	18-349

Embedded Systems
 (Lab-2)

Memory Mapped I/O
+
Flash Programming
+

Whack-A-Mole Game

Table of Contents

11
Introduction

2
Development Environment
2
3
Part I: Device Drivers
3
3.1
Requirements
3
3.2
Keypad Demo
3
3.3
Terminal-Display Demo
3
3.4
Timer Demo
3
3.5
Seven-Segment Display Demo
3
3.6
What to Turn In
3
4
Part II: X-Board Flash Programming Utility
4
5
Part III: Whack-A-Mole Game
5
5.1
Introduction
5
5.2
Setup
5
5.3
Select playing level
5
5.4
Game Play
5
5.5
Game Completion
6
5.6
Quitting your program
7
6
What to Turn In
8
7
Appendix 1: Some hardware details
9
8
Appendix II: APIs for Flash Programming - 1
12
9
Appendix III: APIs for Flash Programming - 2
21
10
Appendix IV: Using the Flash Libraries
26
11
Appendix V: flashType structure
27
12
Appendix VI: FooterType structure
28
13
Appendix VII: ImageInfo structure
29
14
18-349 Project 2 Grading Sheet
30

1 Introduction
This lab introduces Memory Mapped I/O, interrupts and the 80200 Big Endian Evaluation Board. In the first part of the lab, you will write software drivers that control various I/O devices such as the timer, the Serial Port (Keypad input and Console Output), and the seven segment LED. In the second part of the lab, you will write code to create a utility for accessing the non-volatile memory (Flash memory) . In the third part, you will use the drivers(created in part-1) and flash programming concepts as part of a the Whack-A-mole game.

Schedule

	Date
	Description
	What To Turn In

	Part 1

Due:
	Serial Port (Keypad input and Console Output), and the seven segment LED
	Submit your commented code to handin dirs.

	Part 2

Due:
	Your own X-Board Flash Utility
	Bring hard-copies to demo,
Turn in commented code to handin dirs
NO report is required for this lab.

	Part 3

Due:
	Flash Programming and Whack-A-Mole Game
	Bring hard-copies to demo,
Turn in commented code to handin dirs
NO report is required for this lab.

2 Development Environment

You will be using the ARM Developer Suite (ADS) version 1.2 for your development work. You may use the 1.1 or 1.2 evaluation versions on your personal machines but the final demo will be on ADS v1.2 in the HH1307 lab.
· You will be using the X-Board for this lab.
3 Part I: Device Drivers
3.1 Requirements

Before building the game, there are several pieces of software that you’ll need for con​trolling the I/O devices on the 80200 BRH board. For the first part of the lab, you’ll write most of these software components, called device drivers, and short wrapper programs that call the device drivers. The device drivers should control the simple seven-segment LED, the keypad, the terminal-display and the timer.

Part 1 of the lab consists of four ‘short’ programs. The following components are required in Part 1.
3.2 Keypad Demo

Display the number entered on the keypad on the seven segment display. You should poll the keypad in this program.

3.3 Terminal-Display Demo

Output all the text printed on the button that is pressed on the PORT serial keypad. The text should be displayed on the terminal-display that is connected to the second serial port. (NOT the debug display window in AXD).
You should use a program such as Hyperterminal (provided with Windows) for this purpose. Hyperterminal should be configured to use the second serial port on the host (NOT the one that is connected to Serial Port 1 on the Board. This port is for use by the Angel Debug Monitor). You should configure Hyperterminal as follows

· 1200 bps

· 8 bits

· No Parity

· 1 stop bit

· No Flow Control
3.4 Timer Demo

Repeat the 7-segment LED counts up program, but this time use the timer to keep track of time. The timer should be polled by your program and should not generate interrupts.

3.5 Seven-Segment Display Demo

A program that initializes the 7-segment LED display to “0” and then starts counting up, incrementing the 7-segment LED approximately every second. Be prepared to explain how you approximated the timing of one second. You cannot use the timer for this portion of the lab. You can, however, use the timer to help you develop your code.

3.6 What to Turn In

For part 1, you will demo your code for the TAs. You can sign up for a demo later online. At the demo, bring a hardcopy of the fully-commented source code with you so that the TAs can look at the code and provide feedback.

You will need to get this part of the lab working in order for the game to work. We recommend that you finish part 1 as soon as you can and start working on parts 2 and 3.

4 Part II: X-Board Flash Programming Utility
In this lab, you will create your own Flash Programming Utility for the X-Board. We will provide APIs for you to access the Flash Memory on the 80200 Board. On loading your utility, you must

· Detect the number of flash devices on the board.

· Print out the following information about each of the devices:

1. Base Address of the Device

2. No of Blocks that the device uses

3. Size of each block

· Set the non-bootable flash device as the active one. (This is IMPORTANT)
· Make a footer list (an array which contains information about the currently active flash).
· Display a prompt to the user where he/she can enter commands (mini-shell/command-parser). You can use the debug console in AXD for this shell.
At the prompt, you should accept, parse and generate output for the following (case-insensitive) commands

	Command
	Description

	Help
	Displays help information about the available commands (something like this table)

	list

	Lists out all the images that are on the currently active flash

	read <Image#> <FileName>
	Reads the Image specified from the flash and copies it to a file on the Host Computer

	Board
	Prints out the Board Number of the Current Board. The board number is to be obtained by searching through the Flash memory for the following string “ Angel Debug Monitor Running on Board ” followed by some spaces and a one or two digit number (this is the board number) followed by an end of string delimiter (‘\0’).

An extensive listing of the APIs provided as part of the Flash Libraries is available in the Appendix.

5 Part III: Whack-A-Mole Game
The goal of this lab is to develop the software for the Whack-A-Mole game. Whack-A-Mole is modeled after the arcade game, which goes by the same name. In the arcade version, the player uses a large mallet to ‘whack’ any mole that pops its head up through several holes in the game board. In our version of the game, the player will uses the 80200 Keypad keys to whack any mole that lights up on the Terminal-display.
5.1 Introduction

The Whack A Mole game will run continuously once the program has been initialized. The game can be split into four parts:

· Setup
· Select playing level
· Game play
· Displaying the score
5.2 Setup

Before a game begins, the game must be in the starting state. In this state
· The 7-segment LED Display is the number board number modulo 10 (you must determine this by reading the contents of the flash like you did in part 2). IMPORTANT: Do not hard-code this to be the board number on which you run the program. The machine on which you demo the code may have a different number.
· The terminal-display is clear.
After the user presses the 0 key on the keypad, the game will enter the level select mode.

5.3 Select playing level

The playing level represents the level-of-difficultly in the game (0 = easy, 9 = difficult). To select a playing level, the player uses the keypad to enter a single digit, from 0-9, representing the desired level. Once a level has been selected, the game is ready to begin and the 7-segment LEDs should display the number “3”. They should then begin count​ing down from three to zero; when zero is reached, the game begins.

5.4 Game Play

	7
	8
	9

	4
	5
	6

	1
	2
	3

	
	
	

	
	
	

	
	
	

Keypad Keys

 +---+---+---+

+---+---+---+

 | X | | |

| | | X |

 +---+---+---+

+---+---+---+

Terminal Display
 | X | | |

| | | |
Terminal Display
(moles 7, 4 and 2 showing) +---+---+---+

+---+---+---+
(moles 9 and 3 showing)
 | | X | |

| | | X |

 +---+---+---+

+---+---+---+

During game play, Xs in the terminal-display will turn on and off to represent moles with their heads sticking in and out of their holes. When the X shows, the mole’s head is sticking out and can be whacked by pressing the corresponding key on the keypad. If the player manages to flip the switch before the X goes off, the ‘mole’ is ‘whacked’ and the player receives 1 point. Play continues until 100 moles have made their appearance.

Moles should randomly pop their heads up as the game progresses. The amount of time the mole pops its head up for and the maximum number of moles popped up at any given time depends on the difficulty level. The Table below lists these values based on the level the player selects.
Mole Characteristics Based on Playing Level
	Level
	Range of Time Mole Appears For (seconds)
	Maximum Number of Moles

	0
	2 - 4
	2

	1
	2 - 4
	3

	2
	2 - 4
	4

	3
	2 - 4
	5

	4
	2 - 2.5
	3

	5
	2 - 2.5
	4

	6
	2 - 2.5
	5

	7
	1 - 2
	4

	8
	1 - 2
	5

	9
	0.5 - 1.5
	6

Every half second there is a 50% chance that a mole will get bored and pop its head up to look around. If there are already too many moles popped up, the other moles will not want to feel crowded and keep their heads in their holes until a mole has gone back down. As soon as a mole is ‘whacked’, it goes back down in its hole looking for aspirin and cannot be wacked until it pops up again (that would be cruelty to animals).

The actual hole a mole pops up from is random and should be uniformly distributed. This does not mean that each hole should have exactly the same number of moles; just that an unweighted random number generator should be used. The standard C rand function should work well. Likewise, the amount of time each mole appears for should also be uni​formly distributed.

During game play you should show (on the terminal-display) the total number of moles the player has ‘whacked’ so far and the total number of moles that have appeared so far.

5.5 Game Completion

After 100 moles have popped up, the game ends and the player’s score should be shown again in the terminal-display along with the level of the game. Additionally, you should turn your creative skill loose when displaying the score. The higher the score, the flashier the display should be.

After the score has been displayed, the game should wait until the player presses any key on the keypad. If the user presses the ‘0’ key, then the game should exit and your code should quit running (this means return from main). If the user presses any other key then they want to go back for more; in this case the game should restart from the Setup section.

5.6 Quitting your program

In general, it is good coding practice to return the system to the state you found it in. When your code exits, it should disable the timer interrupt and restore the original timer interrupt handler. If you successfully restore the machine state, then you should be able to rerun your program from the debugger.

6 What to Turn In

Your source code should be documented well.
7 Appendix 1: Some hardware details
Seven Segment LED
A 7-segment display is provided on the X-Board for indication of any desired state of the system. With the exception of the decimal point segment, this display is controlled by the BRH firmware. The decimal point segment is used as a ‘power-on’ indictor and is connected to the 3.3V rail. Please refer to the header file “brh.h” for the detailed LED Character Map. The LED is mapped in memory at the location 0x20200000.

Timer
The X-Board contains two identical 32-bit timers (timer A and timer B) capable of interrupting the 80200. These timers use the 33.3 MHz peripheral bus clock as their time base, making them capable of 128 seconds maximum timing interval. Each timer consists of a down counter which reloads with a software programmable value upon underflow if set for continuous operation. The timer can also be programmed for “one shot” operation where it will stop counting and disable itself once reaching the count of zero. Upon counter underflow (going from 0 to the preload value), an interrupt is generated which can be routed to either the nFIQ or nIRQ input of the 80200 via the interrupt controller. The interrupt will be held active until explicitly cleared by the 80200.

Both the reload value and the current timer value can be read by the 80200. The timer value is guaranteed to return a stable value if the register is read as a complete word. Reading the timer value as bytes or ½ words is allowed but the timer, if enabled, will continue accumulating between the individual reads, making the values incoherent in time.

Because the timer does not issue the interrupt until at the time of underflow, the desired count value must have 1 count subtracted before being written to the preload register. For example, if a 0.1 ms periodic timer is desired, 3333 counts are required. Therefore, the value 3332 must be written into the preload register so that an interrupt is issued every 3333 counts or 0.1 ms. The same is true when the timer is programmed for “one-shot” mode. The only difference between the modes is that in the one-shot case, the timer is not reloaded with the preload value. Any 32 bit value is a valid preload value, except for the value of 0. If 0 is written into the preload register, the result is undefined. A timer control register is provided to control several features of the timer. The timer/counter can be disabled by clearing the timer enable bit in the timer control register.
Timer Status/Control Register – Timer A:

0x21000300

Timer Status/Control Register – Timer B:

0x21000320
[image: image1.png]) T % % m % T 0 1§ 13
R EY T 0 E S S S R N N
T ST - -T-T-T-T-T-T-Jem]m
Default | RAW
EIEN | Reserved
g 0 [RUCTr | Timer Interrupt Flag. TRT B = et when the fmer reaches the count ol 0. Wrlinga 110
this bit will clear it
) - — [Resened
0 [ROW [Continuous Mode. I sel,the timer auto-preloads after 1 counts to zero (underflow). thus
creating a contimuous. periodic timer. IF clear, the timer is in “one-shot” mode and does
not auto-preload.
T T [ROW [Timer Enable. When set. the timer s enabled._When clear. the fmer i dabled. T11he
timer i in “one-shot” mode. this bt s automatically cleared when the timer stops.

Timer Preload Register – Timer A:

0x21000304

Timer Preload Register – Timer B:

0x21000324

[image: image2.png]3130 9 38 7 %6 25 4 3 » o130 19 18 1716
TPL[31:16]
R T 10 S S S S} [
TPL15:0]
Bit | Default | RW
L0 | 0x0000 | RW | Timer Preload Rey TS vaue 1= written (o the Tmer whengver the fimer 1s acivated
0000 by setting the Timer Enable bit in the Timer Control/Status Register, or whenever the

timer underflows and the timer mod is set to “continuous'

Timer Current Value Register – Timer A:

0x21000308

Timer Current Value Register – Timer B:

0x21000328
[image: image3.png]3130 ™ 38 7 %6 25 4 3 01018 1716
TCV[31:16]

FR Y N R VR U] 76 5 3 3 3]
TCV[I5:0]

Bit | Default | RAW | Description
300 | 0x0000 | R_| Timer Current Value Regiter
0000

TRE = he carrent fmer value. WHITe the timer s anabled
this value contines to change. In order for the value to be coherent. it must be r

dasa
32-bit entity

You can get the Timer to work in One-shot mode in the following way:
· Create a “start_timer” function which would be called once before you start and does the following:
void start_timer() {

//Stop the timer by loading the “status-control register” with TMR_STOP.
timer_struct->stat_cntrl = TMR_STOP;
//Set preload to highest value possible to get longest possible time.
timer_struct->preload = MAX_PRELOAD;
//Clear any possible underflow interrupts and enable timer A in one-shot mode.

timer_struct->stat_cntrl = TMR_INTR_CLEAR | TMR_ENABLE;
}
· Create a function “double dtime(void)” which returns the number of seconds since start_timer() was called. The easiest way to use this is to call start_timer() during initialization, then call dtime() at the start of the benchmark to record the start time. At the end of the benchmark, call dtime() to record the end time. Then subtract end time from start time to get the duration time. dtime() would not use interrupts, so it can only time up to 128 secs. You will need to figure out how to time a duration greater than that. Please refer to the header file “brh.h” for the various structure definitions.
double dtime(void) {

volatile unsigned int counts;

counts = MAX_PRELOAD – timer_struct->value;

//Check for underflow and report error if true

if (timer_struct->stat_cntrl & TMR_INT){

printf("\nERROR: Timer Underflowed!!\n");

}

//return number of seconds (counts times the timer rate of 30ns)
}
Serial Port

Two asynchronous serial ports are provided on the X-Board. A dual UART (TI 16C752) containing two duplicate 16C550 devices is connected to the peripheral bus. In addition to data lines TX and RX, handshake lines CTS and RTS are provided. Two standard 9-pin ‘D’ female connectors are provided for cable attachment and are pinned-out matching the standard PC serial port (i.e. connection to a PC should be made via a “straight through” cable). The PORT serial keypad has been modified to work on the X-Board and will not work on connecting to the COM port of your usual computer. (This was essential because the keypad has no power source of its own and needs to get power from the serial port on the X-Board. Unlike a normal computer, the serial port on the X-Board is a 9-pin female and the only way it can supply power to the keypad is via the RTS pin.)
You will need to write a pseudo-serial driver for the Serial Port -2 (Please note that the Serial Port -1 is reserved for use by the Angel debug monitor) The APIs necessary for you to implement this driver are provided as part of a library “serial_lib.a”. You will need to get this driver working for the keypad and the terminal display demos.

	SERIAL API
	API Function
	Comments

	void init_serial()
	Initializes the serial device library.
	Must be called before you do anything with the serial port-2.

	void printChar(char ch)
	Used to write out characters to the UART.
	Used to print characters on the terminal display.

	int getKeyPressed(void)
	Used to capture input via the PORT serial keypad.
	Detects numeric input on the keypad. (The ‘FN’ key returns 100 when pressed and can be used for exit operations).

	void end_serial()
	Performs exit operations on the serial port-2
	Must be called to end the serial port-2 operations.

Important Note: The serial port-2 has a small bug. Except for the first key press of any run, each key press returns two values – one: the value of the last key pressed and second: the value of the current key pressed. You will need to make sure your pseudo-driver gets around this bug (otherwise your Whack-A-Mole game would not work correctly)
8 Appendix II: APIs for Flash Programming - 1
About the flash library

The X-Board contains a large area of flash memory (4 MB). This space is used to store many programs and associated data in a block structure. The flash library divides the large flash memory structure into discrete blocks. An image can contain any number of blocks, but it must conform to the flash library definition. Figure 7-1 shows the standard flash library image storage layout.
Figure 7-1 Flash library image storage layout
[image: image4.png]Footer information

Unused flash

Image information

Header information

Image area

——

Logical block boundary
(high memory)

Logical block boundary
(low memory)

The following list describes the areas contained in Figure 7-1:

Image area

All of the code and read-only data segments of the image.

Header information

Any file header information from the downloaded file is placed after the image. (Not all images have header information.)

Image information

Added by the flash library code for image identification and code operations.

Unused flash

The footer must be at the end of the block of flash memory. The memory between the end of the image information and the footer is unused. If there is no room in the block containing the image for the footer, the

footer will be placed at the end of the next block.

Footer information

A five-word information block containing:

• the address of the information block for this image

• the base address of the data (the start might be at the beginning of a previous block rather than at the start of this block)

• a unique 32-bit value to aid in fast searching

• the image type (that is, a block, an image, a SIB(System Information Block), or data)

• a checksum for the footer information (over the first four words only).
Accessing flash

Primary routines are supplied as part of the Flash Libraries “flash_lib.a” and “ActivateFlash.a” that allow access to on-board flash and allow an application to:

• check that there is actually flash at a given location

• set a part of the flash as active

• read a word
Flash library functions

This section documents the functions in the flash library. All the type definitions are contained in “flash_lib.h”.

[image: image5.png]fLib_DefinePlat()

This function defines logical structures used by the library. The library accesses flash
using these logical structures which contain pointers to physical devices and pointers to
other logical devic,

Syntax
unsigned int fLib_DefinePlat(tFlash «xtf)
where:

tf Is the address of a pointer that will be set to the address of the flashType
device structure in the system.

Return value

Returns one of the following:
0 If fla

«tf is set to the address of the first ¢!
structures.

his found.

ment of the array of device

-1 If no flash is found

fLib_FindFlash()

This function locates the flash memory devices on this platform. If there is more than
one device in the system, the application must build a linked list of devices before
ling fLib_OpenFTash().

Syntax
unsigned int fLib_FindFlash(tFlash «xtf)
where:

tf Is the address of a pointer that will be set to the address of the first
flashType device structure in the system.

[image: image6.png]Return value

Returns one of the following:
count If one or more flash devices is found. the number of devices is returned.
of the

#tf is set to the addres rst element of the array of device

structures.

0 If no flash is found.

fLib_OpenFlash()

This function initializes the flash device for this platform. If a physical device has an

init() routine, it will be called here o unlock it ready for programming.

Syntax
int fLib_OpenFlash(tFlash «fTashmem)
where:

flashmem Is a pointer to the first flash memory information structure.

Return value

Returns one of the following:
0 If suc
-1 If not suc

ful.

sful.

fLib_CloseFlash()

This function finalizes the flash device for this platform. If a physical device has a

close() routine, it will be called here to lock it to prevent further programming.

Syntax
int fLib_CloseFlash(tFlash «fTashmem)
where:

flashmem Is a pointer to the first flash memory information structure.

[image: image7.png]Return value

Returns one of the followi

0 If successful.

-1 If not successful.

[image: image8.png]fLib_ReadFlash32()

This function calls the read() function from the appropriate physical (L\m pointed to
by the flashmen structur ds one 32-bit word from the flash at the

en address.

Syntax

int flib_ReadFlash32(unsigned int :address, unsigned int xvalue,
tFlash «flashmem)

wher

address Is a pointer to the address of the flash memor;

the flash should be copied.

value Is a pointer to the memor

flashmen Is a pointer to the flash device structure to allow access to the flash

read/write routines.

Return value

Returns one of the followin,

0 If successful. The memory at value now holds the results.

-1 If not successful.

[image: image9.png]fLib_ReadArea()

This function reads an arca of size bytes from flash memory.

Syntax

int flib_ReadArea(unsigned int address, unsigned int «data, unsigned int size,
tFlash «Flashnen)

where:

address Is a pointer to the address of the flash memory to be read.

data Is a pointer to the location the data is to be copied to.

size Is the size. in bytes. of the data area.

flashmem Is a pointer to the flash device structure to allow access to the flash

read/write routines.

Return value

Returns one of the following:
0 If successful.

-1 If not successful.

[image: image10.png]fLib_GetBlockSize()

This function returns the size, in by

. of the logical block for this platform.

——— Note

These logical blocks cannot be smaller than the la
block size will be a multiple of the erase block size.

st device physical block size. This

Syntax
unsigned int fLib_GetBlockSize(tFlash «flashmem)
where:

flashmen Is a pointer to the flash device structure to return the size.

[image: image11.png]Return value

Returns one of the following:

size If the flash block size can be determined. the size of the block is returned.
0 If the size cannot be determined.
fLib_ReadIlmage()

This function reads the image from flash memory as defined in foot. The destination
specified by the foot->infoBase->ToadAddress pointer cannot be NULL.

Syntax

int flLib_ReadImage(tFooter «foot, tFlash «flashmem)

wher

foot Is a pointer to the footer structure defining the image pointer for the
image to be read.

e structure to allow access to the flash

Flashmem Is a pointer to the flash devi
read/write routines.

Return value

Returns one of the following:
0 If su

-1 If not successful.

ful.

[image: image12.png]fLib_FindImage()

This function scans the list of flash footers looking for a footer with an image number
that matches the sp d number. If the spe d footer pointer is not NULL, the
footer is copied from flash.

Syntax

int flib_FindInage(tFooter «Tist, unsigned int imageNo, tFooter «foot,
tFlash +flashnen)

where:

Tist Is a pointer to a list of pointers to footers.

imageNo Is the unique number of the image to be located.

foot Is a pointer to the location where the found footer should be copied.
flashmem Is a pointer to the flash device structure to allow access to the flash

read/write routines.

Return value

Returns one of the following:
0 If successful.

-1 If not successful.

fLib_Executelmage()

This function exccutes the image selected by the specified image footer.
Syntax

int flib_ExecuteImage(tFooter «foot)

foot Is a pointer to the footer that defines the image to be executed.

Return value

Returns one of the following:
No return If successful, the function does not return.

-1 If not successful.

[image: image13.png]fLib_ChecksumFooter()

This function calculates the checksum for the spec
associated footer must be fully defined. but the contents of the image structure are not
summed. If the image sum value is -1, only the footer value will be calculated. The
nverted before being stored.

dimage. The image structure and

checksums are word sums, and are

Syntax

int flib_ChecksunFooter(tFooter foot, unsigned int foot_sum,
unsigned int «image_sun, tFlash «flashnen)

where:

foot Is a pointer to the footer structure for the footer and image to be
check-summed.
foot_sum Is a pointer to the location in RAM where the footer checksum is to be

stored.

image_sum s a pointer to the location in RAM where the image checksum is to be
stored.

flashmem Is a pointer to the flash device structure to allow access to the flash
read/write routines.
Return value

Returns one of the following:
0 If successful.

-1 If not successful.

[image: image14.png]fLib_ReadFooter()

This function (start in flash memory to foot in memory.

Syntax

int flib_ReadFooter(unsigned int «start, tFooter «foot, tFlash «flashmem)
where:

start Is a pointer to the location of the footer image in flash memory.
foot Is a pointer to the location the footer image is to be copied to.
flashmen Is a flash device structure for access to flash access routines

Return value

Returns one of the followi

0 If successful.

-1 If not successful.

[image: image15.png]fLib_VerifyFooter()

This function verifies the footer at foot. It checks the signature word, and also checks
that the checksum is correct.

Syntax

int flLib_VerifyFooter(tFooter «foot, tFlash «flashmem)
where:

foot Is a pointer to the footer image to be veri

flashmem Is a structure with pointers to flash access routines.

Return value

Returns one of the followin,

0 If successful.
-1 If not successful.
fLib_FindFooter()

This function scans the flash memory from start for size bytes, returning a list of

pointers to the image footers.

Syntax

unsigned int fLib_FindFooter(unsigned int «start, unsigned int size,
tFooter «1ist[], tFlash «Flashnen)

[image: image16.png]where:
start

size

Tist

flashmen

Is a pointer to the address of the flash memory to be scanned.
Is the size. in bytes, of the flash memory. If the size is defined as zero.
only the address of the next footer found is returned.

Is a pointer to a list of pointers to footers. The list must be large enough

to conta
« apointer to each logical block of flash in the specified area
. a final pointer that will point to nu11.

Is a structure with pointers to flash access routines.

Return value

Returns the number of flash footers found.

[image: image17.png]fLib_BuildFooter()

This function builds a footer for the sp

ified image. The image structure already
image in memory. This function must
nal values in flas

contains all information about the prog
convert these pointers to thei

Syntax

int fLib_BuildFooter(tFooter «foot, tFlash «flashmem)

where:

foot Is a pointer to the footer to be built.

flashmen Is a structure with pointers to flash access routines.

Return value

Returns one of the following:
0 If successful.

-1 If not successful.

Additionally, the 2nd Flash library “ActivateFlash.a” contains the following API
void set_active_device(tFlash * initial_dev, unsigned32 num)

where:

initial_dev
Is the flash device to be marked as “Active”

num

Is the number of flash devices detected in the system.

IMPORTANT: This API is to be used to set the APPlication part of the Flash Memory as the default device. Under no circumstances should you set the BOOT portion of the Flash Memory as the default flash device as this may cause serious damage to the X-Board.
9 Appendix III: APIs for Flash Programming - 2

File processing functions (also part of “flash_lib.a”)
This section documents the set of file processing function calls. All definitions are contained in “flash_lib.h”.
[image: image18.png]fLib_ReadFileRaw()

This function reads up (o size bytes from the open file fp.

Syntax

unsigned int flLib_ReadFileRaw(unsigned int :value, unsigned int size,
tFile_I0 «file_I0, tFILE «fp)

Is a pointer to the destination memory address to which the contents of
the file is copied.

size Is the number of bytes to be read.

file_I0 Is a pointer to a structure that accesses the external file input/output by
way of simple input/output routines.

o Is a pointer to an open file stream from which to read file data.

Return value

Returns one of the followin,

count If successful, the number of bytes read is returned.

0 If not successful.

fLib_WriteFileRaw()

This function writes up to size bytes to the open

Syntax

unsigned int fLib_WriteFileRaw(unsigned int :value, unsigned int size,
tFile_I0 «file_I0, tFILE «fp)

[image: image19.png]where:

value Is a pointer to the source memory address from which the contents of the
file is copied.

size Is the number of bytes to be written.

file_I0 Is a pointer to a structure that accesses the external file by way of simple
input/output routines.

o Is a pointer to an open file stream to which file data is written.

Return value

Returns one of the following:
count If successful, the number of bytes written is returned.

0 If not successful.

fLib_OpenfFile()

“This function opens a file of the given iTenane in the given mode.

Syntax

File «fLib_OpenFile(char «filename, char :mode, tFile_I0 «file_I0)

where:

filename Is a pointer to the name of the file on the host.

mode Is the mode in which the file should be opened. such as rb for read-only.
file_I0 Is a pointer to a structure that accesses the external file input/output by

way of simple input/output routines.

Return value

Returns one of the followi

pointer If successful, a pointer to the file on the host is returned.

0 If not successful.

[image: image20.png]fLib_CloseFile()

This function closes the specified file on the host.

Syntax
int fLib_CloseFile(File «file, tFile_To «file_I0)

Is a pointer to the file on the host.

Is a pointer to a structure that
routines.

esses the external file I/O by simple /0

Return value

Returns one of the following

0 If successful.

-1 If not successful.

fLib_ReadFileHead()

This function reads the file header,

the da

nd sets fields in image from
Id pointed to by size. The header

a. The number of bytes read is returned in the fie
is copied o the buffer

already defined in fnage->head.

Syntax

unsigned int fLib_ReadFileHead(File «file, tInagelnfo «image,
unsigned int ¢size, tFile_I0 +file_I0)

where:

file Is a pointer to the file on the host.

image Is a pointer to the image structure.

size Is a pointer to size of the data read from the host.

file_I0 Is a pointer to a structure that accesses the external file /O by simple /O
routines.

Return value
Returns one of the following:
filetype If the file type is known. it is returned as from ENUM_FILETYPE.

0 I the file type is unknown.

[image: image21.png]fLib_WriteFileHead()

This function writes the header pointed to by the image->footer to the specified file. The

header is parsed and the writeFile routine pointer is updated.
Syntax

unsigned int fLib_WriteFileHead(File «file, tImageInfo «image,
tFile_I0 «file_I0)

Is a pointer to the file on the host.

image Is a pointer to the image structure.

file_I0 Is a pointer to a structure that esses the external file input/output by
way of simple input/output routines.

Return value

Returns one of the following:
count If successful, the number of bytes written is returned.

0 If there is no header.

fLib_ReadFile()

This function reads (and converts) 32-bit words from the open f

Syntax

unsigned int fLib_ReadFile(unsigned int :value, unsigned int size,
tInagelnfo +image, tFile_10 file_I0)

Is a pointer to the memory address where the file data is copicd.
Is the number of bytes to be read.

Is a pointer to the image structure.

Is a pointer to a structure that accesses the external file input/output by

way of simple input/output routines.

Return value

Returns one of the following:
count If successful, the number of bytes read is returned.

0 If not successful.

[image: image22.png]fLib_WriteFile()

This function converts and writes 32-bit words to the open file.

Syntax

unsigned int fLib_WriteFile(unsigned int +value, unsigned int size,
tInage +inage, tFile_I0 «file_10)

where:

value Is a pointer to the memory address.

size Is the number of bytes to be written.

image Is a pointer to the image structure.

file_I0 Is a pointer to a structure that accesses the external file input/output by

way of simple input/output routines.

Return value

Returns one of the following:
count If successful. the number of bytes written is returned.

0 If not successful.

10 Appendix IV: Using the Flash Libraries
Here are a few tips which can help you get started with using the Flash Libraries
Starting up and finding the flash
When your Flash Utility starts on the X-Board, the application must:

1. Define and locate the flash.

2. Verify that it is supported.

3. Set the non-BOOT portion (i.e. the APPLICATION) of the flash as “active”.

4. Scan for any images that have already been programmed.

Fig 9-1 shows the functions that perform these operations.
Figure 9-1
[image: image23.png]unsigned int fLib_DefinePlat(tFlash «+Flashnem);

unsigned int fLib_FindFlash(tFlash «+flashmen);

int fLib_OpenFlash(tFlash «FlashMen);

unsigned int fLib_FindFooter(unsigned int «start, unsigned int size,
tFooter «+1ist[], tFlash «flashnen);

Please Remember: Before you go about making a footer list for the flash devices (by using the fLib_FindFooter(…)), make sure you have set the non-BOOT part (i.e. the APPLICATION part) of the Flash Memory as the active device using the following API:

void set_active_device(tFlash * initial_dev, unsigned32 num)
Reading an image from flash and writing it to a file on the host
Figure 9-2 shows the functions that perform these operations.

Figure 9-2
[image: image24.png]int fLib_FindInage(tFooter «1ist, unsigned int imagelo, tFooter «foot,
tFlash +flash);
int flib_VerifyFooter(tFooter foot, tFlash «flash);
int flib_ReadInage(tFooter «foot, tFlash «flash);
int fLib_ChecksunInage(tFooter footer, unsigned int =image_sun, tFlash +flash);
tFILE +fLib_OpenFile(char «filename, char <mode, tFile_I0 « file_I0);
unsigned int fLib_WriteFileHead(tFILE «file, tImagelnfo ~image,
tFile_10 + file_10)
fLib_biriteFile(unsigned32 svalue, unsigned int size, tInageInfo +image,
tFile_10 + file_10);
int flib_CloseFile(tFILE +file, tFile_10 « file_I0);

11 Appendix V: flashType structure

The flash library uses a logical representation of the flash space. This involves one or more logical devices. XScale uses two types:

Boot Flash

This is an area that contains applications that the user would not normally wish to overwrite, such as the boot- monitor, Angel debug client, or system self-tests.

Application Flash

This area is where the user keeps applications and data. (You will be playing around with this part of the flash.)
Table 7.2 Logical Structure Routines
[image: image25.png]Size

Field (bytes) Value/usage

devices 4 Pointer to the first physical device which holds this logical arca.
offset 4 Offset (in blocks) into the device at which this logical area starts.
bsize 4 Size of the logical area (in blocks).

type 4 BOOT or APP(lication) arca.

next 4 Pointer to the next logical flash device structure.

The library defines a C structure, shown in Figure 7-3, for the logical flash definition so that all offsets from the first word are abstracted.
Figure 7-3 flashType structure

[image: image26.png]typedef struct flashType

struct flashPhysicalType «devices; // Pointer to physical device Tist
unsigned32 offset; // Number of blocks into the device
unsigned32 bsize; // Size of flash, in blocks
unsigned32 type; // Boot/Application type

struct flashType «next; // Pointer to next flash device

1
tFlash;

12 Appendix VI: FooterType structure

The footer structure is a five-word device that contains a pointer to a more detailed structure that, if required, defines the image. Table 7-4 shows the format for the footer. The image base address is the start of the first block containing data for this image. If the image is less than one logical block in length, this pointer will be set to the start of the current block.
Table 7-4 Footer Format

[image: image27.png]Size

Field Value/usage
(bytes) 9

Image information base 4 Pointer to the full image descriptor structure.

Image base address 4 Location in flash memory where the image starts.

Signature 4 0xADFFFFOF is an illegal instruction in the ARM
instruction set. It can never be produced by
compilers as code, so it is a relatively safe value for
a unique signature.

Image type 4 Indicates an ARM exceutable image, STB, or custom
code.

Checksum 4 Checksum for this footer. The checksum is the word

sum (with the carry wrapped into the least
significant bit) and is stored as the inverse of the
sum.

The library defines a C structure for the footer so that all offsets from the first word are abstracted. Figure 7-5 shows this structure.
Figure 7-5 FooterType Structure

[image: image28.png]typedef struct FooterType {

void infoBase ;
char blockBase ;

unsigned int signature

unsigned int type ;

unsigned int checksum ;
} tFooter ;

Address of first vord of InageFooter
Start of area reserved by this footer
"Magic' number to prove it's a footer
Area type: ARM inage, SIB, customers/

Checksun of this structure only

13
Appendix VII: ImageInfo structure

This structure replicates much of the information contained in the header of file formats such as Executable and Linkable Format (ELF) in a form that is accessible to the file-independent routines. The image data structure contains information about any file header stored in the image space to allow reconstruction of the file, if required. The image information block is situated immediately after the full image, and any header information is stripped from the input file and stored with the image. The checksum is calculated from the full image, any header information, and the image information block. Figure 7-6 shows the ImageInfoType structure.

Figure 7-6 ImageInfoType Structure

[image: image29.png]typedef struct InageInfoType

{
unsigned32
unsigned32
char
unsigned32
PEN
char
char
unsigned32
unsigned32
unsigned32
} tInageInfo ;

bootFlags ;
inageNumber ;

ToadAddress ;

Tength ;
address ;
name[16] ;
headerBase ;

header_Tength;

headerType ;
checksum ;

Boot flags, compression etc. +/

Unique number, selects for boot etc.

Address progran should be loaded to
Actual size of image +/

Inage is executed from here +/

Null terminated +/

Flash Address of any stripped header

Length of header in memory +/
ELF, S-record etc. #/
Tnage checksun (inc. this struct)

14

18-349 Project 2 Grading Sheet

	Name
	

	Date
	

	Part 1 (18)
	Keypad Demo
	/6

	
	Terminal-Display Demo
	/4

	
	Timer Demo
	/6

	
	Seven Segment Demo
	/2

	Part 2 (37)
	Detecting Flash Devices / Printing flash information
	/4

	
	Non-boot Flash activation
	/4

	
	Flash Footer List generation
	/4

	
	Mini-Shell / Command-Parser
	/25

	Part 3 (40)
	Setup
	/5

	
	Select Game Level
	/5

	
	Game Play
	/20

	
	Display Score
	/5

	
	Game Exit
	/5

	Coding Style (5)
	
	/5

	Total
	/100

	

	Comments

	

	

	

Subscriber

AWAY

AWAY

CANCELXFER

