Next Generation Network
Processor Technologies

Enabling Cost Effective Solutions for
2.5 Gbps to 40 Gbps Network Services

Network Processor Division
Intel® Corporation
October 2001

Next Generation Network Processor
Technologies Enabling Cost Effective Solutions
for 2.5 Gbps to 40 Gbps Network Services

Contents

AbStract 1
Problem Statement 1
Architecture Level Solution 3
Effective Pipelining & Network Processor Technologies 4
Intel's Next Generation Network Processor Technologies 5
SUMMANY . . 7

For More Information 8

Abstract

Network processors continue to find widespread
application in different market segments, covering
a variety of network services and wide ranges of
performance levels. Cost effectiveness and high
flexibility are significant advantages that network
processors offer to accelerate the development of
Next Generation Network (NGN) equipment. As the
NGN applications grow rapidly in complexity and
performance level, the requirements on processing
power and intelligence increase very quickly. The
next generation network processors must stay
ahead of the requirement curves for the various
market segments, while continuing to offer
excellent cost effectiveness and flexibility.

This white paper describes the key technical
problems for network processing at 10 Gbps and
higher line rates, and recommends an architecture
level solution. Furthermore, the white paper
highlights the important network processor
technologies that enable effective implementations
of this architecture level solution. More important,
this paper reveals some of the new network
processor technologies that Intel's next generation
network processor families will offer, and illustrates
their effectiveness.

In the short term, Intel will expand its network
processor offerings with the introduction of three
new network processor families, designed to meet
the respective requirements of the core/metro,
access/edge, and customer premises equipment
market segments. These new network processor
families will offer an impressive list of next
generation network processor hardware
technologies, optimized in terms of both
performance and cost effectiveness for each of the
respective market segments. In addition, these
new network processors will employ the latest Intel
semiconductor process technologies, advanced
processor design techniques, and excellent
economy-of-scale manufacturing capability. The

ultimate goal is to enable network equipment
vendors to offer their customers the best
combination of customizable/upgradeable services
and wire-speed performance, while minimizing
development time and costs.

Problem Statement

At the microscopic perspective of a typical
network processor, Layer-2 cells/packets arrive at
a specified maximum line rate. For example, at
10 Gbps line rate, a new 40-byte minimum size IP
packet may arrive every 35ns. At 40 Gbps line
rate, this arrival rate tightens to only 8ns. The
network processor must perform the necessary
Layer-3 through Layer-7 applications on these
cells/packets, and must transmit the processed
cells/packets out at the desired sequence and
rate. The network processor must be able to keep
up with wire-speed so that no cell/packet gets
dropped unintentionally.

Line rate 40-byte packet arrival rate
2.5 Gbps| OC-48 160ns
10 Gbps | OC-192 35ns
40 Gbps | OC-768 8ns

Table 1: Inter-packet arrival rates

At high line rates, for example 10 Gbps to

40 Gbps, this generic operation of a typical
network processor reveals two classic problems:
the dependence problem and the independence
problem. The dependence problem is that
cells/packets usually depend upon predecessor
cells/packets, and processing of ordered
cells/packets demands atomic and sequential
accesses to shared data structures. For instance,
in an ATM AALS5 application, CRC calculation for
an ATM cell requires the CRC residual value that is
generated from the CRC calculation for the
predecessor cell. The independence problem
refers to the fact that even unrelated cells/packets
usually access common data structures, and
accesses 1o these shared resources limit

performance by imposing long latency and
serialization. For instance, cells/packets get
enqueued to buffers and dequeued for transmit
by a common transmit scheduler. These network
processing problems become exponentially more
complex as the line rate increases.

A closer look at the dependence problem reveals
that there are actually three cases. First, since the
arrival rate between sequential cells/packets that
belong to the same context may not be
deterministic, the network processor needs to
buffer these contexts. As a new cell/packet
arrives, the relevant context needs to be retrieved
from the buffer. Depending on the number of
contexts that the application supports and the
internal storage capacity the network processor
supplies, these contexts may need to be buffered
in external memory, which incurs additional
latency. Second, while a context is being updated
for a cell/packet, a subsequent cell/packet may
start to access the same context. These
accesses must complete atomically and in the
correct sequence. In other words, these accesses
must not result in data corruption due to
interference with each other. Third, in order to
maintain line rate processing, there may not be
sufficient time to allow the completion of a write to
a context buffer, before the read to the same
context buffer for a subsequent cell/packet must
take place.

The independence problem can be generalized
to be a linked list management problem. For
instance, a pool of buffers is typically
implemented as a linked list of buffers. Allocation
and freeing up of buffers require traversing a
linked list, which may be implemented as a
sequence of dependent read operations.
Dependent memory operations require long
latency, and may force serialization on parallel
accesses. In addition, at the application level,
many Transmit Scheduler algorithms employ
linked lists. At run-time, the execution of these
algorithms leads to traversal of linked lists at wire-

speed. More important, each linked list element
must be added or removed atomically, while
maintaining the correct sequence.

The following example application demonstrates
the complexity of supporting linked list traversal at
wire-speed. In the case of 10 Gbps line rate and
40-byte IP packets, a new packet arrives every
35ns. Suppose the application manages a large
number of queues and each queue is
implemented as a linked list. This application
maintains the table of queues and the actual
queues in SRAM for performance reasons. The
application enqueues a packet into the proper
transmit-queue, and dequeues it when the packet
is scheduled for transmit. The processing of each
packet requires at least one enqueue and one
dequeue operation. Each enqueue and dequeue
operation requires three dependent SRAM
transactions. For instance, to dequeue the head
element of a linked list, the following sequence of
dependent operations happens: read the head
pointer from the queue management table, read
the next element pointer of the head element, and
write this next pointer value to the queue
management table as the new head pointer. The
current SRAM technology can handle a
dependent SRAM transaction in about 10ns. The
enqueue and dequeue operations for each packet
require 6 X 10ns. Even without taking into account
other processing functions, this 60ns latency
already far exceeds the 35ns packet processing
time budget before a new packet arrives.

As a result of these problems, network processors
must employ special schemes in order to handle
wire-speed cell/packet processing at 10 Gbps
and higher line rate, even with state-of-the-art
semiconductor technology and advanced circuit
design techniques. With ASIC and standard-cell
hardware design methodologies, these problems
become much more complicated, and may not be
solvable efficiently and cost effectively starting at
even 2.5 Gbps line rate.

Architecture Level Solution

Network processing requires extremely high
speed update of state sequentially and
coherently, while demanding exclusivity and
atomicity. Intel's architecture solution to this
classic problem is pipelining.

The idea behind pipelining is to break the entire
processing for each cell/packet into sequential
stages. As long as the dependencies and
ordering of these stages are maintained, the
execution of the stages that correspond to many
cells/packets can be performed in parallel using
multiple processing elements. Moreover, each
processing element can execute multiple threads
in a time-shared manner in order to maximize the
overall processing throughput.

Network processing applications normally
include multiple functions. For instance, a typical
router application consists of the following
functions: packet receive, route table look-up,
packet classification, metering, congestion
avoidance, transmit scheduling, and packet
transmit. Each of these functions can be
implemented as a pipeline or a pipeline stage.
These pipelines connect together to form the
entire application.

There are two basic pipelining approaches:
context pipelining and functional pipelining.

A context pipeline is comprised of processing
stages that each performs a specific function.
The context of a cell/packet moves from stage to
stage as the individual functions are sequentially
performed on the context. Each context pipeline
stage is represented by a processing element. If
the processing element supports multi-threading
with up to n threads, the processing element can
apply the specific function to n contexts of
cells/packets during one stage. As a result, the
time budget for a stage can be n times the
cell/packet arrival rate. In other words, one can
afford to have n times the cell/packet arrival rate
as time budget to perform only one function,

which is just a portion of the entire processing.
Another advantage of context pipelining is that
each processing element only needs to perform
its own function; consequently, the complexity
and amount of software required for a processing
element is minimized to the support of that
particular function.

In functional pipelining, a single processing
element performs different functions during
different stages, on the same cell/packet context.
Consider a processing element that performs m
consecutive functions on a cell/packet context;
during each stage, a processing element only
performs one of the m functions. This processing
element takes m stages to complete its
processing on each cell/packet context. In order
to avoid blocking the overall pipeline
advancement as new cells/packets arrive, m
processing elements work in parallel. These m
processing elements form the functional pipeline.
These m processing elements actually work in a
staggered fashion, so that at any one stage in
time, each processing element performs a
different function out of the m functions. This
staggering is needed because each function
may demand exclusive ownership of some global
state. In case each processing element supports
n threads of multi-threading, it can process n
different cell/packet contexts in a time shared
manner in each stage. The advantage of
functional pipelining is that the time budget each
processing element has for operating on a
cell/packet context is m x n x the cell/packet
arrival rate. This time budget is m times bigger
than the time budget that a context pipeline
offers. In other words, functional pipelining
accommodates very long latency functions
efficiently. The disadvantages of functional
pipelining include the overhead for transferring
state information between consecutive
processing elements, and the relatively greater
complexity or larger amount of software required
in each processing element; each needs to
perform m functions as opposed to one function
for a context pipeline stage.

Effective Pipelining &
Network Processor
Technologies

The pipelining architecture approach enables
complex network processing to keep up with
extremely fast packet arrival rate. From the
architecture perspective, pipelining clearly solves
the throughput problem. Nevertheless, effective
implementations of pipelining must also minimize
the latency of network processing. The important
network processor technologies that enable
efficient pipelining implementation and minimize
latency include a pool of intelligent and highly
programmable processing elements, fast and
flexible communication between processing
elements, multi-threading, and hardware support
for atomic and ordered data sharing.

Network processors need to include a pool of
intelligent and highly programmable processing
elements that excel in processing cells/packets at
wire-speed. Network services are growing in both
performance and complexity levels. Moreover, the
applications are changing as standards evolve or
get established. New applications emerge to
support new usage patterns and to replace old
applications that have become obsolete. At the
macro level, network processors must provide
ample processing power and intelligence to run
the various network applications efficiently. In
addition, network processors must offer high
flexibility to accommodate changes in application
and usage patterns. Optimal balance between
customized functionality and general purpose
programmability is significant. Hard-wired
solutions perform well on the expected
functionality and usage pattern, but may not be
applicable and may become obsolete easily when
the application or usage pattern changes. For
instance, a network processor that is optimized to
process ATM traffic may not be able to support
the various Quality of Service (QoS) functions for
IP packets, let alone execute at wire-speed. On
the other hand, general purpose microprocessors

are not cost effective, and lack hardware support
on some common and basic networking
functionality; consequently they may not be able
to sustain wire-speed network processing.
Moreover, the cost penalty associated with using
general purpose microprocessors for wire-speed
network processing worsens quickly as line rate
increases.

At the micro level, each processing element owns
the processing of a pipeline stage. Processing
elements must offer high computing power,
support basic networking functions in hardware,
and directly enable efficient implementation as
well as execution of a pipeline stage. Moreover, in
order to optimize the implementation of network
processing for high line rates, the workload for the
pipeline stages and the topology of the various
functional and context pipelines need to be
adaptable with respect to the application and
usage patterns. Flexibility in processing elements
significantly improves the development efficiency
for such optimization, or adjustments to changes
in usage patterns.

In a pipeline, data and control information
continuously flow between pipeline stages. Fast
and flexible communication between processing
elements is extremely important. Specifically, in a
context pipeline, as the pipeline advances, the
processed cell/packet context is pushed to the
subsequent processing element in the pipeline. In
a functional pipeline, processing elements pass
global state information to the next processing
element in the same functional pipeline. Each
processing element should have direct paths to
communicate with its neighbor processing
elements. Ideally, processing elements have
exclusive usage of the direct paths so that
communication incurs minimum latency and
happens deterministically in order to simplify
performance tuning.

Multi-threading is a proven technique for
managing memory latencies. Specifically, the
same processing element executes multiple

threads in a time-shared manner. When a thread is
waiting for a memory access to complete, the
processing element can switch the execution to a
different thread. When the earlier thread becomes
ready again (once the memory access has
completed), the processing element switches
back to it and resumes execution. Computing
capacity gets utilized efficiently even while
memory accesses take place. Network processing
involves many dependent memory accesses,
which result in long latency and serialization. As a
result, Intel’'s architecture and processing
elements support multi-threading in order to
maximize throughput and utilization. Moreover, as
the performance gap between processors and
memory technologies continues to widen, the
architecture allows processing elements to scale
upward in thread count, ensuring wire-speed
performance at line rates of 10 Gbps and beyond.

In an overall network processing pipeline, there
exist many scenarios of data sharing. For
instance, some of the threads on the same
processing element may need to update the same
entry of a common data structure in memory.
Without dedicated hardware support, such
scenarios pose extra performance overhead. This
is because the processing element first needs to
detect these data access collisions and then
needs to serialize the accesses among the
multiple threads while maintaining the sequence
and atomicity of the accesses. If the shared data
is stored in external RAM, this process will involve
several long-latency accesses being performed
sequentially. On the other hand, if each
processing element has a cache, a simple cache
look-up can detect whether an earlier thread has
already accessed a certain shared data location.
Furthermore, subsequent threads can pick up the
shared data, which is still resident in the
processing element, from an earlier thread directly
instead of going through unnecessary memory
accesses. For instance, consider a processing
element whose function performs read-modify-
write operations on some shared data structures.
A thread can pick up the modified data from an

earlier thread, modify the data per its own
operation, and either pass the data to a
subsequent thread or write it back to memory
depending on whether a subsequent thread will
need the same data.

The performance implications illustrate the
advantages of having such distributed caches. In
the above example, using distributed caches, the
worst case scenario occurs when all the threads
access different data locations. Without the cache
support, the worst case would occur when all the
threads need to access the same data, and these
accesses must happen in a serial fashion. In
addition, the cache support offers improved
overall network processing performance by
minimizing memory bandwidth consumption for
multiple threads accessing the same data.

Intel’s Next Generation
Network Processor
Technologies

Intel’s upcoming network processor offerings
include many exciting next generation network
processor technologies. Of the complete list of
next generation technologies, this white paper
illustrates next neighbor registers and distributed
caches.

Next neighbor registers are new registers that
have been added to Intel's microengine
architecture; microengines are the data plane
processing elements in Intel’s network processor
offerings. Each microengine can directly and
exclusively write to the next neighbor registers of
its neighbor microengine. Moreover, the receiving
microengine can use the content of the next
neighbor registers just like General Purpose
Registers from both the instruction set register
usage and performance perspectives.
Furthermore, there is additional hardware support
to make the next neighbor registers form a FIFO
ring between the producing microengine and the

Intel® Next Generation Microengine Architecture

From Next Neighbor)
D-Push S-Push
Bus Bus
v Control
LocalMemory 405 48 8 18D 128
s oR R NexNeghor Xerm Xerl otore
tt 3 lf i 3 {
|
LM Addr 1 >2per Bop Aop 4K
LM Addr 0 7 CTX \
- [y Instructions
+— P-Random #
VA_Operand + B_Operand
’—’ Multiply TAGS —» Status
f_ Find first bit 32-bit Execution | .45 -. B
- Data Path s S
L Add, shift, logical « Status
[ALU_Out T .
| 1] 0 Next Neighbor
v v v v
—{ Timers |
128D 1285
XferOut Xfer Out
D-Pull Bus J J S-Pull Bus

consuming microengine. The functionality,
performance, and deterministic nature of next
neighbor registers minimize the communication
overhead between adjacent microengines in a
pipeline, and maximize the development efficiency
for implementing and tuning pipelines.

The microengines in Intel's next generation
network processors contain their own caches.
These distributed caches allow parallel content-
addressable look-up on all entries in one clock
cycle. In addition to the typical look-up result of hit

or miss, the distributed caches supply extra
information. Specifically, when the look-up results
in a miss, a distributed cache also returns the
index to be replaced. When the look-up results in
a hit, a distributed cache returns not only the index
of the matching entry, but also 4 bits of user-
defined information tagged with that particular
entry. For instance, before a thread accesses a
shared data location in memory for a read-modify-
write operation, it first looks up the distributed
cache on its microengine. A hit can indicate that a
prior thread has already accessed the desired

data. In this case the 4-bit user defined
information can convey this message as well as
the thread number of the prior thread. Thus, the
current thread can access the shared data from
this prior thread at a later time, rather than
performing another memory fetch. The
functionality and performance of the distributed
caches readily enable optimization in data
sharing.

Furthermore, the fully associative content-
addressable nature of distributed caches directly
facilitates optimizations on multiple-outcome
conditional branches, such as a C language
switch statement. For instance, a distributed
cache readily forms a software jump-table.

In addition to instruction set architecture level
enhancements, Intel’s next generation network
processors employ state-of-the-art Intel
semiconductor process technologies, advanced
processor development techniques, and excellent
economy-of-scale manufacturing capability. The
net result is not only optimal circuit performance
with minimal power consumption, but also
extremely cost-effective single-chip network
processors even at 10 Gbps performance level.
These advantages directly translate into
decreased time and costs for NGN equipment
development for Intel's customers.

Summary

At 10 Gbps and higher line rates, network
processing involves overcoming critical
dependence and independence problems. In
other words, network processing requires
extremely high speed update of state sequentially
and coherently, while demanding exclusivity and
atomicity. Intel’s solution to this architectural
problem is pipelining. The basic pipelining

approaches include context pipelining and
functional pipelining. At the architecture level,
Intel’s pipelining approach for high speed network
processing facilitates optimal combinations of
functional and context pipelines, each of which
represents a specific function of the entire network
application. Moreover, Intel's approach enables the
topology and mapping of functions to the individual
pipeline stages to be precisely tuned, to maximize
throughput as well as to minimize the overall
latency for the target application and usage
patterns. Intel's design incorporates important
network processor technologies, including a pool
of intelligent and highly programmable processing
elements, fast and flexible communication between
processing elements, multi-threading, and
hardware support for atomic and ordered data
sharing. In addition, Intel'’s network processors
deliver advanced circuit level performance with
minimal power and silicon area consumption.

In the short term, Intel will expand its network
processor offerings. These next generation network
processors will offer an impressive list of advanced
network processor hardware technologies. Some of
the new technologies include next neighbor
registers and distributed cache. Moreover, Intel’'s
state-of-the-art semiconductor technologies,
advanced processor design technigues, and
excellent economy-of-scale manufacturing
capability will enable extremely cost effective
single-chip network processors, even at 10 Gbps
performance level. The ultimate goal is to enable
network equipment vendors to offer their customers
the best combination of customizable/upgradeable
services and wire-speed performance, while
minimizing development time and costs, in the
core/metro, access/edge, and customer premises
equipment market segments.

T Intel Access

Developer’s Site developer.intel.com
Networking and Communications Building Blocks Site www.intel.com/design/network
Intel” Internet Exchange Architecture Site www.intel.com/IXA
Other Intel Support developer.intel.com/design/litcentr
Intel Literature Center (800) 548-4725 7a.m. to 7 p.m. CST (U.S. and Canada)
International locations please contact your local sales office.
General Information Hotline (800) 628-8686 or (916) 356-3104 5 a.m. to S p.m. PST

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise,
to any intellectual property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such
products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel
products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent,
copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications.
Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future
changes to them.

|
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in other countries.
® For more information, visit the Intel Web site at: developer.intel.com
UNITED STATES AND CANADA EUROPE ASIA-PACIFIC JAPAN SOUTH AMERICA
Intel Corporation Intel Corporation (UK) Ltd. Intel Semiconductor Ltd. Intel Kabushiki Kaisha Intel Semicondutores do Brazil
Robert Noyce Bldg. Pipers Way 32/F Two Pacific Place P.0. Box 115 Tsukuba-gakuen Rue Florida, 1703-2 and CJ22
2200 Mission College Blvd. Swindon 88 Queensway, Central 5-6 Tokodai, Tsukuba-shi CEP 04565-001 Sao Paulo-SP
P.0. Box 58119 Wiltshire SN3 1RJ Hong Kong, SAR Ibaraki-ken 305 Brazil
Santa Clara, CA 95052-8119 UK Japan
USA

© Intel Corporation 2001 Order Number: 279050-001 Printed in USA/1001/3K/IL11497 CM

