch). This includes executed and conditional instructions,
that were not executed due to the condition of the instruction not matching the CC
flags. In the case of back-to-back branches the incremental word count is 0 indicating
no instructions executed after the last branch and before the current one.

A rollover message is used to keep track of long traces of code that do not have control
flow changes. The rollover message means that 16 instructions have executed since
the last program flow change or rollover message.

When the incremental word count reaches its maximum value of 15, a rollover
message is written to the trace buffer following the next instruction (which is the 16th
instruction to execute), as shown in Example 5. The incremental word count in the
rollover message is 0b1111, indicating that 15 instructions have executed after the last
branch and before the current non-branch instruction causing the rollover message.

When the 16th instruction is a branch (direct or indirect), the appropriate message is
placed in the trace buffer instead of the roll-over message. The incremental word count
is still set to 0b1111, meaning 15 instructions executed between the last branch and
the current branch.

12.6.3.4 Reading Indirect Branch Messages

Only indirect branch messages contain additional address information. Indirect branch
messages have four address entries specifying the target of that branch. When reading
the trace buffer the MSB of the target address is read out first; the LSB is the fourth
entry read out; and the indirect branch message header is the fifth entry read out. The
entry organization of an indirect branch message is shown in Figure 18.

Example 5. Rollover Messages Examples

count = 5
BL label1
count = 0
MOV
count = 1
MOV
count = 2
MOV
...

count = 14
MOV
count = 15
MOV
count = 0

rollover message placed in trace buffer after 16th instruction executes
count = 0b1111

branch message placed in trace buffer after branch executes
count = 0b0101

Figure 18. Indirect Branch Message Organization

target addr[31:24]

target addr[23:16]

target addr[15:8]

target addr[7:0]

indirect br msg

Software reads the trace

buffer in this direction. the

message header is always

the last of the 5 entries to

be read.

Microarchitecture—Software Debug

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
206 Order Number: 316283-002US

12.6.4 Tracing Thumb Code

The trace buffer provides the capability to indicate whether the traced code is
branching to code executing in Thumb or ARM mode. This capability is controlled by the
Thumb Trace bit in the DCSR (DCSR[6]).

When this feature is enabled, the Trace Buffer uses bit 0 of branch target addresses
placed in the trace buffer (indirect branch target addresses) and in the Checkpoint
registers (indirect or direct branch target addresses) to indicate whether the target of
the branch is in ARM mode or Thumb mode.

On a branch to ARM mode (from ARM or Thumb mode), the Trace Buffer places a ‘0’ in
bit 0 of the target address. On a branch to Thumb mode (from ARM or Thumb mode),
the Trace Buffer places a ‘1’ in bit 0 of the target address.

All transitions into and out of Thumb Mode are traced as indirect branches. So,
assuming the Trace Buffer does not wrap around, all of the Thumb entry and exit points
are identifiable. Even when the trace buffer wraps around and the Thumb entry point is
lost, all indirect branches from Thumb mode that remain in Thumb mode set bit 0 of
the indirect branch target address to ‘1’. This allows the trace tools to correctly trace
Thumb code from the first indirect branch address (or checkpointed address) in the
trace buffer. Since all exceptions exit Thumb mode, an exception trace message implies
a Thumb exit point.

When this feature is disabled, all branch target addresses in the Trace Buffer and
Checkpoint registers have bit 0 set to ‘0’.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 207

Software Debug—Microarchitecture

12.6.5 Trace Buffer Usage

The trace buffer must be initialized prior to each usage. Initialization is done by reading
the entire trace buffer through TBREG. The process of reading the trace buffer also
clears it out (all entries are set to 0b0000 0000). Therefore, reading the contents of the
trace buffer after capturing a trace re-initializes it for its next usage.

The trace buffer is used to capture a trace up to a processor reset or debug exception.
Neither processor reset nor debug exceptions generate a trace message in the trace
buffer.

Following a processor reset or debug exception, the trace buffer is disabled, however
the contents are unaffected, so the debugger still reconstructs the trace up-to the
disabling event. The debugger must read the entire trace buffer prior to re-enabling it.

After capturing a trace, the debugger must read the entire trace buffer before
reconstructing the trace. The first entry read from the buffer represents the oldest
trace history information in the buffer. The last (256th) entry read represents the most
recent data in the buffer and is always a message header. The last entry provides the
debugger with a well defined starting point for parsing individual trace messages from
the buffer. Figure 19 is a high level view of the trace buffer.

Since the trace buffer is cleared out prior to each use, all entries are initially 0b0000
0000. In cases where the trace buffer does not wrap-around (in fill-once mode or wrap-
around mode), the debugger finds entries containing all 0s. The debugger identifies the
end of the valid trace buffer contents by identifying the first message header containing
0s - since this is not a valid message header value.

In wrap-around mode, the debugger must be aware that the oldest trace message is a
partial message. The debugger identifies a partial trace message by parsing the trace
buffer and looking for an indirect branch message that does not have all four address
entries.

Figure 19. High Level View of Trace Buffer

target[7:0]

1001 CCCC (indirect)

1000 CCCC (direct)

1100 CCCC (direct)

. . .

1111 1111 (roll-over)

target[31:24]

target[23:16]

target[15:8]

target[7:0]

1101 CCCC (indirect)

1000 CCCC (direct)

1111 1111 (roll-over)

1000 CCCC (direct)
last byte read

(most recent entry)

first byte read
(oldest entry)

CHKPT1

CHKPT0

Microarchitecture—Software Debug

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
208 Order Number: 316283-002US

Once the debugger has read and parsed the trace buffer, it re-creates the trace history
starting with the oldest trace message working its way to the most recent.

• In fill-once mode, the return from the debug handler to the application generates
an indirect branch trace message. The target address placed in the trace buffer is
return address within the target application. This serves as the starting point for re-
constructing the trace in fill-once mode.

• In wrap-around mode, the debugger uses the checkpoint registers and indirect
branch trace messages to identify starting points for re-creating the trace.

In wrap-around mode, some of the older trace messages are unusable depending on
where these are relative to the first checkpointed entry or indirect branch trace
message.

The best case is when the oldest message in the trace buffer is checkpointed or is an
indirect branch trace message. In this case the entire trace buffer contains valid data.

In the worst case, the first checkpointed entry is in the middle of the trace buffer. When
the debugger cannot identify an older reference address, only 1/2 of the trace buffer
contains usable trace information.

In fill-once mode, the entire trace buffer is usable, since the oldest entry is the indirect
branch used to return to the application from the debug handler.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 209

Software Debug—Microarchitecture

12.7 Debug SRAM

3rd generation microarchitecture has a on-microarchitecture Debug SRAM, for holding
the debug handling routine used during JTAG debugging. A debugger downloads the
code directly into the Debug SRAM through JTAG either during reset or while a program
is running.

The remainder of this section describes the Debug SRAM in more details, as well as the
methods for loading the SRAM through JTAG.

12.7.1 Debug SRAM Overview

The Debug SRAM is a 2 KB instruction RAM located on the
3rd generation microarchitecture.

The Debug SRAM is only programmed through JTAG. The target address is loaded
through JTAG along with eight instruction words to place in the Debug SRAM starting at
the specified address. The details for programming the Debug SRAM are discussed in
the following sections. Any code already in the Debug SRAM at the target addresses is
overwritten. The contents of the Debug SRAM are unaffected by a processor reset or a
JTAG reset (assertion of TRST or transition of TAP controller into TLRS).

Instruction fetches are directed to the Debug SRAM following a debug exception in Halt
Mode. When a debug exception occurs, execution begins at address 0 of the SRAM.
Execution continues out of the Debug SRAM until the debug handler does a CPSR
restore.

The Debug SRAM is a separate memory space from the application memory. Code in
the Debug SRAM cannot be affected by application code. Also, a debug handler
executing out of the Debug SRAM cannot branch to code in the application memory,
without doing a CPSR restore.

Instruction accesses to the Debug SRAM have the following characteristics:

• no memory management protection checks;

• no memory management address translation;

• no PID remapping.

• no BTB interaction.

• Fetches past the end of the 2 KB Debug SRAM result in unpredictable behavior;

Data accesses never go to the Debug SRAM. Any data access by software running out
of the Debug SRAM goes to the application memory space and uses the application’s
memory management setup and PID remapping.

Microarchitecture—Software Debug

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
210 Order Number: 316283-002US

12.7.2 LDSRAM JTAG Register

The LDSRAM JTAG instruction selects the JTAG data register for loading code into the
Debug SRAM. The JTAG opcode for this instruction is ‘0b0000111’. The LDSRAM
instruction must be in the JTAG instruction register in order to load code into the Debug
SRAM through JTAG or to use any of the other LDSRAM functions listed in Table 129.

The data loaded into LDSRAM_SR1 during a Capture_DR is as shown in Section 20,
“LDSRAM JTAG Data Register” on page 210. Note that the values captured into
LDSRAM_SR1 are used to facilitate the Download Request function (and its associated
polling loop, see Section 12.7.3.1).

All specific LDSRAM functions and associated data are downloaded in 33-bit packets
which are scanned into LDSRAM_SR1 during the Shift_DR state.

Update_DR parallel loads LDSRAM_SR1 into LDSRAM_REG which is then synchronized
with the 3rd generation microarchitecture clock and loaded into the LDSRAM_SR2.
When the function is set to Load Debug SRAM, the LDSRAM state machine kicks off and
begins shifting code to the Debug SRAM.

Note that, when loading the Debug SRAM, there is a delay from the time of the
Update_DR to the time the entire contents of LDSRAM_SR2 have been shifted to the
Debug SRAM. Removing the LDSRAM JTAG instruction from the JTAG IR before the
entire contents of LDSRAM_SR2 have been transferred, results in unpredictable
behavior. Therefore, following the Update_DR for the last LDSRAM packet, the LDSRAM
instruction must remain in the JTAG IR for a minimum of 20 TCKs. This ensures the last
packet is correctly sent to the Debug SRAM.

Figure 20. LDSRAM JTAG Data Register

TDOTDI

Capture_DR

Update_DR

12332

TCK

Microarchiture

0

1232 0

unpredictable

LDSRAM_SR1

To Debug SRAM

LDSRAM_REG

1232 0LDSRAM_SR2

LDSRAM
State Machine

1 0 0 following a download request
this bit indicates microarchitecture
for download into Debug SRAM

LDSRAM function

otherwise bit is unpredictable

Microarchitecture Ready

CLK

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 211

Software Debug—Microarchitecture

12.7.3 LDSRAM Functions

3rd generation microarchitecture supports three LDSRAM JTAG functions as shown in
Table 129. All other functions are NOPs or reserved.

12.7.3.1 Download Request / Download Complete Functions

The Download Request function is used with the Download Complete function to
support loading code into the Debug SRAM while the target application code is
executing. In particular, this feature is used for hot-debug, which requires downloading
a debug handler into the Debug SRAM, while the application is running. The steps for
loading the Debug SRAM for hot-debug are described in Section 12.7.5.

The Download Request function allows the debugger to inform the microarchitecture
that a download to the Debug SRAM is about to occur. This allows the microarchitecture
to halt any activity which interferes with the download. The format of the Download
Request function is shown in Figure 21

Following a Download Request, the debugger must poll the Microarchitecture Ready
flag (LDSRAM_SR1[0], see Figure 20, “LDSRAM JTAG Data Register” on page 210)
before downloading any code into the Debug SRAM. This flag provides an
acknowledgement from the microarchitecture indicating that it is ready for the
download. The polling is basically done by continuously scanning in a Download
Request and checking the value of the Microarchitecture Ready flag scanned out.

Once the Microarchitecture Ready flag is read as a ‘1’ by the debugger, it proceeds with
downloading code into the Debug SRAM. The entire time the debugger is scanning out
the Microarchitecture Ready flag, it must scan in the Download Request function. For
each iteration of the polling loop, the debugger must take the TAP controller through
the Capture_DR state. This ensures that the debugger sees the correct value of the
Microarchitecture Reset flag.

Table 129. LDSRAM JTAG Functions

Function Encoding
 Arguments

Address # Data Words

NOP 0b000 - 0

NOP 0b001 - 0

RESERVED 0b010 - -

Load Debug SRAM 0b011 Address of line to load 8

Download Request 0b100 - 0

Download Complete 0b101 - 0

RESERVED 0b100-0b111 - -

Figure 21. Format of Download Request function

00Download Request

32

0 . . . 1

3

0

12 0

Microarchitecture—Software Debug

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
212 Order Number: 316283-002US

After completing the code download into the Debug SRAM, the debugger must scan in
the Download Complete function, informing the microarchitecture that it resumes
normal activity. The Format of the Download Complete function is shown in Figure 22.

The debugger must not switch the JTAG instruction register value between the time of
the initial Download Request function and the final Download Complete function,
otherwise the results of the download are unpredictable.

LDSRAM_SR1[32:3] is set to 0 for the Download Request and Download Complete
functions.

Figure 22. Format of Download Complete function

10Download Complete

32

0 . . . 1

3

0

12 0

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 213

Software Debug—Microarchitecture

12.7.3.2 Load Debug SRAM Function

The debugger uses the Load Debug SRAM function to program code into the Debug
SRAM. The function takes a target address and eight words of instructions to load. The
address and data information is downloaded through JTAG in 33-bit packets. Figure 23
shows the packet format. The Load Debug SRAM function requires nine packets.

All packets are 33 bits in length. Bits [2:0] of the first packet specify the function to
execute; bits[11:6] of the first packet specify an 8-word aligned address within the
2 KB Debug SRAM; bits[32:12,5:3] is set to 0.

Eight additional data packets are used to specify eight ARM instructions to be loaded
into the Debug SRAM. Bits[31:0] of each data packet contains the instruction to
download. Bit[32] of each data packet is the value of the parity for the data in that
packet. (Parity = XOR of first 32 bits).

As shown in Figure 23, the first bit shifted in TDI is bit 0 of the first packet. After each
33-bit packet, the debugger must take the JTAG state machine into the Update_DR
state. Following an Update_DR, the debugger immediately returns to the Shift_DR
state (via Capture_DR) and begin shifting in the next 33-bit packet.

Note: When a TRST occurs in the middle of the Load Debug SRAM function, the results of the
entire function are unpredictable (in other words, code loaded by the debugger before
the TRST is or is not updated in the Debug SRAM).

Figure 23. Format of Load Debug SRAM function

.

.

.Load Debug SRAM

- indicates first

- indicates last

bit shifted in

bit shifted in

1211 032 12 56

0000 0. . . Addr[10:5]

P Data Word 0

P Data Word 7

0 1 1

Microarchitecture—Software Debug

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
214 Order Number: 316283-002US

12.7.4 Loading Debug SRAM During Reset

Code is downloaded into the Debug SRAM through JTAG during a processor reset. This
feature is used during software debug to download the debug handler prior to starting a
debug session. Immediately out of reset, the debugger intercepts the reset vector and
take control of the system. The debugger then initializes the system as necessary and
begin the application program.

Following a cold reset, the contents of the Debug SRAM are unpredictable. The contents
of the Debug SRAM are unaffected by a warm reset. The steps for loading during a cold
reset vs. a warm reset are the same, as shown in Figure 24.

Figure 24. Code Download During a Cold Reset For Debug

Chip TRST

Enter LDSRAM mode

reset JTAG IR to IDCODE

Set hold_reset bit

Clear hold_reset bit

Chip Reset Pin

Microarchitecture

de-assert Chip Reset AFTER SELDCSR.hold_reset is set

Reset Vector Trap

SELDCSR.hold_reset

hold_reset keeps reset asserted

SELDCSR

Set Halt Mode bit

Keep LDSRAM in IR

Download code

Set Halt Mode bit

generated out of reset

LDSRAM

Wait N1 TCKs after
Chip Reset de-asserted

for 20 TCKs after
last update_dr

(Internal)

SELDCSR.halt_mode

SELDCSR.trap_reset

SELDCSR SELDCSR DBGTXIDCODE

Read ID Reg value

Set Trap Reset bit

JTAG IR Value
and Debugger
JTAG Actions

Reprogram SELDCSR
Set hold_reset bit
Set Halt Mode bit
Set Trap Reset bit

Set Trap Reset bit

Poll DBGTX to
detect debug break

1. The number of TCKs to wait is ASSP specific and is found in the Implementation options section of the relevant
product documentation.

indicates unknown value

Reset Signal

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 215

Software Debug—Microarchitecture

Table 130 describe the actions a debugger takes to load code into the Debug SRAM
during reset:

Table 130. Steps For Loading Debug SRAM During Reset

Step # Action Notes

1 Assert Chip Reset and Chip TRST
This resets the JTAG IR to IDCODE and ensures the TAP
controller is in a known state.

2 Read ID Register value

3

Program SELDCSR JTAG register:

Halt Mode=1
Trap Reset=1
hold_reset=1

SELDCSR details are found in Section 12.5.1.

Depending on ASSP implementation, the Halt Mode bit and
Trap Reset bit is or is not actually be set to the programmed
value. The hold reset bit is set to the programmed value.

4 De-assert Chip Reset
Internally the microarchitecture remains held in reset due to
hold_reset being set.

5 Wait N TCKs

N is a ASSP specific number and is found in the
Implementation options section of the relevant product
documentation. This delay ensures that the microarchitecture
is stable before proceeding.

6

Program SELDCSR JTAG register:

Halt Mode=1
Trap Reset=1
hold_reset=1

The SELDCSR instruction must be reloaded into the JTAG IR.
Failure to reload the JTAG IR results in unpredictable behavior.

Reprogramming of the SELDCSR JTAG register guarantees that
the Halt Mode bit and Trap Reset bit are set before loading the
Debug SRAM.

7
Load LDSRAM JTAG instruction and
download the debug handler into
Debug SRAM.

Loading into the Debug SRAM is described in Section 12.7.3,
“LDSRAM Functions” on page 211

8
Clock a minimum of 20 TCKs
before changing the JTAG IR.

The LDSRAM JTAG instruction must remain in the JTAG
instruction register for at least 20 TCKs following the
update_dr for the last line of code. This ensures that the last
line is correctly loaded into the Debug SRAM. Changing the
JTAG IR within 20 cycles my result in unpredictable behavior.

9

Program SELDCSR JTAG register:

Halt Mode bit = 1
Trap Reset bit = 1
hold_reset = 0

Clearing the hold_reset bit allows the microarchitecture to
come out of reset and begin execution from address 0.

10 poll the DBGTX register

Immediately out of reset, a reset vector trap occurs and the
debug handler begins execution. The debugger must poll
DBGTX for a message from the debug handler to identify when
this has happened.

Microarchitecture—Software Debug

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
216 Order Number: 316283-002US

12.7.5 Loading Debug SRAM After Reset

3rd generation microarchitecture provides support to allow a debugger to load code
into the Debug SRAM while the microarchitecture is not held in reset. This is referred to
as loading the Debug SRAM “on the fly”. A debugger loads the Debug SRAM on the fly
when downloading dynamic debug handler functions or when downloading the full
debug handler prior to initiating a hot-debug session.

Due to the limited size of the Debug SRAM, the main code of the debug handler is
limited to the more frequently used functions. Functions which are used less frequently
are downloaded, as needed, into any space available in the Debug SRAM. Debug
handler functions which are downloaded on the fly are referred to as dynamic
functions. Correctly downloading dynamic functions requires software synchronization
between the debugger and debug handler. This is described in Section 12.7.5.1.

For hot-debug, a debugger downloads the debug handler into the Debug SRAM while
the application program is still running. Strict hardware synchronization between the
debugger and 3rd generation microarchitecture ensures that the debug handler code is
correctly downloaded. This hardware synchronization is described in Section 12.7.5.2.

12.7.5.1 Software Synchronization for Loading Debug SRAM

Software synchronization for loading the Debug SRAM is only used when there is very
tight coupling between the debugger and the code running on
3rd generation microarchitecture. This is true, in particular, when the debug handler is
executing, and dynamic functions need to be downloaded. The protocol between the
debugger and debug handler is tightly controlled allowing software synchronization to
work.

The software synchronization between the debugger and debug handler ensures that

• the debug handler is not executing from the address in the Debug SRAM which the
debugger is downloading to;

• the debug handler is not doing an operation which interferes with download.

The software synchronization is accomplished by handshaking through the TX and RX
registers.

The debug handler and debugger synchronize the start of the download through the TX
register. The debug handler writes a value to the debugger via TX as an indication that
the handler is ready for the download.

The debug handler and the debugger synchronize completion of the download using the
RX register. While the download is in progress, the debug handler is in a polling loop
waiting for a response from the debugger in RX. Once the debugger completes the
download, it writes a value to the RX register through JTAG, allowing the debug handler
to exit the polling loop.

As an example, the debug handler sends a “ready-for-next-command” message to the
debugger, through TX. The handler then enters its command loop, polling RX for the
next command from the debugger. In the meantime, the debugger downloads to some
other part of the Debug SRAM. After completing the download, the debugger sends a
command to the handler via RX, to execute the downloaded function. Upon seeing the
command in RX, the handler exits it polling loop and executes the specified command.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 217

Software Debug—Microarchitecture

12.7.5.2 Hardware Synchronization for Loading Debug SRAM

Hardware synchronization mainly applies when a download into the Debug SRAM is
required, but the debugger cannot be closely coupled with the code executing on the
microarchitecture. This is true for hot-debug, in which the debugger tries to download a
debug handler (and start a debug session) while some unknown application code is
executing. Since the debugger does not have any control of the application, it must rely
on hardware synchronization to ensure that the debug handler is correctly downloaded.

The following steps are required by the debugger prior to loading code into the Debug
SRAM for hot-debug:

1. First the debugger issues a “download request” function through JTAG.

2. Then the debugger polls the microarchitecture_ready flag (LDSRAM_SR1[0]), to
determine when the microarchitecture is ready for the download. Reading a ‘1’ in
this bit indicates that the microarchitecture is ready.

3. Once the microarchitecture is ready the debugger proceeds to download code into
the Debug SRAM.

4. After the debugger completes the download, it sends the “download complete”
function through JTAG.

Following the download of the debug handler for a hot-debug session, the debugger
places 3rd generation microarchitecture in Halt Mode and program a JTAG debug break
when it is ready to stop the microarchitecture.

Microarchitecture—Software Debug

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
218 Order Number: 316283-002US

12.8 JTAG Device Identification Register

3rd generation microarchitecture provides a 32-bit Device Identification register
containing the manufacturer identification code, part number code, and version code.
The Device Identification register is selected by placing the IDCODE JTAG instruction in
the JTAG IR. When the TAP controller enters the Test_Logic_Reset state, the IDCODE
JTAG instruction is automatically loaded into the JTAG IR.

Table 131 shows the Device Identification register format and values of the fields which
are standard for all 3rd generation microarchitecture-based ASSPs. The Product
Version and Model fields are ASSP specific. This information is found in the
3rd generation microarchitecture implementation options section of the relevant
product documentation.

Table 131. JTAG Device Identification Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Version 1 1 1 0 0 1 1 0 0 1 0 Model 0 0 0 0 0 0 0 1 0 0 1 1

Bits Access Description

31:28 Read / Write-Ignored
Product Version

This field reflects the product revision/stepping.

27:17 Read / Write-Ignored 0b 1110 0110 010

16:12 Read / Write-Ignored
Model

This field specifies a unique product ID.

11:0 Read / Write-Ignored 0b 0000 0001 0011

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 219

Software Debug—Microarchitecture

12.9 Debug Changes from previous generations to
3rd Generation Microarchitecture

Following is a list of changes to the SW debug capabilities between
3rd generation microarchitecture and previous generations. Refer to the 3rd
Generation Intel XScale® Microarchitecture Software Debug Guide for additional
information on these changes.

• Microarchitecture debug capabilities

— JTAG debug break, not qualified with debug enable in
3rd generation microarchitecture

— SDS definition changed (instruction MMU not turned off by SDS, but turned off
by execution from Debug SRAM. Mainly allows instruction fetches following an
SOC break to be remapped in Monitor Mode.

• JTAG communications

— no changes

• Trace Buffer

— Thumb Trace capability added for 3rd generation microarchitecture; new bit in
DCSR added, to enable this feature.

• Loading Debug SRAM

— name changed from previous generations (LDIC) to
3rd generation microarchitecture (LDSRAM)

— some previous generations LDIC JTAG commands removed (defined as NOPs)

— new 3rd generation microarchitecture LDIC JTAG commands added for hot-
debug and loading dynamic functions.

— load Mini-IC command on previous generations mapped to load SRAM
command on 3rd generation microarchitecture (same syntax)

— load Main-IC command removed.

• JTAG Device ID value

Microarchitecture—Performance Considerations

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
220 Order Number: 316283-002US

13.0 Performance Considerations

This chapter describes relevant performance considerations that compiler writers,
application programmers and system designers need to optimize code that efficiently
uses the 3rd generation Intel XScale® microarchitecture
(3rd generation microarchitecture or 3rd generation). Performance numbers discussed
here include interrupt latency, branch prediction, and instruction latencies.

13.1 Interrupt Latency

Refer to the 3rd generation microarchitecture implementation option section of the
relevant product documentation for information on interrupt latency.

Minimum Interrupt Latency is defined as the minimum number of cycles from the
assertion of an interrupt signal (IRQ or FIQ) to the issue clock of the instruction at the
vector for that interrupt. The point at which the assertion begins depends on the
interrupt controller implementation as defined in the relevant product documentation.
This number assumes best case conditions exist when the interrupt is asserted (for
example, the system is not waiting on the completion of some other operation).

A more useful number to work with is the Maximum Interrupt Latency. The Maximum
Interrupt Latency also depends on the interrupt controller implementation and depends
on what else is going on in the system at the time the interrupt is asserted. Some
events adversely affect interrupt latency by preventing the microarchitecture from
servicing the interrupt:

• execution of multiple issue cycle instructions (LDM, STM, MCR, MRC, etc.).

• disabled interrupts (due to faults or software interrupts).

• pipeline stalls (data cache buffers full, performing a page table walk, etc.).

• high microarchitecture to system (bus) clock ratios.

Interrupt latency is reduced by:

• ensuring that the interrupt vector and interrupt service routine are resident in the
instruction cache. This is accomplished by locking these down into the cache.

• removing or reducing the occurrences of hardware page table walks. This also is
accomplished by locking down the application’s page table entries into the TLBs,
along with the page table entry for the interrupt service routine.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 221

Performance Considerations—Microarchitecture

13.2 Branch Prediction

3rd generation microarchitecture implements dynamic branch prediction (see
Chapter 5.0, “Branch Target Buffer”) for the B and BL instructions. BX, BLX and any
instruction that specifies the PC as the destination are predicted as not taken. For
example, an LDR or a MOV that loads or moves directly to the PC is predicted not
taken and incur a branch latency penalty.

These instructions -- B and BL -- enter into the branch target buffer when these are
“taken” for the first time (a “taken” branch refers to when the condition code is
evaluated to be true). Once in the branch target buffer,
3rd generation microarchitecture dynamically predicts the outcome of these
instructions based on previous outcomes. Table 132, “Branch Latency Penalty”, shows
the branch latency penalty when these instructions are correctly predicted and when
these are not. A penalty of zero for correct prediction means that
3rd generation microarchitecture executes the next instruction in the program flow in
the cycle following the branch.

13.3 Addressing Modes

Using the various addressing modes for load and store instructions typically does not
affect the instruction issue latencies. See Table 141, “Load and Store Instruction
Timings” for exceptions. Base register update latencies only apply for load or store,
pre-indexed or post-indexed addressing modes.

13.4 Instruction Latencies

The latencies for all the instructions are shown in the following sections with respect to
their functional groups:

• branch

• data processing

• multiply

• status register access

• load/store

• semaphore

• coprocessor

The following section explains how to read these tables.

Table 132. Branch Latency Penalty

Microarchitecture
Clock Cycles

Description

+ 0
Predicted Correctly. The instruction is in the branch target cache and is correctly
predicted.

+4

Mispredicted. There are three cases of branch misprediction, all of which incur a 4-
cycle branch delay penalty:
1. The instruction is in the branch target buffer and is predicted not-taken, but

is actually taken.
2. The instruction is not in the branch target buffer and is a taken branch.
3. The instruction is in the branch target buffer and is predicted taken, but is

actually not-taken

Microarchitecture—Performance Considerations

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
222 Order Number: 316283-002US

13.4.1 Performance Terms

• Issue Clock (cycle 0)

The cycle when an instruction is decoded and allowed to proceed to further stages
in the execution pipeline (in other words, when the instruction is actually issued).

• Cycle Distance from A to B

The cycle distance from cycle A to cycle B is (B-A) -- that is, the number of cycles
from the start of cycle A to the start of cycle B. Example: the cycle distance from
cycle 3 to cycle 4 is one cycle.

• Issue Latency

The cycle distance from the issue clock of the current instruction to the issue clock
of the next instruction. The number of cycles is influenced by cache-misses, data
dependency stalls, and resource availability conflicts.

• Minimum Issue Latency (without Branch Misprediction)

The minimum cycle distance from the issue clock of the current instruction to the
issue clock of the next instruction assuming best case conditions (in other words,
that the issuing of the next instruction is not stalled due to a data dependency stall;
the next instruction is immediately available from the cache or memory interface;
the current instruction does not incur a resource availability stall; and when the
instruction uses dynamic branch prediction, correct prediction is assumed).

• Minimum Issue Latency (with Branch Misprediction)

The minimum cycle distance from the issue clock of the current branching
instruction to the issue clock of the next instruction. This definition is identical to
Minimum Issue Latency (without Branch Misprediction) except that the branching
instruction has been mispredicted. It is calculated by adding Minimum Issue
Latency (without Branch Misprediction) to the branch latency penalty number from
Table 132, “Branch Latency Penalty”, which is four cycles.

• Result Latency

The cycle distance from the issue clock of the current instruction to the issue clock
of the next instruction that uses the result including any data dependency induced
stalls. The number of cycles are influenced by cache-misses, data dependency
stalls, and resource availability conflicts.

• Minimum Result Latency

The minimum cycle distance from the issue clock of the current instruction to the
issue clock of the instruction that uses the result without incurring a data
dependency stall assuming best case conditions (in other words, that the issuing of
the next instruction is not stalled due to a data dependency stall; the next
instruction is immediately available from the cache or memory interface; and the
current instruction does not incur a resource availability stall during execution that
is not detected at issue time).

• Minimum Resource Latency

The minimum cycle distance from the issue clock of the current multiply instruction
to the issue clock of the next multiply instruction assuming the second multiply
does not incur a data dependency stall and is immediately available from the
instruction cache or memory interface.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 223

Performance Considerations—Microarchitecture

The code fragment in Example 6 is used for demonstration purposes relating to issue,
result and resource latencies.

Example 7, “Latency Example”, shows the instruction flow of our example code through
the instruction pipeline. Looking at the issue column, the UMLAL instruction issues in
cycles 0 and 1 with ADD issuing in cycle 2. This shows that the Issue Latency for
UMLAL is two. Also, from the code example, is seen a data dependency on the result
placed in R8 by the UMLAL instruction and used by the SUB instruction. Again, looking
at Example 7, the UMLAL instruction issues at cycle 0. The results of the UMLAL
return in cycles 3 and 4 for R6 and R8 respectively. This corresponds to result latencies
of 3 for RdLo and 4 for RdHi. Note that the UMLAL instruction occupies the MAC from
cycle 1 to cycle 3 which creates a MAC resource latency of 3 cycles. Even though the
result in R8 appears to be available for the SUB in cycle 4 it is not used by the SUB
until the following cycle causing a pipe stall.

Example 6. Latency Example Code

UMLAL r6, r8, r0, r1

ADD r9, r10, r11

SUB r2, r8, r9

MOV r0, r1

Example 7. Latency Example

Cycle Issue
Executing
MACALU

Results

0 umlal (1st cycle)

1 umlal (2nd cycle) umlal

2 add umlal

3 sub umlal add R6, R9

4 mov (stalled) -- sub (stalled) R8

5 mov -- sub R2

6 -- mov R0

Microarchitecture—Performance Considerations

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
224 Order Number: 316283-002US

13.4.2 Branch Instruction Timings

 (

13.4.3 Data Processing Instruction Timings

Table 133. Branch Instruction Timings (Those predicted by the BTB)

Mnemonic

Minimum Issue Latency
Minimum Result Latency (R14) with

Branch Taken

Predicted
Correctly

Mispredicted
Predicted
Correctly

Mispredicted

B 1 5 N/A N/A

BL 1 5 2 5

Table 134. Branch Instruction Timings (Those not predicted by the BTB)

Mnemonic
Minimum Issue Latencya,b

a. “N” is the number of registers in the register list {R1, ... Rn} including the PC.
b. When the LDR PC, [...] uses RRX in an addressing mode then one extra cycle of latency must be added to the

given latency.

Not Taken Takenc

c. R14 Minimum Result Latency for BLX is 5 cycles.

BX, BLX 1 5

ADC,ADD,AND,BIC,EOR,
MOV,MVN,ORR,RSB,RSC,

SBC,SUB

with PC as the destination register

Minimum Issue Latency from
Table 135

4 + (Minimum Issue latency from
Table 135)

LDR PC, [...] 2 8

LDM Rn, {... PC} max (3, 1 + N) max (8, 5 + N)

Table 135. Data Processing Instruction Timings

Mnemonic

<shifter operand> is NOT a Shift/
Rotate by Register

<shifter operand> is a Shift/
Rotate by Register OR

<shifter operand> is RRX

Minimum Issue
Latency

Minimum Result
Latency

Minimum Issue
Latency

Minimum Result
Latency

ADC,ADD,AND,BIC,
EOR,MOV,MVN,ORR,RSB,
RSC,SBC,SUB

1 1a

a. When an instruction needs to use the result of the data processing instruction as Rm in a shift by immediate
or as Rn in a QDADD or QDSUB, one extra cycle must be added to the given result latency.

2 2a

CMN,CMP,TEQ,TST 1 1 2 2

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 225

Performance Considerations—Microarchitecture

13.4.4 Multiply Instruction Timings

Table 136. Multiply Instruction Timings

Mnemonic
Rs Value

(Early
Termination)

S-Bit
Valu

e

Minimum
Issue

Latency

Minimum Result
Latencya

a. When an instruction needs to use the result of the multiply as Rm in a shift by immediate or as Rn in a QDADD
or QDSUB, one extra cycle must be added to the given result latency except for RdLo with S-Bit=1.

Minimum Resource
Latency (Throughput)

MLA

Rs[31:15] =
0x00000

or
Rs[31:15] = 0x1FFFF

0 1 2 1

1 2 2 2

all others
0 1 3 2

1 3 3 3

MUL

Rs[31:15] =
0x00000

or
Rs[31:15] = 0x1FFFF

0 1 2 1

1 2 2 2

all others
0 1 3 2

1 3 3 3

SMLAL

Rs[31:15] =
0x00000

or
Rs[31:15] = 0x1FFFF

0 2
RdLo = 2; RdHi =

3
2

1 3
RdLo = 3; RdHi =

3
3

all others

0 2
RdLo = 3; RdHi =

4
3

1 4
RdLo = 4; RdHi =

4
4

SMLALxy N/A N/A 2
RdLo = 2; RdHi =

3
2

SMLAWy N/A N/A 1 3 2

SMLAxy N/A N/A 1 2 1

SMULL

Rs[31:15] =
0x00000

or
Rs[31:15] = 0x1FFFF

0 1
RdLo = 2; RdHi =

3
2

1 3
RdLo = 3; RdHi =

3
3

all others

0 1
RdLo = 3; RdHi =

4
3

1 4
RdLo = 4; RdHi =

4
4

SMULWy N/A N/A 1 3 2

SMULxy N/A N/A 1 2 1

UMLAL

Rs[31:15] =
0x00000

or
Rs[31:15] = 0x1FFFF

0 2
RdLo = 2; RdHi =

3
2

1 3
RdLo = 3; RdHi =

3
3

all others

0 2
RdLo = 3; RdHi =

4
3

1 4
RdLo = 4; RdHi =

4
4

UMULL

Rs[31:15] =
0x00000

or
Rs[31:15] = 0x1FFFF

0 1
RdLo = 2; RdHi =

3
2

1 3
RdLo = 3; RdHi =

3
3

all others

0 1
RdLo = 3; RdHi =

4
3

1 4
RdLo = 4; RdHi =

4
4

Microarchitecture—Performance Considerations

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
226 Order Number: 316283-002US

Table 137. Multiply Implicit Accumulate Instruction Timings

Mnemonic
Rs Value (Early
Termination)

Minimum Issue
Latency

Minimum Result
Latency

Minimum Resource
Latency

(Throughput)

MIA

Rs[31:15] = 0x00000
or

Rs[31:15] = 0x1FFFF
1 1 1

all others 1 2 2

MIAxy N/A 1 1 1

MIAPH N/A 1 2 2

Table 138. Implicit Accumulator Access Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latencya,b

a. When the next instruction needs to use the result of the MRA as Rm in a shift by immediate or as Rn in a
QDADD or QDSUB, one extra cycle must be added to the given result latency.

Minimum Resource
Latency (Throughput)b

b. When there are two pending MRA’s then one extra cycle must be added to the given latency.

MAR 1 1 1

MRA 1 RdLo = 2; RdHi = 3 2

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 227

Performance Considerations—Microarchitecture

13.4.5 Saturated Arithmetic Instructions

h

13.4.6 Status Register Access Instructions

Table 139. Saturated Data Processing Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency

QADD, QSUB 1 2

QDADD, QDSUB 1 2

Table 140. Status Register Access Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency

MRS 2 3

MSR 2 (6 when updating mode bits) 2 (6 when updating mode bits)

Microarchitecture—Performance Considerations

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
228 Order Number: 316283-002US

13.4.7 Load/Store Instructions

13.4.8 Semaphore Instructions

Table 141. Load and Store Instruction Timings

Mnemonic
Minimum Issue

Latencya

a. When the instruction uses RRX in an addressing mode, one extra cycle must be added to the given latency.

Minimum Result
Latencya

Minimum Base
Writeback Latencyb

b. When an instruction needs to use the base register as Rm in a shift by immediate or as Rn in a QDADD or
QDSUB, one extra cycle must be added to the base writeback latency.

LDR,LDRB,
LDRT,LDRBT

1 3 3a

LDRD 1c

c. When a load, PLD, or CP15 operation immediately follows an LDRD, one extra cycle must be added to the issue
latency.

3 for Rd; 4 for Rd+1 1

LDRH,LDRSB,LDRSH 1 3 3

PLD 1 N/A N/A

STR,STRB,
STRT,STRBT

1 N/A 1

STRD 2 N/A 2

STRH 1 N/A 1

Table 142. Load and Store Multiple Instruction Timings

Mnemonic {..., PC}? Executed?
Minimum Issue

Latencya

a. “N” is the number of registers in the register list {R1, ... Rn}. Note that the register ordering is that imposed
by hardware and not by any software notation.

Minimum Result
Latencya

Minimum Base
Writeback
Latencya,b

b. For LDMDA, LDMIB, STMDA or STMIB with at least three registers in the list, unless it is an LDM with either
R13 or the PC in the register list, one additional cycle must be added to the given latency.

LDM

Yes
Yes max(8, 5 + N) max(8, 5 + N) max(8, 5 + N)

No max(3, 1 + N) N/A N/A

No
Yes max(3, N)

max(2 + n, N) for
load of Rn

max(3, N)

No max(3, n) N/A N/A

STM - - max(3, N) N/A max(3, N)

Table 143. Semaphore Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency

SWP, SWPB 4 4

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 229

Performance Considerations—Microarchitecture

13.4.9 Coprocessor Instructions

Table 144. CP15 Register Access Instruction Timings (Sheet 1 of 2)

Instructiona Description
Minimum Issue

Latency
Minimum

Result Latency

MRC p15, 0, Rd, c0, c0, 0

MRC p15, 1, Rd, c0, c0, 0

MRC p15, 0, Rd, c0, c0, 1

MRC p15, 1, Rd, c0, c0, 1

MRC p15, 0, Rd, c1, c0, 0

MRC p15, 0, Rd, c1, c0, 1

MRC p15, 0, Rd, c2, c0, 0

MRC p15, 0, Rd, c3, c0, 0

MRC p15, 0, Rd, c5, c0, 0

MRC p15, 0, Rd, c6, c0, 0

MRC p15, 0, Rd, c13, c0, 0

Main ID

L2 System ID

L1 Cache Type

L2 Cache Type

Control (CTRL)

Auxiliary Control (AUXCTRL)

Translation Table Base (TTBASE)

Domain Access Control (DACR)

Fault Status (FSR)

Fault Address (FAR)

Process ID (PID)

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

MRC p15, 0, Rd, c9, c6, 0 Data Cache Lock 4 4

MRC p15, 0, Rd, c14, c0, 0

MRC p15, 0, Rd, c14, c3, 0

MRC p15, 0, Rd, c14, c8, 0

MRC p15, 0, Rd, c14, c9, 0

MRC p15, 0, Rd, c14, c4, 0

Data Breakpoint (DBR0)

Data Breakpoint (DBR1)

Instruction Breakpoint (IBR0)

Instruction Breakpoint (IBR1)

Data Bkpt. Control (DBCON)

4

4

11

11

4

4

4

11

11

4

MRC p15, 0, Rd, c15, c1, 0 Coprocessor Access (CPAR) 4 4

MCR p15, 0, Rd, c1, c0, 0

MCR p15, 0, Rd, c1, c0, 1

MCR p15, 0, Rd, c2, c0, 0

MCR p15, 0, Rd, c3, c0, 0

MCR p15, 0, Rd, c5, c0, 0

MCR p15, 0, Rd, c6, c0, 0

Control

Auxiliary Control (AUX)

Translation Table Base (TTBR)

Domain Access Control (DACR)

Fault Status (FSR)

Fault Address (FAR)

12

4

4

11

4

4

N/A

N/A

N/A

N/A

N/A

N/A

MCR p15, 0, Rd, c7, c2, 5

MCR p15, 0, Rd, c7, c5, 0

MCR p15, 0, Rd, c7, c5, 1

MCR p15, 0, Rd, c7, c5, 4

MCR p15, 0, Rd, c7, c5, 6

MCR p15, 0, Rd, c7, c7, 0

MCR p15, 0, Rd, c7, c6, 0

MCR p15, 0, Rd, c7, c6, 1

MCR p15, 0, Rd, c7, c10, 1

MCR p15, 0, Rd, c7, c10, 2

MCR p15, 0, Rd, c7, c10, 4

MCR p15, 0, Rd, c7, c10, 5

MCR p15, 0, Rd, c7, c14, 1

MCR p15, 0, Rd, c7, c14, 2

MCR p15, 1, Rd, c7, c7, 1

MCR p15, 1, Rd, c7, c11, 1

MCR p15, 1, Rd, c7, c11, 2

MCR p15, 1, Rd, c7, c15, 2

Allocate Line

Invalidate I-Cache & BTB

Invalidate I-Cacheline by MVA

Prefetch Flush (PF)

Invalidate BTB

Invalidate I/D-Cache & BTB

Invalidate D-Cache

Invalidate D-Cacheline by MVA

Clean D-Cacheline by MVA

Clean D-Cacheline by set/way

Data Write Barrier (DWB)

Data Memory Barrier (DMB)

Cln/Inv D-Cacheline by MVA

Cln/Inv D-Cacheline by set/way

Invalidate L2 Cacheline by MVA

Clean L2 Cacheline by MVA

Clean L2 Cacheline by set/way

Cln/Inv L2 Cacheline by set/way

2

12

2

12

12

12

7

2

2

3

2

2

2

3

2

2

2

2

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

MCR p15, 0, Rd, c8, c5, 0

MCR p15, 0, Rd, c8, c5, 1

MCR p15, 0, Rd, c8, c6, 0

MCR p15, 0, Rd, c8, c6, 1

MCR p15, 0, Rd, c8, c7, 0

Invalidate I TLB

Invalidate I TLB Entry

Invalidate D TLB

Invalidate D TLB Entry

Invalidate I/D TLB

12

12

2

2

12

N/A

N/A

N/A

N/A

N/A

Microarchitecture—Performance Considerations

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
230 Order Number: 316283-002US

MCR p15, 0, Rd, c9, c5, 0

MCR p15, 0, Rd, c9, c5, 1

MCR p15, 0, Rd, c9, c6, 0

MCR p15, 0, Rd, c9, c6, 1

MCR p15, 1, Rd, c9, c5, 0

MCR p15, 1, Rd, c9, c5, 1

MCR p15, 1, Rd, c9, c5, 2

Fetch & Lock I-Cachelineb

Unlock I-Cache

Data Cache Lock

Unlock D-Cache

Fetch & Lock L2 Cacheline

Unlock L2 Cache

Allocate & Lock L2 Cacheline

26

12

4

7

2

2

2

N/A

N/A

N/A

N/A

N/A

N/A

N/A

MCR p15, 0, Rd, c10, c4, 0

MCR p15, 0, Rd, c10, c4, 1

MCR p15, 0, Rd, c10, c8, 0

MCR p15, 0, Rd, c10, c8, 1

Translate & Lock I TLBb

Unlock I TLB

Translate & Lock D TLBb

Unlock D TLB

15

12

19

2

N/A

N/A

N/A

N/A

MCR p15, 0, Rd, c13, c0, 0 Process ID (PID) 12 N/A

MCR p15, 0, Rd, c14, c0, 0

MCR p15, 0, Rd, c14, c3, 0

MCR p15, 0, Rd, c14, c4, 0

MCR p15, 0, Rd, c14, c8, 0

MCR p15, 0, Rd, c14, c9, 0

Data Breakpoint (DBR0)

Data Breakpoint (DBR1)

Data Bkpt. Control (DBCON)

Instruction Breakpoint (IBR0)

Instruction Breakpoint (IBR1)

4

4

4

15

15

N/A

N/A

N/A

N/A

N/A

MCR p15, 0, Rd, c15, c1, 0 Coprocessor Access (CPAR) 8 N/A

a. MRC or MCR with Rd = R15 is unpredictable
b. The latency given assumes the unified L2 cache is hit

Table 144. CP15 Register Access Instruction Timings (Sheet 2 of 2)

Instructiona Description
Minimum Issue

Latency
Minimum

Result Latency

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 231

Performance Considerations—Microarchitecture

Table 145. CP14 Register Access Instruction Timings

Mnemonic Description
Minimum Issue

Latencya
Minimum

Result Latencya

MRC p14, 0, Rd, c6, c0, 0

MRC p14, 0, Rd, c7, c0, 0

MRC p14, 0, Rd, c9, c0, 0

MRC p14, 0, Rd, c10, c0, 0

MRC p14, 0, Rd, c11, c0, 0

MRC p14, 0, Rd, c12, c0, 0

MRC p14, 0, Rd, c13, c0, 0

MRC p14, 0, Rd, c14, c0, 0

Clock Config (CCLKCFG)

Power Mode (PWRMODE)

Receive Register (RX)

Debug Control / Status (DCSR)

Trace Buffer (TBREG)

Checkpoint (CHKPT0)

Checkpoint (CHKPT1)

TX/RX Control (TXRXCTRL)

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

MRC p14, 0, Rd, c0, c1, 0

MRC p14, 0, Rd, c1, c1, 0

MRC p14, 0, Rd, c4, c1, 0

MRC p14, 0, Rd, c5, c1, 0

MRC p14, 0, Rd, c8, c1, 0

PMU Control (PMNC)

Clock Counter (CCNT)

Interrupt Enable (INTEN)

Overflow Flag Status (FLAG)

Event Select (EVTSEL)

12

12

12

12

12

12

12

12

12

12

MRC p14, 0, Rd, c0, c2, 0

MRC p14, 0, Rd, c1, c2, 0

MRC p14, 0, Rd, c2, c2, 0

MRC p14, 0, Rd, c3, c2, 0

Performance Counter (PMN0)

Performance Counter (PMN1)

Performance Counter (PMN2)

Performance Counter (PMN3)

12

12

12

12

12

12

12

12

MCR p14, 0, Rd, c6, c0, 0

MCR p14, 0, Rd, c7, c0, 0

MCR p14, 0, Rd, c8, c0, 0

MCR p14, 0, Rd, c10, c0, 0

MCR p14, 0, Rd, c12, c0, 0

MCR p14, 0, Rd, c13, c0, 0

MCR p14, 0, Rd, c14, c0, 0

Clock Config (CCLKCFG)

Power Mode (PWRMODE)

Transmit Register (TX)

Debug Control / Status (DCSR)

Checkpoint (CHKPT0)

Checkpoint (CHKPT1)

TX/RX Control (TXRXCTRL)

12

18

12

12

12

12

12

N/A

N/A

N/A

N/A

N/A

N/A

N/A

MCR p14, 0, Rd, c0, c1, 0

MCR p14, 0, Rd, c1, c1, 0

MCR p14, 0, Rd, c4, c1, 0

MCR p14, 0, Rd, c5, c1, 0

MCR p14, 0, Rd, c8, c1, 0

PMU Control (PMNC)

Clock Counter (CCNT)

Interrupt Enable (INTEN)

Overflow Flag Status (FLAG)

Event Select (EVTSEL)

12

12

12

12

12

N/A

N/A

N/A

N/A

N/A

MCR p14, 0, Rd, c0, c2, 0

MCR p14, 0, Rd, c1, c2, 0

MCR p14, 0, Rd, c2, c2, 0

MCR p14, 0, Rd, c3, c2, 0

Performance Counter (PMN0)

Performance Counter (PMN1)

Performance Counter (PMN2)

Performance Counter (PMN3)

12

12

12

12

N/A

N/A

N/A

N/A

STC p14, c6, <addr_mode>

STC p14, c7, <addr_mode>

STC p14, c9, <addr_mode>

STC p14, c10, <addr_mode>

STC p14, c11, <addr_mode>

STC p14, c12, <addr_mode>

STC p14, c13, <addr_mode>

STC p14, c14, <addr_mode>

Clock Config (CCLKCFG)

Power Mode (PWRMODE)

Receive Register (RX)

Debug Control / Status (DCSR)

Trace Buffer (TBREG)

Checkpoint (CHKPT0)

Checkpoint (CHKPT1)

TX/RX Control (TXRXCTRL)

12

12

12

12

12

12

12

12

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

LDC p14, c6, <addr_mode>

LDC p14, c7, <addr_mode>

LDC p14, c8, <addr_mode>

LDC p14, c10, <addr_mode>

LDC p14, c12, <addr_mode>

LDC p14, c13, <addr_mode>

LDC p14, c14, <addr_mode>

Clock Config (CCLKCFG)

Power Mode (PWRMODE)

Transmit Register (TX)

Debug Control / Status (DCSR)

Checkpoint (CHKPT0)

Checkpoint (CHKPT1)

TX/RX Control (TXRXCTRL)

25

25

15

15

15

15

15

N/A

N/A

N/A

N/A

N/A

N/A

N/A

a. When the MRC destination register is R15 then one additional cycle must be added to the latency given.

Microarchitecture—Performance Considerations

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
232 Order Number: 316283-002US

Table 146. CP7 Register Access Instruction Timings

Mnemonic Description
Minimum Issue

Latencya

a. When the MRC destination register is R15 then one additional cycle must be added to the latency given.

Minimum
Result Latencya

MRC p7, 0, Rd, c0, c2, 0

MRC p7, 0, Rd, c1, c2, 0

MRC p7, 0, Rd, c2, c2, 0

L2 Cache / BIU Error Log (ERRLOG)

Error Address Lower (ERRADRL)

Error Address Upper (ERRADRU)

14

14

14

14

14

14

MCR p7, 0, Rd, c0, c2, 0

MCR p7, 0, Rd, c1, c2, 0

MCR p7, 0, Rd, c2, c2, 0

L2 Cache / BIU Error Log (ERRLOG)

Error Address Lower (ERRADRL)

Error Address Upper (ERRADRU)

14

14

14

N/A

N/A

N/A

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 233

Performance Considerations—Microarchitecture

13.4.10 Miscellaneous Instruction Timing

13.4.11 Thumb Instructions

With the exception of the Thumb BL and BLX(1) instructions, the instructions timings
are the same as their equivalent ARM instructions. The mapping of Thumb instructions
to ARM instructions is found in the ARM Architecture Version 5TE Specification.

Table 147. Exception-Generating Instruction Timings

Mnemonic Minimum latency to first instruction of exception handler

SWI 7

BKPT 7

UNDEFINED 7

Table 148. Count Leading Zeros Instruction Timings

Mnemonic Minimum Issue Latencya

a. When the next instruction needs to use the result of the CLZ as Rm in a shift by immediate or as Rn in a QDADD
or QDSUB, one extra cycle must be added to the given latency.

Minimum Result Latencya

CLZ 1 1

Table 149. Thumb Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency (R14)

BL, BLX(1) 2 3

Microarchitecture—Performance Considerations

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
234 Order Number: 316283-002US

13.4.12 Result Latency Summary

Figure 25, “3rd Generation Microarchitecture Pipeline Data Flow”, shows the data flow
in the pipeline responsible for the result latencies. ALU and MAC operations are
bypassed from the X1 stage and are available to the instruction in the next issue cycle.
When a shifted operand is required for an instruction, an extra cycle is required before
the data is made available through the shifter. This includes load and store addressing
modes that involve shifter operations. Certain instructions always return the data
through the shifter path such as loads and the saturated DSP extensions.

Figure 25. 3rd Generation Microarchitecture Pipeline Data Flow

ALU

Sat

M
A

C
 (

2-
4

cy
cl

es
)

RF

MUX

MUX

Shifter

MUX
X2

WB

X1

ID

RF

F1

RF Write
 Port 1

RF Write
 Port 2

DWB

F2

MUX

btb

RF Write
Port 3

In
st

ru
ct

io
n

C
ac

he

D
at

a
C

ac
he

ID

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 235

Performance Considerations—Microarchitecture

13.4.13 Shifter Latency Summary

A result dependency is created when an output register from one instruction is used as
a source register in a following instruction. The following instruction becomes
dependent on the result of the source instruction. The common register causing the
dependency is referred to as the dependent register or simply as the dependency.

A shifter stall results when the Cycle Distance from the source instruction to the
dependent instruction is less than the Minimum Result latency for the dependency
when used as a shifter source operand.

Table 150, “Shifter Dependencies” shows a list of source and dependent instructions
that result in an additional cycle of result latency. The additional cycle of result latency
ends in a shifter dependency stall. Instructions are scheduled accordingly. Addressing
modes and register mnemonics are as defined in the ARM Architecture Version 5TE
Specification.

Table 150. Shifter Dependencies

Source Instruction Dependency Dependent Instruction Dependency

ADC,ADD,AND,BIC,
EOR,MOV,MVN,ORR,
RSB,RSC,SBC,SUB,
MLA,MUL,CLZ,

SMLAxy,SMLAWy,
SMULWy,SMULxy

Rd

ADC, ADD, AND,
BIC,
EOR, MOV, MVN,
ORR,
RSB, RSC, SBC,
SUB,
LDR, LDRB, LDRT,
LDRBT
LDRD, LDRH, LDRSB,
LDRSH
STR, STRB, STRT,
STRBT
STRD, STRH, PLD

using shift by immediate

Rm

LDR,LDRB,LDRT,LDRBT
LDRD,LDRH,LDRSB,LDRSH
STR,STRB,STRT,STRBT
STRD,STRH,PLD

using pre-indexed or post-
indexed addressing modes

Rn

QDADD, QDSUB

shift implicit in instruction
Rn

UMULL,SMULL,SMLAL,UMLAL,
SMLALxy

RdLo,
RdHi

Microarchitecture—Optimization Guide

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
236 Order Number: 316283-002US

Appendix A Optimization Guide

A.1 Introduction

This document contains optimization techniques for achieving the highest performance
from 3rd generation Intel XScale® microarchitecture (3rd generation microarchitecture
or 3rd generation). It is written for developers who are optimizing compilers or
performance analysis tools for this processor. It is also used by application developers
to obtain the best performance from their assembly language code.

The instruction set is based on the ARM Architecture Version 5TE Specification with
some additional instructions. Code generated for the v5TE processor and processors
based on the previous generation Intel XScale® microarchitecture, execute on this
3rd generation microarchitecture; however, to obtain the maximum performance of
application code, please optimize for 3rd generation microarchitecture.

A.1.1 Quick Start for Optimization

Techniques to get significant software speed-ups with least amount of work include:

• Scheduling memory operations: “Load and Store Instructions” on page 274

• Enabling hardware optimization features such as the L2 cache and BTB

• Preload data when possible: “Preload Considerations” on page 268

• Avoiding shifter dependencies: “Scheduling Data Processing Instructions” on
page 281

Readers with the time and inclination benefit from reading all sections of this document
and applying the techniques described therein.

A.1.2 About This Guide

This guide assumes that the user is familiar with the ARM instruction set and the
C language. It consists of the following sections:

• Section A.1, “Introduction”. Outlines the contents of this guide.

• Section A.2, “3rd Generation Microarchitecture Pipeline”. Provides an overview of
pipeline behavior.

• Section A.3, “Basic Optimizations”. Outlines basic optimizations that are applied.

• Section A.4, “Cache and preload Optimizations”. Contains optimizations for efficient
use of caches. Also included are optimizations that take advantage of the preload
instructions.

• Section A.5, “Instruction Scheduling”. Shows how to optimally schedule code for
the pipeline.

• Section A.6, “Optimizing C Libraries”. Contains information relating to C library
routine optimizations.

• Section A.7, “Optimizations for Size”. Contains optimizations that reduce the size of
the generated code. Thumb optimizations are also included.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 237

Optimization Guide—Microarchitecture

A.2 3rd Generation Microarchitecture Pipeline

This section provides a brief description of the structure and behavior of
3rd generation microarchitecture pipeline.

A.2.1 General Pipeline Characteristics

While the processor is scalar and in-order issue, instructions occupies the main pipeline
and both sub-pipelines at once (See Figure 26, “Pipeline Diagram” on page 238). Out of
order completion is possible. The following sections discuss general pipeline
characteristics.

A.2.1.1 Number of Pipeline Stages

The processor has a long pipeline (7 stages) which operates at a higher frequency than
its predecessors. This allows for greater overall performance. The long pipeline has
some drawbacks however:

• Large branch misprediction penalty (four cycles). This is mitigated by dynamic
branch prediction.

• Load use delay (LUD). LUDs arise from load-use dependencies. A load-use
dependency gives rise to a LUD when the result of the load instruction cannot be
made available by the pipeline in time for the dependent instruction. An optimizing
compiler finds independent instructions to fill the slot following the load.

Microarchitecture—Optimization Guide

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
238 Order Number: 316283-002US

A.2.1.2 Pipeline Organization

The single-issue pipeline consists of a main execution pipeline, MAC pipeline, and a
memory access pipeline. These are shown in Figure 26, with the main execution
pipeline shaded.

Table 151 gives a brief description of each pipe-stage.

Figure 26. Pipeline Diagram

Mx

F1 F2 ID RF X1 X2 WB

M1 M2

D1 D2 DWB

Main execution pipeline

MAC pipeline

Memory pipeline

Table 151. Pipelines and Pipe Stages

Pipe / Pipestage Description Covered In

Main Execution Pipeline Handles data processing instructions Section A.2.3

F1/F2 Instruction Fetch “

ID Instruction Decode “

RF Register File / Operand Shifter “

X1 ALU Execute “

X2 State Execute “

WB Write-back “

Memory Pipeline Handles load/store instructions Section A.2.4

D1/D2 Data Cache Access “

DWB Data cache writeback “

MAC Pipeline Handles all multiply instructions Section A.2.5

M1-M4 Multiplier stages “

MWB MAC write-back (occur during M3-M5) “

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 239

Optimization Guide—Microarchitecture

A.2.1.3 Out Of Order Completion

The microarchitecture issues instructions in-order, but the main execution pipeline,
memory, and MAC pipelines are not lock-stepped and therefore have different
execution times. This means that instructions finish out of program order. Short
‘younger’ instructions are finished earlier than long ‘older’ ones. (The term ‘to finish’ is
used here to indicate that the operation has been completed and the result has been
written back to the register file.)

Programmers need not worry about correctness being affected by out of order
completion. The processor preserves effective program order of execution even though
instructions complete out of order.

A.2.1.4 Register Scoreboarding

In certain situations, the pipeline needs to be stalled because of register dependencies
between instructions. A register dependency occurs when a previous MAC or load
instruction is about to modify a register value that has not been returned to the register
file and the current instruction needs access to the same register. When no register
dependencies exist, the pipeline need not be stalled. For example, when a load
operation has missed the data cache, subsequent instructions that do not depend on
the load completes independently.

A.2.1.5 Use of Bypassing

The pipeline makes extensive use of bypassing to minimize data hazards. Bypassing
allows result forwarding from multiple sources reducing the need to stall the pipeline.

Microarchitecture—Optimization Guide

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
240 Order Number: 316283-002US

A.2.2 Instruction Flow Through the Pipeline

The 3rd generation microarchitecture pipeline typically issues a single instruction per
clock cycle. Instruction execution begins at the F1 pipestage and completes at the WB
pipestage.

Although a single instruction is issued per clock cycle, all three sub-pipelines (MAC,
memory, and main execution) are processing instructions simultaneously. When there
are no data dependencies then each instruction completes independently of the others.

Each pipestage takes a single clock cycle or machine cycle to perform its subtask with
the exception of the MAC unit.

A.2.2.1 Instruction Execution

Figure 26 uses arrows to show the possible flow of instructions in the pipeline.
Instruction execution flows from the F1 pipestage to the RF pipestage. The RF
pipestage issues a single instruction to either the X1 pipestage or the MAC unit
(multiply instructions go to the MAC while all others continue to X1). This means that
M1 or X1 are idle.

All load/store instructions are routed to the memory pipeline after the effective
addresses have been calculated in X1.

Indirect branches, mispredicted direct branches, and exceptions cause the F1, F2, ID,
RF, and X1 stages of the pipeline to be flushed.

When the processor is in Thumb mode then the ID pipestage dynamically expands each
Thumb instruction into a normal ARM instruction, and execution continues as usual.

A.2.2.2 Pipeline Stalls

The progress of an instruction stalls anywhere in the pipeline. Several pipestages stalls
for various reasons. It is important to understand when and how hazards occur in the
pipeline. Performance degradation is significant when care is not taken to minimize
pipeline stalls.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 241

Optimization Guide—Microarchitecture

A.2.3 Main Execution Pipeline

A.2.3.1 F1 / F2 (Instruction Fetch) Pipestages

The job of the instruction fetch stages F1 and F2 is to present the next instruction to be
executed to the ID stage. Several important functional units reside within the F1 and F2
stages including:

• Branch Target Buffer (BTB)

• Instruction Fetch Unit (IFU)

An understanding of the BTB (See Chapter 5.0, “Branch Target Buffer”) and IFU are
important for performance considerations. A summary of operation is provided here so
that the reader understands its role in the F1 pipestage.

• Branch Target Buffer (BTB)

The BTB predicts the outcome of branch type instructions. Once a branch type
instruction reaches the X1 pipestage, its target address is known. When this
address is different from the address that the BTB predicted the pipeline is flushed,
execution starts at the new target address, and the branch’s history is updated in
the BTB.

• Instruction Fetch Unit (IFU)

The IFU is responsible for delivering instructions to the instruction decode (ID)
pipestage. One instruction word is delivered each cycle (when possible) to the ID.
The instruction comes from one of two sources: instruction cache or fetch buffers.

A.2.3.2 ID (Instruction Decode) Pipestage

The ID pipestage accepts an instruction word from the IFU and sends register decode
information to the RF pipestage. The ID is able to accept a new instruction word from
the IFU on every clock cycle in which there is no stall. The ID pipestage is responsible
for:

• General instruction decoding (extracting the opcode, operand addresses,
destination addresses, and the offset).

• Detecting undefined instructions and generating an exception.

• Dynamic expansion of complex instructions into sequence of simple instructions.
Complex instructions are defined as ones that take more than one clock cycle to
issue, such as LDM, STM, and SWP.

Microarchitecture—Optimization Guide

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
242 Order Number: 316283-002US

A.2.3.3 RF (Register File / Shifter) Pipestage

The main function of the RF pipestage is to read and write to the register file unit, or
RFU. It provides source data for:

• ALU operations

• Multiply operations

• Memory writes

• Coprocessor operations

The ID unit decodes the instruction and specifies which registers are accessed in the
RFU. Based upon this information, the RFU determines when it needs to stall the
pipeline due to a register dependency. A register dependency occurs when a previous
instruction is about to modify a register value that has not been returned to the RFU
and the current instruction needs to access that same register. When no dependencies
exist, the RFU selects the appropriate data from the register file and pass it to the next
pipestage. When a register dependency does exist, the RFU keeps track of which
register is unavailable and when the result is returned the RFU stops stalling the pipe.

The ARM architecture specifies that one of the operands for data processing
instructions as the shifter operand, where a 32-bit shift is performed before it, is used
as an input to the ALU. This shifter is located in the second half of the RF pipestage.

A.2.3.4 X1 (Execute) Pipestage

The X1 pipestage performs the following functions:

• ALU calculation - the ALU performs arithmetic and logic operations as required for
data processing instructions and load/store index calculations.

• Determine conditional instruction execution - The instruction condition is compared
to the CPSR prior to execution of each instruction. Any instruction with a false
condition is cancelled, and does not cause any architectural state changes including
modifications of registers, memory, and PSR.

• Branch target determination - When a branch was mispredicted by the BTB, the X1
pipestage flushes all of the instructions in the previous pipestages and sends the
branch target address to the BTB, which restarts the pipeline

A.2.3.5 X2 (Execute 2) Pipestage

The X2 pipestage contains the program status registers (PSRs). This pipestage selects
what is going to be written to the RFU in the WB cycle: PSRs (MRS instruction), ALU
output, or other items.

A.2.3.6 WB (write-back)

When an instruction has reached the write-back stage, it is considered complete.
Changes are written to the RFU.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 243

Optimization Guide—Microarchitecture

A.2.4 Memory Pipeline

The memory pipeline consists of two stages: D1 and D2. The data cache unit, or DCU,
consists of the data-cache array and buffers. The memory pipeline handles load / store
instructions.

A.2.4.1 D1 and D2 Pipestage

Operation begins in D1 after the X1 pipestage has calculated the effective address for
load/stores. The data cache returns the destination data in the D2 pipestage. Before
data is returned in the D2 pipestage sign extension and byte alignment occurs for byte
and half-word loads.

A.2.5 Multiply/Multiply Accumulate (MAC) Pipeline

The multiply-accumulate unit, or MAC, executes the multiply and multiply-accumulate
instructions supported by Intel XScale® microarchitecture. The MAC implements the
40-bit accumulator register acc0, and handles the instructions which transfer its value
to and from general-purpose ARM registers.

The following are important characteristics about the MAC:

• The MAC is not truly pipelined, as the processing of a single instruction requires use
of the same datapath resources for several cycles before a new instruction is
accepted. The type of instruction and source arguments determines the number of
cycles required.

• No more than two instructions occupy the MAC pipeline concurrently.

• When the MAC is processing an instruction, another instruction does not enter M1
unless the original instruction completes in the next cycle.

• The MAC unit operates on 16-bit packed signed data. This reduces register
pressure and memory traffic size. Two 16-bit data items are loaded into a register
with one LDR.

• The MAC achieves throughput of one multiply per cycle when performing a 16- by
32-bit multiply.

A.2.5.1 Behavioral Description

The execution of the MAC unit starts at the beginning of the M1 pipestage where it
receives two 32-bit source operands. Results are completed N cycles later (where N is
dependent on the operand size) and returned to the register file. For more information
on MAC instruction latencies refer to Section 13.4, “Instruction Latencies”.

An instruction that occupies the M1 pipestage also occupies the X1 pipestage. Each
cycle, a MAC operation progresses from M1 to M4. A MAC operation completes
anywhere from M2 to M4. When a MAC operation enters M3, it is considered committed
because it modifies architectural state regardless of subsequent events.

Microarchitecture—Optimization Guide

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
244 Order Number: 316283-002US

A.3 Basic Optimizations

This section outlines optimizations specific to the ARM architecture. These
optimizations have been modified to suit the 3rd generation microarchitecture where
needed.

A.3.1 Conditional Instructions

The processor provides the ability to execute instructions conditionally. This feature
combined with the ability of instructions to modify the condition codes makes possible a
wide array of optimizations.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 245

Optimization Guide—Microarchitecture

A.3.1.1 Optimizing Condition Checks

Some instructions modify the condition codes state. When generating if-else code and
loop conditions, it is often beneficial to make use of this feature to set condition codes,
thereby eliminating the need for a subsequent compare instruction. Consider the C
code fragment:

if (a + b) ...;

Code generated for the if condition without using an add instruction to set condition
codes is:

;Assume r0 contains the value a, and r1 contains the value b

add r0, r0, r1

cmp r0, #0

However, code is optimized as follows making use of the add instruction to set condition
codes:

;Assume r0 contains the value a, and r1 contains the value b

adds r0, r0, r1

The instructions that increment or decrement the loop counter are also used to modify
the condition codes. This eliminates the need for a subsequent compare instruction. A
conditional branch instruction is then used to exit or continue with the next loop
iteration.

Consider the following C code segment:

for (i = 10; i != 0; i--)

{

do something;

}

The optimized code generated for the above code segment looks like:

mov r3, #10

L6:

.

.

subs r3, r3, #1

bne .L6

Microarchitecture—Optimization Guide

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
246 Order Number: 316283-002US

It is also beneficial to rewrite loops whenever possible so as to make the loop exit
conditions check against the value 0. For example, the code generated for the code
segment below needs a compare instruction to check for the loop exit condition.

for (i = 0; i < 10; i++)

{

do something;

}

When the loop were rewritten as follows, the code generated avoids using the compare
instruction to check for the loop exit condition.

for (i = 9; i >= 0; i--)

{

do something;

}

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 247

Optimization Guide—Microarchitecture

A.3.1.2 Optimizing Branches

Branches decrease application performance by indirectly causing pipeline stalls. Branch
prediction improves the performance by lessening the delay inherent in fetching a new
instruction stream. The number of branches that accurately predicted is limited by the
size of the branch target buffer. Since the total number of branches executed in a
program is relatively large compared to the size of the branch target buffer; it is often
beneficial to minimize the number of branches in a program. Consider the following C
code segment.

int foo(int a)

{

if (a > 10)

return 0;

else

return 1;

}

The code generated for the if-else portion of this code segment using branches is:

cmp r0, #10

ble L1

mov r0, #0

b L2

L1:

mov r0, #1

L2:

Microarchitecture—Optimization Guide

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
248 Order Number: 316283-002US

The code generated above takes three cycles to execute the else-part and four cycles
for the if-part, assuming best case conditions and no branch misprediction penalties. In
the case of this generation of the microarchitecture, a branch misprediction incurs a
penalty of four cycles. When the branch is mispredicted 50% of the time, and when
assumed that both the if-part and the else-part are equally likely to be taken, on an
average the code above takes 5.5 cycles to execute.

.

When using 3rd generation microarchitecture to execute instructions conditionally, the
code generated for the above if-else statement is:

cmp r0, #10

movgt r0, #0

movle r0, #1

The above code segment does not incur any branch misprediction penalties and takes
three cycles to execute assuming best case conditions. As is seen, using conditional
instructions speeds up execution significantly. However, the use of conditional
instructions are carefully considered to ensure that it does improve performance. To
decide when to use conditional instructions over branches consider the following
hypothetical code segment:

if (cond)

if_stmt

else

else_stmt

50
100
------ 4

3 4+
2

---------+×
⎝ ⎠
⎛ ⎞ 5.5= cycles

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 249

Optimization Guide—Microarchitecture

Assume that having the following data:

N1B Number of cycles to execute the if_stmt assuming the use of branch instructions

N2B Number of cycles to execute the else_stmt assuming the use of branch instructions

P1 Percentage of times the if_stmt is likely to be executed

P2 Percentage of times to likely incur a branch misprediction penalty

N1C Number of cycles to execute the if-else portion using conditional instructions
assuming the if-condition to be true

N2C Number of cycles to execute the if-else portion using conditional instructions
assuming the if-condition to be false

Once the above data is had, use conditional instructions when:

The following example illustrates a situation which is better off using branches over
conditional instructions. Consider the code sample shown below:

cmp r0, #0

bne L1

add r0, r0, #1

add r1, r1, #1

add r2, r2, #1

add r3, r3, #1

add r4, r4, #1

b L2

L1:

sub r0, r0, #1

sub r1, r1, #1

sub r2, r2, #1

sub r3, r3, #1

sub r4, r4, #1

L2:

N1C
P1
100
------×

⎝ ⎠
⎛ ⎞ N2C

100 P1–
100

---------------×
⎝ ⎠
⎛ ⎞ N1B

P1
100
------×

⎝ ⎠
⎛ ⎞ N2B

100 P1–
100

---------------×
⎝ ⎠
⎛ ⎞ P2

100
------ 4×

⎝ ⎠
⎛ ⎞+ +≤+

Microarchitecture—Optimization Guide

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
250 Order Number: 316283-002US

In the above code sample, the cmp instruction takes 1 cycle to execute, the if-part
takes 7 cycles to execute, and the else-part takes 6 cycles to execute. When changing
the code above so as to eliminate the branch instructions by making use of conditional
instructions, the if-else part always takes 10 cycles to complete.

When making the assumptions that both paths are equally likely to be taken and that
branches are mis-predicted 50% of the time, the costs of using conditional execution
vs. using branches is computed as follows:

Cost of using conditional instructions:

Cost of using branches:

As is seen, there is better performance by using branch instructions in the above
scenario.

1
50

100
------ 10×

⎝ ⎠
⎛ ⎞ 50

100
------ 10×

⎝ ⎠
⎛ ⎞+ + 11= cycles

1
50

100
------ 7×

⎝ ⎠
⎛ ⎞ 50

100
------ 6×

⎝ ⎠
⎛ ⎞ 50

100
------ 4×

⎝ ⎠
⎛ ⎞+ + + 9.5= cycles

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 251

Optimization Guide—Microarchitecture

A.3.1.3 Optimizing Complex Expressions

Conditional instructions are also used to improve the code generated for complex
expressions such as the C shortcut evaluation feature. Consider the following C code
segment:

int foo(int a, int b)

{

if (a != 0 && b != 0)

return 0;

else

return 1;

}

The optimized code for the if condition is:

cmp r0, #0

cmpne r1, #0

Similarly, the code generated for the following C segment

int foo(int a, int b)

{

if (a != 0 || b != 0)

return 0;

else

return 1;

}

is:

cmp r0, #0

cmpeq r1, #0

The use of conditional instructions in the above fashion improves performance by
minimizing the number of branches thereby minimizing the penalties caused by branch
mispredictions. This approach also reduces the utilization of branch prediction
resources.

Microarchitecture—Optimization Guide

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
252 Order Number: 316283-002US

A.3.2 Bit Field Manipulation

Shift and logical operations provide a useful way of manipulating bit fields. Bit field
operations are optimized as follows:

;Set the bit number specified by r1 in register r0

mov r2, #1

orr r0, r0, r2, asl r1

;Clear the bit number specified by r1 in register r0

mov r2, #1

bic r0, r0, r2, asl r1

;Extract the bit-value of the bit number specified by r1 of the

;value in r0 storing the value in r0

mov r1, r0, asr r1

and r0, r1, #1

;Extract the higher order 8 bits of the value in r0 storing

;the result in r1

mov r1, r0, lsr #24

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 253

Optimization Guide—Microarchitecture

A.3.3 Optimizing the Use of Immediate Values

MOV or MVN instructions are used when loading an immediate (constant) value into a
register. Please refer to the ARM Architecture Version 5TE Specification for the set of
immediate values that are used in a MOV or MVN instruction. It is also possible to
generate a whole set of constant values using a combination of MOV, MVN, ORR, BIC,
ADD, and related instructions.

A LDR instruction is used to load a constant from memory; this is not always the
highest performance method of creating an immediate value. The LDR instruction has
the potential of incurring a cache miss in addition to polluting the data and instruction
caches. Programmers thus avoid using a LDR instruction to load a constant when a
sequence of one or two data-processing instructions are instead used.

The code samples below illustrate cases where a combination of the above instructions
are used to set a register to a constant value:

;Set the value of r0 to 127

mov r0, #127

;Set the value of r0 to 0xfffffefb.

mvn r0, #260

;Set the value of r0 to 257

mov r0, #1

orr r0, r0, #256

;Set the value of r0 to 0x51f

mov r0, #0x1f

orr r0, r0, #0x500

;Set the value of r0 to 0xf100ffff

mvn r0, #0xff, 16

bic r0, r0, #0xe, 8

; Set the value of r0 to 0x12341234

mov r0, #0x8d, 30

orr r0, r0, #0x1, 20

add r0, r0, r0, LSL #16 ; shifter delay of 1 cycle

Note: It is possible to load any 32-bit value into a register using a sequence of at most four
instructions.

Microarchitecture—Optimization Guide

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
254 Order Number: 316283-002US

A.3.4 Optimizing Integer Multiply and Divide

Multiplication by an integer constant is optimized to make use of the shift operation
whenever possible.

;Multiplication of r0 by 2n

mov r0, r0, LSL #n

;Multiplication of R0 by 2n+1

add r0, r0, r0, LSL #n

Multiplication by an integer constant that is expressed as is similarly
optimized as:

;Multiplication of r0 by an integer that is

;expressed as (2n+1)*(2m)

add r0, r0, r0, LSL #n

mov r0, r0, LSL #m

Please note that the above optimization is only used in cases where the multiply
operation cannot be advanced far enough to prevent pipeline stalls.

Dividing an unsigned integer by an integer constant is optimized to make use of the
shift operation whenever possible.

;Dividing r0 containing an unassigned value by an integer constant

;that is represented as 2n

mov r0, r0, LSR #n

Dividing a signed integer by an integer constant is optimized to make use of the shift
operation whenever possible.

;Dividing r0 containing a signed value by an integer constant

;that is represented as 2n

mov r1, r0, ASR #31

add r0, r0, r1, LSR #(32 - n)

mov r0, r0, ASR #n

The ADD instruction stalls for 1 cycle. The stall is prevented by filling in another
instruction before the ADD.

2
n

1+() 2
m()⋅

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 255

Optimization Guide—Microarchitecture

A.3.5 Effective Use of Addressing Modes

The processor provides a variety of addressing modes that make indexing an array of
objects highly efficient. For a detailed description of these addressing modes please
refer to the ARM Architecture Version 5TE Specification. The following code samples
illustrate how various kinds of array operations are optimized to make use of these
addressing modes:

;Set the contents of the word pointed to by r0 to the value

;contained in r1 and make r0 point to the next word

str r1, [r0], #4

;Increment the contents of r0 to make it point to the next word

;and set the contents of the word pointed to the value contained

;in r1

str r1, [r0, #4]!

;Set the contents of the word pointed to by r0 to the value

;contained in r1 and make r0 point to the previous word

str r1, [r0], #-4

;Decrement the contents of r0 to make it point to the previous

;word and set the contents of the word pointed to the value

;contained in r1

str r1, [r0, #-4]!

Microarchitecture—Optimization Guide

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
256 Order Number: 316283-002US

A.4 Cache and preload Optimizations

The caches are limited resources and need to be effectively managed to obtain
optimum application performance. This section considers how to use the various cache
memories in all their modes and examines when and how to use preload to improve
execution efficiencies.

A.4.1 L1 Instruction Cache

The Intel XScale® microarchitecture has separate L1 instruction and L1 data caches.
Only fetched instructions are held in the instruction cache even though both data and
instructions reside within the same memory space with each other. Functionally, the
instruction cache is either enabled or disabled. There is no performance benefit of not
using the instruction cache.

A.4.1.1 Cache Miss Cost

Performance is highly dependent on reducing the cache miss rate. Refer to the
implementation options section of the relevant product documentation for more
information on the cycle penalty associated with cache misses. Note that this cycle
penalty becomes significant when the processor is running much faster than external
memory. This penalty is mitigated by use of the unified L2 cache. Executing non-cached
instructions severely curtails the processor performance in this case and it is very
important to do everything possible to minimize cache misses.

A.4.1.2 Pseudo-LRU Replacement Cache Policy

Both the L1 instruction and L1 data caches use a pseudo-LRU replacement policy to
evict a cache line. The simple consequence of this is that at sometime every line is
evicted assuming a non-trivial program. The less obvious consequence is that
predicting when and over which cache lines evictions take place is difficult to predict.
This information must be gained by experimentation using performance profiling.

A.4.1.3 Code Placement to Reduce Instruction Cache Misses

Code placement greatly affects cache misses.

One way to view the L1 instruction cache is as a collection of 256 sets, each of which is
fixed at an address (modulo 8192). Elements of a set are 32-byte lines. For example,
set 0 contains instructions at address 0x0..0x1F, or at address 0x2000..0x201F, or at
address 0x4000..0x401F, etc.

Each set contains up to four lines at its address. When a fifth line of code is needed that
maps into that set, then one of the existing lines must be displaced.

Code that exhibits a high degree of spatial locality relative to any set causes excessive
cache line evictions (thrashing the cache). The ideal situation is for the software tools
to distribute the code to achieve a low spatial locality over this space.

This is very difficult when not impossible for a compiler to do. Most of the input needed
to best estimate how to distribute the code comes from profile based compiler
optimizations.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 257

Optimization Guide—Microarchitecture

A.4.1.4 Locking Code into Instruction Cache

One very important instruction cache feature is the ability to lock code into the
instruction cache. Once locked into the instruction cache, the code is always available
for fast execution. Another reason for locking critical code into cache is that with only
four ways per set, the pseudo-LRU replacement policy “age out” the code even when it
is a very frequently executed function. Key code components to consider for locking
are:

• Interrupt handlers

• Real time clock handlers

• OS critical code

• Time critical application code

The disadvantage to locking code into the cache is that it reduces the cache size for the
rest of the program. This results in thrashing the remaining cache. How much code to
lock is very application dependent and requires experimentation to optimize.

Code locked into the instruction cache is placed sequentially together as tightly as
possible so as not to waste precious cache space. Making the code sequential also
ensures even distribution across all cache ways. Though it is possible to choose
randomly located functions for cache locking, this approach runs the risk of locking
multiple cache ways in one set and few or none in another set. This distribution
unevenness leads to excessive thrashing of the instruction cache.

Microarchitecture—Optimization Guide

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
258 Order Number: 316283-002US

A.4.2 L1 Data Cache

The microarchitecture allows the user to define memory regions whose cache policies
are set by the user (see Section 6.2.3, “Cache Policies”). To support allocating variables
to these various memory regions, the tool chain (compiler, assembler, linker, and
debugger) must implement named sections.

The performance of the application code depends on what cache policy is being used
for data objects. Guidelines on when to use a particular policy are described below.

When the application is running under an OS, then the OS restricts using certain cache
policies.

A.4.2.1 Cache Conflicts, Pollution and Pressure

Cache pollution occurs when unused data is loaded in the cache and cache pressure
occurs when data that is not temporal to the current process is loaded into the cache.
For an example see Section A.4.5.2, “Preload Loop Scheduling” below.

A.4.2.2 Write-through and Write-back Cached Memory Regions

Write-through memory regions generate more second level memory traffic, therefore,
it is recommended that use of write-through be minimized. This additional traffic is
mitigated by use of the unified L2 cache. The write back policy, however, is used
whenever possible. When a memory region is marked shareable, the L1 data cache
policy for that region is forced to write-through to maintain data coherency.

One reason that system software designates a page as write-through (or uncacheable)
is that the target memory needs to be coherent with the contents of the cache. For
example, data that is updated by a DMA device is marked as uncacheable so that
software running on the microarchitecture always sees the latest updated value in that
memory.

On products where I/O-coherency is enabled, consider using that facility to keep the
microarchitecture view of memory synchronized with other readers/writers. Keeping
coherent with I/O coherency is higher performance than using reduced cacheability.
See 3.2.3.2 for details on enabling shared memory. Also, consult your product
documentation to see when it enables coherency.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 259

Optimization Guide—Microarchitecture

A.4.2.3 L1 Data Cache Organization

Stride, the way data structures are walked through, affects the temporal quality of the
data and reduce or increase cache conflicts. The Intel XScale® microarchitecture data
cache has 256 sets of 32 bytes. This means that each cache line in a set is on a modulo
8 KB address boundary. The caution is to choose data structure sizes and stride
requirements that do not overwhelm a given set causing conflicts and increased
register pressure.

Register pressure is increased because additional registers are required to track
preload addresses. The effects are affected by rearranging data structure components
to use more parallel access to search and compare elements. Similarly rearranging
sections of data structures so that sections often written fit in the same cache line,
32 bytes reduces cache eviction write-backs. On a global scale, techniques such as
array merging enhance the spatial locality of the data.

As an example of array merging, consider the following code:

int a[NMAX];

int b[NMAX];

int i, ix;

for (i=0; i < NMAX; i++)

{

ix = b[i];

if (a[i] != 0)

ix = a[i];

do_other calculations;

}

Microarchitecture—Optimization Guide

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
260 Order Number: 316283-002US

In the above code, data is read from both arrays a and b, but a and b are not spatially
close. Array merging places a and b spatially close.

struct {

int a;

int b;

} c[NMAX];

int i, ix;

for (i=0; i < NMAX; i++)

{

ix = c[i].b;

if (c[i].a != 0)

ix = c[i].a;

do_other_calculations;

}

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 261

Optimization Guide—Microarchitecture

As an example of rearranging often written to sections in a structure, consider the code
sample:

struct employee {

struct employee *prev;

struct employee *next;

float Year2DatePay;

float Year2DateTax;

int ssno;

int empid;

float Year2Date401KDed;

float Year2DateOtherDed;

};

In the data structure shown above, the fields Year2DatePay, Year2DateTax,
Year2Date401KDed, and Year2DateOtherDed are likely to change with each pay check.
The remaining fields however change very rarely. When the fields are laid out as shown
above, assuming that the structure is aligned on a 32-byte boundary, modifications to
the Year2Date fields is likely to use two memory buffers when the data is written out to
memory. However, restrict the number of write buffers that are commonly used to one
by rearranging the fields in the above data structure as shown below:

struct employee {

struct employee *prev;

struct employee *next;

int ssno;

int empid;

float Year2DatePay;

float Year2DateTax;

float Year2Date401KDed;

float Year2DateOtherDed;

};

Microarchitecture—Optimization Guide

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
262 Order Number: 316283-002US

A.4.2.4 Cache Line Preallocation

The 3rd generation microarchitecture L1 cache only allocates space for new data (a
line) when it processes a read transaction. Writes to the cache do not allocate a line.
This policy is called read allocate.

In some cases, it is known in advance that a large amount of generated data is read
back in and processed again. The read allocate cache policy causes data in this
situation to be written out, missing the cache, and read back, possibly causing cache
line evictions.

The way to reduce bandwidth, in this case, is to preallocate the cache space for data in
question. The generated data then hits the cache and is read back without causing a
second level memory request. Eventually the data is written out but only one memory
request is made per cache line instead of three.

There are several ways to preallocate a line:

• with a read to the line

• with a PLD instruction

• with a line-allocate operation (when all bytes in the line are destined to be written)

A.4.2.5 Creating On-chip RAM

Part of the L1 data cache is converted into fast on chip RAM. Access to objects in the
on-chip RAM do not incur cache miss penalties thereby reducing the number of
processor stalls. Application performance is improved by converting a part of the cache
into on chip RAM and allocating frequently used variables to it. Due to pseudo-LRU
replacement policy, all data is eventually evicted. Therefore, to prevent critical or
frequently used data from being evicted it is allocated to on-chip RAM.

The following variables are good candidates for allocating to the on-chip RAM:

• Frequently used global data used for storing context for context switching.

• Global variables that are accessed in time critical functions such as interrupt service
routines.

The on-chip RAM is created by locking a memory region into the data cache (see
Section 6.4, “Data Cache Locking” for more details).

When creating the on-chip RAM, care must be taken to ensure that all sets in the
on-chip RAM area of the data cache have approximately the same number of ways
locked, otherwise some sets have more ways locked than the others. This uneven
allocation increases the level of thrashing in some sets and leave other sets under
utilized.

For example, consider three arrays arr1, arr2, and arr3 of size 64 bytes each that are
being allocated to the on-chip RAM, and assume that the address of arr1 is 0, address
of arr2 is 8192, and the address of arr3 is 16384. All three arrays are within the same
sets, in other words, set0 and set1, as a result three ways in both sets set0 and set1
are locked, leaving 1 way for use by other variables.

This is overcome by allocating on-chip RAM data in sequential order. In the above
example, allocating arr2 to address 64 and arr3 to address 128 allows the three arrays
to use only 1 way in sets 0 through 5.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 263

Optimization Guide—Microarchitecture

A.4.2.6 LLR Cache Policy

The LLR cache policy is best used for large data structures that have a high spatial
locality within the data cache. Addressing this type of data from the data cache quickly
pollutes much when not all of the data cache. Eviction of valuable data reduces overall
performance by requiring constant reloads of the evicted data. Placing this type of data
in a LLR cacheable region prevents data cache pollution while providing some of the
benefits of cached access.

An example of data that is assigned to LLR cache is a video buffer. Video buffers are
usually large and occupies the entire cache. Over use of the LLR cache region causes
thrashing within the LLR cache space. This is easy to do because the LLR cache policy
only has one way per set. For example, a loop which uses a simple statement such as:

for (i=0; I< IMAX; i++)

{

A[i] = B[i] + C[i];

}

where A, B, and C reside in a LLR cache region and each array aligned on a 8192-byte
boundary quickly thrashes LLR cache space.

LLR cacheable regions are part of the main data cache and use impacts data cache
usage. See Section 6.1.2, “Low-Locality of Reference (LLR)” for more information.

Microarchitecture—Optimization Guide

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
264 Order Number: 316283-002US

A.4.2.7 Data Alignment

Cache lines begin on 32-byte address boundaries. To maximize cache line use and
minimize cache pollution, data structures are aligned on 32-byte boundaries and sized
to multiple cache line sizes. Aligning large data structures on cache address boundaries
simplifies later addition of preload instructions to optimize performance.

Not aligning data on cache lines has the disadvantage of moving the preload address
correspondingly to the misalignment. Consider the following example:

struct {

long ia;

long ib;

long ic;

long id;

} tdata[IMAX];

for (i=0, i<IMAX; i++)

{

PRELOAD(tdata[i+1]);

tdata[i].ia = tdata[i].ib + tdata[i].ic + tdata[i].id;

....

tdata[i].id = 0;

}

In this case when tdata[] is not aligned to a cache line then the preload using the
address of tdata[i+1].ia is not include element id. When the array was aligned on a
cache line + 12 bytes then the preload halves to be placed on &tdata[i+1].id.

When the structure is not sized to a multiple of the cache line size then the preload
address must be advanced appropriately and requires extra preload instructions.

Generally, not aligning and sizing data adds extra computational overhead.

Additional preload considerations are discussed in greater detail in following sections.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 265

Optimization Guide—Microarchitecture

A.4.2.8 Literal Pools

The processor does not have a single instruction that moves all literals (a constant or
address) to a register. One technique to load registers with literals is by loading the
literal from a memory location that has been initialized with the constant or address.
These blocks of constants are referred to as literal pools. See Section A.3, “Basic
Optimizations” for more information on how to do this. It is advantageous to place all
the literals together in a pool of memory known a literal pool. These data blocks are
located in the text or code address space so that these are loaded using PC relative
addressing. However, references to the literal pool area load the data into the data
cache instead of the instruction cache. Therefore, it is possible that the literal is present
in both the data and instruction caches resulting in waste of space.

For maximum efficiency, the compiler aligns all literal pools on cache boundaries and
size each pool to a multiple of 32 bytes (the size of a cache line). One additional
optimization is group highly used literal pool references into the same cache line. The
advantage is that once one of the literals has been loaded the other seven are available
immediately from the data cache.

Microarchitecture—Optimization Guide

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
266 Order Number: 316283-002US

A.4.3 L2 Unified Cache

3rd generation microarchitecture has an optional 256KB or 512KB L2 unified cache
(see Chapter 8.0, “Level 2 Unified Cache (L2)”). This cache acts to reduce the latency
of memory requests. The L2 cache is physically addressed, and buffers information for
instruction, data and TLB requests. The L2 cache operates at half the microarchitecture
frequency, and supply entire cache lines to either the L1 instruction cache or L1 data
cache.

The L2 is not enabled by default at reset. Make sure that your operating system has
enabled the L2 to get better performance.

The L2 cache is used to cache parts of the page table. For higher performance, ensure
that your operating system has enabled this option.

The L2 cache supports write-back only caching, and does not support write-through
caching. Accesses to L2 cacheable memory marked as write-through are treated as L2
un-cacheable. Supported policies are:

• Non L2 cacheable

• L2 cacheable, write allocate and write-back.

A.4.3.1 Locking Code or Data into L2 Unified Cache

One important L2 cache feature is the ability to lock code or data into the L2 cache.
Once locked into the L2 cache, the code or data is always available for fast access. Key
components to consider for locking are:

• Interrupt handlers

• Real time clock handlers

• OS critical code

• Time critical application code

The disadvantage to locking code or data into the L2 cache is that it reduces the cache
size for the rest of the program. The L2 cache is slower but larger than the L1 cache.
How much of the L2 cache to lock is very application dependent and requires
experimentation to optimize. Code and/or data is placed sequentially together as
tightly as possible so as not to waste precious cache space. Making the code and/or
data sequential also ensures even distribution across all cache ways. Though it is
possible to choose randomly located code or data for cache locking, this approach runs
the risk of co-locating multiple cache lines in one set (increasing the cache spatial
locality) and few or none in another set. This uneven distribution leads to excessive L2
cache thrashing.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 267

Optimization Guide—Microarchitecture

A.4.3.2 Creating On-chip RAM

Part of the L2 Cache is converted into a fast on chip RAM. Access to objects in the
on-chip RAM do not incur large cache miss penalties, thereby reducing the number and
duration of processor stalls. Application performance is improved by converting a part
of the L2 cache into on chip RAM and allocating frequently used variables to it.

The following variables are good candidates for allocating to the on-chip RAM:

• Audio and video buffers

• Direct memory access (DMA) descriptors

• Global variables that are access in time critical functions such as interrupt service
routines.

The on-chip RAM is created by locking a memory region into the L2 cache (see Section
8.3.5, “Level 2 Cache Locking” for more details).

When creating the on-chip RAM, care must be taken to ensure that all sets in the
on-chip RAM area of the L2 cache have approximately the same number of ways
locked, otherwise some sets have more ways locked than the others. This uneven
allocation increases the level of thrashing in those sets and leave other sets under
utilized.

Microarchitecture—Optimization Guide

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
268 Order Number: 316283-002US

A.4.4 Classical Array Optimizations

Consult standard references for classical optimizations on loop/array code. These
include blocking, and loop fusion and interchange.

A.4.5 Preload Considerations

The processor has a true preload load instruction (PLD). The purpose of this instruction
is to preload data into the data cache. Data preloading allows hiding of memory
transfer latency while the processor continues to execute instructions. The preload is
important to compiler and assembly code because judicious use of the preload
instruction enormously improves throughput performance. Data preload is applied not
only to loops but also to any data references within a block of code.

The preload instruction loads data into the data cache and not a register. Compilers for
processors which have data caches, but do not support preload, sometimes use a load
instruction to preload the data cache. This technique has the disadvantages of using a
register to load data and requiring additional registers for subsequent preloads and
thus increasing register pressure. By contrast, the preload is used to reduce register
pressure instead of increasing it.

A.4.5.1 Preload Distances

Scheduling the preload instruction requires understanding the system latency times
and system resources which affect when to use the preload instruction. Refer to the
3rd generation implementation options section of the relevant product documentation
for more information.

A.4.5.2 Preload Loop Scheduling

When adding preload to a loop which operates on arrays, it is advantageous to preload
ahead one, two, or more iterations. The data for future iterations is located in memory
by a fixed offset from the data for the current iteration. This makes it easy to predict
where to fetch the data. The number of iterations to preload ahead is referred to as the
preload scheduling distance. Refer to the implementation options section of the
relevant product documentation for more information.

A.4.5.3 Preload Loop Limitations

It is not always advantageous to add preload to a loop. Loop characteristics that limit
the use value of preload are discussed below.

A.4.5.4 Compute vs. Data Bus Bound

At the extreme, a loop, which is data bus bound, does not benefit from preload because
all the system resources to transfer data are quickly allocated and there are no
instructions that are profitably executed. On the other end of the scale, compute bound
loops allow complete hiding of all data transfer latencies.

A.4.5.5 Low Number of Iterations

Loops with very low iteration counts have the advantages of preload completely
nullified. A loop with a small fixed number of iterations is faster when the loop is
completely unrolled rather than trying to schedule preload instructions.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 269

Optimization Guide—Microarchitecture

A.4.5.6 Bandwidth Limitations

Overuse of preloads usurps resources and degrade performance. This happens because
once the bus traffic requests exceed the system resource capacity, the processor stalls.
Microarchitecture data transfer resources are:

Twelve memory buffers

Four request buffers per memory buffer

SDRAM resources are typically:

Four memory banks

One page buffer per bank referencing a 4 K address range

Four transfer request buffers

Consider how these resources work together. A memory buffer is allocated for each
cache read miss. A subsequent read to the same cache line does not require a new fill
buffer but does require a request buffer, and a subsequent write also require a new
memory buffer. A memory buffer is also allocated for each read to non-cached memory
and a memory buffer is needed for each memory write to non-cached memory that is
non-coalescing. Consequently, a STM instruction listing eight registers and referencing
non-cached memory uses eight memory buffers assuming these do not coalesce and
one or two memory buffers when these do coalesce. A cache eviction requires a
memory buffer for each dirty cache line. The preload instruction requires a memory
buffer for each cache line and zero or one memory buffers for an eviction.

When adding preload instructions, take caution to ensure that the combination of
preload and instruction bus requests do not exceed the system resource capacity or
performance are degraded instead of improved. The important points are to spread
preload operations over calculations so as to allow bus traffic to flow freely and to
minimize the number of necessary preloads.

Rules of thumb on when not to use a PLD:

• On very speculative loads

• When doing so is likely to force a table walk for an invalid page (for example, a
NULL pointer)

• When the targeted data is probably already resident in the cache

Microarchitecture—Optimization Guide

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
270 Order Number: 316283-002US

A.4.5.7 Preload Unrolling

When iterating through a loop, data transfer latency is hidden by preloading ahead one
or more iterations. The solution incurs an unwanted side affect that the final
interactions of a loop loads useless data into the cache, polluting the cache, increasing
bus traffic, and possibly evicting valuable temporal data. This problem is resolved by
preload unrolling. For example consider:

for(i=0; i<NMAX; i++)

{

PRELOAD(data[i+2]);

sum += data[i];

}

Interactions i-1 and i preloads superfluous data. The problem is avoid by unrolling the
end of the loop.

for(i=0; i<NMAX-2; i++)

{

PRELOAD(data[i+2]);

sum += data[i];

}

sum += data[NMAX-2];

sum += data[NMAX-1];

Unfortunately, preload loop unrolling does not work on loops with indeterminate
iterations. Additionally, preloads beyond the end of data causes undesired table walks
to occur thus reducing performance.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 271

Optimization Guide—Microarchitecture

A.4.5.8 Pointer Preload

Not all looping constructs contain induction variables. However, preloading techniques
are still applied. Consider the following linked list traversal example:

while(p) {

do_something(p->data);

p = p->next;

}

The pointer variable p becomes a pseudo induction variable and the data pointed to by
p->next is preloaded to reduce data transfer latency for the next iteration of the loop.
Linked lists is converted to arrays as much as possible.

while(p) {

PRELOAD(p->next);

do_something(p->data);

p = p->next;

}

Recursive data structure traversal is another construct where preloading is applied.
This is similar to linked list traversal. Consider the following pre-order traversal of a
binary tree:

preorder(treeNode *t) {

if(t) {

process(t->data);

preorder(t->left);

preorder(t->right);

}

}

Microarchitecture—Optimization Guide

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
272 Order Number: 316283-002US

The pointer variable t becomes the pseudo induction variable in a recursive loop. The
data structures pointed to by the values t->left and t->right is preloaded for the next
iteration of the loop.

preorder(treeNode *t) {

if(t) {

PRELOAD(t->right);

PRELOAD(t->left);

process(t->data);

preorder(t->left);

preorder(t->right);

}

}

Note the order reversal of the preloads in relationship to the usage. When there is a
cache conflict and data is evicted from the cache then only the data from the first
preload is lost.

Preloading a NULL pointer reduces performance by causing a table walk for page zero.
This occurs on leaf nodes of a tree traversal. When the TLB entry for page zero is set to
cause a translation fault then a table walk occurs on every preload. To improve
performance, a page table entry that has permissions set to no access is used instead.
The translation fault entry does not get cached in the TLB where as the permission fault
entry does. Approximately half the node pointers in a binary tree are NULL pointers so
this is a large performance impact when using preloading on tree traversal. Note that
ANSI conforming C compilers do not have to equate the “NULL” pointer to a binary
value of 0 but most do for simplicity of implementation.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 273

Optimization Guide—Microarchitecture

A.4.5.9 Preload to Reduce Register Pressure

Preload is used to reduce register pressure. When data is needed for an operation then
the load is scheduled far enough in advance to hide the load latency. However, the load
ties up the receiving register until the data is used. For example:

ldr r2, [r0]

; Process code {not yet cached latency > 60 core clocks}

add r1, r1, r2

In the above case, r2 is unavailable for processing until the add statement. Preloading
the data load frees the register for use. The example code becomes:

pld [r0] ;preload the data keeping r2 available for use

;

; Process code -- a significant amount of code here hides the latency of

; the data from the preload returning. The number of saved cycles depends on

; the system’s memory configuration.

;

ldr r2, [r0]

; Process code {ldr result latency is 3 core clocks}

add r1, r1, r2

With the added preload, register r2 is used for other operations until almost just before
it is needed.

Microarchitecture—Optimization Guide

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
274 Order Number: 316283-002US

A.5 Instruction Scheduling

This section discusses instruction scheduling optimizations. Instruction scheduling
refers to the rearrangement of a sequence of instructions for the purpose of minimizing
pipeline stalls. Reducing the number of pipeline stalls improves application
performance. While making this rearrangement, care is taken to ensure that the
rearranged sequence of instructions has the same effect as the original sequence of
instructions. See Chapter 13.0, “Performance Considerations”, for additional timing
information.

A.5.1 Load and Store Instructions

The 3rd generation microarchitecture has twelve memory buffers used for loading from
and storing to external memory or L2 cache. Each of these buffers holds a request for
up to a cache line worth of data and any given cacheable line is only allocated to one
buffer at a time. A buffer holds up to four load requests, a preload request, or one or
more (coalesced) store requests. Non-cacheable non-coalesceable stores and
non-cacheable loads also use the buffers at a rate of one buffer per access.

The processor stalls when all memory buffers are in use and another memory buffer is
needed. When any buffer has four load requests, any load miss (a load that misses
both the data cache and the fill buffers) causes a stall until a load request is satisfied
regardless of address. When any buffer has three or more load requests, any load
double miss regardless of address causes a stall until all buffers have at least two
available request slots.

Although this is not a general concern, certain code sequences cause the processor to
stall due to a lack of available memory buffers. As a result, code attempts to keep the
buffers less than full; when possible each outstanding cache line has:

• no more than four outstanding loads against it, or

• no more than two outstanding load doubles against it

When any of the buffers have the indicated content, then these cause a stall on the
next issued memory operation.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 275

Optimization Guide—Microarchitecture

A.5.1.1 Scheduling Loads

On the 3rd generation microarchitecture, an LDR instruction has a result latency of
three cycles assuming the data being loaded is in the data cache. When the instruction
after the LDR needs to use the result of the load then it stalls for two cycles. When
possible, the instructions surrounding the LDR instruction is rearranged to avoid this
stall.

Consider the following example:

add r1, r2, r3

ldr r0, [r5]

add r6, r0, r1

sub r8, r2, r3

mul r9, r2, r3

In the code shown above, the ADD instruction following the LDR stalls for two cycles
because it uses the result of the load. The code is rearranged as follows to prevent the
stalls:

ldr r0, [r5]

add r1, r2, r3

sub r8, r2, r3

add r6, r0, r1

mul r9, r2, r3

Note that this rearrangement is not always possible. Consider the following example:

cmp r1, #0

addne r4, r5, #4

subeq r4, r5, #4

ldr r0, [r4]

cmp r0, #10

In the example above, the LDR instruction cannot be moved before the ADDNE or the
SUBEQ instructions because the LDR instruction depends on the result of these
instructions. Rewrite the above code to make it run faster at the expense of increasing
code size:

cmp r1, #0

ldrne r0, [r5, #4]

ldreq r0, [r5, #-4]

addne r4, r5, #4

subeq r4, r5, #4

cmp r0, #10

The optimized code takes six cycles to execute compared to the seven cycles taken by
the unoptimized version.

Microarchitecture—Optimization Guide

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
276 Order Number: 316283-002US

The result latency for an LDR instruction is significantly higher when the data being
loaded is not in the data cache. To minimize the number of pipeline stalls in such a
situation the LDR instruction is moved as far away as possible from the instruction that
uses result of the load. Note that this at times causes certain register values to be
spilled to memory due to the increase in register pressure. In such cases, use a preload
instruction or a preload hint to ensure that the data access in the LDR instruction hits
the cache when it executes. A preload instruction is used in cases where the load
instruction is sure to execute. Consider the following code sample:

; all other registers are in use

sub r1, r6, r7

mul r3, r6, r2

mov r2, r2, LSL #2

orr r9, r9, #0xf

add r0, r4, r5

ldr r6, [r0]

add r8, r6, r8

add r8, r8, #4

orr r8, r8, #0xf

; The value in register r6 is not used after this

In the code sample above, the ADD and the LDR instruction are moved before the
MOV instruction. Note that this prevents pipeline stalls when the load hits the data
cache. However, when the load is likely to miss the data cache, move the LDR
instruction so that it executes as early as possible - before the SUB instruction.
However, moving the LDR instruction before the SUB instruction changes the program
semantics. It is possible to move the ADD and the LDR instructions before the SUB
instruction when allowing the contents of the register R6 to be spilled and restored
from the stack as shown below:

; all other registers are in use

str r6, [sp, #-4]!

add r0, r4, r5

ldr r6, [r0]

mov r2, r2, LSL #2

orr r9, r9, #0xf

add r8, r6, r8

ldr r6, [sp], #4

add r8, r8, #4

orr r8, r8, #0xf

sub r1, r6, r7

mul r3, r6, r2

; The value in register r6 is not used after this

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 277

Optimization Guide—Microarchitecture

As is seen above, the contents of the register R6 have been spilled to the stack and
subsequently loaded back to the register R6 to retain the program semantics. Another
way to optimize the code above is with the use of the preload instruction as shown
below:

; all other registers are in use

add r0, r4, r5

pld [r0]

sub r1, r6, r7

mul r3, r6, r2

mov r2, r2, LSL #2

orr r9, r9, #0xf

ldr r6, [r0]

add r8, r6, r8

add r8, r8, #4

orr r8, r8, #0xf

; The value in register r6 is not used after this

Microarchitecture—Optimization Guide

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
278 Order Number: 316283-002US

A.5.1.2 Scheduling Load and Store Double (LDRD/STRD)

LDRD loads 64-bits of data from an effective address into two consecutive registers,
conversely STRD stores 64-bits from two consecutive registers to an effective address.
There are two important restrictions on how these instructions are used:

• the effective address must be aligned on an 8-byte boundary

• the specified register must be even (R0, R2, etc.).

When this situation occurs, using LDRD/STRD instead of LDM/STM to do the same
thing is more efficient because LDRD/STRD issues in only one/two clock cycle(s), as
opposed to LDM/STM which always issue in three or more clock cycles.

The LDRD instruction has a result latency of three or four cycles depending on the
destination register being accessed (assuming the data being loaded is in the data
cache).

add r6, r7, r8

sub r5, r6, r9

; The following ldrd instruction loads values

; into registers r0 and r1

ldrd r0, [r3]

orr r8, r1, #0xf

mul r7, r0, r7

In the code example above, the ORR instruction stalls for three cycles because of the
four cycle result latency for the second destination register of an LDRD instruction. The
code shown above is rearranged to remove the pipeline stalls:

; The following ldrd instruction loads values

; into registers r0 and r1

ldrd r0, [r3]

add r6, r7, r8

sub r5, r6, r9

mul r7, r0, r7

orr r8, r1, #0xf

Any load operation (PLD, LDR, LDRB, and so on) directly following a LDRD instruction
stalls for one cycle.

; The ldr instruction below stalls for 1 cycle

ldrd r0, [r3]

ldr r4, [r5]

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 279

Optimization Guide—Microarchitecture

Similarly, any read-from-CP15 operation (MRC P15, ...) after a LDRD exacts an
additional issue cycle.

The processor stalls when any memory buffer has four active requests and another
memory operation is issued. For example, when there are 4 LDR instructions pending
against a memory buffer, then another LDR operation causes a stall, regardless of the
address or hit/miss status for that final LDR.

Similarly, when any buffer has three or more load requests, an issued LDRD —
regardless of address — causes a stall until all buffers have at least two available
request slots.

A store that “hits” a pending load causes the machine to stall until the load completes.

Microarchitecture—Optimization Guide

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
280 Order Number: 316283-002US

A.5.1.3 Scheduling Load and Store Multiple (LDM/STM)

LDM and STM instructions have an issue latency of three to twenty one cycles
depending on the number of registers being loaded or stored. The issue latency is
typically one cycle for each of the registers being loaded or stored assuming a data
cache hit. The instruction following an LDM stalls whether or not this instruction
depends on the results of the load. A LDRD or STRD instruction does not suffer from
this drawback (except when followed by a memory operation) and is used where
possible. Consider the task of adding two 64-bit integer values. Assume that the
addresses of these values are aligned on an 8-byte boundary. This is achieved using
the LDM instructions as shown below:

; r0 contains the address of the value being copied

; r1 contains the address of the destination location

ldmia r0, {r2, r3}

ldmia r1, {r4, r5}

adds r0, r2, r4

adc r1, r3, r5

When the code were written as shown above, assuming all the accesses hit the cache,
the code takes eight cycles to complete. Rewriting the code as shown below using
LDRD instruction takes seven cycles to complete. The performance increases when
other instructions are filled in after LDRD to reduce the stalls due to the result latencies
of the LDRD instructions.

; r0 contains the address of the value being copied

; r1 contains the address of the destination location

ldrd r2, [r0]

ldrd r4, [r1]

adds r0, r2, r4

adc r1,r3, r5

Similarly, the code sequence shown below takes four cycles to complete.

stmia r0, {r2, r3}

add r1, r1, #1

The alternative version which is shown below takes three cycles to complete.

strd r2, [r0]

add r1, r1, #1

A rule of thumb for choosing LDM or LDR/LDRD: use LDM only when more than two
registers are read.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 281

Optimization Guide—Microarchitecture

A.5.2 Scheduling Data Processing Instructions

Most 3rd generation microarchitecture data processing instructions have a result
latency of one cycle. This means that the current instruction is able to use the result
from the previous data processing instruction. However, the result latency is two cycles
when the current instruction needs to use the result of the previous data processing
instruction for a shift by immediate. As a result, the following code segment incurs a
one cycle stall for the mov instruction:

sub r6, r7, r8

add r1, r2, r3

mov r4, r1, LSL #2

The code above is rearranged as follows to remove the one cycle stall:

add r1, r2, r3

sub r6, r7, r8

mov r4, r1, LSL #2

All data processing instructions incur a one cycle issue penalty and a one cycle result
penalty when the shifter operand is a shift/rotate by a register or shifter operand is
RRX. Since the next instruction always incurs a one cycle issue penalty, there is no way
to avoid such a stall except by re-writing the assembler instruction. Consider the
following segment of code:

mov r3, #10

mul r4, r2, r3

add r5, r6, r2, LSL r3

sub r7, r8, r2

The subtract instruction incurs a one cycle stall due to the issue latency of the add
instruction as the shifter operand is shift by a register. The issue latency is avoided by
changing the code as follows:

mov r3, #10

mul r4, r2, r3

add r5, r6, r2, LSL #10

sub r7, r8, r2

Microarchitecture—Optimization Guide

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
282 Order Number: 316283-002US

A.5.3 Scheduling Multiply Instructions

Multiply instructions cause pipeline stalls due to either resource conflicts or result
latencies. The following code segment incurs a stall of up to two cycles depending on
the values in registers r1, r2, r4 and r5 due to resource conflicts.

mul r0, r1, r2

mul r3, r4, r5

The following code segment incurs a stall of one to two cycles depending on the values
in registers r1 and r2 due to result latency.

mul r0, r1, r2

mov r4, r0

Note that a multiply instruction that sets the condition codes blocks the whole pipeline.
A three cycle multiply operation that sets the condition codes behaves the same as a
three cycle issue operation. Consider the following code segment:

muls r0, r1, r2

add r3, r3, #1

sub r4, r4, #1

sub r5, r5, #1

The add operation above stalls for two cycles when the multiply takes three cycles to
complete. It is better to replace the code segment above with the following sequence:

mul r0, r1, r2

add r3, r3, #1

sub r4, r4, #1

sub r5, r5, #1

cmp r0, #0

Please refer to Section 13.4, “Instruction Latencies” to get the instruction latencies for
various multiply instructions. The multiply instructions is scheduled taking into
consideration these instruction latencies.

The processor lifts certain operand restrictions on multiply instructions. For example,
prior Intel XScale® microarchitectures required that Rd and Rm be different registers.
3rd generation microarchitecture has no such restriction, which enables simpler
scheduling of multiplies in some situations.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 283

Optimization Guide—Microarchitecture

A.5.4 Scheduling SWP and SWPB Instructions

The SWP and SWPB instructions have a four cycle issue latency. As a result of this
latency, the instruction following the SWP/SWPB instruction stalls for three cycles.
SWP and SWPB instructions therefore are used only where absolutely needed.

For example, the following code is used to swap the contents of two memory locations:

; Swap the contents of memory locations pointed to by r0 and r1

ldr r2, [r0]

swp r2, [r1]

str r2, [r0]

The code above takes eight cycles to complete with instructions and data residing in
the cache. The rewritten code below, takes five cycles to execute:

; Swap the contents of memory locations pointed to by r0 and r1

ldr r2, [r0]

ldr r3, [r1]

str r2, [r1]

str r3, [r0]

Microarchitecture—Optimization Guide

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
284 Order Number: 316283-002US

A.5.5 Scheduling the MRA and MAR Instructions (MRRC/MCRR)

The MRA (MRRC) instruction has an issue latency of one cycle, a result latency of two
or three cycles depending on the destination register value being accessed and a
resource latency of two cycles.

Consider the code sample:

mra r6, r7, acc0

mra r8, r9, acc0

add r1, r1, #1

The code shown above incurs a one cycle stall due to the two cycle resource latency of
an MRA instruction. The code is rearranged as shown below to prevent this stall.

mra r6, r7, acc0

add r1, r1, #1

mra r8, r9, acc0

Similarly, the code shown below incurs a two cycle penalty due to the three cycle result
latency for the second destination register.

mra r6, r7, acc0

mov r1, r7

mov r0, r6

add r2, r2, #1

The stalls incurred by the code shown above are prevented by rearranging the code:

mra r6, r7, acc0

add r2, r2, #1

mov r0, r6

mov r1, r7

The MAR (MCRR) instruction has an issue, result, and resource latency of one cycle.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 285

Optimization Guide—Microarchitecture

A.5.6 Scheduling the MIA and MIAPH Instructions

The MIA instruction has an issue latency of one cycle. The result and resource latency
varies from one to two cycles depending on the values in the source register.

Consider the following code sample:

mia acc0, r2, r3

mia acc0, r4, r5

The second MIA instruction above stalls for one cycle depending on the values in the
registers r2 and r3 due to the one to two cycle resource latency.

Similarly, consider the following code sample:

mia acc0, r2, r3

mra r4, r5, acc0

The MRA instruction above stalls for one cycle depending on the values in the registers
r2 and r3 due to the one to two cycle result latency. The MIAPH instruction has an
issue latency of one cycle, result latency of two cycles and a resource latency of two
cycles.

Consider the code sample shown below:

add r1, r2, r3

miaph acc0, r3, r4

miaph acc0, r5, r6

mra r6, r7, acc0

sub r8, r3, r4

The second MIAPH instruction stalls for one cycle due to a two cycle resource latency.
The MRA instruction stalls for one cycle due to a two cycle result latency. These stalls
are avoided by rearranging the code as follows:

miaph acc0, r3, r4

add r1, r2, r3

miaph acc0, r5, r6

sub r8, r3, r4

mra r6, r7, acc0

Microarchitecture—Optimization Guide

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
286 Order Number: 316283-002US

A.5.7 Scheduling MRS and MSR Instructions

The MRS instruction has an issue latency of two cycles and a result latency of three
cycles. The MSR instruction has an issue latency of two cycles (six when updating the
mode bits).

Consider the code sample:

mrs r0, cpsr

orr r0, r0, #1

add r1, r2, r3

The ORR instruction above incurs a one cycle stall due to the three cycle result latency
of the MRS instruction. In the code example above, the ADD instruction is moved
before the ORR instruction to prevent this stall.

A.5.8 Scheduling CP15 Coprocessor Instructions

All CP15 operations stall the microarchitecture until complete and therefore are not
overlapped with other operations. See Section 13.4.9, “Coprocessor Instructions” on
page 229 for additional timing information.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 287

Optimization Guide—Microarchitecture

A.6 Optimizing C Libraries

Many of the standard C library routines benefit greatly by being optimized for
3rd generation microarchitecture. The following string and memory manipulation
routines are tuned to obtain the best performance from the processor architecture
(instruction selection, cache usage and data preload):

strcat, strchr, strcmp, strcoll, strcpy, strcspn, strlen, strncat, strncmp, strpbrk, strrchr,
strspn, strstr, strtok, strxfrm, memchr, memcmp, memcpy, memmove, memset

A.7 Optimizations for Size

For applications such as cell phone software it is necessary to optimize the code for
improved performance while minimizing code size. Optimizing for smaller code size, in
general, lowers the performance of your application. This section contains techniques
for optimizing for code size using the 3rd generation microarchitecture instruction set.

A.7.1 Space/Performance Trade Off

Many optimizations mentioned in the previous sections, improve the performance of
ARM code. However, using these instructions results in increased code size. Use the
following optimizations to reduce the space requirements of the application code.

A.7.1.1 Multiple Word Load and Store

The LDM/STM instructions are one word long and allow loading or storing multiple
registers at once. Use the LDM/STM instructions instead of a sequence of loads/stores
to consecutive addresses in memory whenever possible.

A.7.1.2 Use of Conditional Instructions

Using conditional instructions to expand if-then-else statements as described in Section
A.3.1, “Conditional Instructions” results in increasing the size of the generated code,
therefore, do not use conditional instructions when application code space
requirements are an issue.

A.7.1.3 Use of PLD Instructions

The preload instruction PLD is only a hint, it does not change the architectural state of
the processor. Using or not using these do not change the behavior of the code,
therefore, avoid using these instructions when optimizing for space.

A.7.2 Thumb

The microarchitecture supports the Thumb instruction set, which uses a 16-bit
encoding. Programs compiled to this ISA typically are smaller than those targeting the
32-bit ARM ISA.

Microarchitecture—Microarchitecture Compatibility Guide

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
288 Order Number: 316283-002US

Appendix B Microarchitecture Compatibility Guide

B.1 Overview

This appendix describes new features in 3rd generation
Intel XScale® microarchitecture (3rd generation microarchitecture or 3rd generation),
compatibility of features relative to previous generations and features in that are no
longer available in 3rd generation.

B.2 New Features

This section lists new features for the 3rd generation microarchitecture.

B.2.1 MMU Features

• Supersection page table descriptor supporting a physical addressing range of 36
bits

• Support for caching of page table descriptors in L2 cache

• New memory attribute encodings in the page table descriptor

• Page table descriptors to support shared and coherent memory

See Chapter 3.0, “Memory Management”

B.2.2 New L1 Cache Functions

• Clean Data cache line by Set and Way

• Clean and invalidate data cache line by MVA

• Clean and invalidate data cache line by Set and Way

See Section 7.2.8, “Register 7: Cache Functions”

B.2.3 LLR

• Data cache support for Low-locality of reference data

See Section 6.1.2, “Low-Locality of Reference (LLR)”

B.2.4 Optional Level 2 Cache

• No L2, or lockable 256K/512K options

• Physically addressed using 36 bit addressing

See Section 8.0, “Level 2 Unified Cache (L2)”

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 289

Microarchitecture Compatibility Guide—Microarchitecture

B.2.5 Support For Hardware Cache Coherency

• Memory hierarchy supports coherency

• External bus master pushes data directly into the cache

See Chapter 9.0, “Cache Coherence”

B.2.6 Memory Ordering

• Weak memory consistency model defined

• Software has access to explicit ordering instructions

See Chapter 10.0, “Memory Ordering”

B.2.7 PMU features

• New PMU events

• Performance counters are disabled independently of the clock counter

See Chapter 11.0, “Performance Monitoring”

B.2.8 Instruction Behavior

• MUL and MLA support for same register for Rd, Rm, e.g MUL R1,R1,R1

• SMULL, SMLAL, UMULL, and UMLAL support for same register in Rdhi and Rm or
RdLo and Rm.

Microarchitecture—Microarchitecture Compatibility Guide

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
290 Order Number: 316283-002US

B.3 Features No Longer Available

This section lists features that were available for the previous generations and no
longer available on 3rd generation processors.

B.3.1 Memory Coalescing

• The previous generations K bit (disable-coalescing) in the AUX control register is
not defined in 3rd generation microarchitecture

B.3.2 Mini Data Cache

• The previous generations Mini Data cache is not present on
3rd generation microarchitecture instead a LLR memory attribute is used. See
Appendix B.2.3,”LLR.”for more details

B.4 Compatibility With Respect To Previous Generation
Microarchitecture

This section discusses the features on the previous generations that have been
changed or replaced with different functionality on 3rd generation. This section
describes how these features behave differently and how to utilize alternate features on
the processor.

B.4.1 Page Table Memory Attributes

Previous Generation Microarchitecture traditionally has 3 bits to define memory
attributes, XCB.

3rd generation microarchitecture has 6 bits to define memory attributes,TEXCB and S.

The TEX bits [2:1] were previously defined to be zero and the S bit was defined as
Should Be Zero (SBZ). Well behaved code that followed this definition function correctly
on 3rd generation microarchitecture as shown in Table 152.

Table 152 shows the XCB encodings for previous generationss and mappings to
3rd generation microarchitecture.

Table 152. Previous Generation Microarchitecture Page Table Attribute Encoding
Compatibility

Previous Generation Microarchitecture microarchitecture

XCB Description TEXCB Descriptiona

a. See subsequent sections in this chapter for more information

0b000 I/O memory 0b00000 Strongly Ordered

0b001 Uncacheable 0b00001 Uncacheable

0b010 Write Through; Read Allocate 0b00010 Write Through; Read Allocate

0b011 Write Back; Read Allocate 0b00011 Write Back; Read Allocate

0b100 Unpredictable 0b00100 Uncacheable

0b101 Non-Coalescing 0b00101 Shared Device

0b110 Mini Data Cache 0b00110 LLR

0b111
Write Back

Write Allocate
0b00111

Write Back

Read Allocate

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 291

Microarchitecture Compatibility Guide—Microarchitecture

B.4.2 Behavior Of Strongly Ordered Memory

B.4.2.1 Behavioral Difference

On previous generationss, access to I/O memory stalls the pipeline until the memory
operation has been sent out of the microarchitecture.

On the 3rd generation microarchitecture an access to strongly ordered memory waits
until all prior explicit memory accesses have been observed. After a memory access to
strongly ordered memory all subsequent memory accesses are stalled until the initial
memory access has been observed. However after a memory access to strongly
ordered memory other non-memory access instructions continue to execute.

B.4.2.2 Compatibility Implication

Accesses to strongly ordered memory do not ensure timing of side effect completion
(such as, doing a store to strongly ordered memory that maps to an interrupt controller
to disable an interrupt, does not ensure that the interrupt is disabled for subsequent
code). See ASSP documentation for details on how to ensure a device-update has
occurred. One common scheme is to read back the just-written I/O location.

While previous generations did not stall until stores have completed these, but did stall
longer than 3rd generation microarchitecture, so badly behaved code, that does not
poll for effects, has different behavior when run on 3rd generation microarchitecture.

B.4.2.3 Performance Difference

Instruction throughput is higher since code continues to execute while there is a load/
store to strongly ordered memory.

Microarchitecture—Microarchitecture Compatibility Guide

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
292 Order Number: 316283-002US

B.4.3 Behavior Of Device Memory

B.4.3.1 Behavioral Difference

Previously, a page table cache attribute of XCB = 0b101 was implemented as Non-
cacheable, bufferable, but non coalescing. On a 3rd generation microarchitecture this
memory attribute encoding is Device Memory.

After a memory access to shared device memory all subsequent memory accesses to
shared device memory is sent out in the executed order, hence memory ordering to
shared device memory is ensured. However after the initial memory access to shared
device memory other memory accesses not to shared device memory and other non
memory access instructions continue to execute.

Like previous generations this type of memory is uncacheable and non-coalescing.

B.4.3.2 Compatibility Implication

Memory accesses not to shared device memory is re-ordered with respect to shared
device memory.

Code polls devices for side effects, such as, when configuring a memory controller that
is accessed as device memory, and then reading data from the memory which is
configured as normal memory, this does not ensure that read to memory occurs before
the memory controller is configured. To prevent this a fence is used such as a DWB.

B.4.3.3 Performance Difference

Accesses to device memory on 3rd generation microarchitecture allows executing code
to have a greater through put where there are no dependencies on the data from
device memory.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 293

Microarchitecture Compatibility Guide—Microarchitecture

B.4.4 Low Locality Of Reference (LLR) Cache Usage

B.4.4.1 Behavioral Difference

The page table attribute encoding that specifies LLR in
3rd generation microarchitecture, was the same encoding as the Mini-Data cache on
previous generations. These two features are compatible in terms of most desired
effects.

On 3rd generation microarchitecture LLR is a subset of the data cache, where as the
previous generations Mini-Data cache was separate from the main data cache.

LLR on 3rd generation microarchitecture is also outer (L2) cacheable.

Previously, the bit position for the S bit is defined as Should be Zero (SBZ). Well
behaved code that followed this definition behaves in a similar way on
3rd generation microarchitecture depending on the value of the Aux Control register as
shown in the table below.

Most of the settings in the Aux Control register result in the same cache policy. The
only exception is the previous generations policy of “Write back, Read/Write allocate” is
now implemented as “Write back, Read allocate”. 3rd generation microarchitecture L1
data cache is always “Read allocate”.

See Section B.4.5, “L1 Allocation Policy” on page 294, for compatibly differences of
switching from Read/Write allocate to Read allocate.

B.4.4.2 Compatibility Implication

Any code that tried to use the mini-data cache as on chip SRAM, by relying on the fact
that it is not replaced, cannot make this assumption anymore because the LLR resides
in the data cache.

Any code that relied on having 32KB of data cache, and an additional 2KB of mini-data
cache, is disappointed.

B.4.4.3 Performance Difference

Performance is affected, since the LLR pollutes 8K of the Data Cache

Table 153. Auxiliary Control Register Bits [5:4]

Bits [5:4]
Previous Generation

Microarchitecture
3rd Generation Microarchitectu

re

0b00 Write back, Read allocate Write back, Read allocate

0b01 Write back, Write allocate Write back, Read allocate

0b10 Write through, Read allocate Write through, Read allocate

0b11 Reserved Write back, Read allocate

Microarchitecture—Microarchitecture Compatibility Guide

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
294 Order Number: 316283-002US

B.4.5 L1 Allocation Policy

B.4.5.1 Behavioral Difference

On 3rd generation microarchitecture the L1 Data cache does not support write allocate.

Any policy that is set to L1 write allocate is now interpreted to be L1 read allocate.

B.4.5.2 Compatibility Implication

Behavior compatible, except where code explicitly expects line to be allocated on write,
for example, using a STR to lock a line into the Data Cache

B.4.5.3 Performance Difference

To exhibit a write allocate behavior in the memory hierarchy, the L2 is used with write
allocate.

Products, with no L2, that write entire cache lines of data, and read these back at a
later time, achieves similar performance to write allocate systems by using the DC Line
allocate functions

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 295

Microarchitecture Compatibility Guide—Microarchitecture

B.4.6 DC Line Allocate

B.4.6.1 Behavioral Difference

DC line allocate is done in usr mode. In previous generations DC Line Allocate is only
done in a privileged mode.

3rd generation microarchitecture generates a store breakpoint on a DC Line Allocate,
previous generations do not.

3rd generation microarchitecture uses the VA, previous generations uses the MVA. In
other words. On 3rd generation microarchitecture, the address to be allocated is first
modified through PID. For an explanation of how the PID works see Section 7.2.13,
“Register 13: Process ID”.

3rd generation microarchitecture does a TLB walk for a DC line allocate, this causes
MMU aborts. previous generations do not.

Reading the data from a newly Line Allocated line, while resulting in unpredictable
values, does not cause unpredictable behavior. Previous Generation Microarchitecture
causes an exception when the data were read before an explicit software write.

B.4.6.2 Compatibility Implication

When the PID is set to any value greater than zero and code ‘DC line allocates’ an
address where bits [31:25] of that address are zero. The ‘DC line allocate’ now
allocates to the MVA remapped through the PID.

For example:

PID = 0xC0000000.
The address supplied to the to be ‘DC line allocate’ function = 0x00002000.

On previous generations 0x00002000 is allocated.

On 3rd generation microarchitecture 0xC0002000 is allocated.

Any code that relies on this instruction generating an Undef user mode no longer
observes this behavior.

Note: Line Allocate is a deprecated feature. Future microarchitectures do not implement this
command.

B.4.6.3 Performance Difference

A DC line allocate on 3rd generation microarchitecture takes longer when the
associated page table descriptor is not in the TLB.

A DC line allocate on 3rd generation microarchitecture is used more efficiently than
previous generations implementation.

Microarchitecture—Microarchitecture Compatibility Guide

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
296 Order Number: 316283-002US

B.4.7 Translation Table Register - Page Table Memory Attribute (P)
Bit

B.4.7.1 Behavioral Difference

The P bit in the Auxiliary Control Register is deprecated. It is now logical ORed with the
new P bit in the Translation Table base register.

B.4.7.2 Compatibility Implication

Software that ran on previous generationss acted on setting/clearing the P bit in the
Aux Control Register, now on 3rd generation microarchitecture software needs to be
aware that this bit is set in the Translation table base register. When software clears a P
bit, it only observes the effect when both P bits are cleared.

B.4.7.3 Performance Difference

No differences in performance are foreseeable from this change.

B.4.8 Drain Write Buffer

B.4.8.1 Behavioral Difference

DWB on 3rd generation microarchitecture is done in user mode. In previous
generations DWB is only done in a privileged mode.

On previous generations, a DWB drains the write and fill buffer.

On 3rd generation microarchitecture, write buffers are drained, but loads are not.

B.4.8.2 Compatibility Implication

DWB does not guaranty ordering of loads with respect to subsequent loads after the
drain write buffer.

In the below code segment the DWB does not prevent LDR R3,[R4] from occurring
before LDR R1,[R2]. To prevent this happening a DMB is used.

LDR R1,[R2]

DWB

LDR R3,[R4]

B.4.8.3 Performance Difference

No impact to typical code.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 297

Microarchitecture Compatibility Guide—Microarchitecture

B.4.9 L1 Cache Invalidate Function

B.4.9.1 Behavioral Difference

On previous generationss “Invalidate cache line by MVA” on a locked line invalidates the
line, but not unlock it, leaving an empty hole in the cache.

On 3rd generation microarchitecture “Invalidate cache line by MVA” unlocks a locked
line, as well as invalidating it.

B.4.9.2 Compatibility Implication

No compatibility implications are foreseeable from this change.

B.4.9.3 Performance Difference

3rd generation microarchitecture does not get unused holes appearing in the cache.

B.4.10 Cache Organization, Locking And Unlocking

B.4.10.1 Behavioral Difference

3rd generation microarchitecture L1 caches are 4 way as opposed to previous
generations’s 32 way caches.

On 3rd generation microarchitecture 3/4 ways are locked, as opposed to 28/32 ways
locked on the previous generations.

B.4.10.2 Compatibility Implication

Cache clean/unlocking algorithms need to be modified.

Any code that relies on locking 28/32 ways is now only able lock 3/4 ways.

B.4.10.3 Performance Difference

Performance changes for code with unusual instruction or data access patterns.

Microarchitecture—Microarchitecture Compatibility Guide

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
298 Order Number: 316283-002US

B.4.11 Data Cache Replacement Algorithm

B.4.11.1 Behavioral Difference

Previous Generation Microarchitecture uses round robin when deciding which line to
evict from the caches.

3rd generation microarchitecture uses pseudo LRU when deciding which line to evict
from the L1 caches.

B.4.11.2 Compatibility Implication

Cache clean/unlocking algorithms need to be modified, to use cache set and way
functions.

B.4.11.3 Performance Difference

Pseudo LRU is often a more efficient replacement algorithm, meaning code or data with
a higher temporal locality stays in the cache longer.

B.4.12 PLD

B.4.12.1 Behavioral Difference

On previous generationss, a PLD instruction that requires a page table entry that is not
in the TLB functions as a NOP.

On 3rd generation microarchitecture a PLD instruction when required walks the page
table and load the entry into the TLB.

The PLD instruction does not generate any precise aborts on
3rd generation microarchitecture or previous generationss.

B.4.12.2 Compatibility Implication

No compatibility implications are foreseeable from this change.

B.4.12.3 Performance Difference

On previous generationss, PLDs that required a table walk did not provide any
performance improvement.

On 3rd generation microarchitecture all PLDs begins preloading for the subsequent
access to that data.

In some cases the walking the page table when not necessary reduces overall
performance.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 299

Microarchitecture Compatibility Guide—Microarchitecture

B.4.13 SWP

B.4.13.1 Behavioral Difference

On 3rd generation microarchitecture when a SWP is performed to a region of memory
that is marked as shared it behaves differently from previous generationss.

The 3rd generation microarchitecture page table descriptor shared (S) bit was defined
on previous generationss as Should Be Zero (SBZ). On
3rd generation microarchitecture, well behaved code that followed this definition
behaves the same as previous generationss.

B.4.13.2 Compatibility Implication

No compatibility implications are foreseeable from this change when the S bit is set to
zero.

B.4.13.3 Performance Difference

No performance differences are foreseeable from this change when the S bit is set to
zero

B.4.14 Page Table Walks

B.4.14.1 Behavioral Difference

3rd generation microarchitecture translation table base register bits [4:3] allow page
table walks to be cached in the L2. TTBASE bits [4:3] are defined on previous
generationss as Should Be Zero (SBZ). On 3rd generation microarchitecture, well
behaved code that followed this definition is fully compatible.

When TTBASE bits [4:3] are set to 0b11 and an L2 cache is present on
3rd generation microarchitecture then all table walks are L2 cacheable.

B.4.14.2 Compatibility Implication

No compatibility implications are foreseeable from this change when the TTBASE bits
[4:3] bits are set to zero.

When the table walks are set to L2 cacheable and the page table resides in memory
marked as not L2 cacheable, then manipulation of page table descriptors are modifying
uncached entries. To prevent this happening two things are done

1) Make translation table region L2 cacheable

2) Invalidate cached page table entries after modification

B.4.14.3 Performance Difference

No performance differences are foreseeable from this change when the TTBASE bits
[4:3] are set to zero.

Microarchitecture—Microarchitecture Compatibility Guide

Third Generation Intel XScale® Microarchitecture
Developer’s Manual May 2007
300 Order Number: 316283-002US

B.4.15 Coalescing

B.4.15.1 Behavioral Difference

On previous generations, coalescing only occurs when: the memory region is
coalescable, the external bus is busy and the K bit in the Aux control register is cleared.

On 3rd generation microarchitecture, when the memory region is coalescable the
stores to that region wait in the memory buffer to coalesce. For details see Section 6.0,
“Data Cache”.

There is no K bit in the 3rd generation microarchitecture Aux control register.

On previous generationss, coalescing completes when the external bus is available for
writing — the coalescing buffer is written to the bus and invalidated. On
3rd generation microarchitecture, coalescing continues until either:

• a hardware time-out expires

• the buffer is needed for another purpose

B.4.15.2 Compatibility Implication

On 3rd generation microarchitecture, global coalescing cannot be disabled. When
coalescing is not desired, then either a non coalescable region or explicit DWB is used.

B.4.15.3 Performance Difference

On 3rd generation microarchitecture coalescing occurs more frequently making more
efficient use of the bus.

B.4.16 Buffers

B.4.16.1 Behavioral Difference

Previous Generation Microarchitecture has separate Write / Fill / Pend buffers.

3rd generation microarchitecture has memory buffers that are write or fill. Each buffer
pends.

B.4.16.2 Compatibility Implication

No compatibility implications are foreseeable from this change.

B.4.16.3 Performance Difference

More efficient use of buffers results in better performance.

Unusual data access patterns causes different buffer stall behavior.

Third Generation Intel XScale® Microarchitecture
May 2007 Developer’s Manual
Order Number: 316283-002US 301

Microarchitecture Compatibility Guide—Microarchitecture

B.4.17 LDC

B.4.17.1 Behavioral Difference

When the Coprocessor Access Register (CPAR) allows access to a coprocessor, previous
generationss raise an undefined instruction exception when a LDC is done to a
coprocessor that does not exist. No implicit load is performed.

On 3rd generation microarchitecture when the Coprocessor Access Register (CPAR)
allows access to a coprocessor and a LDC is done to a coprocessor that does not exist,
an implicit load is done before the undefined instruction exception is raised. When this
load aborted, 3rd generation microarchitecture encounters a data abort instead of
raising an undefined instruction exception. Likewise it also generates a Data Breakpoint
when the address matches that in the data break point register.

B.4.17.2 Compatibility Implication

On previous generationss a LDC to CP that does not exist raises an undefined
instruction exception.

On 3rd generation microarchitecture a LDC to CP that does not exist generates a Data
abort or breakpoint. To achieve the same behavior as previous generations, the
software clears the CPAR permission bits for all Coprocessors that do not exist.

B.4.17.3 Performance Difference

Accessing unimplemented Coprocessors is slower.

B.4.18 Instruction Timings

Some instruction timings have changed on 3rd generation microarchitecture. See
Section 13.4, “Instruction Latencies” on page 221 for exact timings.

B.4.19 Debug

Some debug features have changed. This is relevant to vendors writing debug
monitors. To non debug handler code the effects are not visible. Below is a brief
summary of the changes.

The previous generations mini-instruction cache is replaced on
3rd generation microarchitecture with Debug SRAM.

3rd generation microarchitecture supports Hot debug to download code to Debug SRAM
while the microarchitecture is executing.

The definition of SDS debug mode has changed. See Section 12.0, “Software Debug”
for more details.

The trace buffer on 3rd generation microarchitecture support tracing Thumb. By default
this feature is disabled, thus allowing the trace buffer to maintain compatibility with
previous generations.

	3rd Generation Intel XScale® Microarchitecture
	Contents
	Figures
	Tables
	Revision History

	Legal Lines and Disclaimers

	1.0 Introduction
	1.1 About This Document
	1.1.1 How to Read This Document
	1.1.2 Other Relevant Documents

	1.2 High-Level Overview of 3rd Generation Microarchitecture
	1.2.1 ARM Compatibility
	1.2.2 Features
	Figure 1. 3rd Generation Microarchitecture Features
	1.2.2.1 Level-2 Cache
	1.2.2.2 Memory Coherency
	1.2.2.3 Multiply/Accumulate (MAC)
	1.2.2.4 Memory Management
	1.2.2.5 Instruction Cache
	1.2.2.6 Branch Target Buffer
	1.2.2.7 Data Cache
	1.2.2.8 Performance Monitoring
	1.2.2.9 Power Management
	1.2.2.10 Software Debug
	1.2.2.11 JTAG

	1.2.3 ASSP Options

	1.3 Terminology and Conventions
	1.3.1 Number Representation
	1.3.2 Terminology and Acronyms
	Table 1. Terminology and Acronyms

	2.0 Programming Model
	2.1 ARM Architecture Compatibility
	2.2 ARM Architecture Implementation Options
	2.2.1 Big Endian versus Little Endian
	2.2.2 Thumb
	2.2.3 ARM Enhanced DSP Extension
	2.2.4 Base Register Update
	2.2.5 Multiply Operand Restriction

	2.3 Extensions to ARM Architecture
	2.3.1 Media Processing Co-processor (CP0)
	2.3.1.1 Multiply With Internal Accumulate Format
	Table 2. Multiply with Internal Accumulate Format
	Table 3. MIA{<cond>} acc0, Rm, Rs
	Table 4. MIAPH{<cond>} acc0, Rm, Rs
	Table 5. MIA<T,B><T,B>{<cond>} acc0, Rm, Rs
	Table 6. MIAxy Subfield Encoding

	2.3.1.2 Internal Accumulator Access Format
	Table 7. Internal Accumulator Access Format
	Table 8. MAR{<cond>} acc0, RdLo, RdHi
	Table 9. MRA{<cond>} RdLo, RdHi, acc0

	2.3.2 Page Attributes
	2.3.3 CP7 Functionality
	2.3.4 CP14 Functionality
	2.3.5 CP15 Functionality
	2.3.6 Exception Architecture
	2.3.6.1 Exception Summary
	Table 10. Exception Summary

	2.3.6.2 Exception Priority
	Table 11. Exception Priority

	2.3.6.3 Prefetch Aborts
	Table 12. Encoding of Fault Status for Prefetch Aborts

	2.3.6.4 Data Aborts
	Table 13. Encoding of Fault Status for Data Aborts

	2.3.6.5 Exceptions from Preload Instructions
	2.3.6.6 Debug Exceptions

	3.0 Memory Management
	3.1 Overview
	3.2 Architecture Model
	3.2.1 Address Translation Process
	3.2.2 Page Table Descriptor Formats
	Table 14. First-level Descriptors
	Table 15. Second-level Descriptors for Coarse Page Table
	Table 16. Second-level Descriptors for Fine Page Table
	3.2.2.1 Supersection Descriptor
	Figure 2. Address Translation for Supersection

	3.2.2.2 Extended Small Page Descriptor

	3.2.3 Memory Attributes
	3.2.3.1 Inner/Outer Cacheability
	3.2.3.2 Coherent Memory Attribute (S-bit)
	3.2.3.3 Low Locality of Reference (LLR)
	3.2.3.4 ASSP Specific Attribute (P-bit)

	3.2.4 Memory Attribute Encodings
	Table 17. Cache Attributes with L2 present, S=0
	Table 18. Cache Attributes with L2 present, S=1
	Table 19. LLR Page Attributes, L2 Present Case, S=0
	Table 20. LLR Page Attributes, L2 Present Case, S=1
	Table 21. Cache Attributes with no L2, S=0
	Table 22. Cache Attributes with no L2, S=1
	Table 23. LLR Page Attributes, no L2 case, S=0
	Table 24. LLR page attributes, no L2 case, S=1

	3.2.5 L1 Instruction Cache, Data Cache Behavior
	3.2.6 L2 Cache Behavior
	3.2.7 Exceptions

	3.3 MMU Control and Management
	3.3.1 MMU Control
	3.3.2 Invalidate TLB Operations
	3.3.3 Locking TLB Entries
	3.3.4 Round-Robin Replacement Algorithm
	Figure 3. Example of Locked Entries in TLB

	4.0 Instruction Cache
	4.1 Overview
	Figure 4. Instruction Cache Organization

	4.2 Operation
	4.2.1 Operation When Instruction Cache is Enabled
	4.2.2 Operation When Instruction Cache Is Disabled
	4.2.3 Fetch Policy
	4.2.4 Replacement Algorithm
	4.2.5 Parity Protection
	4.2.6 Instruction Fetch Latency
	4.2.7 Instruction Cache Coherency

	4.3 Instruction Cache Control
	4.3.1 Instruction Cache State at Reset
	4.3.2 Enabling/Disabling
	4.3.3 Invalidating the Instruction Cache
	4.3.4 Locking Instructions in the Instruction Cache

	5.0 Branch Target Buffer
	5.1 Branch Target Buffer (BTB) Operation
	Figure 5. BTB Entry Format
	Figure 6. Branch History State Diagram
	5.1.1 Reset
	5.1.2 Update Policy

	5.2 BTB Control
	5.2.1 Disabling/Enabling
	5.2.2 Invalidation

	6.0 Data Cache
	6.1 Overview
	6.1.1 Organization
	Figure 7. Data Cache Organization

	6.1.2 Low-Locality of Reference (LLR)
	6.1.3 Memory Buffer Overview
	6.1.3.1 Coalescing

	6.2 Data Cache Operation
	6.2.1 Operation When Data Cache is Enabled
	6.2.2 Operation When Data Cache is Disabled
	6.2.3 Cache Policies
	6.2.3.1 Cacheability
	6.2.3.2 Read Miss Policy
	6.2.3.3 Write Miss Policy
	6.2.3.4 Write-Back Versus Write-Through

	6.2.4 Replacement Algorithm
	6.2.5 Parity Protection
	6.2.6 Data Cache Miss Latency

	6.3 Data Cache Control
	6.3.1 Data Memory State After Reset
	6.3.2 Enabling/Disabling
	6.3.3 Invalidate and Clean Operations

	6.4 Data Cache Locking
	6.5 Memory Buffer Operation and Control
	6.6 Memory Ordering
	6.7 Data Cache Coherency

	7.0 Configuration
	7.1 Overview
	Table 25. Co-processor Instruction Accessibility to CP7, CP14 and CP15

	7.2 CP15 Registers
	Table 26. CP15 Registers
	7.2.1 Register 0: ID & Cache Type Registers
	Table 27. Register 0 Functions (CRn=0)
	Table 28. Main ID Register
	Table 29. L2 System ID Register
	Table 30. L1 Cache Type Register
	Table 31. L2 Cache Type Register

	7.2.2 Register 1: Control and Auxiliary Control Registers
	Table 32. Register 1 Functions (CRn=1)
	Table 33. Control Register
	Table 34. Auxiliary Control Register

	7.2.3 Register 2: Translation Table Base Register
	Table 35. Register 2 Functions (CRn=2)
	Table 36. Translation Table Base Register

	7.2.4 Register 3: Domain Access Control Register
	Table 37. Register 3 Functions (CRn=3)
	Table 38. Domain Access Control Register

	7.2.5 Register 4: Reserved
	7.2.6 Register 5: Fault Status Register
	Table 39. Register 5 Functions (CRn=5)
	Table 40. Fault Status Register

	7.2.7 Register 6: Fault address Register
	Table 41. Register 6 Functions (CRn=6)
	Table 42. Fault Address Register

	7.2.8 Register 7: Cache Functions
	7.2.8.1 Level 1 Cache and BTB Functions
	Table 43. L1 Cache Functions

	7.2.8.2 Level 2 Cache Functions
	Table 44. L2 Cache Functions

	7.2.8.3 Explicit Memory Barriers
	Table 45. Explicit Memory Barrier Operations

	7.2.8.4 Data Cache Line Allocate Function
	Table 46. Line Allocate Function

	7.2.8.5 Precise Data Aborts
	7.2.8.6 Interaction of Cache Functions on Locked Entries
	Table 47. L1 Cache Functions Affect on Locked Entries
	Table 48. L2 Cache Functions Affect on Locked Entries

	7.2.8.7 Set/Way Format
	Table 49. L1 DC Set/Way Format
	Table 50. 256KB L2 Set/Way Format
	Table 51. 512KB L2 Set/Way Format

	7.2.9 Register 8: TLB Operations
	Table 52. TLB Functions
	Table 53. Interaction of TLB Functions with Locked Entries

	7.2.10 Register 9: Cache Lock Down
	Table 54. Cache Lockdown Functions
	Table 55. Data Cache Lock Register
	7.2.10.1 Precise Data Aborts
	7.2.10.2 Legacy Support
	Table 56. Legacy Encoding for L1 Cache Lockdown Functions

	7.2.11 Register 10: TLB Lock Down
	Table 57. TLB Lockdown Functions

	7.2.12 Register 11-12: Reserved
	7.2.13 Register 13: Process ID
	Table 58. Register 13 Functions (CRn=13)
	Table 59. Process ID Register
	7.2.13.1 The PID Register Effect On Addresses

	7.2.14 Register 14: Breakpoint Registers
	Table 60. Register 14 Functions (CRn=14)

	7.2.15 Register 15: Co-processor Access Register
	Table 61. Register 15 Functions (CRn=15)
	Table 62. Co-processor Access Register

	7.3 CP14 Registers
	Table 63. CP14 Registers
	7.3.1 Performance Monitoring Registers
	Table 64. Performance Monitoring Registers

	7.3.2 Clock and Power Management Registers
	Table 65. Clock and Power Management Functions
	Table 66. PWRMODE Register
	Table 67. CCLKCFG Register

	7.3.3 Software Debug Registers
	Table 68. SW Debug Functions

	7.4 CP7 Registers
	Table 69. CP7 Registers

	8.0 Level 2 Unified Cache (L2)
	8.1 Overviews
	Figure 8. 3rd Generation Microarchitecture High-Level Block Diagram
	8.1.1 Level 2 Cache Overview
	Figure 9. Level 2 Cache Organization

	8.1.2 Bus Interface Unit Overview

	8.2 Level 2 Unified Cache Operation
	8.2.1 L2 Cache / BIU Operations due to Microarchitecture Requests
	Table 70. Microarchitecture Request Types
	Table 71. L2 Cache “Hit” Definition

	8.2.2 Level 2 Cache / BIU Operations Due to System Bus Requests
	Table 72. System Bus Requests to L2
	8.2.2.1 Snoop Probes
	8.2.2.2 Push-Cache Requests

	8.2.3 Memory Attributes
	8.2.3.1 L2 Cacheability
	8.2.3.2 L2 Write Policy
	8.2.3.3 Shared Memory Attribute

	8.2.4 Cache Policies
	8.2.4.1 Read Miss Policy
	8.2.4.2 Write Miss Policy
	8.2.4.3 L2 Write-Back Behavior

	8.2.5 Not Recently Used (NRU) Replacement Algorithm
	8.2.6 ECC and Parity Protection

	8.3 Level 2 Cache Control
	8.3.1 Level 2 Cache Memory State After Reset
	8.3.2 Enabling the L2 Cache
	8.3.3 Invalidate and Clean Operations
	Table 73. L2 Cache Maintenance Operations

	8.3.4 Level 2 Cache Clean and Invalidate Operation
	8.3.5 Level 2 Cache Locking
	8.3.5.1 Level 2 Cache Lock Functions
	Table 74. Level 2 Cache CP15 Lock Operations

	8.3.5.2 Level 2 Cache Unlock Functions
	Table 75. Level 2 Cache CP15 UnLock Operations

	8.3.5.3 L2 Cache Maintenance Function Effect on Locked Lines

	8.4 Bus Interface Unit Operation
	Figure 10. High-Level Block Diagram of BIU
	8.4.1 Microarchitecture Request Queue (MRQ)
	8.4.2 Request Scheduling

	8.5 Level 2 Cache and Bus Interface Unit Register Definitions
	Table 76. L2 Unified Cache and BIU Registers
	8.5.1 Level 2 Cache ID and Cache Type Register
	8.5.2 Level 2 Cache and Bus Error Logging Registers (ERRLOG, ERRADRL and ERRADRU)
	Table 77. L2 Cache and Bus Error Log Register Access
	Table 78. L2 Cache and BIU Error Logging Register (ERRLOG)
	Table 79. L2 Cache and BIU Error Lower Address Register (ERRADRL)
	Table 80. L2 Cache and BIU Error Upper Address Register (ERRADRU)

	9.0 Cache Coherence
	9.1 Introduction
	9.2 3rd Generation Microarchitecture Hardware Cache Coherence Solutions
	9.2.1 Hardware Cache Coherence Configurations
	9.2.1.1 Configuration through Page Table Attributes
	Table 81. Page Attributes Configuring Coherence and Cacheability

	9.2.1.2 Shared Attribute Precedence
	9.2.1.3 Non-coherent L1 Instruction Cache
	9.2.1.4 Swap Behavior

	9.2.2 L1D Coherence
	9.2.2.1 Coherent Read Behavior
	9.2.2.2 Coherent Write Behavior
	9.2.2.3 Coherent Line Allocate Instruction Behavior
	9.2.2.4 Replacement Behavior
	9.2.2.5 Locking and Shared Attributes

	9.2.3 L2 Coherence
	9.2.3.1 Coherent L2 Fetch and Lock
	9.2.3.2 Snoop Behavior
	9.2.3.3 Intervention
	9.2.3.4 Push Cache

	9.3 Non-Hardware Coherent Mode
	9.3.1 Introduction
	9.3.2 L1 Data Cache Operation in Non-Cache Coherent Mode
	9.3.2.1 Read Behavior
	9.3.2.2 Write Behavior

	9.3.3 L2 Data Cache Operation in Non-Cache Coherent Mode
	9.3.3.1 Read Behavior
	9.3.3.2 Write Behavior

	10.0 Memory Ordering
	10.1 Introduction
	Figure 11. Memory Ordering Example

	10.2 Visibility: Observation and Global Observation
	10.2.1 Normal (Memory-like) Memory
	10.2.2 I/O-like Memory
	10.2.3 Memory Types
	10.2.4 Data Dependence

	10.3 Write Coalescing and Ordering
	10.4 Instructions with Ordering Constraints
	10.4.1 Safety Nets and Synchronization
	10.4.2 Explicit Fence Instructions: DMB and DWB
	10.4.2.1 Data Memory Barrier (DMB)
	10.4.2.2 Data Write Barrier (DWB)
	10.4.2.3 Effect of DMB and DWB on Write Coalescing

	10.4.3 Instruction Fence Instruction: Prefetch Flush (PF)
	10.4.4 Instruction Encodings
	Table 82. DMB, DWB and PF Instruction Encodings

	10.4.5 Usage Examples of Fence Instructions
	Figure 12. Using DMB to Enforce Ordering
	Figure 13. Using PF to Enforce Data Write to Instruction Fetch Ordering

	10.4.6 Implicit Fences
	10.4.6.1 Swap
	10.4.6.2 Explicit Accesses to Strongly Ordered Memory

	10.5 Ordering Table
	Table 83. Ordering Rules

	10.6 I/O Ordering
	10.7 Ordering Cache Management Operations

	11.0 Performance Monitoring
	11.1 Overview
	Table 84. Performance Monitoring Registers

	11.2 Register Description
	11.2.1 Performance Monitor Control Register (PMNC)
	Table 85. Performance Monitor Control Functions (CRn = 0, CRm = 1)
	Table 86. Performance Monitor Control Register

	11.2.2 Clock Counter (CCNT)
	Table 87. Clock Count Functions (CRn = 1, CRm = 1)
	Table 88. Clock Count Register (CCNT)

	11.2.3 Interrupt Enable Register (INTEN)
	Table 89. Interrupt Enable Functions (CRn = 4, CRm = 1)
	Table 90. Interrupt Enable Register

	11.2.4 Overflow Flag Status Register (FLAG)
	Table 91. Overflow Flag Status Functions (CRn = 5, CRm = 1)
	Table 92. Overflow Flag Status Register

	11.2.5 Event Select Register (EVTSEL)
	Table 93. Event Select Functions (CRn = 8, CRm = 1)
	Table 94. Event Select Register

	11.2.6 Performance Count Registers (PMN0 - PMN3)
	Table 95. Performance Count Functions (CRn = 0-3, CRm = 2)
	Table 96. Performance Monitor Count Register (PMN0 - PMN3)

	11.3 Managing the Performance Monitor
	11.4 Performance Monitoring Events
	Table 97. Performance Monitoring Events (Sheet 2 of 2)
	Table 98. Some Common Uses of the PMU
	11.4.1 Instruction Cache Efficiency Mode
	11.4.2 Data Cache Efficiency Mode
	11.4.3 Instruction Fetch Latency Mode
	11.4.4 Data/Bus Request Buffer Full Mode
	11.4.5 Stall/Writeback Statistics
	11.4.6 Instruction TLB Efficiency Mode
	11.4.7 Data TLB Efficiency Mode
	11.4.8 Average Dynamic Block Length Mode
	11.4.9 Table Walk Mode
	11.4.10 Microarchitecture Utilization Mode
	11.4.11 Exception Mode
	11.4.12 MAC Utilization Mode
	11.4.13 L2 Cache Efficiency Mode
	11.4.14 Data Bus Utilization Mode
	11.4.15 Address Bus Usage Mode

	11.5 Multiple Performance Monitoring Run Statistics
	11.6 Examples

	12.0 Software Debug
	12.1 Additional Debug Documentation
	12.2 Definitions
	Table 99. Debug Terminology

	12.3 Microarchitecture Debug Capabilities
	12.3.1 Debug Registers
	Table 100. CP15 Software Debug Registers
	Table 101. CP14 Software Debug Registers

	12.3.2 Debug Control and Status Register (DCSR)
	Table 102. Debug Control and Status Register (CRn = 10, CRm = 0)
	Table 103. Debug Control and Status Register (DCSR) (Sheet 2 of 2)
	12.3.2.1 Global Enable Bit (GE)
	12.3.2.2 Halt Mode Bit (H)
	12.3.2.3 System-on-a-Chip (SOC) Break Flag (B)
	12.3.2.4 Vector Trap Bits (TF,TI,TD,TA,TS,TU,TR)
	12.3.2.5 Thumb Trace Bit (TT)
	12.3.2.6 Sticky Abort Bit (SA)
	12.3.2.7 Method of Entry Bits (MOE)
	12.3.2.8 Trace Buffer Mode Bit (M)
	12.3.2.9 Trace Buffer Enable Bit (E)

	12.3.3 Debug Exceptions
	Table 104. Event Priority

	12.3.4 Halt Mode
	Table 105. R14_dbg Updating - Halt Mode

	12.3.5 Monitor Mode
	Table 106. R14_abt Updating - Monitor Mode

	12.3.6 Summary of Debug Modes
	Table 107. Special Behavior for Halt and Monitor Mode

	12.3.7 HW Breakpoint Resources
	12.3.7.1 Instruction Breakpoints
	Table 108. Instruction Breakpoint Resources (CRn = 14, CRm = 8,9)
	Table 109. Instruction Breakpoint Register (IBRx)

	12.3.7.2 Data Breakpoints
	Table 110. Data Breakpoint Resources (CRn = 14, CRm = 0,3,4)
	Table 111. Data Breakpoint Register (DBRx)
	Table 112. Data Breakpoint Controls Register (DBCON)

	12.3.8 Software Breakpoints

	12.4 JTAG Communications
	12.4.1 Transmit/Receive Control Register (TXRXCTRL)
	Table 113. Transmit/Receive Control Register (CRn = 14, CRm = 0)
	Table 114. TXRX Control Register (TXRXCTRL)
	12.4.1.1 RX Register Ready Bit (RR)
	Table 115. Normal RX Handshaking
	Table 116. High-Speed Download Handshaking States

	12.4.1.2 Overflow Flag (OV)
	12.4.1.3 Download Flag (D)
	12.4.1.4 TX Register Ready Bit (TR)
	Table 117. TX Handshaking

	12.4.1.5 Conditional Execution Using TXRXCTRL
	Table 118. TXRXCTRL Mnemonic Extensions

	12.4.2 Transmit Register (TX)
	Table 119. Transmit Register (CRn = 8, CRm = 0)
	Table 120. TX Register

	12.4.3 Receive Register (RX)
	Table 121. Receive Register (CRn = 9, CRm = 0)
	Table 122. RX Register

	12.5 Debug JTAG Access
	12.5.1 SELDCSR JTAG Register
	Figure 14. SELDCSR
	12.5.1.1 hold_reset
	12.5.1.2 jtag_dbg_break
	12.5.1.3 DCSR (DBG_SR[34:3])

	12.5.2 DBGTX JTAG Register
	Figure 15. DBGTX
	12.5.2.1 DBG_SR[0]
	12.5.2.2 TX (DBG_SR[34:3])

	12.5.3 DBGRX JTAG Register
	Figure 16. DBGRX
	12.5.3.1 RX Write Logic
	12.5.3.2 DBG_SR[0]
	12.5.3.3 flush_rr
	12.5.3.4 hs_download
	12.5.3.5 RX (DBG_SR[34:3])
	12.5.3.6 rx_valid

	12.6 Trace Buffer
	12.6.1 Definitions
	Table 123. Trace Buffer Terminology

	12.6.2 Trace Buffer Registers
	12.6.2.1 Checkpoint Registers
	Table 124. Checkpoint Registers (CRn = 12,13, CRm = 0)
	Table 125. Checkpoint Register (CHKPTx)

	12.6.2.2 Trace Buffer Register (TBREG)
	Table 126. Trace Buffer Register (CRn = 11, CRm = 0)
	Table 127. Trace Buffer Register (TBREG)

	12.6.3 Trace Messages
	12.6.3.1 Trace Message Formats
	Figure 17. Message Header Formats
	Table 128. Trace Messages

	12.6.3.2 Exception Messages
	12.6.3.3 Non-exception Messages
	12.6.3.4 Reading Indirect Branch Messages
	Figure 18. Indirect Branch Message Organization

	12.6.4 Tracing Thumb Code
	12.6.5 Trace Buffer Usage
	Figure 19. High Level View of Trace Buffer

	12.7 Debug SRAM
	12.7.1 Debug SRAM Overview
	12.7.2 LDSRAM JTAG Register
	Figure 20. LDSRAM JTAG Data Register

	12.7.3 LDSRAM Functions
	Table 129. LDSRAM JTAG Functions
	12.7.3.1 Download Request / Download Complete Functions
	Figure 21. Format of Download Request function
	Figure 22. Format of Download Complete function

	12.7.3.2 Load Debug SRAM Function
	Figure 23. Format of Load Debug SRAM function

	12.7.4 Loading Debug SRAM During Reset
	Figure 24. Code Download During a Cold Reset For Debug
	Table 130. Steps For Loading Debug SRAM During Reset

	12.7.5 Loading Debug SRAM After Reset
	12.7.5.1 Software Synchronization for Loading Debug SRAM
	12.7.5.2 Hardware Synchronization for Loading Debug SRAM

	12.8 JTAG Device Identification Register
	Table 131. JTAG Device Identification Register

	12.9 Debug Changes from previous generations to 3rd Generation Microarchitecture

	13.0 Performance Considerations
	13.1 Interrupt Latency
	13.2 Branch Prediction
	Table 132. Branch Latency Penalty

	13.3 Addressing Modes
	13.4 Instruction Latencies
	13.4.1 Performance Terms
	13.4.2 Branch Instruction Timings
	Table 133. Branch Instruction Timings (Those predicted by the BTB)
	Table 134. Branch Instruction Timings (Those not predicted by the BTB)

	13.4.3 Data Processing Instruction Timings
	Table 135. Data Processing Instruction Timings

	13.4.4 Multiply Instruction Timings
	Table 136. Multiply Instruction Timings
	Table 137. Multiply Implicit Accumulate Instruction Timings
	Table 138. Implicit Accumulator Access Instruction Timings

	13.4.5 Saturated Arithmetic Instructions
	Table 139. Saturated Data Processing Instruction Timings

	13.4.6 Status Register Access Instructions
	Table 140. Status Register Access Instruction Timings

	13.4.7 Load/Store Instructions
	Table 141. Load and Store Instruction Timings
	Table 142. Load and Store Multiple Instruction Timings

	13.4.8 Semaphore Instructions
	Table 143. Semaphore Instruction Timings

	13.4.9 Coprocessor Instructions
	Table 144. CP15 Register Access Instruction Timings (Sheet 2 of 2)
	Table 145. CP14 Register Access Instruction Timings
	Table 146. CP7 Register Access Instruction Timings

	13.4.10 Miscellaneous Instruction Timing
	Table 147. Exception-Generating Instruction Timings
	Table 148. Count Leading Zeros Instruction Timings

	13.4.11 Thumb Instructions
	Table 149. Thumb Instruction Timings

	13.4.12 Result Latency Summary
	Figure 25. 3rd Generation Microarchitecture Pipeline Data Flow

	13.4.13 Shifter Latency Summary
	Table 150. Shifter Dependencies

	Appendix A Optimization Guide
	A.1 Introduction
	A.1.1 Quick Start for Optimization
	A.1.2 About This Guide

	A.2 3rd Generation Microarchitecture Pipeline
	A.2.1 General Pipeline Characteristics
	A.2.1.1 Number of Pipeline Stages
	A.2.1.2 Pipeline Organization
	Figure 26. Pipeline Diagram
	Table 151. Pipelines and Pipe Stages

	A.2.1.3 Out Of Order Completion
	A.2.1.4 Register Scoreboarding
	A.2.1.5 Use of Bypassing

	A.2.2 Instruction Flow Through the Pipeline
	A.2.2.1 Instruction Execution
	A.2.2.2 Pipeline Stalls

	A.2.3 Main Execution Pipeline
	A.2.3.1 F1 / F2 (Instruction Fetch) Pipestages
	A.2.3.2 ID (Instruction Decode) Pipestage
	A.2.3.3 RF (Register File / Shifter) Pipestage
	A.2.3.4 X1 (Execute) Pipestage
	A.2.3.5 X2 (Execute 2) Pipestage
	A.2.3.6 WB (write-back)

	A.2.4 Memory Pipeline
	A.2.4.1 D1 and D2 Pipestage

	A.2.5 Multiply/Multiply Accumulate (MAC) Pipeline
	A.2.5.1 Behavioral Description

	A.3 Basic Optimizations
	A.3.1 Conditional Instructions
	A.3.1.1 Optimizing Condition Checks
	A.3.1.2 Optimizing Branches
	A.3.1.3 Optimizing Complex Expressions

	A.3.2 Bit Field Manipulation
	A.3.3 Optimizing the Use of Immediate Values
	A.3.4 Optimizing Integer Multiply and Divide
	A.3.5 Effective Use of Addressing Modes

	A.4 Cache and preload Optimizations
	A.4.1 L1 Instruction Cache
	A.4.1.1 Cache Miss Cost
	A.4.1.2 Pseudo-LRU Replacement Cache Policy
	A.4.1.3 Code Placement to Reduce Instruction Cache Misses
	A.4.1.4 Locking Code into Instruction Cache

	A.4.2 L1 Data Cache
	A.4.2.1 Cache Conflicts, Pollution and Pressure
	A.4.2.2 Write-through and Write-back Cached Memory Regions
	A.4.2.3 L1 Data Cache Organization
	A.4.2.4 Cache Line Preallocation
	A.4.2.5 Creating On-chip RAM
	A.4.2.6 LLR Cache Policy
	A.4.2.7 Data Alignment
	A.4.2.8 Literal Pools

	A.4.3 L2 Unified Cache
	A.4.3.1 Locking Code or Data into L2 Unified Cache
	A.4.3.2 Creating On-chip RAM

	A.4.4 Classical Array Optimizations
	A.4.5 Preload Considerations
	A.4.5.1 Preload Distances
	A.4.5.2 Preload Loop Scheduling
	A.4.5.3 Preload Loop Limitations
	A.4.5.4 Compute vs. Data Bus Bound
	A.4.5.5 Low Number of Iterations
	A.4.5.6 Bandwidth Limitations
	A.4.5.7 Preload Unrolling
	A.4.5.8 Pointer Preload
	A.4.5.9 Preload to Reduce Register Pressure

	A.5 Instruction Scheduling
	A.5.1 Load and Store Instructions
	A.5.1.1 Scheduling Loads
	A.5.1.2 Scheduling Load and Store Double (LDRD/STRD)
	A.5.1.3 Scheduling Load and Store Multiple (LDM/STM)

	A.5.2 Scheduling Data Processing Instructions
	A.5.3 Scheduling Multiply Instructions
	A.5.4 Scheduling SWP and SWPB Instructions
	A.5.5 Scheduling the MRA and MAR Instructions (MRRC/MCRR)
	A.5.6 Scheduling the MIA and MIAPH Instructions
	A.5.7 Scheduling MRS and MSR Instructions
	A.5.8 Scheduling CP15 Coprocessor Instructions

	A.6 Optimizing C Libraries
	A.7 Optimizations for Size
	A.7.1 Space/Performance Trade Off
	A.7.1.1 Multiple Word Load and Store
	A.7.1.2 Use of Conditional Instructions
	A.7.1.3 Use of PLD Instructions

	A.7.2 Thumb

	Appendix B Microarchitecture Compatibility Guide
	B.1 Overview
	B.2 New Features
	B.2.1 MMU Features
	B.2.2 New L1 Cache Functions
	B.2.3 LLR
	B.2.4 Optional Level 2 Cache
	B.2.5 Support For Hardware Cache Coherency
	B.2.6 Memory Ordering
	B.2.7 PMU features
	B.2.8 Instruction Behavior

	B.3 Features No Longer Available
	B.3.1 Memory Coalescing
	B.3.2 Mini Data Cache

	B.4 Compatibility With Respect To Previous Generation Microarchitecture
	B.4.1 Page Table Memory Attributes
	Table 152. Previous Generation Microarchitecture Page Table Attribute Encoding Compatibility

	B.4.2 Behavior Of Strongly Ordered Memory
	B.4.2.1 Behavioral Difference
	B.4.2.2 Compatibility Implication
	B.4.2.3 Performance Difference

	B.4.3 Behavior Of Device Memory
	B.4.3.1 Behavioral Difference
	B.4.3.2 Compatibility Implication
	B.4.3.3 Performance Difference

	B.4.4 Low Locality Of Reference (LLR) Cache Usage
	B.4.4.1 Behavioral Difference
	Table 153. Auxiliary Control Register Bits [5:4]

	B.4.4.2 Compatibility Implication
	B.4.4.3 Performance Difference

	B.4.5 L1 Allocation Policy
	B.4.5.1 Behavioral Difference
	B.4.5.2 Compatibility Implication
	B.4.5.3 Performance Difference

	B.4.6 DC Line Allocate
	B.4.6.1 Behavioral Difference
	B.4.6.2 Compatibility Implication
	B.4.6.3 Performance Difference

	B.4.7 Translation Table Register - Page Table Memory Attribute (P) Bit
	B.4.7.1 Behavioral Difference
	B.4.7.2 Compatibility Implication
	B.4.7.3 Performance Difference

	B.4.8 Drain Write Buffer
	B.4.8.1 Behavioral Difference
	B.4.8.2 Compatibility Implication
	B.4.8.3 Performance Difference

	B.4.9 L1 Cache Invalidate Function
	B.4.9.1 Behavioral Difference
	B.4.9.2 Compatibility Implication
	B.4.9.3 Performance Difference

	B.4.10 Cache Organization, Locking And Unlocking
	B.4.10.1 Behavioral Difference
	B.4.10.2 Compatibility Implication
	B.4.10.3 Performance Difference

	B.4.11 Data Cache Replacement Algorithm
	B.4.11.1 Behavioral Difference
	B.4.11.2 Compatibility Implication
	B.4.11.3 Performance Difference

	B.4.12 PLD
	B.4.12.1 Behavioral Difference
	B.4.12.2 Compatibility Implication
	B.4.12.3 Performance Difference

	B.4.13 SWP
	B.4.13.1 Behavioral Difference
	B.4.13.2 Compatibility Implication
	B.4.13.3 Performance Difference

	B.4.14 Page Table Walks
	B.4.14.1 Behavioral Difference
	B.4.14.2 Compatibility Implication
	B.4.14.3 Performance Difference

	B.4.15 Coalescing
	B.4.15.1 Behavioral Difference
	B.4.15.2 Compatibility Implication
	B.4.15.3 Performance Difference

	B.4.16 Buffers
	B.4.16.1 Behavioral Difference
	B.4.16.2 Compatibility Implication
	B.4.16.3 Performance Difference

	B.4.17 LDC
	B.4.17.1 Behavioral Difference
	B.4.17.2 Compatibility Implication
	B.4.17.3 Performance Difference

	B.4.18 Instruction Timings
	B.4.19 Debug

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

