
Intelligent Platform Management
Interface (IPMI)
Conformance Test Suite (ICTS)
Developer’s Guide

Order Number A00334-002

Revision History

Revision Revision History Date
0.1 Prototype ICTS Developer’s Guide 08/1999
0.2 Prototype 2 ICTS Developer’s Guide 12/1999
0.3 Incroporated IPMB, ICMB Information 04/2000
0.4 Update for IPMI 1.5 08/2001
0.5 Updated text, remove ICMB section, and added tlm_CMD, tlm_CMDex

and Test_State.
01/2002

0.6 Updated for IPMI 2.0 08/2004

DISCLAIMER

The information in this manual is furnished "AS IS" for informational use only, is subject to change without
notice, and should not be construed as a commitment by Intel Corporation. Intel Corporation assumes no
responsibility or liability for any errors or inaccuracies that may appear in this document or any software that
may be provided in association with this document. Except as stated in such license, no other rights, express
or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. INTEL
ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO THE USE OF THIS DOCUMENT, INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF
ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LICENSE GRANT

This Developer’s Guide may only be used or copied in accordance with the following terms: This document is
copyrighted and any unauthorized use of it may violate copyright, trademark, and other laws.

If You have, or Your organization has, have entered into an IPMI Adopter's Agreement, You are granted a
copyright license under Intel copyrights to: (i) download and reproduce up to ten (10) copies of this document
for the purpose of your organization's internal evaluation and non-commercial use. This is a license, not a
transfer of title, and is subject to the following restrictions: You may not: (a) use the document for any
commercial purpose, or for any public display, performance, sale or rental; (b) remove any copyright or other
proprietary notices from the document; (c) make any changes to this document (d) transfer the document to
another person. You agree to prevent any unauthorized copying of the document.

OWNERSHIP

The document is copyrighted and is protected by worldwide copyright laws and treaty provisions. It may not be
copied, reproduced, modified, published, uploaded, posted, transmitted, or distributed in any way except as
expressly set forth herein, without Intel's prior written permission.

TERMINATION OF THIS LICENSE

Intel may terminate this license at any time if you are in breach of the terms of this Agreement. Upon
termination, you will immediately destroy the document or return all copies of the document to Intel.

APPLICABLE LAWS

Claims arising under this License shall be governed by the laws of California, excluding its principles of conflict
of laws and the United Nations Convention on Contracts for the Sale of Goods. You may not export the
document in violation of applicable export laws and regulations. Intel is not obligated under any other
agreements unless they are in writing and signed by an authorized representative of Intel.
† Third-party brands and names are the property of their respective owners.

Copyright © 1999 - 2004 Intel Corporation. All Rights Reserved.

Contents

1 Overview ... 9
1.1 Purpose of the IPMI Conformance Test Suite.. 9
1.2 Audience .. 9
1.3 Overview of Test Process .. 10

1.3.1 ICTS Architecture Overview .. 10
1.3.2 ICTS Architecture Layers .. 10

1.4 Customization Opportunities .. 12
1.4.1 Test Modules ... 12
1.4.2 Libraries... 12
1.4.3 Transport Modules... 12

1.5 ICTS Conformance Scope ... 12
1.5.1 ICTS Supports ... 12
1.5.2 ICTS Does Not Support... 13

1.6 Reference Documents ... 13
1.7 Glossary ...14

2 Developing IPMI Conformance Test Modules ... 17
2.1 Test Developer’s Tutorial ... 17
2.2 The Hello World Test ... 17
2.3 Debug and Verbose Levels.. 18

2.3.1 Setting the Level of Debug .. 18
2.3.2 Setting the Verbose Level ... 19
2.3.3 Verbose or Debug from the Framework .. 19

2.4 Reporting Test Results... 20
2.4.1 test_main Return Values ... 20
2.4.2 Reporting Test Results Through the Firmware Library.................................. 21

2.5 Sending/Getting IPMI Messages.. 23
2.5.1 The Message Library... 23
2.5.2 A Note on Cooked Commands.. 23
2.5.3 Messages with the Firmware Test Library... 27

2.6 Other Test Procedures... 29
2.6.1 Initialization and Cleanup Procedures ... 29
2.6.2 Saving and Restoring States ... 31

2.7 Parent and Child Tests... 33
2.7.1 Loading Children ... 34

2.8 Child Initialization Invocation and Cleanup .. 36
2.8.1 Invoking Children... 36
2.8.2 Example: HelloP3 Parent-Child ... 36

2.9 Variable Description Tables ... 41
2.9.1 Setting Up a VDT Table... 41
2.9.2 Generating Variables... 42
2.9.3 Example: VDT ... 42

3 Developing Transport Modules... 45
3.1 Cooked and Raw Messages .. 45

iii

3.1.1 Cooked Message Specification ... 45
3.1.2 Raw Message Specification .. 51

4 Libraries .. 57
4.1 FRU Library.. 57

4.1.1 ReadFRUData Read FRU Data .. 57
4.1.2 WriteFRUData Write FRU Data... 57
4.1.3 ReadFruNVRam Reading FRU Area... 58

4.2 SDR Library.. 58
4.2.1 ReadFullSdrRecord Reading a Complete SDR Record 58
4.2.2 ReadFullSdr Reading the Entire SDR ... 59

4.3 SDR Utilities ... 59
4.3.1 sdrDecode Decoding SDR Data.. 59
4.3.2 sdrGetMicrocontrollers Getting SDR Microcontrollers................................... 60
4.3.3 sdrGetMicrocontrollerSlaveAddress Getting SDR Micro Addresses 60
4.3.4 sdrFlushCache Flush the SDR Decoded Array’s Cache 61

4.4 Microcontroller Library.. 61
4.4.1 ucDeviceList Getting a List of Microcontrollers.. 61
4.4.2 ucSlaveAddress Getting Microcontroller Addresses 61
4.4.3 ucDeviceName Getting Microcontroller Names... 61
4.4.4 ucDefaultMicro Getting the Default Microcontroller 62

4.5 Wake On LAN† Library .. 62
4.5.1 Loading the Library.. 62

4.6 SMS Library ... 64
4.6.1 Loading the Library.. 64
4.6.2 smsWrapForNonBmcMicro Wrapping Non-BMC Messages......................... 64
4.6.3 smsUnwrapNonBmcResponse Unwrapping Non-BMC Responses.............. 64
4.6.4 smsSendNonBmcMessage Sending Non-BMC Messages........................... 65
4.6.5 smsGetNonBmcMessage Getting Non-BMC Messages 65
4.6.6 smsSendMessage Sending SMS Messages... 66
4.6.7 smsGetMessage Getting SMS Messages... 66
4.6.8 smsSendGetMessage Send/Get SMS Message... 67
4.6.9 Generic Library Functions ... 67
4.6.10 array_set Creating a New Array .. 67
4.6.11 print_pass Test Pass Message ... 68
4.6.12 print_fail Test Fail Message... 68
4.6.13 print_warn Test Warning Message.. 69
4.6.14 print_na Test Not Applicable Message.. 69
4.6.15 get_test_fail_count Get Test Fail Count .. 69
4.6.16 print_in_hex Print in Hexadecimal Format... 70
4.6.17 print_line Displaying a Line.. 70
4.6.18 DateTime Date and Time Formatting .. 71
4.6.19 LocalSeconds Local Time in Seconds... 71
4.6.20 formatx Formatting a Value in Hexadecimal.. 71
4.6.21 formatb Formatting a Value in Binary .. 72
4.6.22 heart_beat Progress Indicator – Heart Beat .. 72
4.6.23 print_arr Displaying Array Elements .. 72
4.6.24 Converting Byte List to String .. 73
4.6.25 get_hex_list Converting Bytes to Hexadecimal List....................................... 73

iv ICTS Developer’s Guide

4.6.26 compare_byte_lists Compare List of Bytes ... 73
4.6.27 concat_chars Padding Characters to a String ... 73
4.6.28 set_child_options Setting Child Test Options .. 74
4.6.29 get_checksum Get Checksum... 74

5 Tcl Namespace Considerations.. 75
5.1 Setting Variables Outside a Procedure .. 75

5.1.1 Example: Initializing Arrays with the variable Command............................... 76
5.2 Global Variables... 76

5.2.1 Example: Accessing Globals with the variable Command 76
5.3 Non-array Variable Initialization Outside Test Module Procedures.............................. 76

5.3.1 Example: Variable Initialization.. 77
5.4 Array Initializing Outside Procedures ... 77

5.4.1 Example: Array Initialization .. 77
5.5 Accessing Externally-defined Variables Within Test Module Procedures.................... 77

5.5.1 Example: Variable Access Within a Module .. 77
5.6 Namespace and Loadable C Modules ... 78

6 Procedures and APIs ... 79
6.1 Test Module Procedure Specifications... 79

6.1.1 test_setup Post-Sourcing Initialization... 79
6.1.2 test_help Test Help.. 79
6.1.3 test_init Pre-Execution Initialization... 80
6.1.4 test_main Running the Test... 80
6.1.5 test_state Saving the Test State.. 80

6.2 Base Framework API ... 80
6.2.1 Message Logging .. 81
6.2.2 Process Control ... 84
6.2.3 ftf_stopcheck Checking for a Stop Event... 84
6.2.4 Managing Other Tests ... 85
6.2.5 Variables Management.. 92
6.2.6 SMTP Electronic Mail .. 95
6.2.7 FTP File Transfer... 97
6.2.8 Cursor-Addressable Display Areas ... 98
6.2.9 System Information.. 100
6.2.10 API Provided by Libraries .. 101
6.2.11 Destination and Route Controls... 109

Contents v

Figures
1-1. Firmware Test Framework Architecture.. 11
2-1. Test Menu Showing Levels Item... 19
2-2. Options Menu Showing Levels Item ... 19
2-3. The Levels Drop-Down ... 20
2-4. Global Debug Dialog Box.. 20
2-5. Test Menu Showing Custom Test... 33
2-6. Test Menu Showing Children of IPMI 1.0 Conformance Test Suite.............................. 34

vi ICTS Developer’s Guide

Tables
2-1. Firmware Library Test Result Procedures.. 21
3-1. Possible IPMI Target Interfaces ... 47
6-1. Types of Tests.. 85
6-2. Parent to Child Relationship... 86
6-3. Array Set Command Array Contents.. 100
6-4. Response Data Array Elements... 103
6-5. Firmware Command Information.. 112

Contents vii

viii ICTS Developer’s Guide

1 Overview

The Conformance Test Suite Framework provides a system for checking pass/fail conformance
with the Intelligent Platform Management Interface specification. The Intelligent Platform
Management Interface (IPMI) Conformance Test Suite (ICTS) Developer’s Guide provides a test
development tutorial and the reference information to allow creation of custom tests, test suites, and
libraries. This book also provides information about API support libraries provided by the base
framework and for the support of transport modules.

The ICTS system includes a graphic user interface from which to load, run, and view test results.
In addition, you can configure the host, target, and user-specific-characteristics of the interface to
support the project or projects on which you are working.

The ICTS system does not support text editing, so you will use your favorite code or text editor to
develop or customize test code. For information about how to install, configure, and run the test
framework, refer to the Intelligent Platform Management Interface (IPMI) Conformance Test Suite
(ICTS) User’s Guide.

1.1 Purpose of the IPMI Conformance Test Suite
The IPMI 1.0/1.5/2.0 Conformance Test Suite (ICTS) consists of a software framework within
which you may execute custom tests or a collection of predefined pass-fail tests for determining
platform conformance with the IPMI 1.0/1.5/2.0 specification. The software framework includes a
graphical user interface that provides configuration, loading, execution, and response access to the
tests. The interface also allows recording of configuration file information for the host environment,
the platform, the target, and user preferences. Using a text editor to customize configuration files
allows creation of multiple cross-platform test sets. Saved configuration files and test sets,
manipulated through the graphic interface, allow multiple board and/or project conformance testing
from a single host platform.

� NOTE
The test suite does not imply or enforce compliance requirements.

1.2 Audience
This document supports firmware development engineers desiring IPMI 1.0/1.5/2.0 conformance.
The document assumes familiarity with the IPMI 1.0/1.5/2.0 specification, engineering practices
related to cross-platform development, and general testing theory. For additional information
concerning the IPMI specification and cross-platform issues, refer to the Reference Documents
section of this chapter.

9

1.3 Overview of Test Process
Use of the IPMI 1.0/1.5/2.0 Conformance Test Suite assumes a host environment and a system to
be tested. Before use, you must install and configure the IPMI 1.0/1.5/2.0 Conformance Test Suite
(ICTS). Configurations can be saved, so configuration may not be required to run tests. Once
configuration files for a host and target are complete, testing involves invoking the testing
framework, loading configuration files, loading tests, running tests, and analyzing the results.

1.3.1 ICTS Architecture Overview
The ICTS framework resides on a host system and provides a graphic interface for loading,
running, and analyzing IPMI conformance tests. Once installed and configured, the system
provides a set of automatically loaded tests, access to a test library, and access to library support
modules for communications with transport modules.

The test framework provides an interface for loading and running tests. Tests indicate their results
in two different ways, as text messages in the framework message window for human consumption,
and through internal status values which are passed up from child to parent tests and eventually to
the framework itself. Parent tests utilize these status values to generate summary reports of child
test results in the message window.

The FTF also loads and allows tests access to message procedures from the message library. The
message library facilitates sending of messages to the firmware on the target system by providing
the FTF and tests with a procedure interface to transport modules to allow accurate communication
access to the target.

1.3.2 ICTS Architecture Layers
The FTF is a multi-layered tool primarily implemented in the Tcl scripting language. Transport
Modules may be either C or Tcl. The following list contains the names of the major components
and descriptions of their function.

Base Framework — An application program. In combination with libraries and loaded Test
Modules it is a complete test application. The base framework provides the user interface and the
environment in which tests run.

Test Module – Conducts tests and reports a pass/fail result by conducting the test itself or by
executing other test modules as sub-components. The Base Framework loads Test Modules in
order to create a complete test application program.

Tool Module – Conducts procedures that do not generate pass/fail results. The Tool Module has
access to the same target and framework interface resources provided to a test module.

Message Library – A set of transport-independent message passing routines using services provided
by loaded Transport Modules. The Message Library selects the default transport in the absence of
an explicit requested by the caller.

Transport Modules – A set of loadable modules, one module per transport, that provides primitives
for target interface communication. The module contains additional administrative primitives not
used directly by the Test Modules, but which are used by the Base Framework on behalf of the Test
Modules.

10 ICTS Developer’s Guide

In addition to these components, the framework includes several Companion Libraries that provide
various utility services to the Test Modules.

Figure 1-1 shows the relationship between the various components of the ICTS firmware test
framework.

Host System

Message Routing Library

Emulation Trans Playback Trans

Utility Library

Framework Manager

Tool2
Tool1

Tool1 log
Tool1 Setup

Test3

Test3 Log

Test2

Test2 Log
Test2 Setup

Test1 Log
Test1 Setup

Host
config file,

IP address,
Com port

Target
config file.

CMD
matrix,

SDR, FRU,
firmware

GUI

Test1

Transport API
IOL IOSFWHOST ICAICMBSIO

NIC I2C ConnectorCOM 2 ICMB
Connection

COM 1/COM 2 Saelig Card
(ISA 90, PCI 90)

FWHOST
program

COM 1/
COM2

SIOPROXY
program System Under Test

LAN (DPC)

SMS SMS

Serial/
Modem

ICMB IPMB

IPMB

Transports

NIC

SMBus

Figure 1-1. Firmware Test Framework Architecture

Overview 11

1.4 Customization Opportunities
The installed ICTS includes Tcl source code for many tests. The FTF provides four main areas of
customization. The user interface allows customization of its appearance as well as customization
for use in projects that require repeated testing or test modification. The framework allows
inclusion of new test modules, new test libraries, and new transport modules.

1.4.1 Test Modules
Test modules consist of a test or group of tests written in Tcl. You can use any text editor to create
new tests and test modules. Additionally, you can copy and modify existing tests and test modules
from the source directories of the installed framework. For additional information on the tests
included in the framework, refer to the Intelligent Platform Interface (IPMI) Conformance Test
Suite (ICTS) User’s Guide.

1.4.2 Libraries
Libraries are collections of Tcl procedures which may be shared by test modules. You can create
new libraries or copy and modify the libraries included in the framework. For additional
information on the libraries included in the framework, refer to the Libraries chapter of this
manual.

1.4.3 Transport Modules
Transport modules are implemented in some combination of C and Tcl. Transport modules provide
sets of Tcl language procedures that support communication across architecture layers. A given
transport module supports a particular hardware/software architecture. Multiple transport modules
may coexist within the framework. Their coexistence is managed by the message library. You can
modify or create transport modules to utilized specialized hardware or device drivers.

1.5 ICTS Conformance Scope
The ICTS Framework automatically loads a test suite for pass-fail verification of IPMI 1.0/1.5
specifications for function module access commands and data storage requirements for SDR, SEL
and FRU. The test suite does not test the internal workings of the target system. This section
describes the testing scope of the ICTS Framework tests. For additional information about using
the standard tests, refer to the Intelligent Platform Management Interface (IPMI) Conformance Test
Suite (ICTS) User’s Guide.

1.5.1 ICTS Supports
ICTS supports the following IPMI conformance requirements:

Management controllers, including BMC, should implement IPM functions.
• BMC should implement any mandatory functions such as IPM device, system interface, SDR

repository Watchdog timer, Event Receiver, SEL Interface, Internal Event Generator.
• Each mandatory function should be present and implemented as defined by the IPMI

specification.

12 ICTS Developer’s Guide

• Any conditionally mandatory IPMI 1.0/1.5 command should be present and implemented as
defined by the IPMI specification if the specified condition from IPMI 1.0/1.5 is met or present.

• Any optional IPMI 1.0/1.5 commands should be implemented as defined by the IPMI
specification if the command is present.

• Any data stored in SEL or SDR should follow the format specified in the IPMI 1.0/1.5
specification.

• Mandatory logical devices should be implemented, such as BMC, SEL and SDR.
• If the IPMB is present, the mandatory IPMI commands should be transferred via it (unless a

command is specified as mandatory for only the system interface).
• If the IPMB is present, the additional mandatory IPMB messaging support commands in the

BMC must be implemented as defined by the IMPI specification.
• If the IPMB is present, it is highly recommended that the Initialization Agent should be

implemented. If it is implemented then it must be done as defined by the IPMI specification.
• The platform must provide one of the system interfaces, either KCS, SMIC or BT.
• IPMI 2.0 specification

1.5.2 ICTS Does Not Support
ICTS does not support the following test classes:
• Target platform-specific functions are neither tested nor verified.
• The following list of functions are example of functions that do not fall under the ICTS scope:

⎯ OEM-specific functions. Network function code 30h-3Fh
⎯ Actual data field in OEM SEL Record Type C0h-DFh, Type E0h-FFh
⎯ Actual data field in OEM SDR, SDR Type 0C0h
⎯ Firmware commands. Network Function Code 08, 09

• ICTS does not measure target platform quality.
• ICTS does not do stealth tests and exception tests, unless explicitly mentioned in the IPMI

1.0/1.5 specifications.
• ICTS does not detect management controllers in the target system. It only takes target system

information from the SDR.

For additional information on the IPMI 1.0/1.5 specification, refer to the specification listed in the
Reference Documents section of this chapter.

1.6 Reference Documents
In addition to the information in this manual, the following documents may provide information
useful to testing for IPMI 1.0/1.5 conformances:
• Intelligent Platform Management Interface Specification v2.0 Revision 1.0, © 2004 Intel

Corporation, Hewlett-Packard Company, NEC Corporation, and Dell Computer Corporation.
• Intelligent Platform Management Interface Specification v1.5 Revision 1.0, © 2001 Intel

Corporation, Hewlett-Packard Company, NEC Corporation, and Dell Computer Corporation.
• Intelligent Platform Management Interface Specification v1.0 Revision 1.1, © 1999 Intel

Corporation, Hewlett-Packard Company, NEC Corporation, and Dell Computer Corporation.

Overview 13

• Intelligent Platform Management Bus Communications Protocol Specification v1.0, rev. 1.2
© 2000 Intel Corporation.

• Intelligent Chassis Management Bus Bridge Specification v1.0, rev. 1.2, © 2000 Intel
Corporation.

• System Management Bus (SMBus) Specification, Version 2.0, ©2000, Duracell Inc., Fujitsu
Personal Systems Inc., Intel Corporation, Linear Technology Corporation, Maxim Integrated
Products, Mitsubishi Electric Corporation, Moltech Power Systems, PowerSmart Inc., Toshiba
Battery Co., Ltd., Unitrode Corporation, USAR Systems.

1.7 Glossary
This section contains a terms used throughout this document. For additional information regarding
terms, refer to the documents listed in the Reference Documents section of this manual.

API
Application Program Interface.

EFI
Extensible Firmware Interface

FTF
Firmware Test Framework.

FRU
Field Replaceable Unit. A module or component that will typically be replaced in its
entirety as part of a field service or repair operation.

Host
The machine executing the test, which may or may not be the same as the target.

ICTS
Intelligent Platform Management Interface (IPMI) Conformance Test Suite.

Interface
The local communication path on the target machine (I2C, SMS, etc.)

IPMB
Intelligent Platform Management Bus. Name for the architecture, protocol, and
implementation of a special bus that interconnects the baseboard and chassis electronics
and provides a communications medium for system platform management information. The
bus is built on I2C and provides a communications path between management controllers
such as the BMC, the ICMB bridge controller, and the chassis management controller.

IPMI
Intelligent Platform Management Interface.

SDR
Sensor Data Record. A data record that provides platform management sensor type,
locations, event generation, and access information.

14 ICTS Developer’s Guide

Target
The machine under test, which may or may not be the same as the host.

Transport Layer
The data communication path between the host and target machines (Local, RS-232,
TCP/IP LAN, etc.).

UI
User Interface

IPM
Intelligent Platform Management

BMC
Baseboard Management Controller

SEL
System Event Log

Saelig card
A card providing the standard I2C interface to access the IPMB

Overview 15

2 Developing IPMI Conformance Test Modules

This chapter provides detailed information on developing individual tests, developing test libraries,
and making your tests available in the framework. The chapter includes a tutorial that covers the
basics of test creating using Tcl/Tk. Before engaging in the tutorial, be sure your system is
installed and configured correctly. Installation and Configuration information appears in the
Intelligent Platform Management Interface (IPMI) Conformance Test Suite (ICTS) User Guide.

2.1 Test Developer’s Tutorial
This section is a tutorial demonstrating creation of simple tests. The material included here allows
you to grasp the basic concepts of test creation and customizing tests already available in the ICTS
system. The tutorial will walk you through creation of the Hello World program, the addition of
diagnostics to help in development of the test, and the addition of analysis capture within the test.

For the purposes of this tutorial, a simple test has the following characteristics:
• It does not load or invoke any child tests.
• It does not invoke instances of itself.
• It does not send or receive any “raw” messages.
• It is transport-independent.
• It does not use Variable Description Tables (VDT).

2.2 The Hello World Test
The Hello World test in the following example is an arbitrarily chosen routine familiar to many
programmers. For more realistic example tests, examine the test tcl files located at
C:\FTF\tests\. The Hello World program discussed in the following pages is in the file
C:\FTF\templates\tests\hello1.tcl.

The following example demonstrates use of comments, definition of a process, use of the
ftf_msg statement to route information to the framework screen, and the use of the return
statement to show success.

The simplest framework interpretable version of Hello World as an FTF-compliant test module
appears here:
Hello1.tcl

proc test_main { } {

ftf_msg “Hello, World!”

return 0

}

17

The “#” character marks a comment. The actual test contains one procedure:
proc test_main { } {

The test_main procedure conducts a test, in this case displaying a message on the framework
screen:
ftf_msg “Hello, World!”

After displaying the message, the procedure reports the result by returning a zero to indicate that
the test passed:
return 0

}

2.3 Debug and Verbose Levels
The above example provides the basic form for a test and could be implemented without
consideration of debugging because of its simplicity. However, more complex tests will require
some debugging.

Using the same basic test, the following example demonstrates use of d parameter to the ftf_msg
statement to create debugging messages.

Below is the same test_main procedure with entry and exit debug messages added. Notice the
ftf_msg d parameter that indicates the marked messages as debug messages. The Hello World
message is not a part of the debug process, so it is not marked with the d parameter:
Hello2.tcl

proc test_main { } {

ftf_msg “Enter: test_main” d

ftf_msg “Hello, World!”

ftf_msg “Exit: test_main” d

return 0

}

2.3.1 Setting the Level of Debug
The d parameter can take a numerical modifier that forces the message to appear only when the
framework debug level is set to that number or higher. In the example above, the debug messages
only display if the debug level is one or higher. Possible d modifier values are zero through three.
In the following example message statement, the message executes only if the framework debug
level is two or greater:
ftf_msg “Enter: test_main” d2

The d modifiers have the effects listed below:
• d0 is equivalent to having no d parameter at all.
• d1 is equivalent to “d”. Messages appear for debug levels of one or greater.

18 ICTS Developer’s Guide

• d2 causes messages to appear for debug levels of two or greater.
• d3 causes messages to appear only when the debug level is three.
Set the framework debug levels from the Options menu of the framework’s user interface. The user
configuration file also allows setting debug levels. For additional information on the user interface
and configuration files, refer to the Intelligent Platform Management Interface (IPMI)
Conformance Test Suite (ICTS) User’s Guide.

On a per-test basis, debug levels can be set through the Options menu or by including the
framework ftf_setlevel procedure. To determine the current debug setting within a test, use
the query procedure ftf_getlevel.

2.3.2 Setting the Verbose Level
Verbose levels provide level-controlled display of detailed information regarding the results or
progress of the test. Verbose levels are intended for use by the end-user rather than the developer.
However, verbose levels may be useful during development.

On a per-test basis, debug levels can be set through the Options menu or by including the
framework ftf_setlevel procedure. To determine the current verbose setting within a test,
use the query procedure ftf_getlevel. The verbose message parameter is v. As with the
debug level, the parameter takes a numerical modifier, zero through three that determines the
verbose level setting at which the message will appear.

2.3.3 Verbose or Debug from the Framework
To change the verbose or debug output level, you perform essentially the same procedure. You can
change the global output level by beginning the procedure from the Levels item on the Options
menu. To change the output level or a particular test and all of its children, begin the procedure
from the Levels item on the menu for a selected test.

Figure 2-1 shows the menu for the test, “My Custom Test.” Figure 2-2 shows the Options menu:

Figure 2-1. Test Menu Showing Levels Item

Figure 2-2. Options Menu Showing Levels Item

Developing IPMI Conformance Test Modules 19

To change the output level, complete the following procedure:

1. Click on the Levels option from the appropriate menu. The Levels drop-down appears.
Figure 2-3 shows the Levels drop-down menu.

Figure 2-3. The Levels Drop-Down

2. Click Verbose… to change the verbose output level. Click Debug… to change the debug
output level. The Verbose Setting dialog box and the Debug setting dialog box are identical
except for their titles and effects. The dialog appropriate to your selection appears. Figure 2-4
shows the Logging dialog box used for setting the verbose and debug levels:

Figure 2-4. Global Debug Dialog Box

3. Select the level of output you desire.
4. Click OK to enable the global verbose setting you have selected. Click on Cancel to return to

the interface without changing the level.

2.4 Reporting Test Results
This section describes two methods by which tests report results. Tests report either through the
return value of the procedures test_main, or through API calls to the firmware test library.

2.4.1 test_main Return Values
All valid tests report results through the return statement. The test_main procedure must
return a numeric value. The values for returns from test_main fit a defined paradigm. The
possible test_main return values and their meanings appear in the following list:
• Zero—the test completed and passed.
• A positive value—the test completed but did not pass. Define the meaning of the positive

values in each test. If a test will be used as a child test, the return can signal the nature of the
failure to the parent.

• A negative value—the test could not be conducted or is not applicable. As with positive return
values, the meaning of specific negative values is test-dependent.

20 ICTS Developer’s Guide

In the Hello World example, the test completes successfully if each line executes and the messages
appear on the screen. If control falls to the return statement, a zero is returned. Any other result is
failure, so no other return statements are needed.
return 0

2.4.2 Reporting Test Results Through the Firmware Library
The Firmware Test Library provides standardized test result procedures to allow ease and
consistency of test reporting. Test modules in a formal test suite must report through Firmware
Test Library calls. All other tests may report, but it is not required. The pass and fail procedures
are in the file C:\FTF\libs\lib_gen.tcl.

The following table lists the test procedures and their purposes:

Table 2-1. Firmware Library Test Result Procedures
Procedure Name Function
print_pass “Message” Reports a pass and prints Message to the screen.

print_na “Message” Reports N/A and prints Message to the screen.

print_warn “Message” Reports a warning and prints Message to the screen.

print_fail “Message” Reports a fail and prints Message to the screen.

Report a test-pass event with one call to the print_pass procedure. Report a test-failure event
with one call to the print_fail procedure. The argument to all of these procedures is a text
string for display on the screen.

 WARNING
It is important that each pass/fail/NA event make only one call because
print_pass, print_fail, and print_na increment global counter
variables maintained by the library. If you want to display additional
information without incrementing the counters, use the ftf_msg
procedure provided by the framework. There are no counters
associated with the print_warn procedure.

The following example shows the Hello World test with a print_pass statement to report the
pass result:
Hello4.tcl

proc test_main { } {

ftf_msg “Hello, World!”

print_pass “Said hello to world.”

return 0

}

Developing IPMI Conformance Test Modules 21

2.4.2.1 Pass/Fail Example: even1.tcl
The following example test, Even1.tcl, is more complex than the Hello World example and
represents a more accurate picture of test creation. Even1 consists of three procedures. The
test_main procedure calls the set_seed procedure to get a seed value that is passed to the
random number generator, rand. If rand provides an even value, the test passes; otherwise, it
fails. In the event of a pass, the result number for return is set to 0, print_pass prints a message
to the screen, and the pass counter is incremented automatically. In the event of failure, the result
number for return is set to 1, print_fail prints a message to the screen, and the fail counter is
incremented automatically. In both events, ftf_msg prints the value of the number being tested.
Even1.tcl

Create a variable for the seed value and set it to 0

variable seed 0

Create a non-zero seed value for random number generation

proc set_seed { newseed } {

variable seed

set seed $newseed

}

Generate a random number based on a seed.

proc rand { } {

variable seed

set seed [expr ($seed*9301+49297)%233280]

return [expr int(0xFFFF*($seed/double(233280)))]

}

Create a seed value. Generate a random number based on the seed.

Test the generated number for odd or even status.

Fail on odd. Pass on even. Report results to the screen.

proc test_main { } {

set_seed [clock clicks]

set randval [rand]

if { [expr $randval % 2] == 0 } {

set result 0

print_pass “Even number generated”

} else {

set result 1

print_fail “Odd number generated”

}

ftf_msg “Random value: $randval” v

return $result

}

22 ICTS Developer’s Guide

2.5 Sending/Getting IPMI Messages
This section describes the use of the message library and the Firmware Test Library to send IMPI
messages to the target machine and to receive replies from the target.

2.5.1 The Message Library
You can find the source for the message library at C:\FTF\packages\msglib.tcl. Message
library IPMI messages are either “cooked” or “raw.” This section deals with simple tests, as defined
in the Test Developer’s Tutorial section of this chapter. Simple tests do not send raw messages. The
following discussion assumes all messages will be cooked.

2.5.2 A Note on Cooked Commands
Tests not intended to survive from one version of the IPMI specification to the next can use
message library procedures. When using the message library directly, it is up to the test to
understand the request and response data associated with the messages. Tests that are intended to
survive changes to the IPMI specification should use the Firmware Test Library procedures instead.
This higher-level library contains knowledge of the IPMI request and response messages, and
packages them correctly for the current version of IPMI.

2.5.2.1 Message Library Example: gdidsms1.tcl
The following example sends a GetDeviceId command for IPMI 1.0 to the SMS interface using
the message library:
1 # gdidsms1.tcl

2

3 # This test requires the SMS interface.

4 variable Test_Interfaces [list SMS]

5

6 proc test_main { } {

7 # Cooked IPMI command to get the device ID.

8 set gdidcmd [list 0x20 6 0 1]

9

10 # Variable for reporting pass/fail. Assume pass to start.

11 set result 0

12

13 # Send command using “msend” proc of the message library.

14 set sendList [msend SMS $gdidcmd]

15

16 # Parse result: An error code and a request descriptor.

17 set ecode [lindex $sendList 0]

18 set rd [lindex $sendList 1]

19

20 if { $ecode != 0 } {

21 # Send failed. Can’t finish the test.

Developing IPMI Conformance Test Modules 23

22 print_fail “msend: [ftf_error $ecode SMS]”

23 set result -1

24 } else {

25 # Use request descriptor to get the reply.

26 set getList [mget $rd]

27

28 # Parse result: An error code and an IPMI reply.

29 set ecode [lindex $getList 0]

30 set reply [lindex $getList 1]

31

32 if { $ecode != 0 } {

33 # Get failed. Can’t finish the test.

34 print_fail “mget: [ftf_error $ecode SMS]”

35 set result -2

36 } else {

37 # Test completed. Now determine pass/fail.

38 # Extract completion code from the reply.

39 set ccode [lindex $reply 0]

40

41 if { $ccode != 0 } {

42 # Test did not pass.

43 print_fail “completion code = $ccode”

44 set result $ccode

45 } else {

46 # Test passed.

47 print_pass “GetDeviceId reply received.”

48 set did [lindex $reply 1]

49 set drev [lindex $reply 2]

50 set fwid [lindex $reply 3]

51 set fwrev [lindex $reply 4]

52 ftf_msg “Device ID: $did” v

53 ftf_msg “Device Rev: $drev” v

54 ftf_msg “FW ID: $fwid” v

55 ftf_msg “FW Rev: $fwrev” v

56 }

57 }

58 }

59

60 return $result

61 }

24 ICTS Developer’s Guide

2.5.2.2 Highlights of gdidsms1.tcl:
Line 4: Target interface.

If a test module requires a specific target interface, it must define Test_Interfaces as a
list of the required interfaces. This test requires the SMS interface.

Line 7: Syntax of a “cooked” command.
The general form is a list of numbers as follows:

<dest> <netfn> <lun> <cmd> <data1> <data2> <data3> ... <dataN>

The GetDeviceId command has no data, so in the example the last byte is the command
number (1).

Line 14: Sending a message with msend.
The first parameter to msend is the interface. Optionally, you can also specify the transport by
using “SMS/LOCTRANS” to send the message through the local transport. In this case, you
would use an mroute procedure to determine if the desired route is valid. The second
parameter to msend is the command constructed in line 7.

Lines 17 and 18: Break apart the return value of msend.
A two-item list is returned. The first item is an error code. A non-zero value indicates an error
in the message library or the transport module. The ftf_error statement at line 22 converts
the error code to a string for display. The second item is a request descriptor that is needed in
order to read the reply.

Line 26: Get the reply with mget.
The parameter is the request descriptor we extracted from the msend result in line 18.

Lines 29 and 30: Break apart the return value of mget.
A two-item list is returned. The first item is an error code. The second item is another list
containing a “cooked” IPMI of the form:

<completion code> <data1> <data2> <data3> ... <dataN>

Line 39: Extract the completion code.

Lines 41 – 44: Unable to get device ID. Test did not pass.
Uses the completion code as the test failure code.

Lines 46 – 55: Got device ID. Test passed.
Displays details only if verbose level is one or higher.

2.5.2.3 Message Library Example: gdidsms2.tcl
The following example uses the msendget procedure to simplify gdidsms1. While simpler,
this example has less visibility into the send/get sequence in the event that something goes wrong.
The difference appears in line 14, and the subsequent parsing of the results. In gdidsm2, the
returned value of reply is not a list, but a single value.
1 # gdidsms2.tcl

2

3 # This test requires the SMS interface.

4 variable Test_Interfaces [list SMS]

Developing IPMI Conformance Test Modules 25

5

6 proc test_main { } {

7 # Cooked IPMI command to get the device ID.

8 set gdidcmd [list 0x20 6 0 1]

9

10 # Variable for reporting pass/fail. Assume pass to start.

11 set result 0

12

13 # Send command and get reply using “msendget” proc.

14 set sendgetList [msendget SMS $gdidcmd]

15

16 # Parse result: An error code and an IPMI reply.

17 set ecode [lindex $sendgetList 0]

18 set reply [lindex $sendgetList 1]

19

20 if { $ecode != 0 } {

21 # Send/Get failed. Can’t finish the test.

22 print_fail “msendget: [ftf_error $ecode SMS]”

23 set result -2

24 } else {

25 # Test completed. Now determine pass/fail.

26 # Extract completion code from the reply.

27 set ccode [lindex $reply 0]

28

29 if { $ccode != 0 } {

30 # Test did not pass.

31 print_fail “completion code = $ccode”

32 set result $ccode

33 } else {

34 # Test passed.

35 print_pass “GetDeviceId reply received.”

36 set did [lindex $reply 1]

37 set drev [lindex $reply 2]

38 set fwid [lindex $reply 3]

39 set fwrev [lindex $reply 4]

40 ftf_msg “Device ID: $did” v

41 ftf_msg “Device Rev: $drev” v

26 ICTS Developer’s Guide

42 ftf_msg “FW ID: $fwid” v

43 ftf_msg “FW Rev: $fwrev” v

44 }

45 }

46

47 return $result

48 }

2.5.3 Messages with the Firmware Test Library
The Firmware Test Library allows messages and replies without requiring packaging and parsing.
It also protects test modules from IPMI specification revisions that might invalidate tests using the
message library.

2.5.3.1 Message Library Example: gdidsms3.tcl
The following example uses the Firmware Test Library for messaging and replying in the
SMS/GetDeviceId test:
1 # gdidsms3.tcl

2

3 # This test requires the SMS interface.

4 variable Test_Interfaces [list SMS]

5

6 proc test_main { } {

7 # Create control info for sending messages.

8 set pctl [set_packet_controls 0x20 “” SMS]

9

10 # Variable for reporting pass/fail. Assume pass to start.

11 set result 0

12

13 # Send command and get reply.

14 set rspData [req_rsp GetDeviceId “” $pctl]

15

16 # Convert reply to an array.

17 array_set rspArray $rspData

18

19 if { $rspArray(merr) != 0 } {

20 # Send/Get failed. Can’t finish the test.

21 print_fail “req_rsp: [ftf_error $rspArray(merr) SMS]”

22 set result -2

Developing IPMI Conformance Test Modules 27

23 } else {

24 # Test completed. Now determine pass/fail.

25 # Extract completion code from the reply.

26 if { $rspArray(CompCode) != 0 } {

27 # Test did not pass.

28 print_fail “completion code = $rspArray(ccode)”

29 set result $rspArray(CompCode)

30 } else {

31 # Test passed.

32 print_pass “GetDeviceId reply received.”

33 if { [ftf_getlevel v] } {

34 print_rsp rspArray

35 }

36 }

37 }

38

39 return $result

40 }

2.5.3.2 Highlights of gdidsms3.tcl:
Line 8: Construct a control variable for sending messages.

The set_packet_controls procedure takes a destination, LUN, interface (or route) and,
optionally, a timeout value and combines them into a single variable that can be reused for
sending a series of messages to the same destination. Because only one message is sent, the
benefit is not obvious.

Line 14: Send message and get the reply with req_rsp.
The second parameter is an empty string that supplies the data bytes following the command
number. The fmt_req procedure of the Firmware Test Library constructs this parameter for
commands that need it. req_rsp returns a list that’s not very useful without additional
processing.

Line 17: Convert awkward list to a less-awkward array.

Line 19: Check result of send/get.
This is the same error code returned by msendget of the message library.

Lines 26-29: Unable to get device ID. Test did not pass.
Uses the completion code as the test failure code.

Lines 31-35: Got device ID. Test passed.
Displays details if the verbose level is one or higher. Uses print_rsp to display the contents
of the array. The array contains the response data and the command number used to get the
data. Therefore print_rsp knows the meaning of the data and displays it accordingly.
However, print_rsp has no verbose option, so ftf_getlevel queries the effective level
and the call to print_rsp is conditional.

28 ICTS Developer’s Guide

2.6 Other Test Procedures
Aside from test_main and procedures required directly by test_main, the framework
recognizes additional test_ procedures. This section describes recognized procedures that are
optional in simple tests. The procedures discussion includes: test_setup, test_init, and
test_help. The section also contains examples of their use in the context of the even2.tcl
program, for testing whether a randomly generated number is even or odd.

2.6.1 Initialization and Cleanup Procedures
The framework supports two test initialization procedures: test_setup and test_init. In
addition, the framework supports one clean up procedure and one help procedure. They are
test_cleanup and test_help, respectively.

2.6.1.1 test_setup
Normally, the test_setup procedure is called before test_main and just after a test module
or a setup file for the test is sourced. It may be called again under the direction of a parent test, or if
the user selects a new setup file for the test.

Some test_setup procedure responsibilities can be handled when sourcing the test. However,
initialization at source time means the test’s setup file (if any) has not been sourced, and the entire
API of the framework and its libraries are not yet available to the test.

The test_setup return value must be zero if initialization is successful or a non-zero number if
initialization fails.

2.6.1.2 test_init
The test_init procedure is also called before test_main each time the test is run. The
test_init procedure causes the test to abort if it returns a non-zero number indicating failure.

2.6.1.3 test_cleanup
The test_cleanup procedure is called after test_main. A zero return value indicates
success. A non-zero return value indicates failure.

2.6.1.4 test_help
The test_help procedure uses the ftf_msg procedure to display a help message, if requested
through the Help menu of the framework user interface. This procedure takes no arguments and
has no return value.

2.6.1.5 Example: even2.tcl
The following example shows the even-number test modified so the random number seed is set
once instead of every time test_main is called. The assignment is inside the test_setup
procedure. The example also shows the use of help_test and the sequence of operations for
test_init and test_cleanup procedures. However, calls to test_help, test_init
and test_cleanup print messages without performing other significant action.

Developing IPMI Conformance Test Modules 29

Even2.tcl

variable seed 0

proc set_seed { newseed } {

 variable seed

 set seed $newseed

}

proc rand { } {

 variable seed

 set seed [expr ($seed*9301+49297)%233280]

 return [expr int(0xFFFF*($seed/double(233280)))]

}

proc test_setup { } {

 ftf_msg “Proc: test_setup” d

 set_seed [clock clicks]

 return 0

}

proc test_init { } {

 ftf_msg “Proc: test_init” d

 return 0

}

proc test_main { } {

 ftf_msg “Proc: test_main” d

 set randval [rand]

 if { [expr $randval % 2] == 0 } {

 set result 0

 print_pass “Even number generated”

 } else {

 set result 1

 print_fail “Odd number generated”

 }

30 ICTS Developer’s Guide

 ftf_msg “Random value: $randval” v

 return $result

}

proc test_cleanup { } {

 ftf_msg “Proc: test_cleanup” d

 return 0

}

proc test_help { } {

 ftf_msg “Even2 – Demonstrates the test_setup procedure.”

}

2.6.2 Saving and Restoring States
This section contains information for saving the current state of tests and later restoring that state to
allow further testing based on the stored state. The procedure used to save the current state is
test_state. The procedure used for restoring a state is test_setup. If a test contains the
test_state procedure, it must also contain the test_setup procedure.

2.6.2.1 test_state
The test_state procedure queries the framework for the current state of the test module from
which it is called. The returned list contains the current test state. The framework can save the
current state to a file. After starting the framework, the same tests can be loaded and restored to the
saved state.

2.6.2.2 test_setup
The test_setup procedure restores a test’s current state by taking the list returned by
test_state as a parameter. The test_setup procedure often appears without parameters,
but if a test implements test_state, then the test must also implement test_setup and pass
it an optional parameter.

2.6.2.3 Example: even3.tcl
The following version of the even*.tcl test example uses test_state to record the current
state and the random number seed. The test_setup procedure appears in the example with the
optional parameter for restoring the recorded random number seed.
Even3.tcl

variable seed 0

proc set_seed { newseed } {

Developing IPMI Conformance Test Modules 31

 variable seed

 set seed $newseed

}

proc rand { } {

 variable seed

 set seed [expr ($seed*9301+49297)%233280]

 return [expr int(0xFFFF*($seed/double(233280)))]

}

proc test_state { } {

 variable seed

 return [list seed $seed]

}

proc test_setup { {stateList “”} } {

 set err 0

 if { $stateList == “” } {

 set_seed [clock clicks]

 } else {

 array set stateArray $stateList

 if { [info exists stateArray(seed)] } {

 set_seed $stateArray(seed)

 } else {

 ftf_msg “Bad state list”

 set err 1

 }

 }

 return $err

}

proc test_main { } {

 set randval [rand]

 if { [expr $randval % 2] == 0 } {

 set result 0

 print_pass “Even number generated”

32 ICTS Developer’s Guide

 } else {

 set result 1

 print_fail “Odd number generated”

 }

 ftf_msg “Random value: $randval” v

 return $result

}

2.7 Parent and Child Tests
This section contains a description of the relationships between parent and child tests. It also
contains examples of their use.

The term “parent test” describes the relationship between a test and tests it is responsible for
loading. A parent test is a Firmware Test Framework-compliant test module that loads and
executes other FTF-compliant test modules. Tests loaded and executed by a parent are called child
tests. The child of one parent test may be the parent of its own child tests. A parent may have
multiple children. A child may have at most one parent.

The framework’s cascading test menu provides an exact map of the parent-child hierarchy.
However, a parent can load a child and request that the child be a “hidden child” and not appear in
the menu hierarchy. Tests loaded by a hidden child are also hidden.

Figure 2-5 shows the test menu containing two tests. The automatically loaded tests suite and a
custom test:

Figure 2-5. Test Menu Showing Custom Test

Developing IPMI Conformance Test Modules 33

Figure 2-6 shows the children of the automatically loaded test suite. Similarly, selecting the custom
test would reveal any children invoked by the custom test.

Figure 2-6. Test Menu Showing Children of IPMI 1.0 Conformance Test Suite

� NOTE
Only resource constraints imposed by Tcl, the host operating system, and the
host hardware limit the depth of the parent-child stack.

2.7.1 Loading Children
Parent tests load children through either static loading or dynamic loading. A single test may use
both methods.

2.7.1.1 Static Loading
Use static loading if the name of a child test is fixed and known during implementation of the
parent test. Static loading does not allow hidden children. Loading a hidden child requires
dynamic loading.

When implementing a static load, use the Test_Children variable containing a list of children
identified by file name, with or without their .tcl extension, which is assumed. The file names
may include their directory paths. To resolve relative paths, the framework uses the
Host_TestDirs variable from the host configuration file. For additional information about host
configuration files, refer to the Installation and Configuration chapter of the Intelligent Platform
Management Interface (IPMI) Conformance Test Suite (ICTS) User Guide.

� NOTE
Parents cannot use their own test_setup procedure to set up a child test
because the framework cannot load a child prior to calling the parent’s
test_setup procedure.

34 ICTS Developer’s Guide

 WARNING
Do not use static loading for recursive tests. The framework will
attempt to load an infinite stack of tests. All system resources will be
consumed, and the operating system will crash. Use dynamic loading for
recursive tests. Even then, take great care to avoid an infinite-stack
scenario.

2.7.1.2 Example: Static Load
The following example shows the simplest form of a static loading parent. This parent test,
HelloP1.tcl contains no procedures. It does not contain test code or code to invoke its child
tests. The example code loads only a fixed-name group of children.
HelloP1.tcl

Parent test to statically load all the Hello examples as children.

variable Test_Children [list Hello1 Hello2 Hello3 Hello4]

2.7.1.3 Dynamic Loading
Use dynamic loading of child tests for recursive tests, when the names of the children are not
known, and to prevent the child test from appearing in the framework’s menu hierarchy. Dynamic
child test loading requires the ftf_loadtest procedure.

2.7.1.4 Example: Dynamic Load
The following example shows dynamic loading using the ftf_loadtest within a foreach
control structure. The control structure allows iteration through a list of test names created or
gathered at run time.
HelloP2.tcl

Parent test to dynamically load all the Hello examples as children.

proc test_setup { } {

 set err 0

 foreach child [list Hello1 Hello2 Hello3 Hello4] {

 set err [ftf_loadtest $child]

 if { $err } {

 break

 }

 }

 return $err

}

Adding an “h” (hidden) as the second parameter to ftf_loadtest keeps the children from
appearing in the user interface menu hierarchy. In the example, the parent provides no means to
invoke the children, so they can not appear in the hierarchy and the hidden parameter is not needed.

Developing IPMI Conformance Test Modules 35

2.8 Child Initialization Invocation and Cleanup
This section describes initialization, invocation, and clean up for child tests.

Before invoking a child test, the parent must initialize the child. After a child test invocation, the
parent must clean up. Each child initialization requires a separate clean up procedure. The
following three procedures initialize and clean up after a child test:
• ftf_setuptest — assigns a test setup file to a child, then invokes the child’s

test_setup procedure, if one exists.
• ftf_inittest — invokes the child’s test_init procedure, if one exists.
• ftf_cleanuptest — invokes the child’s test_cleanup procedure, if one exists.
For additional information on test_setup and test_cleanup, refer to the Initialization and
Cleanup Procedures section of this chapter.

Both ftf_setuptest and ftf_inittest may be used to define Tcl variables in the child’s
namespace. For additional information on API routines, refer to the Libraries chapter of this
manual.

2.8.1 Invoking Children
The API routine for invoking children maps to the test_main procedure of the child. The
ftf_runtest procedure invokes test_main. For additional information on this routine, refer
to the Libraries chapter of this manual.

Several variations on child initialization, invocation, and clean up are valid. Several variations on
parent-child interaction are valid. Within the limits of the API, the parent has few restrictions on
how it interacts with its children. The examples in the following subsections show two methods of
interaction.

2.8.2 Example: HelloP3 Parent-Child
The following parent-child interaction example, HelloP3.tcl, initializes all its children at
once, invokes them all in succession, and then cleans up afterwards:
HelloP3.tcl

Parent test to process children in bulk.

variable My_Children [list Hello1 Hello2 Hello3 Hello4]

proc test_setup { } {

 set err 0

 variable My_Children

 foreach child $My_Children {

 set err [ftf_loadtest $child]

 if { $err } {

 ftf_msg "$child load error: err=$err"

36 ICTS Developer’s Guide

 break

 }

 set eList [ftf_setuptest $child]

 set lerr [lindex $eList 0]

 set cerr [lindex $eList 1]

 if { $lerr || $cerr } {

 ftf_msg "$child setup failed: lerr=$lerr, cerr=$cerr"

 set err 1

 break

 }

 }

 return $err

}

proc test_init { } {

 set err 0

 variable My_Children

 foreach child $My_Children {

 set eList [ftf_inittest $child]

 set lerr [lindex $eList 0]

 set cerr [lindex $eList 1]

 if { $lerr || $cerr } {

 ftf_msg "$child init failed: lerr=$lerr, cerr=$cerr"

 set err 1

 break

 }

 }

 return $err

}

proc test_main { } {

 set err 0

 variable My_Children

 foreach child $My_Children {

 set eList [ftf_runtest $child]

Developing IPMI Conformance Test Modules 37

 set lerr [lindex $eList 0]

 set cerr [lindex $eList 1]

 if { $lerr || $cerr } {

 print_fail "$child failed: lerr=$lerr, cerr=$cerr"

 set err 1

 break

 }

 }

 if { !$lerr && !$cerr } {

 print_pass "All children passed."

 }

 return $err

}

proc test_main { } {

 set err 0

 variable My_Children

 foreach child $My_Children {

 set eList [ftf_runtest $child]

 set lerr [lindex $eList 0]

 set cerr [lindex $eList 1]

 if { $lerr || $cerr } {

 print_fail "$child failed: lerr=$lerr, cerr=$cerr"

 set err 1

 break

 }

 }

 if { !$lerr && !$cerr } {

 print_pass "All children passed."

 }

 return $err

}

proc test_cleanup { } {

 set err 0

 variable My_Children

38 ICTS Developer’s Guide

 foreach child $My_Children {

 set eList [ftf_cleanuptest $child]

 set lerr [lindex $eList 0]

 set cerr [lindex $eList 1]

 if { $lerr || $cerr } {

 ftf_msg "$child cleanup failed: lerr=$lerr, cerr=$cerr"

 set err 1

 }

 }

 return $err

}

The following parent-child interaction example, HelloP4.tcl, operates on one child at a time, first
initializing it, then invoking it, then cleaning up before initializing the next child:
HelloP4.tcl

Parent test to process children one at a time.

variable My_Children [list Hello1 Hello2 Hello3 Hello4]

proc test_main { } {

 set err 0

 variable My_Children

 foreach child $My_Children {

 set err [ftf_loadtest $child]

 if { $err } {

 print_fail "$child load error: err=$err"

 break

 }

 set eList [ftf_setuptest $child]

 set lerr [lindex $eList 0]

 set cerr [lindex $eList 1]

 if { $lerr || $cerr } {

 print_fail "$child setup failed: lerr=$lerr, cerr=$cerr"

 set err 1

 break

 }

Developing IPMI Conformance Test Modules 39

 set eList [ftf_inittest $child]

 set lerr [lindex $eList 0]

 set cerr [lindex $eList 1]

 if { $lerr || $cerr } {

 print_fail "$child init failed: lerr=$lerr, cerr=$cerr"

 set err 1

 break

 }

 set eList [ftf_runtest $child]

 set lerr [lindex $eList 0]

 set cerr [lindex $eList 1]

 if { $lerr || $cerr } {

 print_fail "$child failed: lerr=$lerr, cerr=$cerr"

 set err 1

 break

 }

 set eList [ftf_cleanuptest $child]

 set lerr [lindex $eList 0]

 set cerr [lindex $eList 1]

 if { $lerr || $cerr } {

 ftf_msg "$child cleanup failed: lerr=$lerr, cerr=$cerr"

 break

 }

 }

 if { !$lerr && !$cerr } {

 print_pass "All children passed."

 }

 return $err

}

40 ICTS Developer’s Guide

2.9 Variable Description Tables
This section contains a brief description of Variable Description Tables (VDT) and an example of
their use.

The VDT feature allows definition of a test module that specifies the characteristics for a set of
variables. At runtime, the framework generates values for those variables on behalf of the test. The
test itself is isolated from generating VDT values. The test only defines the variable’s properties.

The framework generates the VDT variable values in a number of ways. When the framework is
run in interactive mode, the framework may choose to prompt the user for the value. In batch
mode, it may accept the default value specified by the test module in its VDT, acquire the value
from some other source, or generate an error and abort the test.

� NOTE
At present the batch mode feature of the framework is not implemented.
This is a concept reserved for future use.

2.9.1 Setting Up a VDT Table
A VDT is an array indexed by the names of other variables. The index variable names are
framework-generated on behalf of the test. The default name for the array is Test_VDT. The test
may use another name or define multiple arrays of this type.

Each element of a VDT array is a list containing from one to five items. Each position in the list
has a specific meaning. This section describes only the first three of the five items.

The following is an example definition of a VDT:
variable Test_VDT

set Test_VDT(theAnswer) [list 42 “The answer to everything.” d]

In the above example, the following components appear:

theAnswer — the name of a variable

42 — the default value for theAnswer.

“The answer to everything.” — a description of theAnswer.

d — a type specifier for signed integer. The type specifier may be either a single letter flag or a list
of two or more items.

The following list provides the valid VDT variable types and their meaning:

d, u, x, X, s, f, e, E, g, and G

The framework supports the following additional types:

b Binary (a series of ones and zeros)

y Boolean (yes or no)

F File Name

Developing IPMI Conformance Test Modules 41

T Test module file name (for selecting child tests)

S Setup file name (for selecting setup files for child tests)

If the type specifier is not a letter but instead a list of two or more items, it indicates that the
framework should choose a value from the list of two or more items in order to generate the
variable.

The following example shows a VDT entry using a list in place of the type specifier:
variable Test_VDT

set Test_VDT(order) [list “forward” “Order” [list “forward” “reverse”]]

2.9.2 Generating Variables
To generate a VDT variable, a test uses the ftf_getvar procedure. The first, and only required
parameter is the name of the variable to be generated. The variable name is usually an index of the
Test_VDT array. The variable name may also refer to a variable not listed in Test_VDT, in
which case the framework assumes that it is a string variable as though it were defined with the
following VDT entry:
variable Test_VDT

set Test_VDT(varname) [list “” “varname” s]

To generate our “theAnswer” variable from the example in the previous section, call
ftf_getvar as follows:
ftf_getvar theAnswer

If the variable already exists, ftf_getvar takes no action; otherwise, ftf_getvar creates the
variable in the test’s namespace. The test can then use the variable command to access the
variable from inside its procedures.

To force regeneration, even if the variable already existed, call ftf_getvar with an extra, non-
zero parameter as shown in the following line:
ftf_getvar theAnswer 1

An optional third parameter allows the test to specify an alternate variable description table. For a
more detailed description of ftf_getvar, refer to the Libraries chapter of his manual.

2.9.3 Example: VDT
The following example, HelloP5.tcl, shows a parent invoking only one child each time it is
run. The selection of the child is made using a VDT entry:
HelloP5.tcl

Parent test to invoke one of several children using a VDT entry.

variable My_Children [list Hello1 Hello2 Hello3 Hello4]

variable Test_VDT

set Test_VDT(child2run) [list "Hello1" "Child to run." $My_Children]

proc test_setup { } {

42 ICTS Developer’s Guide

 set err 0

 variable My_Children

 foreach child $My_Children {

 set err [ftf_loadtest $child]

 if { $err } {

 ftf_msg "$child load error: err=$err"

 break

 }

 set eList [ftf_setuptest $child]

 set lerr [lindex $eList 0]

 set cerr [lindex $eList 1]

 if { $lerr || $cerr } {

 ftf_msg "$child setup failed: lerr=$lerr, cerr=$cerr"

 set err 1

 break

 }

 }

 return $err

}

proc test_init { } {

 set err 0

 variable child2run

 ftf_getvar child2run 1

 if { $child2run == "" } {

 ftf_msg "Test cancelled"

 set err 1

 } else {

 set eList [ftf_inittest $child2run]

 set lerr [lindex $eList 0]

 set cerr [lindex $eList 1]

 if { $lerr || $cerr } {

Developing IPMI Conformance Test Modules 43

 ftf_msg "$child init failed: lerr=$lerr, cerr=$cerr"

 set err 1

 }

 }

 return $err

}

proc test_main { } {

 set err 0

 variable child2run

 set eList [ftf_runtest $child2run]

 set lerr [lindex $eList 0]

 set cerr [lindex $eList 1]

 if { $lerr || $cerr } {

 print_fail "$child2run failed: lerr=$lerr, cerr=$cerr"

 set err 1

 } else {

 print_pass "$child2run passed."

 }

 return $err

}

proc test_cleanup { } {

 set err 0

 variable child2run

 set eList [ftf_cleanuptest $child2run]

 set lerr [lindex $eList 0]

 set cerr [lindex $eList 1]
 if { $lerr || $cerr } {

 ftf_msg "$child2run cleanup failed: lerr=$lerr, cerr=$cerr"

 set err 1

 }

 return $err

}

44 ICTS Developer’s Guide

3 Developing Transport Modules

This chapter contains information to support development of and customization of transport
modules. Transport modules provide cross-level architecture messaging between the host or target
Messaging Library and the communications ports. The examples provided in this chapter rely on a
local transport module that implements the SMS interface. Salieg implements the I2C interface via
the FWH-I2C transport.

All transport modules share the same API; however, some modules may not implement every
standard routine. Some modules may also contain non-standard routines.

� NOTE
Use the Message Library Test module to call transport modules. Avoid
calling transport module routines directly.

3.1 Cooked and Raw Messages
Test modules support two types of messages: cooked and raw. The normal form of transport
messages is cooked. Cooked messages allow maximum coverage of possible interfaces. Raw
messages are interface-specific. This section contains the specifications for cooked and raw
messages.

3.1.1 Cooked Message Specification
The cooked message support feature of transport modules allows standardization of interface
formats. Cooked messages are interface-independent and transport-dependent. The cooked
message formats appear in this section.

3.1.1.1 Sending Cooked Messages
Specifications:
proc tsend { pd iface[:node] data {options “”} }

Parameters:

pd Port descriptor, as returned by topen.

iface The target interface.

node The target bus node.

data Command data in the form of a Tcl list of numeric values.

options An empty string selects the default options. The letter “n” is the no-reply option
indicating that no reply is to be expected.

45

Return Value:

A Tcl list of the form {ecode md}:

ecode An error code: Zero on success; non-zero on an error.

md A message descriptor that can be used to get the message reply (meaningless for a non-
zero ecode and the no-reply option).

Usage Notes:

The message descriptor (md) is not necessarily numeric.

Implementation Notes:

The message descriptor (md) doesn’t have to be numeric, although numeric is the most convenient.
Any combination of letters, digits, and underscore characters is allowed. Message descriptors are
case-sensitive.

The procedure must assume the data parameter is a cooked command message. For IPMI
interfaces, this is defined as the following series of numeric values:

<dest> <netfn> <lun> <cmd> <data1> <data2> ... <dataN>

These items are described in more detail in the IPMI specification.

3.1.1.2 Getting Replies
Specification:
proc tget { md {timeout “”} }

Parameters:

md Message descriptor as returned by tsend.

timeout A timeout value in units of milliseconds. Use a negative one to block. Use zero for
a non-blocking call. Use a positive number for blocking with a timeout. An empty
string selects the default value as specified with a call to ttimeout.

Return Value:

An empty Tcl list on a timeout, or a list of the form {ecode data}:

ecode An error code: Zero on success; non-zero on an error.

data Command reply data in the form of a Tcl list of numeric values. (meaningless for a
non-zero ecode).

Implementation Notes:

The data item in the returned list must be formatted as a cooked reply, which is defined as a list of
numeric values:

<completion code> <data1> <data2> ... <dataN>

The complete definition of a command reply can be found in the IPMI specification.

Transport modules do not actually have to support millisecond timeout values, but at a minimum
they must not block indefinitely if the timeout value is zero or positive.

46 ICTS Developer’s Guide

3.1.1.3 Query Available Commands
Specification:
proc commands { }

proc commands { {ltran “”} }

Parameters:

ltran Logical transport name.

Return Value:

A Tcl list containing the names of every Tcl command available in the transport module, or in the
second case, for the specified logical transport.

Implementation Notes:

The first form of this procedure (without any parameters) must be implemented in transport
modules that do not implement the ltrans procedure.

The second form of this procedure (with the ltran parameter) must be implemented for transport
modules that do implement the ltrans procedure.

3.1.1.4 Query Interfaces
Specification:
proc interfaces { }

proc interfaces { {ltran “”} }

Parameters:

ltran Logical transport name.

Return Value:

A Tcl list containing the names of every supported IPMI interface for the module, or in the second
case, for the specified logical transport. Table 3-1 lists the possible interfaces. A transport module
is permitted have unreported non-IPMI interfaces.

Implementation Notes:

The first form of this procedure (without any parameters) must be implemented in transport
modules that do not implement the ltrans procedure.

The second form of this procedure (with the ltran parameter) must be implemented for transport
modules that do implement the ltrans procedure.

Table 3-1. Possible IPMI Target Interfaces
Name Description
I2C I2C
SMS System Mangement Software Interface (KCS, SMIC, or Block Transfer)

Developing Transport Modules 47

3.1.1.5 Opening a Transport
Specification:
proc topen { {portid “”} {options “”} }

proc topen { {portid “”} {options “”} {ltran “”} }

Parameters:

portid A port identifier. The meaning is transport-dependent. For example a serial transport
module (RS-232) might accept “COM1” or “COM2” as the port ID. A LAN
transport module might accept a TCP/IP address or a host name. An empty string
selects the default port. A transport module is not required to support a default port.
It may return an error instead.

options A list of opening options, entirely transport-dependent. For example a serial
transport module might accept baud rates and such. An empty list selects the default
options.

ltran Logical transport name.

Return Value:

A Tcl list of the form {ecode pd} where:

ecode An error code. Zero on success, non-zero on an error.

pd A port descriptor.

Usage Notes:

Don’t assume that the port descriptor is a numeric value.

Implementation Notes:

It is up to the implementer of the transport module whether to support more than one opening at a
time. Generally, if the module supports only an empty string for the portid, there’s no need to
support multiple openings. Port ID’s must be case-insensitive.

The port descriptor (pd) doesn’t have to be numeric although you may find this to be the most
convenient form. Any combination of letters, digits, and underscore characters is allowed, however
a transport module must never generate a port descriptor that is also a valid port ID for the same
transport. Port descriptors should not be case-sensitive.

The first form of this procedure (without any parameters) must be implemented in transport
modules that do not implement the ltrans procedure.

The second form of this procedure (with the ltran parameter) must be implemented for transport
modules that do implement the ltrans procedure.

48 ICTS Developer’s Guide

3.1.1.6 Closing a Transport
Specification:
proc tclose { pd }

Parameters:

pd A port descriptor as returned by topen.

Return Value:

Zero if the operation is successful. Non-zero on an error.

3.1.1.7 Sending Messages
Specifications:
proc tsend { pd iface[:node] data {options “”} }

Parameters:

pd Port descriptor as returned by topen.

iface The target interface.

node The target bus node.

data Command data in the form of a Tcl list of numeric values.

options An empty string selects the default options. The letter “n” is the no-reply option
indicating that no reply is to be expected.

Return Value:

A Tcl list of the form {ecode md} where:

ecode An error code: Zero on success; non-zero on an error.

md A message descriptor that can be used to get the message reply (meaningless for a
non-zero ecode and the no-reply option).

Usage Notes:

Don’t assume that the message descriptor (md) is numeric.

Implementation Notes:

The message descriptor (md) doesn’t have to be numeric although you may find this to be the most
convenient form. Any combination of letters, digits, and underscore characters is allowed. Message
descriptors are case-sensitive.

The procedure must assume that the data parameter is a cooked command message. For IPMI
interfaces this defined as the following series of numeric values:

<dest> <netfn> <lun> <cmd> <data1> <data2> ... <dataN>

These items are described in more detail in the IPMI specification.

Developing Transport Modules 49

3.1.1.8 Getting Replies
Specification:
proc tget { md {timeout “”} }

Parameters:

md Message descriptor as returned by tsend.

timeout A timeout value in units of milliseconds. Use a negative one to block. Use zero for
a non-blocking call. Use a positive number for blocking with a timeout. An empty
string selects the default value as specified with a call to ttimeout.

Return Value:

An empty Tcl list on a timeout, or a list of the form {ecode data} where:

ecode An error code: Zero on success; non-zero on an error.

data Command reply data in the form of a Tcl list of numeric values. (Meaningless for a
non-zero ecode).

Implementation Notes:

The data item in the returned list must be formatted as a cooked reply, which is defined as a list of
numeric values:

<completion code> <data1> <data2> ... <dataN>

The complete definition of a command reply can be found in the IPMI specification.

Transport modules do not actually have to support millisecond timeout values, but at a minimum
they must not block indefinitely, if the timeout value is zero or positive.

3.1.1.9 Set/Get Timeout
Specification:
proc ttimeout { pd {timeout “”} }

Parameters:

pd A port descriptor as returned by topen.

timeout A value in milliseconds specifying the default value for subsequent calls to tget
and trawget. An empty string means that no change should be made in the
default timeout value (used to query the current value).

Return Value:

The procedure returns the previous default timeout value, or an empty string if the new value is
invalid.

Implementation Notes:

Transport modules do not actually have to support millisecond resolution timeout values, but at a
minimum they must not block indefinitely, if the timeout value is zero or positive.

50 ICTS Developer’s Guide

3.1.1.10 Flushing Messages
Specification:
proc tflush { {pd “”} }

Parameters:

pd A port descriptor as returned by topen. An empty string indicates that the
procedure should act on all its open ports.

Return Value:

Zero on success. Non-zero if there’s an error.

Implementation Notes:

This procedure should release any resources associated with open message descriptors, free those
descriptors, and flush any unread cooked replies (for tget) and raw messages (for trawget).

3.1.2 Raw Message Specification
Raw message support is an optional feature of transport modules. A given module may support
raw messages for any subset of the interfaces it supports for cooked messages. For unsupported
interfaces, the trawsend and trawget procedures must return a non-zero error code.

Raw message formats are interface-specific and transport-independent. Any transport modules
providing raw message support for a specific interface must use the same message format as all
other transport modules supporting the same interface.

3.1.2.1 SMS Raw Message Format
The raw message formats for SMS and 12C appear in this section.

An SMS raw command message is similar to the cooked message defined in the Cooked and Raw
Messages section of this chapter. There are two differences. First, a raw SMS message does not
include a destination address. SMS messages are always directed to the BMC. Second, the NetFn
and LUN values are combined into a single byte.

The complete message format is as follows:
<NetFn/LUN> <Cmd> <Data1> ... <DataN>

where:

NetFn Network function, six most-significant bits.

LUN Logical unit number, two least-significant bits.

Cmd Command number.

Data1 ... Command data.

An SMS raw response message is similar to the raw command message.
<NetFn/LUN> <Cmd> <CCode> <Data1> ... <DataN>

Developing Transport Modules 51

where:

NetFn Original network function incremented by one, six most-significant bits.

LUN An echo of the logical unit number, two least-significant bits.

Cmd An echo of the command number.

CCode The command completion code.

Data1 ... Command response data.

I2C Raw Message Format

A raw I2C command message contains two sets of bytes as follows:
<rsSA> <NetFn/rsLUN> <Check1>

<rqSA> <rqSeq/rqLUN> <Cmd> <Data1> <Data2> ... <DataN> <Check2>

where:

rsSA Receiver’s I2C slave address.

NetFn Network function, six most-significant bits.

rsLUN Logical Unit Number on the receiver, two least-significant bits.

Check1 One’s compliment of the sum of the preceding bytes.

rqSA Requester’s I2C slave address (typically the BMC, which is 0x20).

rqSeq Requester’s message sequence number, six most-significant bits.

rqLUN Requester’s logical unit number, two least-significant bits (typically 0x2
for SMS).

Cmd Command number.

Data1 ... Command data.

Check2 One’s compliment of the sum of the preceding bytes.

A raw I2C response message has a similar format:
<rqSA> <NetFn/rqLUN> <Check1>

<rsSA> <rqSeq/rsLUN> <Cmd> <CCode> <Data1> ... <DataN> <Check2>

where:

rqSA Requester’s I2C slave address.

NetFn An echo of the network function from the original command, but incremented by
one.

rqLUN An echo of the requester LUN from the original command.

Check1 One’s compliment of the sum of the preceding bytes.

rsSA Receiver’s I2C slave address.

rqSeq An echo of the sequence number from the original request.

52 ICTS Developer’s Guide

rsLUN Receiver’s logical unit number.

Cmd An echo of the command number from the original request.

CCode Command completion code.

Data1 ... Command response data.

Check2 One’s compliment of the sum of the preceding bytes.

3.1.2.2 Sending Raw Messages
Specifications:
proc trawsend { pd iface[:node] data }

Parameters:

pd Port descriptor as returned by topen.

iface The target interface.

node The target bus node.

data Raw data in the form of a Tcl list of numeric values.

Return Value:

An error code: Zero on success; non-zero on an error.

Usage Notes:

The trawsend procedure is similar to tsend except that it does not perform any
interface-dependent packaging of the data before being sent, and it does not allocate a message
descriptor.

Implementation Notes:

Raw message format is defined above.

This procedure must not make any assumptions about the meaning of the data.

It is not required that a transport module support raw messages for all interfaces for which it
supports cooked messages (tsend/tget). For unsupported interfaces trawsend should return a
non-zero error code.

Developing Transport Modules 53

3.1.2.3 Getting Raw Messages
Specification:
proc trawget { pd iface[:iq] {timeout “”} }

Parameters:

pd Port descriptor as returned by topen.

iface[:iq] The target interface with optional interface qualifier.

timeout A timeout value in units of milliseconds. Use a negative one to block. Use zero for
a non-blocking call. Use a positive number for blocking with a timeout. An empty
string selects the default value as specified with a call to ttimeout.

Return Value:

An empty Tcl list on a timeout, or a list of the form {ecode data} where:

ecode An error code: Zero on success; non-zero on an error.

data Raw data in the form of a Tcl list of numeric values where each item in the list
represents a single byte (meaningless for a non-zero ecode).

Usage Notes:

The trawget procedure is similar to tget except that it does not perform any
interface-dependent unpackaging of the data before returning it to the caller and it does not use
message descriptors.

Implementation Notes:

Raw message format.

The transport module is permitted to queue messages as they arrive from the target machine, in
which case this procedure should return the oldest unread message.

Transport modules do not actually have to support millisecond timeout values, but at a minimum
they must not block indefinitely, if the timeout value is zero or positive.

It is not required that a transport module support raw messages for all interfaces for which it
supports cooked messages (tsend/tget). For unsupported interfaces trawget should return a
non-zero error code.

3.1.2.4 Logical Transports
Specification:
proc ltrans { }

Return Value:

This optional procedure returns a list of logical transport names that are in addition to the default
behavior of the transport module.

54 ICTS Developer’s Guide

Implementation Notes:

A single transport module may support more that one logical transport. For example, the
FWHTRANS transport module, when loaded, virtualizes itself into a second transport module
called FWH-I2C. This second “logical” transport modules supports the I2C interface (instead of
SMS) when the FWHOST program on the target system is started with a different option.

If this procedure is implemented, then the commands procedure (described in the Query Available
Commands section of this manual) and the interfaces procedure (described in the Query Interfaces
section of this manual) must accept a logical transport name as a parameter.

Logical transport names must be case-insensitive.

3.1.2.5 Error Strings
Specification:
proc terror { ecode }

Parameters:

ecode An error code returned by a transport module routine.

Return Value:

A string describing the error or an empty string if the error code is not recognized.

3.1.2.6 Debug Levels
Specification:
proc tdebug { {level “”} {cmd “”} }

Parameters:

level The new debug level. An empty string indicates that you do not want to change the
current level.

cmd The name of print command to use for printing debug messages. An empty string
indicates that you do not want to change the current command. This command
should be able to accept a string as its first and only parameter, and it should
provide automatic new-line termination.

Return Value:

The procedure returns the previous debug level.

Developing Transport Modules 55

56 ICTS Developer’s Guide

4 Libraries

This chapter contains procedure and test specifications for the libraries used by the framework or
by a developer creating tests for use in the framework. This chapter contains sections listing the
procedures available in the FRU, SDR, Micro controller, Wake on LAN, and SMS libraries. Each
library section consists of a set of procedure and test specifications that describe the use and
characteristics of each test or procedure.

4.1 FRU Library

4.1.1 ReadFRUData Read FRU Data
Specification:
proc ReadFRUData { offset length result {dlrt “”} }

Parameters:

offset A value. States the offset value of the FRU data to read. The offset value may be
more than a byte.

length A value. The length of the FRU data to read, starting from the offset location. The
length value may be more than a byte.

result A list. A name for the list containing the data after a successful read.

dlrt An optional list. Contains destination, LUN, route, and timeout information. The
default destination is BMC (0x20), LUN 0, first available transport in the transport
list, and the transport’s default timeout.

Return Value:

ecode An error code. Zero on success and completion code as defined in “Response Data
Array” on error.

Usage Note:

The device is accessed as bytes or words based on “Get FRU Inventory Area Info” response.

4.1.2 WriteFRUData Write FRU Data
Specification:
proc WriteFRUData { offset data {dlrt “”} }

Parameters:

offset A value. The offset of the FRU data to write. The offset value may be more than a
byte.

data A list of data bytes to write. The length of the FRU data to write depends on the
data list length.

57

dlrt An optional list. Contains destination, LUN, route and timeout information. The
default destination is BMC(0x20), LUN 0, first available transport in the transport
list, and the transport’s default timeout.

Return Value:

ecode An error code. Zero on success and completion code as defined in “Response Data
Array” on error.

Usage Note:

The device is accessed as bytes or words based on “Get FRU Inventory Area Info” response.

4.1.3 ReadFruNVRam Reading FRU Area
Specification:
proc ReadFruNVRam { areatype {dlrt “”} }

Parameters:

areatype A string. Identifies the FRU area. Valid strings are header, internal, chassis,
board, product and multirec.

dlrt An optional list. Contains destination, LUN, route, and timeout information. The
default destination is BMC(0x20), LUN 0, first available transport in the transport
list, and the transport’s default timeout.

Return Value:

result A list. Construct a result array by executing the array_set command. The result
array contains err and data elements. The err element contains zero on
success and non-zero on failure. The data element contains a list of data bytes on
success.

Usage Notes:

This function reads a specified area of FRU from NVRAM.

4.2 SDR Library

4.2.1 ReadFullSdrRecord Reading a Complete SDR Record
Specification:
proc ReadFullSdrRecord { recid{dlrt “”} }

Parameters:

recid Record ID of the SDR to be read.

dlrt An optional list. Contains destination, LUN, route and timeout information. The
default destination is BMC(0x20), LUN 0, first available transport in the transport
list, and the transport’s default timeout.

58 ICTS Developer’s Guide

Return Value:

rsplist A response array list. Similar to the array returned by the req_rsp function. The
CompCode element contains the error code. The RecData element contains the
list of bytes on success.

4.2.2 ReadFullSdr Reading the Entire SDR
Specification:
proc ReadFullSdr { {dlrt “”} }

Parameters:

dlrt An optional list. Contains destination, LUN, route and timeout information. The
default destination is BMC(0x20), LUN 0, first available transport in the transport
list, and the transport’s default timeout.

Return Value:

sdrlist A list suitable for conversion to an array. The array may be converted to a more
useful form using sdrDecode.

4.3 SDR Utilities

4.3.1 sdrDecode Decoding SDR Data
Specification:
proc sdrDecode { encodedArray {ipmiVer “”} }

Parameters:

encodedArray Encoded array. SDR data in the form returned by ReadFullSdr.

impiVer IPMI version number. An empty string causes the value to be acquired from
the Platform_IPMI_Ver configuration variable.

Return Value:

decodedList The list of decoded SDR data that may be converted to an array with the array
set command. If the ERR element of this array is zero, the operation
completed successfully. Non-zero indicates an error occurred.

Usage Note:

Normally test modules do not use this procedure directly. If the Checking SDR Utility Data Status
variable, Target_SDR_Source, is set to BMC_SDR, library initialization automatically causes
reading and decoding of the SDR information from the BMC. The read data is stored in an internal
data array.

Libraries 59

4.3.2 sdrGetMicrocontrollers Getting SDR Microcontrollers
Specification:
proc sdrGetMicrocontrollers { {decodedArray “”} {translate 1} }

Parameters:

decodedArray An array. Decoded SDR data in the form returned by sdrDecode. An empty
string indicates the procedure should use internally-stored data created during
library initialization.

translate A value. Non-zero number causes the conversion of long string names to pre-
defined short-named aliases before returning. For example, the string name
“Basbrd Mngt Ctlr” will convert to “BMC”. Uses the defined aliases in
the Target_SDR_uC_Info array.

Return Value:

uCList A list. Microcontroller names found in the SDR data.

Usage Note:

The preferred method for tests to get the list of microcontrollers is to use ucDeviceList.

4.3.3 sdrGetMicrocontrollerSlaveAddress Getting SDR Micro
Addresses

Specification:
proc sdrGetMicrocontrollerSlaveAddress { deviceName {decodeArray “”} {translate 1} }

Parameters:

deviceName A string. The microcontroller name.

decodedArray An array. Decoded SDR data in the form returned by sdrDecode. An empty
string indicates the procedure should use internally-stored data created during
library initialization.

translate A value. Non-zero indicates that if the initial search fails, the procedure should
search through the SDR data again. The first search uses the exact name
specified by the deviceName parameter. The second search assumes that
deviceName is a short-named alias for a long string name. The search uses
the equivalent long name. For example, if deviceName is “BMC”, the
procedure will search on “BMC”. If the first search fails, the procedure will
search again on “Basbrd Mngt Ctlr”.

Return Value:

slaveAddr An address. The slave address of the microcontroller. An empty string
indicates the specified microcontroller was not found in the SDR data.

Usage Note:

The preferred method for tests to get microcontroller addresses is to use ucSlaveAddress.

60 ICTS Developer’s Guide

4.3.4 sdrFlushCache Flush the SDR Decoded Array’s Cache
Specification:
proc sdrFlushCache { {decodedArray “”} }

Parameters:

decodedArray An array. Decoded SDR data in the form returned by sdrDecode. An empty
string indicates the procedure should use internally-stored data created during library initialization.

4.4 Microcontroller Library

4.4.1 ucDeviceList Getting a List of Microcontrollers
Specification:
proc ucDeviceList { }

Return Value:

uCList A list of microcontroller names

Usage Note:

The Target_SDR_Source variable determines the Target_SDR_Source variable. If set to
“Target_Config”, the information is obtained from the Target_SDR_uC configuration
variable. If set to “BMC_SDR” it acquires information from the SDR records in the BMC. If set to
an empty string or left unset, it gets information from the default source, which depends on the
particular installation of FTF.

4.4.2 ucSlaveAddress Getting Microcontroller Addresses
Specification:
proc ucSlaveAddress { deviceName }

Parameters:

deviceName A string. A microcontroller name.

Return Value:

slaveAddr The device slave address. An empty string if an address for the named
controller is not found.

Usage Note:

See the discussion under ucDeviceList in the previous section.

4.4.3 ucDeviceName Getting Microcontroller Names
Specification:
proc ucDeviceName { slaveAddr }

Parameters:

Libraries 61

slaveAddr The device slave address.

Return Value:

deviceName A string. The name for a microcontroller. An empty string indicates a matching
device name was not found.

Usage Note:

This is a convenience routine that uses a combination of ucDeviceList (described in the
ucDeviceList Getting a List of Microcontrollers section of this chapter) and
ucSlaveAddress (described in the ucSlaveAddress Getting Microcontroller Addresses
section of this chapter) to perform a reverse lookup on the slave address to find the corresponding
name.

4.4.4 ucDefaultMicro Getting the Default Microcontroller
Specification:
proc ucDefaultMicro { }

Return Value:

deviceName A string. The device name for the default microcontroller, as selected by the
user via the framework’s user interface.

Usage Note:

This feature of the framework is not utilized by the ICTS test modules. Instead of operating on the
default micro controller, they operate on all microcontrollers identified in the SDR.

4.5 Wake On LAN† Library

4.5.1 Loading the Library
Unlike most of the other firmware libraries, the framework does not automatically load the Wake
On LAN library during initialization. A test must request the library with the following procedure
call:
ftf_requirelib lib_wol

This call returns a zero if the library loads successfully; otherwise, it returns a non-zero.
wolSendMagicPacket Sending a “Magic Packet†”

Specification:
proc wolSendMagicPacket { ieeeAddr ipAddr }

Return Value:

ieeeAddr A value. The IEEE address (a.k.a. MAC address, a.k.a. Ethernet address) of a
network adapter supporting “Magic Packet” technology. The address notation is
“xx:xx:xx:xx:xx:xx”. Each “xx” represents a two-digit hexadecimal number.

62 ICTS Developer’s Guide

ipAddr A value. The broadcast IP address in “dot” notation for the network where the
network adapter resides. This may also be a host name that resolves to a broadcast
address.

Usage Note:

This procedure sends a Wake-On-LAN “Magic Packet” to the specified network adapter on the
specified network.

Legal Note:

Magic Packet is a trademark of Advanced Micro Devices.

Libraries 63

4.6 SMS Library

4.6.1 Loading the Library
The framework does not automatically load the SMS library during initialization. A test must
request the library with the following procedure call:
ftf_requirelib lib_sms

This call returns a zero if the library loads successfully; otherwise it returns a non-zero.

4.6.2 smsWrapForNonBmcMicro Wrapping Non-BMC Messages
Specification:
proc smsWrapForNonBmcMicro { message {seq “”} {broadcast 0} }

Parameters:

message A “cooked” message. The message form must be suitable for either the msend
procedure of the framework’s message library or the tsend procedure of a
transport module.

seq A sequence number. Only the six least significant bits are used. If an empty string
is passed, the procedure will generate a sequence number on its own.

broadcast A value. Non-zero causes a request that the message be wrapped for broadcasting.

Return Value:

wmessage An encapsulated message. The message is encapsulated in a WriteI2C command
(IPMI 0.9 or less) or a SendMessage command (IPMI 1.0 or greater) suitable for
sending to an SMS interface through the msend or tsend procedures.

Usage Note:

The functionality contained in this procedure is built in to most transport modules that support an
SMS interface. However the broadcast option is not typically built in to transport modules, so this
is the only mechanism currently provided for constructing broadcast messages.

4.6.3 smsUnwrapNonBmcResponse Unwrapping Non-BMC
Responses

Specification:
proc smsUnwrapNonBmcResponse { wresponse }

Parameters:

wresponse A wrapped response. The response is acquired by either the ReadSMSBuffer
command (IPMI 0.9 or less) or the GetMessage command (IPMI 1.0 or greater)
as returned by either mget of the framework message library or tget of a
transport module.

Return Value:

64 ICTS Developer’s Guide

A list containing the following items:

ecode An error code. Zero indicates success.

response The unwrapped response, in “cooked” form.

Usage Note:

The functionality contained in this procedure is built in to most transport modules supporting an
SMS interface. However, you will need this procedure to unwrap broadcast responses since most
transport modules do not support broadcast messages.

4.6.4 smsSendNonBmcMessage Sending Non-BMC Messages
Specification:
proc smsSendNonBmcMessage { message {seq “”} {broadcast 0} }

Parameters:

message A “cooked” message suitable for either the msend procedure of the framework’s
message library or the tsend procedure of a transport module.

seq A sequence number. Only the six least significant bits are used. If an empty string
is passed, the procedure generates a sequence number on its own.

broadcast If non-zero, the procedure requests that the message be wrapped for broadcasting.

Return Value:

A list containing the following items:

ecode An error code. Zero indicates success.

rd A request descriptor, which may be used with smsGetNonBmcMessage.

Usage Note:

This is a convenience procedure that provides an msend-style interface for sending non-BMC
messages.

4.6.5 smsGetNonBmcMessage Getting Non-BMC Messages
Specification:
proc smsGetNonBmcMessage { rd }

Parameters:

rd A request descriptor. The descriptor takes the same form as one returned from
smsSendNonBmcMessage.

Return Value:

A list containing the following items:

ecode An error code. Zero indicates success.

response The message response in “cooked” form.

Libraries 65

Usage Note:

This is a convenience procedure that provides an mget-style interface for getting the responses to
non-BMC messages. It performs either a ReadSMSBuffer command (IPMI 0.9 or less) or a
GetMessage command (IPMI 1.0 or greater) in order to get the response.

4.6.6 smsSendMessage Sending SMS Messages
Specification:
proc smsSendMessage { message }

proc smsBroadcastMessage { message }

Parameters:

message A “cooked” message. The message is in a form suitable for either the msend
procedure of the framework’s message library or the tsend procedure of a
transport module.

Return Value:

A list containing the following items:

ecode An error code. Zero indicates success.

rd A request descriptor that may be used with smsGetMessage.

Usage Note:

The smsSendMessage procedure calls smsSendNonBmcMessage or msend, depending on
the target address. Both BMC and non-BMC messages are supported.

The smsBroadcastMessage procedure is for broadcast messages only. It does not support
BMC commands.

4.6.7 smsGetMessage Getting SMS Messages
Specification:
proc smsGetMessage { rd }

Parameters:

rd A request descriptor. The descriptor takes the same form as one returned from
smsSendMessage or smsBroadcastMessage.

Return Value:

A list containing the following items:

ecode An error code. Zero indicates success.

response A message response in “cooked” form.

Usage Note:

The calling procedure should wait at least 60 milliseconds after sending a message before calling
this procedure to read the response. Use the Tcl after command to create the delay.

66 ICTS Developer’s Guide

4.6.8 smsSendGetMessage Send/Get SMS Message
Specification:
proc smsSendGetMessage { message }

Parameters:

message A “cooked” message. The message is in a form suitable for the either the msend
procedure of the framework’s message library or the tsend procedure of a
transport module.

Return Value:

A list containing the following items:

ecode An error code. Zero indicates success.

response A message response in “cooked” form.

Usage Note:

This convenience procedure does smsSendMessage and smsGetMessage in sequence,
including a 60ms delay between them.

4.6.9 Generic Library Functions
This section contains functions frequently used by test modules.

4.6.10 array_set Creating a New Array
Specification:
proc array_set { arrname datalist }

Parameters:

arrname Name of the array to be created.

datalist A format list to determine the form of the new array. The list is similar to the list
req_rsp returns.

Return Values:

A value returned by the “array_set” command.

Usage Notes:

The Tcl command array set creates an array from a list. If an array is already created and this
command is used to create another array using the previously created array name, the new elements
are added to the existing array. Old elements are not deleted. The array_set library procedure
unsets the previously created array and creates a new array from the list.

Use the array_set procedure for req_rsp rather than the array set command.

Soliciting input for returning completion code or message library error code by this function, if
code can take advantage by testing for return code while making this call.

Libraries 67

4.6.11 print_pass Test Pass Message
Specification:
proc print_pass { message }

Parameters:

message A string to display.

Return Values:

None

Usage Notes:

Use this function to display the pass message and increment the counter associated with the number
of passes in the test.

Example: print_pass “Sel Get Info executed” call displays the following pass
message and increments the pass counter.

PASS: Sel Get Info executed

4.6.12 print_fail Test Fail Message
Specification:
proc print_fail { message {rsp_arr_name “” } }

Parameters:

message A string to display.

rsp_arr_name Response array returned by the req_rsp function to display response-specific
error messages.

Return Values:

None

Usage Notes:

The function displays the fail message and increments the counter associated with the number of
failures in the test.

Example: print_fail “Unable to clear SEL entries” call displays the following fail message and
increments the fail counter.
FAIL: Unable to clear SEL entries

Example: print_fail “Unable to clear SEL entries” selrsp call displays
the following fail message and increments the fail counter.
FAIL: Unable to clear SEL entries

SelClear returned 0xc1, Invalid command

68 ICTS Developer’s Guide

4.6.13 print_warn Test Warning Message
Use this function to display a warning message.

Specification:
proc print_warn { message }

Parameters:

message A string to display.

Return Values:

None

Usage Notes:

Use this function to display a warning message.

Example: print_warn “Check the firmware mode, auto detection not
implemented” call displays the following fail message.
WARN: Check the firmware mode, auto detection not implemented

4.6.14 print_na Test Not Applicable Message
Use this function to display a non-applicability message.

Specification:
proc print_na { message }

Parameters:

message A string to display.

Return Values:

None

Usage Notes:

Use this function to display a warning message.

Example: print_na “Warm Reset not implemented. Test skipped.” Call
displays the following fail message and increments the not-applicable counter.
N/A: Warm Reset not implemented. Test skipped.

4.6.15 get_test_fail_count Get Test Fail Count
Specification:
proc get_test_fail_count { }

Return Values:

fail_count Number of failures in the test module in which this function is called.

Usage Notes:

Libraries 69

Use this function to get a test failure count from the counter for the current test.

A test may return this number to the parent module to indicate a test is passed or failed.

4.6.16 print_in_hex Print in Hexadecimal Format
Specification:
proc print_in_hex { data {mode “n”} {options ""} }

Parameters:

data A list on bytes.

mode The letter n, d, or v. The mode flags stand for normal, debug and verbose,
respectively. The default mode is d0 and v0. Valid values are d0, d1, d2,
v0, v1 and v2.

options Tags to cause nonewline or color. Refer to the ftf_msg function for detailed
values.

Return Values:

None

Usage Notes:

Use this function to display the given bytes in a format similar to the debug program.

Example:
0000 01 01 0E 12 1A 00 00 C4-01 00 00 00 00 00 00 00

0010 00 A9 02 00 00 54 65 68-00 00 00 00 00 00 00 00Teh........

0020 0E 00 0E 00 45 69 5B 36-41 77 5B 36 0F 02 0A 0BEi[6Aw[6....

4.6.17 print_line Displaying a Line
Specification:
proc print_line { {char "-"} {width "80"} {mode "n"} {options ""} }

Parameters:

char A character to be used to display a line.

width A value that specifies the line width.

mode A string specifies the debug or verbose level. Refer to the ftf_msg function for
details.

options A string specifies the color and nonewline options. Refer to the ftf_msg
function for details.

Return Value:

None

70 ICTS Developer’s Guide

4.6.18 DateTime Date and Time Formatting
Specification:
proc DateTime { {time “”} {gmt 0} }

Parameters:

time An optional time value in seconds since January 1, 1970. Default is to return the
current date and time.

gmt Flag, if non-zero, suppresses any conversion to local time. Useful when you want
the formatted string to represent GMT time, or when the input time value is
already in local time.

Return Value:

str Date and Time of the format MM/DD/YY HH:MM:SS is returned.

4.6.19 LocalSeconds Local Time in Seconds
Specification:
proc LocalSeconds { }

Return Value:

seconds The local time in seconds since January 1, 1970.

Usage Notes:

The value returned by the procedure is suitable for use as an SEL time. The return value of the Tcl
clock seconds command should not be used for SEL time because its value is GMT.

4.6.20 formatx Formatting a Value in Hexadecimal
Specification:
proc formatx { value {fm “”} }

Parameters:

value A value to be formatted.

fm Number of digits after formatting.

Return Value:

str A numeric string in hexadecimal notation.

Example:
value 0x10 output 0x10

value 10 output 0x0A

value 0x102 output 0x0102

value 256 output 0x0100

Usage Notes:

Libraries 71

The prefix string (“0x”) may be overridden with the user configuration variable
User_Numeric_Prefix(16).

4.6.21 formatb Formatting a Value in Binary
Specification:
proc formatb { value {fm “”} }

Parameters:

value A value to be formatted.

fm Number of digits after formatting.

Return Value:

str A numeric string in binary notation.

Example:
value 0x10 output 00010000

value 10 output 00001010

value 0x102 output 0000000100000010

value 256 output 0000000100000000

Discussion:

A prefix string may be added with the user configuration variable User_Numeric_Prefix(2).

4.6.22 heart_beat Progress Indicator – Heart Beat
Specification:
proc heart_beat { {mode “n”} {abort_check “no”} }

Parameters:

mode An optional verbose or debug state.

abort_check An optional indication for ftf_stopcheck

Return Value:

abort A non-zero value is returned if an abort is requested by the user. Value 0
otherwise.

4.6.23 print_arr Displaying Array Elements
Specification:
proc print_arr { array_name }

Parameters:

array_name A string. The name of the array to display.

Return Value:

72 ICTS Developer’s Guide

None

Usage Note:

This is a convenience function for debugging.

The function prints an element name, a tab character, and its value in a single line.

4.6.24 Converting Byte List to String
Specification:
proc bytes_to_string { datalist }

Parameters:

datalist A list of byte values.

Return Value:

str A string.

4.6.25 get_hex_list Converting Bytes to Hexadecimal List
Specification:
proc get_hex_list { data }

Parameters:

data A list of byte values.

Return Value:

hex_list A list of hexadecimal bytes.

4.6.26 compare_byte_lists Compare List of Bytes
Specification:
proc compare_byte_lists { list1 list2 {exclude “”} }

Parameters:

list1 A list of byte values.

list2 A list of byte values.

exclude Optional list. Contains byte locations that should be excluded while doing the
compare. Default is to compare all elements.

Return Value:

result Zero indicates that both lists are matched. Non-zero indicates a mismatch.

4.6.27 concat_chars Padding Characters to a String
Specification:

Libraries 73

proc concat_chars { msg length {char "."} }

Parameters:

msg A character string.

length Number of bytes to pad the characters.

char Optional. Represents the characters to pad..

Return Value:

msg Padded character string.

4.6.28 set_child_options Setting Child Test Options
Specification:
proc set_child_options { options }

Parameters:

options A list of option keywords. The following list contains the possible option
keywords and their meanings:

summary Default. Enable pass/fail summary at the end of each child test.

nosummary Disable pass/fail summary at the end of each child test.

Return Value:

None

Usage Notes:

Called this procedure from a parent test test_main before starting the child test. Options set by
this procedure are retained until completion of the parent test. On completion, the options return to
the system defaults.

4.6.29 get_checksum Get Checksum
Specification:
proc get_checksum { bytelist {size “byte”} }

Parameters:

bytelist A list of byte values.

size A string. The string “byte” indicates the return value is a byte checksum. The
string “word” indicates the return value is a word checksum.

Return Value:

checksum A byte or word check sum based on the size indicator. A null value is returned if
the input list is empty.

74 ICTS Developer’s Guide

5 Tcl Namespace Considerations

When creating tests and making use of existing Tcl modules, Tcl namespace becomes an issue. Tcl
assumes certain characteristics for the development of tests using Tcl commands. This section
contains information about the use of Tcl modules and the development of procedures and tests that
may influence or be influenced by Tcl namespace issues.

The framework loads test modules and transport modules into Tcl namespaces. Test module
implementation requirements arise from the characteristics of the framework. This section contains
a list of the namespace considerations for creating new FTF test modules.

Generally, use the global command to access variables in top-level namespace, including Tcl
built-in variables (env, tcl_platform). However, this does not include the host, platform, and
target variables. Use ftf_getglobal to access configuration file variables. For additional
information on configuration file variables, refer to the Installation and Configuration chapter of the
Intelligent Platform Management Interface (IPMI) Conformance Test Suite (ICTS) User Guide.

Avoid creating a circumstance where a transport module or test module makes assumptions about
being loaded to explicitly named namespace. If you cannot avoid such circumstances, the
namespace current command provides access to load and naming information.

The following is a list of namespace considerations discussed in this section:
• Variables initialized outside test module procedures may cause conflicts with global framework

variables if correct precautions are not taken.
• Arrays initialized outside test module procedures may cause conflicts with global framework

array variables if correct precautions are not taken.
• Accessing externally-initialized variables from within a test module can create conflicts if

precautions are not taken.
• Test modules should not access framework global variables directly. Use the

ftf_getconfig procedure provided by the framework (described in the ftf_getconfig
Checking for Configuration Variables section of this manual).

• Test modules can access Tcl built-in global variables directly. The env array containing the
environment variable settings is an example.

• Test modules must never modify variables outside their own namespaces, except as provided
by the framework’s API.

5.1 Setting Variables Outside a Procedure
For Tcl modules, avoid using the set command outside of procedures. If, and only if a global
variable already exists, the set command references the global variable instead of a namespace
variable. To avoid this resolution of ambiguous naming, use the variable command to initialize
variables outside of procedures.

To define arrays outside procedures, use the variable command first, then set individual array
elements with the set command or the array set command.

75

5.1.1 Example: Initializing Arrays with the variable Command
variable Test_VDT

set Test_VDT(x) [list “10.0” “X Coordinate” f]

set Test_VDT(y) [list “5.0” “Y Coordinate” f]

5.2 Global Variables
Use the variable command to reference a namespace module’s “global” variables. Using the
global command inside procedures allows access only to the variable within the namespace.
Variables defined as global within a namespaced module are not available outside that module.

5.2.1 Example: Accessing Globals with the variable Command
variable bar 1

proc foo { } {

 variable bar

 puts $bar

}

 WARNING
The following example provides undefined results.

variable bar 1

proc foo { } {

global bar

puts $bar

}

5.3 Non-array Variable Initialization Outside Test Module
Procedures

Use the variable command instead of the set command to initialize non-array variables
outside of test module procedures. Using the variable command prevents potential conflict
with framework global variables.

If a test module variable matches the name of a framework global variable, using the set
command modifies the framework’s global variable rather than creating the variable within the
test’s own namespace.

76 ICTS Developer’s Guide

5.3.1 Example: Variable Initialization
variable Test_Interfaces [list SMS I2C]

proc test_main { } {

Test body

}

5.4 Array Initializing Outside Procedures
Use the variable command to create the array variable; then use the set or array set
commands to set the individual elements.

5.4.1 Example: Array Initialization
variable Test_Interfaces [list SMS I2C]

variable Test_VDT

set Test_VDT(x) [list 1.0 “X Coordinate” f]

proc test_main { } {

Test body

}

5.5 Accessing Externally-defined Variables Within Test
Module Procedures

Use the variable command instead of the global command. The global command creates a
reference to a framework global variable instead of a test module namespace variable.

5.5.1 Example: Variable Access Within a Module
variable Test_Interfaces [list SMS I2C]

variable Test_VDT

set Test_VDT(x) [list 1.0 “X Coordinate” f]

proc test_main { } {

variable Test_Interfaces

variable Test_VDT

Test body

}

Tcl Namespace Considerations 77

5.6 Namespace and Loadable C Modules
By default, the functions Tcl_CreateCommand and Tcl_CreateObjCommand install
commands in the global namespace, not the current namespace. To install commands in the current
namespace, as required for transport modules, use the Tcl_Eval function and the namespace
current command to determine the current namespace, then use the returned information to
prefix your newly created procedure names.

78 ICTS Developer’s Guide

6 Procedures and APIs

This chapter provides detailed information on pre-existing procedures and application program
interfaces. The chapter lists procedure specifications by group. Each group has unique
characteristics that set it apart from the others.

6.1 Test Module Procedure Specifications
This section contains Test Module procedure specifications. Each specification appears under a
header describing its purpose. Syntax, parameter lists, characteristics, and descriptions appear in
each specification.

6.1.1 test_setup Post-Sourcing Initialization
Specification:
proc test_setup { }

proc test_setup { {statelist “”} }

Parameters:

statelist A list created by a prior call to the test’s test_state procedure.

Return Value:

This procedure must return zero if initialization succeeds and non-zero if it fails.

Usage Notes:

Optional. Completes initialization needed once-per-test module loading. Do repeated initializations
in test_init.

The second form of the procedure is required only if test_state is implemented.

6.1.2 test_help Test Help
Specification:
proc test_help { }

Return Value:

None

Usage Notes:

Optional. Uses ftf_msg or other output procedures to display help information. The
test_help could even spawn an external program to display help for
the test, such as the Windows† Help utility.

79

6.1.3 test_init Pre-Execution Initialization
Specification:
proc test_init { }

Return Value:

This procedure returns zero if initialization succeeds and non-zero if it fails.

Usage Notes:

Optional. Completes initialization needed each time the test is run. Use the test_setup
procedure for initialization needed once-per-load.

6.1.4 test_main Running the Test
Specification:
proc test_main { }

Return Value:

This procedure must return zero if the test passes and a non-zero if the test fails. By convention, a
positive number signifies that the test carried through to completion but produced an unexpected
result. A negative number indicates the test could not complete or is not applicable. To be clear,
the test should use the ftf_msg, print_pass, print_fail, and print_na
procedures to provide result details.

Usage Notes:

Optional. All executable test modules have a test_main. It is possible to create a non-executable
test module that contains only a test_setup procedure and/or the Test_Children variable.

6.1.5 test_state Saving the Test State
Specification:
proc test_state { }

Return Value:

This procedure must return a list, the contents of which are determined entirely by the test.
Normally, the list contains state information that includes the test’s configuration options and
settings. Restore settings by passing the returned list to test_setup.

Usage Notes:

Optional. As part of the returned list, the test may also include state information for child tests as
obtained using ftf_stateoftest.

6.2 Base Framework API
This section contains specifications for functions provided to the Test Module by the Base
Framework. The Base Framework functions manage message logging, process control, internal
maintenance tests, and coordination of child-parent relationships.

80 ICTS Developer’s Guide

6.2.1 Message Logging
The message logging system allows a test module to write text messages to the screen and to a test
log file. The system automatically time-stamps log file messages.

The following list contains the three messaging modes and descriptions of their characteristics:
• Normal —written to output destination without conditions
• Verbose —written if effective verbose level is sufficiently high
• Debug —written if effective debug level is a sufficiently high
For verbose and debug, the effective level is set either locally or globally through the interface or
through the test during loading. The system recognizes only the greater value of the global and
local level.

Normal and verbose messages display test progress, status, or results for the benefit of the test user.

Debug messages display a test module’s or test framework’s internal workings for the benefit of the
test developer.

6.2.1.1 ftf_setlevel Local Message Level Control
Specification:
proc ftf_setlevel { mode {level “”} }

Parameters:

mode The letter d or v for debug and verbose modes, respectively.

level A digit, zero through three. An empty string indicates that no change is desired.

Return Value:

The procedure returns the previous level for the mode in order to allow restoration of the previous
level at a later time.

Usage Notes:

The level set by this procedure is a local value and applies only to the calling test. The effective
level is the greater value of the local level and the global level. The effective level can be queried
using ftf_getlevel procedure described in the ftf_getlevel Effective Message Level Query
section of this manual.

Well-behaved test modules record the beginning message level and restore the level to that original
value before completion.

6.2.1.2 ftf_getlevel Effective Message Level Query
Specification:
proc ftf_getlevel { mode }

Parameters:

mode The letter d or v for debug and verbose modes, respectively.

Return Value:

Procedures and APIs 81

The effective debug or verbose level, which is the greater value of the global level and the test’s
local level.

Usage Notes:

You can query the level at any time. Default values are built into the framework if they are
otherwise not set.

6.2.1.3 TEST_STATE Writing Test Steps
Specification:
proc TEST_STATE { stateDesc warnings }

Parameters:

stateDesc A description to a user that declares the current activity of a test.

warnings A description indicating any limitations or other critical information in the given
test state. The warning message is shown in red.

Return Value:

none

Usage Notes:

A message of “No Warnings” will not produce a warning message.

6.2.1.4 ftf_msg Family for Writing Messages
Specification:
proc ftf_msg { {message “”} {mode “n”} {options “”} }

proc ftf_log { {message “”} {mode “n”} {options “”} }

proc ftf_out { {message “”} {mode “n”} {options “”} }

proc ftf_status { {message “”} {mode “n”} }

proc ftf_clear { {mode “n”} }

proc ftf_bell { {mode “n”} }

Parameters:

message A text message. Only writes to the screen. Automatically appends a trailing
new-line character (\n) unless suppressed in the options parameter. Allows
embedded new-line characters.

mode The letter n, d, or v for normal, debug, and verbose modes, respectively. In the
case of d and v, an optional digit, zero through three, represents the effective
level number. The following equivalencies apply:

d0 = v0 = n

d1 = d

v1 = v

82 ICTS Developer’s Guide

options A Tcl list containing one or both of the following options:

nonewline Suppress the trailing new-line character.

tag=attribute Text display attribute (red, green, blue, reverse, normal,
underline).

Depending on the display device, the framework reserves the right to ignore all text attribute
options. Text attributes have no effect on the log file.

Return Value:

Zero for success and non-zero for failure. Failure can result if a log file is not open or if a problem
occurs while attempting to write to the log file.

Usage Notes:

The ftf_msg procedure writes only to the scrolling window on the screen and to the host log file
if the screen capture option is enabled.

The ftf_log procedure writes only to the target log file.

The ftf_out procedure writes to both the scrolling display and the target log file, irrespective of
the state of the screen capture option.

The ftf_status procedure writes to the single-line status bar on the screen.

The ftf_clear procedure clears the scrolling display area.

The ftf_bell procedure generates an audible beep or ring, depending on the host’s sound
system.

 WARNING
Do not use ftf_log or ftf_out until the test module’s test_setup
procedure is called.

Procedures and APIs 83

6.2.1.5 ftf_flush Flushing Output
Specification:
proc ftf_flush { }

Parameters:

None

Return Value:

None

Usage Notes:

Flushes all framework text output streams, including log files and standard output.

6.2.1.6 ftf_error Error Strings
Specification:
proc ftf_error { ecode {route “”} }

Parameters:

ecode An error code returned by a framework routine.

route An associated message route, if known.

Return Value:

A descriptive string for the error code and a message describing the error event sent to the
destination provided by the route parameter.

6.2.2 Process Control
This section provides procedure specifications for the framework process control routines. The
process control procedures allow querying of the user interface, the framework’s internals state, and
current configuration values to allow a test in progress to make control flow decisions.

6.2.3 ftf_stopcheck Checking for a Stop Event
Specification:
proc ftf_stopcheck { }

Return Value:

A non-zero value if a stop has been requested.

Usage Notes:

During long tests, call this procedure periodically to allow user-requested test interruption.

This procedure interprets CAD close requests as stop requests. Use the ftf_eventcheck
procedure to avoid this characteristic.

84 ICTS Developer’s Guide

6.2.3.1 ftf_eventcheck Checking for a User Interface Event
Specification:
proc ftf_eventcheck { }

Return Value:

A list suitable for array set conversion. The resulting array may contain the following
elements:

STOPREQ A non-zero number if the user made an explicit stop request.

CADCLOSEREQ A list of handles to cursor-addressable displays for which the user has made a
close request.

Usage Notes:

After the test stops, the framework automatically closes all displays listed in the CADCLOSEREQ
list.

Unlike ftf_stopcheck, the test is not expected to stop itself with a CAD close request. It may
stop itself, or it may close the specified CADs and continue.

6.2.3.2 ftf_requirelib Library Requirements
Specification:
proc ftf_requirelib { libNames }

Parameters:

libNames A list of FTF library names. The elements of libNames do not include
extensions, but they do include paths relative to the FTF library installation
directory.

Return Value:
Zero, if all of the requested libraries have been successfully loaded; otherwise, a non-zero number.

Usage Notes:
Most libraries load at framework startup; however, a few infrequently-used libraries do not
automatically load. Tests use this procedure to declare the need for a particular library. It is
conceptually similar to the Tcl package require command, except there is no deferred
loading.

6.2.4 Managing Other Tests
The Firmware Test Framework allows FTF-conformant tests to load and execute other FTF-
conformant tests. This section lists the API routines for managing these relationships.

Table 6-1 defines the terms applied to tests spawned by other tests.

Table 6-1. Types of Tests
Type of Test Description
Standard A test that does not execute other tests
Parent A test that executes other tests

Procedures and APIs 85

Child A test executed by another test. Both standard tests and parent tests may be the
children of other parents. Children are not necessarily aware that they are children.

6.2.4.1 Parent-Child API Usage
The framework provides an API for parent tests to manage their children. Table 6-2 lists the
procedures and their uses:

 Table 6-2. Parent to Child Relationship
In parent: Use these API calls for the child tests:
test_setup ftf_loadtest1, ftf_setuptest

test_init ftf_inittest2

test_main ftf_inittest2, ftf_runtest,ftf_cleanuptest2

test_cleanup ftf_cleanuptest2

test_state ftf_stateoftest

6.2.4.2 Parent-Child Requirements
When managing parent-child relationships, the considerations in the following list must be
observed:
1. For parent tests with a fixed set of child tests, as opposed to a dynamic set determined by a

setup file or other means, the Test_Children variable may be used to indicate which
children should be auto-loaded by the framework.

2. Parent tests may use, but do not require, ftf_inittest and ftf_cleanuptest. The
parent must set up properly for its child before calling ftf_runtest, but it need not use
ftf_inittest. Similarly, a parent must clean up after a child, but it need not use
ftf_cleanuptest immediately after ftf_runtest if an undisturbed system state is
desired. The parent must properly clean up everything if its own test_cleanup procedure
is called.

86 ICTS Developer’s Guide

6.2.4.3 tf_loadtest Loading a Child Test
Specification:
proc ftf_loadtest { module {options “”} {statelist “”} }

Parameters:

module A test module name, with or without the file name extension. The name may
include an absolute or relative path. The framework resolves relative paths using
the Host_TestDirs variable.

options Any combination of the following letters:

h Hide this module from the framework’s user interface.

statelist A list created by a prior call to ftf_stateoftest for the same module.
Restoring a child’s state using statelist unless the child was loaded via the
Test_Children variable. If Test_Children was used, restore the state via
the ftf_testsetup procedure.

� NOTE
When using statelist, a follow up call to ftf_testsetup for the
same child is not generally required because restoring the state includes
restoring the setup information.

Return Value:

Zero if the load succeeds. Non-zero for failure.

Usage Notes:

This procedure first seeks the test module in the parent’s load directory. If the test module is not in
the parent load directory, the procedure traverses the directories listed in Host_TestDirs. In
each directory, the procedure looks first for the exact name test module, then for the test name with
a .tcl or .tcb extension.

Tests normally use this procedure inside their own test_setup procedure. Follow this with a
call to ftf_setuptest.

If the specified test has been previously loaded, the loaded version is discarded and replaced.

When a parent loads a child test, the parent gets its own personal instantiation of the child,
independent of other instantiations created by other parents.

The Test_Children variable may be used instead of this procedure to load a set of child tests.
Using Test_Children is preferred when the set of child test modules is fixed. Using
ftf_loadtest is preferred when the set of child tests is dynamic.

Procedures and APIs 87

6.2.4.4 ftf_setuptest Setting Up a Child Test
Specification
proc ftf_setuptest { module {setupname “”} {varlist “”} {statelist “”} }

Parameters:

module The loaded test module name. The name does not allow a path or an extension.

setupfile The name of a test setup file. The test setup file allows optional extensions and
absolute or relative paths. If setupfile is an empty string, previous setup files
are not re-sourced. The framework resolves relative paths using the
Host_SetupDirs variable.

varlist A list of Tcl variables of the form var=value. These are defined after the new
setup file is sourced and before the module’s test_setup procedure call.

statelist A list returned by ftf_stateoftest for the same test module. Generally, it is
preferable to pass statelist as a parameter to ftf_loadtest and avoid a
call to ftf_setuptest, but for tests loaded via the Test_Children variable
that method is not possible.

Return Value:

A list of two values: { err ierr }

err Zero if re-initialization was performed; otherwise, non-zero.

ierr The return value of the module’s test_setup procedure, if any.

Usage Notes:

This procedure is normally called after a call to ftf_loadtest for the same test.

The setup process applies only to the parent’s personal instantiation of the child, not to children of
the same name instantiated by other parents.

6.2.4.5 Initializing a Child Test
Specification:
proc ftf_inittest { module {varlist “”} }

Parameters:

module A loaded test module name without a leading path or a file name extension.

varlist A list of Tcl variables of the form var=value. These are defined before the
module’s test_init procedure is called.

Return Value:

A list of two values: { err perr }

err Zero if re-initialization was performed; otherwise, non-zero.

perr The return value of the module’s test_init procedure, if any.

Usage Notes:

88 ICTS Developer’s Guide

Normally used in the parent’s test_main procedure in combination with ftf_runtest and
with ftf_cleanuptest. An alternative scheme is to call ftf_inittest in the parent’s
test_init procedure.

6.2.4.6 ftf_runtest Running a Child Test
Specification:
proc ftf_runtest { module {options “”} }

Parameters:

module A loaded test module name without a leading path or a file name extension.

options A series of one or more letters as follows:

m Mute the test. Suppress output.

Return Value:

A list of two values: { err merr }

err Zero if the test was executed. Non-zero otherwise.

merr The return value of the module’s test_main procedure.

Usage Notes:

Use this procedure in the test_main procedure of the parent test.

This procedure does not call the child’s test_init procedure prior to calling test_main.

6.2.4.7 ftf_cleanup Cleaning Up After a Child Test
Specification:
proc ftf_cleanuptest { module {varnames “”} }

Parameters:

module A loaded test module name without a leading path or a file name extension.

varnames A list of variable names to unset in the test’s namespace.

Return Value:

A list of two values: { err cerr }

err Zero if clean up was performed; otherwise, non-zero.

cerr The return value of the module’s test_cleanup procedure, if any.

Procedures and APIs 89

Usage Notes:

Use ftf_cleanup in the parent’s test_main procedure in combination with
ftf_inittest, ftf_runtest and ftf_cleanuptest. To avoid ftf_cleanuptest,
call ftf_inittest in the parent’s test_cleanup procedure.

Well-behaved parent tests do not unset any child’s variable that the parent did not set using
ftf_setuptest or ftf_iniittest.

6.2.4.8 ftf_getvartest Querying Child Test Variables
Specification:
proc ftf_getvartest { module varname }

Parameters:

module A loaded test module name without a leading path or file name extension.

varname The name of one of the child’s variables.

Return Value:

A list of two items: { err value }

err Zero if the value was retrieved; otherwise, non-zero.

value The value of the requested variable.

6.2.4.9 ftf_istest Querying Child Test Executable Types
Specification:
proc ftf_istest { module }

Parameters:

module A loaded test module name without a leading path or a file name extension.

Return Value:

The ftf_istest procedure returns a non-zero number if the specified module is loaded and
contains a test_main procedure; otherwise, it returns a zero.

6.2.4.10 ftf_isloadedtest Checking for a Loaded Child
Specification:
proc ftf_isloadedtest { module }

Parameters:

module A (thought to be) loaded test module name without a leading path or a file name
extension.

Return Value:

A non-zero number, if the specified module is loaded; otherwise, it returns a zero.

90 ICTS Developer’s Guide

6.2.4.11 ftf_unloadtest Unloading a Child
Specification:
proc ftf_unloadtest { module }

Parameters:

module A loaded test module name without a leading path or a file name extension.

Return Value:

Zero, if the module was initially loaded and is now unloaded; otherwise, it returns a non-zero
number.

6.2.4.12 ftf_stateoftest Saving a Child’s State
Specification:
proc ftf_stateoftest { module }

Parameters:

module A loaded test module name without a leading path or a file name extension.

Return Value:

The procedure returns the list from a call to the child’s test_state procedure. If the child has no
test_state procedure, an empty list is returned.

Usage Notes:

Use ftf_stateoftest in a parent test’s own test_state procedure to record the state of
its children as part of the parent’s state. The parent can then restore its own state along with the
state of its children by sending the list as a parameter to test_setup.

6.2.4.13 ftf_testdir Determining a Test’s Load Directory
Specification:
proc ftf_testdir { {module “”} }

Parameters:

module A loaded test module name without a leading path or a file name extension. An
empty string refers to the calling test module.

Return Value:

The absolute directory path from which the specified test module was loaded. On an error, an
empty string is returned.

Usage Notes:

Use ftf_testdir in a test to determine the test’s own installation directory. The results allow
manipulation of directories relative to the directory specified by ftf_testdir.

The Tcl file join command combines an absolute path with a relative path.

Procedures and APIs 91

6.2.5 Variables Management
This section contains procedure and variable specifications for variable definition and management.
For additional information about VDT tables and their use, refer to the Variable Description Tables
section in this chapter.

6.2.5.1 The Variable Description Table
Specification:
variable Test_VDT

set Test_VDT(varname) vdtentry

Where:

Test_VDT The name of a variable description table. You may create more than one VDT, but
the one named “Test_VDT” is the default table.

varname The name of a variable within the test’s own namespace.

vdtentry A Tcl list containing one to five items, as described below.

A VDT Entry List:
1. Default value when the variable is first created. Required item if you want to create the

variable in batch mode.
2. Description. The default is the variable name. The description is used only in interactive mode

if no acquisition callback is defined.
3. Data type or selection list: (A) One of the letters d,u,x,X,o,s,f,e,E,g, or G as with the

Tcl format and scan commands, or one of the following types unique to the framework:
b Binary value
y Yes or no
F File name for reading
W File name for writing
T Test module file name for reading
S Setup file name for reading
I Interface
M Transport module
D Directory
B Byte list (a series of numbers and quoted strings representing byte values)

(B) This field can alternatively be a Tcl list, in which case the value of the variable is restricted
to those items found in the list.
The default type/list is “s”. The type/list field is used only in interactive mode, and only if no
acquisition callback is defined.

92 ICTS Developer’s Guide

4. Acquisition information: The name of a callback procedure to acquire the value. The
specification is:
proc acquire_value { varname currentval }

or:
proc acquire_value { varname currentval vdtentry }

The procedure normally returns the acquired or computed value. In interactive mode, the
default is a procedure acquiring a value from the user. In batch mode, the procedure “acquires”
the default value. The second form is required only if in order to override the default VDT.

5. Validation information: (A) The name of a callback procedure to validate the value after
acquisition. The specification is:
proc check_var { varname proposedval }

or:
proc check_var { varname proposedval vdtentry }

The procedure normally returns a list of two items: {ecode approvedvalue}. The first item is an
error code that is zero if the value is approved and non-zero otherwise. The second item is the
approved value, perhaps after rounding or some other tweaking. The default is no validation,
always good and with no tweaks. The second form is required only in order to override the
default VDT.
(B) This field can alternatively be a two-item Tcl list representing the minimum and maximum
values for the variable. This option is supported only for numeric data types.

6.2.5.2 ftf_getvar Checking for Test Variables
Specification:
proc ftf_getvar { varname {reget 0} {vdt Test_VDT} }

Parameters:

varname The name of a variable in the test’s own namespace.

reget A flag indicating that the procedure should re-acquire the value even if the variable
is already defined.

vdt An alternate variable description table.

Return Value:

The value of the specified variable.

Usage Notes:

Use this procedure to acquire or create any variable not guaranteed to pre-exist, particularly
variables from various external sources. Once created, the test may access the variables directly but
may not directly modify variables outside its own namespace.

Procedures and APIs 93

The method for generating the variable is determined by its VDT entry. If the variable does not
have a VDT entry and the framework is in interactive mode, the framework prompts the user for a
value. In batch mode, if the variable does not exist and it has no VDT entry, the test aborts without
an error.

6.2.5.3 ftf_getallvars Checking for All Test Variables
Specification:
proc ftf_getallvars { {reget 0} {vdt Test_VDT} {order “”} }

Parameters:

reget A flag indicating that the procedure should re-acquire the values even if the
variables are already defined.

vdt An alternate variable description table.

order A list of variable names (subscripts of the vdt array) indicating the order in which
the variables should be processed. This may also be used to limit processing to a
subset of the variables defined in the vdt array. The default is to process all
variables in the vdt array in a non-deterministic order.

Return Value:

There is no return value.

Usage Notes:

This convenience procedure invokes ftf_getvar for every element in the default or specified
variable description table and generates an error if the array does not exist.

Use ftf_getvar in a test module’s test_setup and/or test_init procedure.

6.2.5.4 ftf_getconfig Checking for Configuration Variables
Specification:
proc ftf_getconfig { varName {raiseError 0} }

Parameters:

varName A configuration variable name from the tables in Installation and Configuration
chapter of the Intelligent Platform Management Interface (IPMI) Conformance
Test Suite (ICTS) User Guide.

raiseError If non-zero, the procedure raises an error. If zero, the procedure returns an empty
string for non-existent variables. Trap the error with the Tcl catch command.

Return Value:

The value of the specified variable. If the variable does not exist, the framework does not create it,
and the raiseError flag is set. An empty string is returned.

Usage Notes:

94 ICTS Developer’s Guide

This procedure is the approved method for tests to retrieve the value of configuration variables.
This procedure gives the framework an opportunity to create the variable if it does not exist. It does
not have built-in knowledge of all configuration variables, so it may not know how to create a given
variable.

6.2.5.5 ftf_checkarray Checking Array Contents
Specification:
proc ftf_checkarray { arrayName idxList {options “e”} }

Parameters:

arrayName The name of the array to check.

idxList A list of index values (subscripts) that are expected to be found in the array.

options A combination of any of the following characters:

e Check for expected elements.

u Check for unexpected elements.

g Allow for “generic” array elements. For example, if idxList contains
“CBC1” an array element indexed by “CBC” is a match.

v Be verbose. Display warning messages for mismatches.

Return Value:

Zero, if the array check passes; otherwise, a non-zero value.

6.2.5.6 ftf_interface Querying for the Default Interface
Specification:
proc ftf_interface { }

Return Value:

The currently selected default interface, a variable maintained by the framework on the behalf of
tests and the user.

Usage Notes:

It is up to tests (and perhaps libraries) to use the value returned by this procedure. The currently
selected default interface has no effect on the functionality or behavior of the Base Framework
itself.

The default interface is initialized whenever a target configuration file is loaded. Its value comes
from the first item in the Target_Interfaces list.

6.2.6 SMTP Electronic Mail
The framework allows routing of messages across electronic mail routes. This section contains
procedure specifications for capturing messages and routing them through electronic mail.

Procedures and APIs 95

6.2.6.1 ftf_mail Sending E-mail
Specification:
proc ftf_mail { toList ccList from subject body }

Parameters:

toList A list of e-mail addresses to which to send a message. If empty, the procedure gets
the value from the User_Email variable.

ccList A list of e-mail addresses to which to send copies of a message.

from The e-mail address of the sender. If empty, the procedure gets this value from the
User_Email variable.

subject Subject of the message.

body Body of the message. The body text allows embedded new-line characters.

Return Value:

A non-zero value if an error occurred.

Usage Notes:

Use this procedure to send a message using Simple Mail Transfer Protocol (SMTP) via the mail
server specified by the Host_MailHost variable. SMTP is defined in RFC 821.

This procedure records the results of the transaction in the mail log file named “mail.log” in the
directory specified by the Host_LogDir variable.

6.2.6.2 ftf_mailing_okay And ftf_paging_okay Permission to Send E-Mail
Specification:
proc ftf_mailing_okay { }

proc ftf_paging_okay { }

Return Value:

A non-zero number if automated sending of e-mail or automated paging is currently allowed;
otherwise, returns zero.

Usage Notes:

Use these procedures to determine permission for sending e-mail with libraries with built-in
automated e-mailing of test results.

The ftf_mailing_okay procedure is for the User_Email variable and other e-mail
addresses to which you would send conventional e-mail messages.

The ftf_paging_okay procedure is for the User_Pager_Email variable and other e-mail
addresses associated with pager devices. For pager devices, the body of the message should be kept
very short.

This procedure is not required if the user has direct control over whether a message is sent or not,
via a confirmation dialog or other means.

96 ICTS Developer’s Guide

6.2.7 FTP File Transfer
This section contains specifications for procedures that provide access to the File Transfer Protocol
(FTP). The procedures in this section require an installed, conventional text-based FTP client
program on the host machine in a directory listed in the PATH environment variable.

6.2.7.1 ftf_ftpget Getting a File
Specification:
proc ftf_ftpget { host remoteFile localFile {mode “bin”} {user “anonymous”}
{password “”} }

Parameters:

host The name or IP address of the remote host.

remoteFile The name of the remote file to get, including a leading path.

localFile The name of the local copy of the remote file, including a leading path. This file
will be overwritten if it already exists.

mode Transfer mode: “bin” or “ascii”.

user User’s login name on the remote host.

password User’s password on the remote host. If empty, the value of the User_Email
variable is used.

Return Value:

A non-zero value if an error occurred.

6.2.7.2 ftf_ftpput Putting a File
Specification:
proc ftf_ftpput { host localFile remoteFile {mode “bin”} {user “anonymous”}
{password “”} }

Parameters:

host The name or IP address of the remote host.

localFile The name of the local copy to put, including a leading path.

remoteFile The name of the remote file to create, including leading path. This file will be
overwritten if it already exists.

mode Transfer mode: “bin” or “ascii”.

user User’s login name on the remote host.

password User’s password on the remote host. If empty, the value of the User_Email
variable is used.

Return Value:

A non-zero value if an error occurred.

Procedures and APIs 97

6.2.7.3 ftf_ftpls Getting a Directory Listing
Specification:
proc ftf_ftpls { host remoteDir {user “anonymous”} {password “”} }

Parameters:

host The name or IP address of the remote host.

remoteDir The name of the remote directory from which a listing is desired.

user User’s login name on the remote host.

password User’s password on the remote host. If empty, the value of the User_Email
variable is used.

Return Value:

A list of file names from the remote directory. If there is an error, an empty list is returned.

6.2.7.4 ftf_ftpdelete Deleting a File
Specification:
proc ftf_ftpdelete { host remoteFile {user “anonymous”} {password “”} }

Parameters:

host The name or IP address of the remote host.

remoteFile The name of the remote file to delete.

user User’s login name on the remote host.

password User’s password on the remote host. If empty, the value of the User_Email
variable is used.

Return Value:

A non-zero value if an error occurred.

6.2.8 Cursor-Addressable Display Areas
This section contains procedure specifications for manipulation and access to cursor-addressable
display (CAD) areas. These procedures allow creation of accessible user interface objects and
manipulation of those objects in response to test results and procedures.

6.2.8.1 ui_opencad Open a Cursor-Addressable Display
Specification:
proc ui_opencad { {title “FTF-CAD”} {rows 25} {cols 80} }

Parameters:
title Window title
rows Number of rows
cols Number of columns

98 ICTS Developer’s Guide

Return Value:
A handle that may be used for subsequent operations. If there is an error, an empty string is
returned.

Usage Notes:
Test modules should check the return value of an empty string and attempt to proceed with the test
even if the open request fails. This is because if a text-based framework is developed, this facility
may not exist or may exist only in limited form.
Data written to these areas is never logged to a file.

6.2.8.2 ui_closedcad Close a Cursor-Addressable Display
Specification:
proc ui_closecad { hcad }

proc ui_freecad { hcad }

Parameters:
hcad Handle to a cursor-addressable display area returned from ui_opencad

Return Value:
Zero on success; otherwise, non-zero.

Usage Notes:
• The ui_closecad procedure closes the display area immediately.
• The ui_freecad procedure queues the display for closing at a later time by the user or

when ui_opencad opens new display areas. Queuing gives a test module a means to indicate
to the framework that it has finished writing to the display area, while letting the user view the
final contents of the area before it is closed.

• Even if a test does not close or free a display area before stopping, the test should not count on
the area still being available if the test is started again.

6.2.8.3 ui_writecad Write to a Cursor-Addressable Display
Specification:
proc ui_writecad { hcad row col text {options “”} }

Parameters:
hcad Handle to a cursor-addressable display area returned from ui_opencad
row Row number at which to begin writing text. Rows are numbered from top to

bottom, starting with zero.
col Column number at which to begin writing text. Columns are numbered from

left to right, starting with zero.
text Text string to write. It may contain embedded new-line characters, but no

other escape characters.
option A Tcl list containing items of the following form:

tag=attribute Text display attribute (red, green, blue, reverse, normal,
underline)

Procedures and APIs 99

� NOTE
Depending on the display device, the framework reserves the right to ignore
all text attribute options.

Return Value:

Zero if the entire text string fits in the display area. If not, or in the event of any other error, a non-
zero value is returned.

6.2.8.4 ui_cleared Clear a Cursor-Addressable Display
Specification:
proc ui_clearcad { hcad }

Parameters:

hcad Handle to a cursor-addressable display area returned from ui_opencad

Return Value:

Zero on success, non-zero in case of an error.

6.2.9 System Information
This section contains procedure specifications for accessing host and target system information.

6.2.9.1 ftf_version Version Numbers
Specification:
proc ftf_version { }

Return Value:

A list suitable for conversion into an array with the Tcl array set command. The resulting
array has the elements listed in Table 6-3:

Table 6-3. Array Set Command Array Contents
Element Description Examples

FTF FTF version number 0.94

FTF,major FTF major version number 0

FTF,minor FTF minor version number 94

FTF,edition FTF edition ESG, ICTS

Tcl Tcl version number 8.3.0 through 8.3.9

Tcl,major Tcl major version number 8

Tcl,minor Tcl minor version number 0

Tcl,patch Tcl patch level 5

Tcl,required Minimum Tcl version required for FTF 8.0.4

Tcl,recommended Minimum Tcl version recommended for FTF 8.3.0 through 8.3.9

100 ICTS Developer’s Guide

In addition to the array elements listed in the above table, the entire contents of the pre-defined Tcl
global array tcl_platform are copied to the list returned by this procedure. For example, the
array element tcl_platform(os) becomes the Platform,os element of the list.

6.2.9.2 ftf_cps Clicks-per-Second
Specification:
proc ftf_cps { }

Return Value:

A calibrated value for clicks-per-second, where “clicks” are those used by the Tcl
clock clicks command.

Usage Notes:

Clicks-per-second is calibrated immediately after the host configuration file is loaded.

6.2.10 API Provided by Libraries
This section contains API procedure specifications for sending requests, receiving responses, and
formatting responses. Test modules and Firmware Test Library modules use these functions.

6.2.10.1 fmt_req Formatting Request Packet
Specification:
proc fmt_req { cmd_name d0 {d1 ""} {d2 ""} {d3 ""}… {d10 ""} }

Parameters:

cmd_name Name of the firmware function if cmd_name is a valid firmware command. If
cmd_name is valid, it uses the predefined response structure.

d0 d1 …d10 The data format and number of parameters depend on the request data structure.
The first element in the request data structure corresponds to the first parameter;
the second element corresponds to the second parameter; the third to the third, and
so on.

Return Value:

reqlist A list of bytes on success. A null list on failure.

Usage Notes:

Use this function to construct request data for the req_rsp function.

The fmt_req function requires the developer to know the organization of the request data
structure. Mistaken assumptions about the organization of the request structure cause unpredictable
results.

If the RecData element appears in the request structure, it represents a list.

Example:

This example uses the following request data structure:

Procedures and APIs 101

set reqSelGetEntry {

 { ReserveId 2-1 }

 { RecId 4-3 }

 { Offset 5 }

 { ReadCount 6 }

}

The following example uses a reqlist call to generate a byte list. The generated list in the
req_rsp call is used in a SelGetEntry call with ReserverId = 0x1020, RecId =
0x0005, Offset = 0 and ReadCount = 0xFF, where ReserveId is a two-byte field,
RecId is a two byte field, Offset is a one byte field, and ReadCount is one-byte field.

The following call constructs the request data.
set reqlist [fmt_req SelGetEntry 0x1020 5 0 0xFF]

The reqlist contains: 0x20 0x10 0x05 0x00 00 0xFF.

The req_rsp function call sends the request and gets the response.
array set selentry [req_rsp $reqlist]

6.2.10.2 req_rsp Synchronous Send and Get
Specification:
proc req_rsp { cmd_name {reqdata ""} {dlrt “”} {options "CR"} }

Parameters:

cmd_name Name of the firmware functions for which the send request and receive response
are made.

reqdata Optional. A list of request bytes.

dlrt Optional. A destination list containing LUN, route, and timeout information. For
additional information about dlrt, refer to Chapter 5.

Options Any combination of the following letters:

C Check the response for validity including min/max length checking.

c Don’t check the response for validity. Note that when this option is used the
returned data may not be suitable for use with the print_rsp procedure
(section 6.2.10.4). A better choice would be print_arr (section 4.6.23).

R Send the request and wait for the response. (Also “y” for backward
compatibility.)

r Send the request but don’t get the response. (Also “n” for backward
compatibility.)

Return Value:

102 ICTS Developer’s Guide

rspdata A list for constructing the response data array by executing the array_set
command. For additional information about array_set, refer to section
array_set Creating a New Array section of this manual. Response data array
Elements are defined in Table 6-4.

Usage Notes:

For a debug level of three, request and response data bytes print during this call

For a debug level of two, the data array prints during this call

Change debug level behavior with the req_rsp_msg_control procedure. For additional
information on req_rsp_msg_control, refer to Section 6.2.10.5 of this chapter. (Note: The
tests modules included with ICTS utilize req_rsp_msg_control to transfer the default debug level
behavior to the verbose level.)

Table 6-4. Response Data Array Elements
Array Index Descriptions
Cmdname The firmware command name (cmd_name) for the response data.
Merr The error code (ecode) returned by the message library.
Mreq The request data sent to the message library.
Mrsp The response data bytes (data) returned by the message library.
Emsg An error message. If the completion code is not zero, it contains the

completion code error message. If merr is not zero, it contains the error
message returned by merror. If the response packet length does not match,
it contains an appropriate error message. Contains an empty string for zero
completion code.

Dlrt Destination, route, LUN, and response information used when the request
was made. Chapter 5 describes dlrt in detail.

Resptime The number of milliseconds taken between request send and response
received.

Imode The mode of the target firmware according to the test library before sending
the request message merged with the interface.

CompCode The Completion Code returned by the response data in the LSB. If the
message library returns an error code, if the response data is less than
minbytes or more than maxbytes, or if any other internal error occurs,
MSB contains a non-zero value. It is sufficient for the tests to look at
CompCode before using the response data.

RecData Optional field containing a list of data bytes from mres. Begins at an offset
specified in the response data structure and ends at the end of the mres list.
The RecData element is present only when the response data structure
contains a RecData element.

Element_name… The field names are the same as defined in the response data structure
except minbytes and maxbytes elements. Field value depends on the
representation of elements in the response data structure.

Procedures and APIs 103

Example:

The following example call returns the response data array to the selinfo variable from
SelGetInfo firmware function.

array_set selinfo [req_rsp SelGetInfo]

The response data structure defined in the library for SelGetInfo is:
set resSelGetInfo {

 { SelVersion 1 }

 { LogCount 3-2 }

 { FreeSpace 5-4 }

 { AddTime 9-6 }

 { EraseTime 13-10 }

 { OpSupport 14 }

 { OverflowFlag 14-7:7 }

 { DelSelSup 14-3:3 }

 { PartAddSup 14-2:2 }

 { ReserveSelSup 14-1:1 }

 { SelAllocSup 14-0:0 }

 { minbytes 15 }

 { maxbytes 15 }

}

Response array contents on a particular are:
name: SelGetInfo

merr: 0

mreq:

mres: 00 10 02 00 C0 0C 62 F9-5A 36 45 69 5B 36 02

dlrt: BMC 0 I2C/FWH-I2C/COM1

imode: OP_I2C

restime: 43

CompCode = 0

SelVersion = 10

LogCount = 02

FreeSpace = 0cc0

AddTime = 365af962 11/24/98 10:22:26

EraseTime = 365b6945 11/24/98 18:19:49

OpSupport = 02

 OverflowFlag = 00

104 ICTS Developer’s Guide

 DelSelSup = 00

 PartAddSup = 00

 ReserveSelSup = 01

 SelAllocSup = 00

Where:

SelVersion, LogCount, FreeSpace, AddTime, EraseTime, OpSupport,
OverflowFlag, DelSelSup, PartAddSup, ReserveSelSup and SelAllocSup are
elements of “Gel Sel Info” command response data structure.

6.2.10.3 tlm_CMDex with tlm_CMD to call commands
Specification:
proc tlm_CMDex {cmdname {args “”} {argList “”} tlm_CMD {} }

proc tlm_CMD {cmdname {args “”} {route “”} {micro “”} {expectedCompCode “0”}
{errorCompCode “1”} {abortReturnCode “1”} {formatData “y”} {stopCheck “y”}
{silent “n”} {msendget “y”} }

Parameters:

cmdname A firmware command name from the command library.

args The request data for the firmware command.

route A route to send command through (e.g. SMS, I2C, ICMB, ...).

micro A device to send commad to (e.g. BMC, HSC, ...).

expectedCompCodergs Any one of the following numbers:

 0 If the above firmware command does not return one of
the expectedCompCodes, the function will return: 'return
$errorCompCode'.

 -1 Specifies that the function will not fault regardless of the
commands return code.

 -2 Specifies that the function should fail on an error does
not occur.

 ? A single number specifies for the routine to return a fault
if the specific code is not returned.

 [list ? ? ?] A list of numbers indicates for the routine to return a
fault only if the command's return code doesn't match
one of the specified values

errorCompCode "1" Specifies the return code when the executing firmware
command does not return one of the expected
completion codes.

AbortCompCode "1" Specifies the return code when a user has stopped the
test.

Procedures and APIs 105

FormatData "y" Specifies if the 'args' passed should be formatted with
the 'fmt_req' cmd.

StopCheck "y" Obviously, this command returns a 'return
abortReturnCode' to the caller so that if the user requests
stop, the script can stop. Alternatively, one can request
this routine to ignore user requests to stop.

Silent "n" This switch is used to disable this routine's print.

Msendget "y" y = use "msendget", anything else (like "n") uses
"msend" (no get).

Return Value:

The return data is either going to be of the form 'return x' where x is a number or someother value,
or it will be of the form 'array_set rsp [array get returnData]' where return data is the data being
returned from the firmware command. The success, will return essentially equates to 'array_set rsp'
to the functions return data. If the command failes, the function returns a 'return 1' so that the
current procedure is aborted. This behavior is switchable so the function can continue.

Usage Notes:

test_main { } {

 set_packet_controls SMS "" BMC

 #

 # Note, if any of the commands below error, test_main will be exited.

 #

 eval [tlm_CMD SetSenThreshold "0x41 0"]; # using the current micro and interface

 ftf_msg "thresholds are: [array get rsp];

 eval [tlm_CMD SetSenThreshold "0x41 0" "" "" 0 1 1 y y y]; # same as above, except the call is
silent

 ftf_msg "thresholds are: [array get rsp];

 set silent {"" "" 0 1 1 y y y}

 eval [tlm_CMDex SetSenThreshold "0x41 0" $silent]; # same as above, but demonstarates the
ability to easily define a default behavior without constantly retyping a long list of arguments.

 ftf_msg "thresholds are: [array get rsp];

 }

Note, in the above example, silent defines all of the variables for tlm_CMD. Be aware that it is
only necessary to define the variables up to and including the ones that are of concern.

Avdanced Usage Notes:

Since in testing many firmware calls are made with similar characteristics (i.e. options to the
tlm_CMDex function), it is convenient to tag these parameters with a variable to make the code

106 ICTS Developer’s Guide

more readable. Within FTF a large number of typical uses have been identified and defined as
procedures that return the parameter to pass the tlm_CMDex function. These functions are located
in the file util_CMD.tcl and should be referenced directly in the code. An example use is:

eval [tlm_CMD SetSenThreshold "0x41 0" [tlm_DON’T_RETURN_ON_FAILURE]];

Alternatively, this could be called with an optional route or destination micro as with:

eval [tlm_CMD SetSenThreshold "0x41 0" [tlm_DON’T_RETURN_ON_FAILURE “i2c”]];

eval [tlm_CMD SetSenThreshold "0x41 0" [tlm_DON’T_RETURN_ON_FAILURE “sms”]];

For reference, this particular function is coded as:

proc tlm_DONT_RETURN_ON_FAILURE
 { {route ""} {micro ""} } { return "\"$route\" \"$micro\" -1 1 1 y y n" }

which you can see simply returns a string of parameters for the function tlm_CMDex.

6.2.10.4 print_rsp Displaying Response Data Array
Specification:
proc print_rsp { rsparr {mode “”} }

Parameters:

rsparr Name of the response data array that need to be printed.

mode A string “all” prints all the elements in the response array. By default it calls the
print function of firmware command.

Return Value:

None

Usage Notes:

Use to display response data array elements or verbose response data.

Example1:

The following output shows an example of SelGetInfo response data.
array_set selinfo [req_rsp SelGetInfo]

print_rsp selinfo

The completion code is zero:
======Get SEL Info======

SelVersion = 10

LogCount = ce

FreeSpace = 00

AddTime = 365b7741 11/24/98 19:19:29

EraseTime = 365b6945 11/24/98 18:19:49

Operation Support = 82

Procedures and APIs 107

 Overflow Flag = 01

 Delete SEL Support = 00

 Partial Add Support = 00

 Reserve SEL Support = 01

 SEL Alloc Info Support = 00

Example2:
array_set selinfo [req_rsp SelGetAllocInfo]

print_rsp selinfo

The SelGetAllocInfo completion code is non-zero:
======Get SEL Allocation Info======

CompCode = c1, Invalid Command

6.2.10.5 req_rsp_msg_control Send/Get Debug/Verbose Control
Specification:
proc req_rsp_msg_control { rr mode fmt {newlevel “”} }

Parameters:

rr A string, “req” (request) or “res” (reponse), indicating the type of message to
which this change applies.

mode A letter, “d” (debug) or “v” (verbose), indicating the type of message level to
which this change applies.

fmt A letter, “h” (hex) or “a” (ASCII formatted, as with print_rsp in
Section 6.2.10.4), indicating the type of formatting used for output.

newlevel A numeric value. Indicates the lowest debug or verbose level at which req_rsp
automatically generates printed hex or ASCII output for the request or response
message. An empty string causes default behavior restoration. Setting this value to
a large number (e.g., 99) disables automatic printing by req_rsp.

Return Value:

oldlevel The previous level for the specified combination of rr, mode, and fmt. An empty
string represents the system default.

Usage Notes:

The combination of rr=req and fmt=a is not supported and has no effect. All other
combinations of rr and fmt are supported.

Settings made by this procedure apply only to the calling test module.

108 ICTS Developer’s Guide

6.2.11 Destination and Route Controls
This section contains procedure specifications for providing destination addresses, LUN numbers,
and route information for request messages and receive responses for the req_rsp function. The
following API provides getting the information to the test modules.

Procedures and APIs 109

6.2.11.1 set_packet_controls Setting Message Packet Controls
Specification:
proc set_packet_controls { dest lun route {timeout ""} }

Parameters:

dest A value or string. Denotes the destination address. If a string, the address name
should be defined in the platform configuration file. An empty string uses the
default destination. Initial default is BMC.

lun A value or a string. Denotes the destination LUN number. An empty string returns
the default LUN number. Initial default is LUN 0.

route A string. Denotes the interface or transport route in which a message is sent or
received. An empty string denotes the default route. Initial default route is the first
interface defined in the target interface list.

timeout A value. Identifies the route timeout value for getting a message.

Return Value:

dlrt A list. Contains the destination address, LUN number, route and timeout values for
a req_rsp call.

Usage Notes:

Use to set the default control information for message packets.

6.2.11.2 get_packet_controls Getting Message Packet Controls
Specification:
proc get_packet_controls { {dest ""} {lun ""} {route ""} {timeout ""} }

Parameters:

dest A value or a string. A value denotes the destination address. If it is string, the
address name should be defined in the platform configuration file. An empty string
uses the default destination. Initial default is BMC.

lun A value or a string. A value denotes the destination LUN number. An empty string
returns the default LUN number. Initial default is LUN 0.

route A value or a string. A value denotes the interface or transport route in which a
message is sent or received. An empty string denotes the default route. Initial
default route is the first interface defined in the target interface list.

timeout A value. Identifies the route timeout for getting a message.

Return Value:

dlrt A list. Contains the destination address, LUN number, route and timeout values for
a req_rsp call.

110 ICTS Developer’s Guide

6.2.11.3 fmt_data Formatting Data Based Using List Structure
Specification:
proc fmt_data { structure_list data_list }

Parameters:

structure_list A list. Contains structure elements similar to those used in the fmt_req
function.

data_list A list. The bytes requiring formatting.

Return Value:

result_list A list. Contains a structure list element name and formatted value from the
data list.

Usage Note:

Use the array_set command to create an array similar to the one described in the function
specification for req_rsp. The elements in this array can be indexed by structure list elements.

If an element named RecData is present in the structure list, it is treated as a variable length list of
bytes starting at the position represented by the RecData element.

The structure element names minbytes and maxbytes are treated as normal structure elements
with no special meaning, as in the req_rsp call.

6.2.11.4 get_fwcmd_info Firmware Command Information
Specification:
proc get_fwcmd_info { cmd_name field_name {microname “”} }

Parameters:

cmd_name A string. The name of the firmware command for which information is needed.

field_name A string. The name identifies a field item of the firmware command. Valid field
names are: CmdNumber, NetFnNumber, Description, ReqList,
RspList, OptRspList and fw_modes.

microname A string. The name of the micro to which the cmd_name belongs. A null string
uses BMC as the default micro.

Procedures and APIs 111

Return Value:

On success, the return type depends on the field name. On failure, the return value is an empty
string. Table 6-5 lists possible success return value types.

Table 6-5. Firmware Command Information
field_name Return Value

CmdNumber Returns a value. The value represents the command number of a given
firmware function cmd_name. Example:
get_fwcmd_info SdrGetInfo CmdNumber

The function returns a value 0x20.

NetFnNumber Returns a value. The value identifies the net function of the firmware
command cmd_name. Example:
get_fwcmd_info SdrGetInfo NetFnNumber

The function returns a value 0x0A.

Description Returns a string. The string describes the command. Example:
get_fwcmd_info SdrGetInfo Description

The function returns "Get SDR Repository Info"

ReqList Returns a list with a request data structure. An empty list is returned if no
request data structure is defined for the cmd_name.

RspList Returns a list with a response data structure. An empty list is returned if no
response data structure is defined for the cmd_name.

OptRspList Returns a list with an optional response data structure. An empty list is
returned if no response data structure is defined for cmd_name.

fw_modes Returns a value 1 if the cmd_name is supported in the firmware mode and
the interface and power state are specified by the fw_modes parameter.
Otherwise, returns an empty string. The function get_fwmodes returns a list
of available fw_modes.

6.2.11.5 get_fwmodes Available List of Firmware Modes
Specification:
proc get_fwmodes { power_state {cmdname “”} {microname “”} }

Parameters:

power_state A string. Identifies the power state for which a list of firmware modes are
needed. The string “PowerOn” identifies the power ON state. The string
“PowerStandby” identifies the standby power state.

cmdname A string. A command name that causes the return of all modes associated with
the power state for the specified command.

microname A string. The name of the micro to which the cmd_name belongs. The null
string uses BMC as the default name.

112 ICTS Developer’s Guide

Return Value:

fw_modes A list. Contains a firmware mode, an interface identifier, and a power state
identifier. The identifier list format is:
[power_]fwmode_[RM_]iface.

Where:

power A string. STB identifies standby power state; otherwise, power is
empty.

fwmode A string. Identifies the firmware mode. “OP” represents normal
Operational mode, and “MTM” represents Manufacturing Test
Mode.

iface A string. Identifies the interface. Valid interface strings are
“SMS” and “I2C”.

Usage Notes:

Querying a particular mode is supported for firmware commands using the get_fwcmd_info
function.

6.2.11.6 get_address Bus Address
Specification:
proc get_address { micro_name }

Parameters:

bus_name A string. A name identifying the microcontroller used. A list of microcontrollers
names is specified in the platform configuration file. For example, BMC and CBC
are microcontroller names.

Return Value:

address A value. Contains the microcontroller address. An empty string if the given
microcontroller name is not found.

Usage Notes:

A test can query the availability of a particular microcontroller for a specified platform before
constructing the destination address for dlr or before executing a particular firmware function.

Example:

The function call [get_address BMC] returns address 0x20.

Procedures and APIs 113

6.2.11.7 get_fwcmd_name Get Firmware Function Name
Specification:
proc get_fwcmd_name { netfn_number cmd_number {micrname “”} }

Parameters:

netfn_number A number. Represents the net function.

cmd_number A number. Represents the firmware command.

microname A string. The name of the micro to which the cmd_name belongs. The null
string uses BMC as the default.

Return Value:

cmd_name A string. On success, the name of the firmware function used by library
functions such as fmt_req, req_rsp and get_fwcmd_info. Returns
an empty string if no name is associated with the given net function and
command number.

Usage Notes:

A test can find the name associated with a command before making requests.

6.2.11.8 get_netfn_number Net Function Number
Specification:
proc get_netfn_number { netfn_name {microname “”} }

Parameters:

netfn_name A string. Name of a net function such as Application, Storage,
Sensor, Bridge and Chassis.

microname A string. Name of the micro to which the cmd_name belongs. The null string
uses BMC as default.

Return Value:

netfn_number A number. Returns a net function number on success; otherwise, an empty
string.

6.2.11.9 set_fw_mode Firmware Mode
Specification:
proc set_fw_mode { mode {value “”} }

Parameters:

mode Controls the type of input value. The mode can be any one of the following switch
fields:

-pm Switch –pm specifies the mode to operate on power control field. Valid power
modes are ON and STB.

114 ICTS Developer’s Guide

-fm Switch –fm specifies the mode to operate on firmware mode. Valid firmware
modes are OP and MTM.

value A string. The mode switch determines the string type. An empty string returns
current mode value. A valid value sets the global firmware mode and returns the
previous mode.

Return Value:

state A string. Return value depends on the mode switch.

Usage Notes:

The target system mode determines particular firmware command support information.

Target power state: When the target is OFF (AC OFF), the target is not running firmware, and no
firmware calls are supported. When the target is in standby, firmware calls for unsupported sensors
are not supported.

Firmware Mode: The target firmware modes are Operational Mode and Manufacturing Test Mode.
Firmware command availability varies depending on the firmware mode.

The test software needs the current state of the target firmware and system to determine pass and
failure for each firmware call. The state can be managed by monitoring the different request and
response messages or by user control.

If a test transitions from one mode to other, it calls this function to set the current mode and allow
the library to know which command is executed in which mode.

6.2.11.10 get_cmd_exec_status Command Execution Status
Specification:
proc get_cmd_exec_status { cmdname interface {fwmode “OP”}\ {powerstate “ON”}
{microname “BMC”}}

Parameters:

cmdname Command name for getting execution status

interface Interface name, such as SMS or I2C

fwmode Firmware mode, such as OP or MTM

powerstate Power state indicator: ON or STB

microname Name of the micro corresponding to the cmdname

Return Value:

status A value. Zero indicates the command is not executed in this framework run. Non-
zero indicates the command is executed.

Procedures and APIs 115

6.2.11.11 auto_interface_wakeup Auto Interface Wakeup
Specification:
proc auto_interface_wakeup { iface {command “”} {interval 60} }

Parameters:

iface Name of the interface.

command A command to execute when the timer interval expires for the specified
interface. This command must be able to accept a “dlrt” value as returned by
get_packet_controls (section 6.2.11.2) and return a list of the same
form returned by req_rsp (section 6.2.10.2). An empty string may be used to
query the current setting.

interval A timer interval in seconds. A value of zero may be used to disable the wakeup
feature for the specified interface.

Return Value:

Oldconfig Returns a list containing two items, the previous command and the previous
interval for the specified interface.

Usage Notes:
• Some interfaces require periodic submission of commands to keep an active connection. This

function enables or disables this automatic feature.

6.2.11.12 get_target_version Set Target Version Number
Specification:
proc get_target_version { version_id {component “”} {microname “”} }

Parameters:

version_id A keyword. The type of version number desired. Possible values include:

IPMI IPMI version number

Firmware Firmware version number

component A string. A keyword that identifies the desired component of the version number.
An empty string requests the entire version number. The string “Major”
requests the major component and the string “Minor” requests the minor
component.

microname A string. The microcontroller for which version number information is desired.
Not applicable to all values of version_id. When applicable, an empty string
results in an assumption of BMC.

Return Value:

version A value. The requested version information.

116 ICTS Developer’s Guide

Procedures and APIs 117

Index

SDR, 14
A SEL, 15

target, 14 API, 14 transport layer, 15
array set command,array contents, 100 UI, 15
array variable, 77 destination and route controls, 108
array_set, 67, 103 dynamic load example, 35
audience, 9
auto_interface_wakeup, 115 E

Error strings, 55, 84 B
even1.tct example, 22

base framework, 10 even2.tcl example, 29
BMC,defined, 15 even3.tcl example, 31

Example C dynamic load, 35
Child test, 86 even1.tcl, 22

even2.tcl, 29 Clicks per second, 101
even3.tcl, 31 command
gdidsms1.tcl, 23 global, 76
gdidsms2.tcl, 25 variable, 76
gdidsms3.tcl, 27 variable,array initialization, 77
helloP3, 36 compare_byte_lists, 73
HelloP5.tcl, 42 cursor-addressable display areas, 98
message library, 23, 25, 27
parent-child, 36 D
pass/fail, 22

DateTime, 71 static load, 35
debug VDT, 42

dialog box, 19 externally-defined variables, 77
level, 19

F Debug level, 81, 82
definition

firmware command information, 111 API, 14
fmt_data, 110 BMC, 15
fmt_req, 101 FRU, 14
formatb, 72 FTF, 14
formatx, 71 host, 14
framework ICTS, 14

architecture, 10 interface, 14
base, 10 IPM, 15

IPMB, 14 FRU, 14
IPMI, 14 FTF, 14
Saelig card, 15 ftf_bell, 82

119

get_address, 112 ftf_cleanuptest, 89
get_checksum, 74 ftf_clear, 82
get_cmd_exec_status, 114 ftf_cps, 101
get_fwcmd_info, 110 ftf_error, 84
get_fwcmd_name, 113 ftf_eventcheck, 85
get_fwmodes, 111 ftf_flush, 84
get_hex_list, 73 ftf_ftpdelete, 98
get_netfn_number, 113 ftf_ftpget, 97
get_packet_controls, 109 ftf_ftpls, 98
get_target_version, 115 ftf_ftpput, 97
get_test_fail_count, 69 ftf_getallvars, 94
global command, 76 ftf_getconfig, 94
global variable initialization, 76 ftf_getlevel, 81
glossary, 14 ftf_getvar, 93
graphic ftf_getvartest, 90

ICTS firmware framework, 11 ftf_inittest, 88
ftf_interface, 95

H ftf_isloaded, 90
ftf_istest, 90 heart_beat, 72
ftf_loadtest, 87 helloP3 example, 36
ftf_log, 82 HelloP5.tcl example, 42
ftf_mail, 96 host, 14
ftf_mailing_okay, 96

I , 82
ftf_out, 82

I2C, 47
ftf_paging_okay, 96 ICTS
ftf_requirelib, 85 conformance scope, 12
ftf_runtest, 89 definition, 14
ftf_setlevel, 81 not supported features list, 13
ftf_setuptest, 88 support features list, 12
ftf_stateoftest, 91 ICTS firmware test framework graphic, 11
ftf_status, 82 ICTS framework architecture, 10
ftf_stopcheck, 84 initialization of non-array variables, 76
ftf_testdir, 91 interface, 14
ftf_unloadtest, 91 IPM,defined, 15
ftf_version, 100 IPMB,defined, 14
FTP File Transfer, 97 IPMI, 47
FWHTRANS, 55 IPMI 1.0 Conformance Test Suite (ICTS), 9

IPMI,defined, 14
G

L gdidsms1.tcl example, 23
gdidsms2.tcl example, 25 level,debug, 19
gdidsms3.tcl example, 27 level,verbose, 19
Generic Library, 67 library

120 ICTS Developer’s Guide

ftf_bell, 82 message, 10
ftf_cleanuptest, 86, 89 SMS, 64
ftf_clear, 82 Wake-On-LAN, 62
ftf_cps, 101 Library
ftf_error, 84 Generic, 67
ftf_eventcheck, 85 LocalSeconds, 71
ftf_flush, 84 Logical transports, 47, 48, 54
ftf_ftpdelete, 98
ftf_ftpget, 97 M
ftf_ftpls, 98

message library, 10 ftf_ftpput, 97
message library example, 23, 25, 27 ftf_getallvars, 94
messages, 10 ftf_getconfig, 94
Messages ftf_getlevel, 81

cooked, 46, 49, 51 ftf_getvar, 93
raw, 53 ftf_getvartest, 90

ftf_inittest, 86, 88 module
ftf_interface, 95 test, 10
ftf_isloaded, 90 transport, 10
ftf_istest, 90

N ftf_loadtest, 86, 87
ftf_log, 82

Name spaces, 78 ftf_mail, 96
ftf_mailing_okay, 96 P , 82
ftf_out, 82 Parent test, 85
ftf_paging_okay, 96 parent-child example, 36
ftf_requirelib, 85 parent-child requirements, 86
ftf_runtest, 86, 89 pass/fail example, 22
ftf_setlevel, 81 print_arr, 72
ftf_setuptest, 86, 88 print_fail, 68
ftf_stateoftest, 86, 91 print_in_hex, 70
ftf_status, 82

print_line, 70 ftf_stopcheck, 84
print_na, 69 ftf_testdir, 91
print_pass, 68 ftf_version, 100
print_rsp, 106 get_address, 112
print_warn, 69 get_checksum, 74
Procedure get_cmd_exec_status, 114

array_set, 67, 103 get_fwcmd_info, 110
auto_interface_wakeup, 115 get_fwcmd_name, 113
commands, 47 get_fwmodes, 111
compare_byte_lists, 73 get_hex_list, 73
DateTime, 71 get_netfn_number, 113
fmt_data, 110 get_packet_controls, 109
fmt_req, 101 get_target_version, 115
formatb, 72 get_test_fail_count, 69
formatx, 71 heart_beat, 72

Index 121

trawsend, 53 interfaces, 47
tsend, 45, 49 LocalSeconds, 71
ttimeout, 50 ltrans, 54
ucDefaultMicro, 62 print_arr, 72
ucDeviceList, 61, 62 print_fail, 68
ucDeviceName, 61 print_in_hex, 70
ucSlaveAddress, 61, 62 print_line, 70
ui_clearcad, 100 print_na, 69
ui_closecad, 99 print_pass, 68
ui_freecad, 99 print_rsp, 106
ui_opencad, 98 print_warn, 69
ui_writecad, 99 ReadFRUData, 57
wolSendMagicPacket, 62 ReadFruNVRam, 58
WriteFRUData, 57 ReadFullSdr, 59

ReadFullSdrRecord, 58
R req_rsp, 102, 105

req_rsp_msg_control, 107 ReadFRUData, 57
sdrDecode, 59

ReadFruNVRam, 58 sdrFlushCache, 61
ReadFullSdr, 59 sdrGetMicrocontrollers, 60
ReadFullSdrRecord, 58 sdrGetMicrocontrollerSlaveAddress, 60
references, 13 set_child_options, 74
req_rsp, 102, 105 set_fw_mode, 113
req_rsp_msg_control, 107 set_packet_controls, 109

smsGetMessage, 66 response data,array elements, 103
smsGetNonBmcMessage, 65

S smsSendGetMessage, 67
smsSendMessage, 66 Saelig card, 15 smsSendNonBmcMessage, 65

SDR,defined, 14 smsUnwrapNonBmcResponse, 64
sdrDecode, 59 smsWrapForNonBmcMicro, 64
sdrFlushCache, 61 tclose, 49
sdrGetMicrocontrollers, 60 tdebug, 55
sdrGetMicrocontrollerSlaveAddress, 60 terror, 55
SEL,defined, 15 test_cleanup, 86, 89

test_help, 79 set_child_options, 74
test_init, 80, 86, 88 set_fw_mode, 113
test_main, 80, 86, 89 set_packet_controls, 109
test_setup, 79, 86, 87, 88 SMS, 47
test_state, 80, 86 SMS library, 64
TEST_STATE, 82 smsGetMessage, 66
test_tool, 89 smsGetNonBmcMessage, 65 tflush, 51

smsSendGetMessage, 67 tget, 46, 50
smsSendMessage, 66 tlm_CMD, 105
smsSendNonBmcMessage, 65 tlm_CMDex, 105
smsUnwrapNonBmcResponse, 64 topen, 48
smsWrapForNonBmcMicro, 64 trawget, 54

122 ICTS Developer’s Guide

UI,defined, 15 static load example, 35
ui_clearcad, 100 Stopping a test, 84, 85
ui_closecad, 99

T ui_freecad, 99
ui_opencad, 98 target,defined, 14
ui_writecad, 99 Tcl scripting language, 10

terms, 14
V test

custom, 9 variable command, 76
module, 10 variable command,array initialization, 77
pass-fail, 9 variable description table, 92
possible results, 10 variable initialization, 76
process overview, 10 variable initialization,global, 76

Test setup files, 92 Variables
test_cleanup, 86 Configuration, 94
test_help, 79 Host_LogDir, 96
test_init, 80, 86 Host_MailHost, 96
test_main, 80, 86 Host_SetupDirs, 88

Host_TestDirs, 87 test_setup, 79, 86
Target_Interfaces, 95 test_state, 80, 86
Test_Children, 86, 87 TEST_STATE, 82
Test_VDT, 92, 93, 94 timeout values, 46, 50, 54
User_Email, 96, 97, 98 tlm_CMD, 105
User_Pager_Email, 96 tlm_CMDex, 105

VDT example, 42 tool module, 10
verbose transport layer,defined, 15

dialog box, 19 transport modules, 10
level, 19

Transport modules, 45
Verbose level, 81, 82

U W
ucDefaultMicro, 62

Wake-On-LAN library, 62
ucDeviceList, 61, 62

wolSendMagicPacket, 62
ucDeviceName, 61

WriteFRUData, 57
ucSlaveAddress, 61, 62

Index 123

	Overview
	Purpose of the IPMI Conformance Test Suite
	Audience
	Overview of Test Process
	ICTS Architecture Overview
	ICTS Architecture Layers

	Customization Opportunities
	Test Modules
	Libraries
	Transport Modules

	ICTS Conformance Scope
	ICTS Supports
	ICTS Does Not Support

	Reference Documents
	Glossary

	Developing IPMI Conformance Test Modules
	Test Developer’s Tutorial
	The Hello World Test
	Debug and Verbose Levels
	Setting the Level of Debug
	Setting the Verbose Level
	Verbose or Debug from the Framework

	Reporting Test Results
	test_main Return Values
	Reporting Test Results Through the Firmware Library
	Pass/Fail Example: even1.tcl

	Sending/Getting IPMI Messages
	The Message Library
	A Note on Cooked Commands
	Message Library Example: gdidsms1.tcl
	Highlights of gdidsms1.tcl:
	Message Library Example: gdidsms2.tcl

	Messages with the Firmware Test Library
	Message Library Example: gdidsms3.tcl
	Highlights of gdidsms3.tcl:

	Other Test Procedures
	Initialization and Cleanup Procedures
	test_setup
	test_init
	test_cleanup
	test_help
	Example: even2.tcl

	Saving and Restoring States
	test_state
	test_setup
	Example: even3.tcl

	Parent and Child Tests
	Loading Children
	Static Loading
	Example: Static Load
	Dynamic Loading
	Example: Dynamic Load

	Child Initialization Invocation and Cleanup
	Invoking Children
	Example: HelloP3 Parent-Child

	Variable Description Tables
	Setting Up a VDT Table
	Generating Variables
	Example: VDT

	Developing Transport Modules
	Cooked and Raw Messages
	Cooked Message Specification
	Sending Cooked Messages
	Getting Replies
	Query Available Commands
	Query Interfaces
	Opening a Transport
	Closing a Transport
	Sending Messages
	Getting Replies
	Set/Get Timeout
	Flushing Messages

	Raw Message Specification
	SMS Raw Message Format
	Sending Raw Messages
	Getting Raw Messages
	Logical Transports
	Error Strings
	Debug Levels

	Libraries
	FRU Library
	ReadFRUData Read FRU Data
	WriteFRUData Write FRU Data
	ReadFruNVRam Reading FRU Area

	SDR Library
	ReadFullSdrRecord Reading a Complete SDR Record
	ReadFullSdr Reading the Entire SDR

	SDR Utilities
	sdrDecode Decoding SDR Data
	sdrGetMicrocontrollers Getting SDR Microcontrollers
	sdrGetMicrocontrollerSlaveAddress Getting SDR Micro Addresse
	sdrFlushCache Flush the SDR Decoded Array’s Cache

	Microcontroller Library
	ucDeviceList Getting a List of Microcontrollers
	ucSlaveAddress Getting Microcontroller Addresses
	ucDeviceName Getting Microcontroller Names
	ucDefaultMicro Getting the Default Microcontroller

	Wake On LAN† Library
	Loading the Library

	SMS Library
	Loading the Library
	smsWrapForNonBmcMicro Wrapping Non-BMC Messages
	smsUnwrapNonBmcResponse Unwrapping Non-BMC Responses
	smsSendNonBmcMessage Sending Non-BMC Messages
	smsGetNonBmcMessage Getting Non-BMC Messages
	smsSendMessage Sending SMS Messages
	smsGetMessage Getting SMS Messages
	smsSendGetMessage Send/Get SMS Message
	Generic Library Functions
	array_set Creating a New Array
	print_pass Test Pass Message
	print_fail Test Fail Message
	print_warn Test Warning Message
	print_na Test Not Applicable Message
	get_test_fail_count Get Test Fail Count
	print_in_hex Print in Hexadecimal Format
	print_line Displaying a Line
	DateTime Date and Time Formatting
	LocalSeconds Local Time in Seconds
	formatx Formatting a Value in Hexadecimal
	formatb Formatting a Value in Binary
	heart_beat Progress Indicator – Heart Beat
	print_arr Displaying Array Elements
	Converting Byte List to String
	get_hex_list Converting Bytes to Hexadecimal List
	compare_byte_lists Compare List of Bytes
	concat_chars Padding Characters to a String
	set_child_options Setting Child Test Options
	get_checksum Get Checksum

	Tcl Namespace Considerations
	Setting Variables Outside a Procedure
	Example: Initializing Arrays with the variable Command

	Global Variables
	Example: Accessing Globals with the variable Command

	Non-array Variable Initialization Outside Test Module Proced
	Example: Variable Initialization

	Array Initializing Outside Procedures
	Example: Array Initialization

	Accessing Externally-defined Variables Within Test Module Pr
	Example: Variable Access Within a Module

	Namespace and Loadable C Modules

	Procedures and APIs
	Test Module Procedure Specifications
	test_setup Post-Sourcing Initialization
	test_help Test Help
	test_init Pre-Execution Initialization
	test_main Running the Test
	test_state Saving the Test State

	Base Framework API
	Message Logging
	ftf_setlevel Local Message Level Control
	ftf_getlevel Effective Message Level Query
	TEST_STATE Writing Test Steps
	ftf_msg Family for Writing Messages
	ftf_flush Flushing Output
	ftf_error Error Strings

	Process Control
	ftf_stopcheck Checking for a Stop Event
	ftf_eventcheck Checking for a User Interface Event
	ftf_requirelib Library Requirements

	Managing Other Tests
	Parent-Child API Usage
	Parent-Child Requirements
	tf_loadtest Loading a Child Test
	ftf_setuptest Setting Up a Child Test
	Initializing a Child Test
	ftf_runtest Running a Child Test
	ftf_cleanup Cleaning Up After a Child Test
	ftf_getvartest Querying Child Test Variables
	ftf_istest Querying Child Test Executable Types
	ftf_isloadedtest Checking for a Loaded Child
	ftf_unloadtest Unloading a Child
	ftf_stateoftest Saving a Child’s State
	ftf_testdir Determining a Test’s Load Directory

	Variables Management
	The Variable Description Table
	ftf_getvar Checking for Test Variables
	ftf_getallvars Checking for All Test Variables
	ftf_getconfig Checking for Configuration Variables
	ftf_checkarray Checking Array Contents
	ftf_interface Querying for the Default Interface

	SMTP Electronic Mail
	ftf_mail Sending E-mail
	ftf_mailing_okay And ftf_paging_okay Permission to Send E-Ma

	FTP File Transfer
	ftf_ftpget Getting a File
	ftf_ftpput Putting a File
	ftf_ftpls Getting a Directory Listing
	ftf_ftpdelete Deleting a File

	Cursor-Addressable Display Areas
	ui_opencad Open a Cursor-Addressable Display
	ui_closedcad Close a Cursor-Addressable Display
	ui_writecad Write to a Cursor-Addressable Display
	ui_cleared Clear a Cursor-Addressable Display

	System Information
	ftf_version Version Numbers
	ftf_cps Clicks-per-Second

	API Provided by Libraries
	fmt_req Formatting Request Packet
	req_rsp Synchronous Send and Get
	tlm_CMDex with tlm_CMD to call commands
	print_rsp Displaying Response Data Array
	req_rsp_msg_control Send/Get Debug/Verbose Control

	Destination and Route Controls
	set_packet_controls Setting Message Packet Controls
	get_packet_controls Getting Message Packet Controls
	fmt_data Formatting Data Based Using List Structure
	get_fwcmd_info Firmware Command Information
	get_fwmodes Available List of Firmware Modes
	get_address Bus Address
	get_fwcmd_name Get Firmware Function Name
	get_netfn_number Net Function Number
	set_fw_mode Firmware Mode
	get_cmd_exec_status Command Execution Status
	auto_interface_wakeup Auto Interface Wakeup
	get_target_version Set Target Version Number

