
Page 1

Fundamental Design Issues
for Parallel Architecture

CS 418
 Lecture 3

CS 418 S’04– 2 –

Understanding Parallel Architecture

Traditional taxonomies not very useful
Programming models not enough, nor hardware
structures
• Same one can be supported by radically different architectures

Architectural distinctions that affect software
• Compilers, libraries, programs

Design of user/system and hardware/software interface
• Constrained from above by progr. models and below by technology

Guiding principles provided by layers
• What primitives are provided at communication abstraction
• How programming models map to these
• How they are mapped to hardware

CS 418 S’04– 3 –

Fundamental Design Issues

At any layer, interface (contract) aspect and performance aspects

• Naming: How are logically shared data and/or processes referenced?

• Operations: What operations are provided on these data

• Ordering: How are accesses to data ordered and coordinated?

• Replication: How are data replicated to reduce communication?

• Communication Cost: Latency, bandwidth, overhead, occupancy

Understand at programming model first, since that sets requirements

Other issues:
• Node Granularity: How to split between processors and memory?
• ...

CS 418 S’04– 4 –

Sequential Programming Model

Contract
• Naming: Can name any variable in virtual address space

– Hardware (and perhaps compilers) does translation to physical
addresses

• Operations: Loads and Stores
• Ordering: Sequential program order

Performance
• Rely on dependences on single location (mostly): dependence order
• Compilers and hardware violate other orders without getting caught
• Compiler: reordering and register allocation
• Hardware: out of order, pipeline bypassing, write buffers
• Transparent replication in caches

Page 2

CS 418 S’04– 5 –

SAS Programming Model

Naming:
• Any process can name any variable in shared space

Operations:
• Loads and stores, plus those needed for ordering

Simplest Ordering Model:
• Within a process/thread: sequential program order
• Across threads: some interleaving (as in time-sharing)
• Additional orders through synchronization
• Again, compilers/hardware can violate orders without getting caught

– Different, more subtle ordering models also possible (discussed later)

CS 418 S’04– 6 –

Synchronization

Mutual exclusion (locks)
• Ensure certain operations on certain data can be performed by

only one process at a time
• Room that only one person can enter at a time
• No ordering guarantees

Event synchronization
• Ordering of events to preserve dependences

– e.g. producer —> consumer of data
• 3 main types:

– point-to-point
– global
– group

CS 418 S’04– 7 –

Message Passing Programming Model
Naming: Processes can name private data directly.

• No shared address space

Operations: Explicit communication via send and receive
• Send transfers data from private address space to another process
• Receive copies data from process to private address space
• Must be able to name processes

Ordering:
• Program order within a process
• Send and receive can provide pt-to-pt synch between processes
• Mutual exclusion inherent

Can construct global address space:
• Process number + address within process address space
• But no direct operations on these names

CS 418 S’04– 8 –

Design Issues Apply at All Layers

Programming model’s position provides constraints/goals for system

In fact, each interface between layers supports or takes a position
on:
• Naming model
• Set of operations on names
• Ordering model
• Replication
• Communication performance

Any set of positions can be mapped to any other by software

Let’s see issues across layers:
• How lower layers can support contracts of programming models
• Performance issues

Page 3

CS 418 S’04– 9 –

Naming and Operations
Naming and operations in programming model can be directly supported

by lower levels, or translated by compiler, libraries or OS

Example: Shared virtual address space in programming model

Hardware interface supports shared physical address space
• Direct support by hardware through v-to-p mappings, no software layers

Hardware supports independent physical address spaces
• Can provide SAS through OS, so in system/user interface

– v-to-p mappings only for data that are local
– remote data accesses incur page faults; brought in via page fault handlers
– same programming model, different hardware requirements and cost

model
• Or through compilers or runtime, so above sys/user interface

– shared objects, instrumentation of shared accesses, compiler support

CS 418 S’04– 10 –

Naming and Operations (Cont)
Example: Implementing Message Passing
Direct support at hardware interface

• But match and buffering benefit from more flexibility

Support at system/user interface or above in software
(almost always)
• Hardware interface provides basic data transport (well suited)
• Send/receive built in software for flexibility (protection, buffering)
• Choices at user/system interface:

– OS each time: expensive
– OS sets up once/infrequently, then little software involvement each time

• Or lower interfaces provide SAS, and send/receive built on top with
buffers and loads/stores

Need to examine the issues and tradeoffs at every layer
• Frequencies and types of operations, costs

CS 418 S’04– 11 –

Ordering

Message passing: no assumptions on orders across
processes except those imposed by send/receive pairs

SAS: How processes see the order of other processes’
references defines semantics of SAS
• Ordering very important and subtle
• Uniprocessors play tricks with orders to gain parallelism or locality
• These are more important in multiprocessors
• Need to understand which old tricks are valid, and learn new ones
• How programs behave, what they rely on, and hardware implications

CS 418 S’04– 12 –

Replication

Very important for reducing data transfer/communication
Again, depends on naming model
Uniprocessor: caches do it automatically

• Reduce communication with memory

Message Passing naming model at an interface
• A receive replicates, giving a new name; subsequently use new name
• Replication is explicit in software above that interface

SAS naming model at an interface
• A load brings in data transparently, so can replicate transparently
• Hardware caches do this, e.g. in shared physical address space
• OS can do it at page level in shared virtual address space, or objects
• No explicit renaming, many copies for same name: coherence problem

– in uniprocessors, “coherence” of copies is natural in memory hierarchy

Page 4

CS 418 S’04– 13 –

Communication Performance
Performance characteristics determine usage of
operations at a layer
• Programmer, compilers etc make choices based on this

Fundamentally, three characteristics:
• Latency: time taken for an operation
• Bandwidth: rate of performing operations
• Cost: impact on execution time of program

If processor does one thing at a time: bandwidth ∝ 1/latency
• But actually more complex in modern systems

Characteristics apply to overall operations, as well as
individual components of a system, however small

We will focus on communication or data transfer across
nodes

CS 418 S’04– 14 –

Communication Cost Model

Communication Time per Message
= Overhead + Assist Occupancy + Network Delay + Size/Bandwidth +
Contention

= ov + oc + l + n/B + Tc

Overhead and assist occupancy may be f(n) or not

Each component along the way has occupancy and delay
• Overall delay is sum of delays
• Overall occupancy (1/bandwidth) is biggest of occupancies

Comm Cost = frequency * (Comm time - overlap)

General model for data transfer: applies to cache
misses too

CS 418 S’04– 15 –

Summary of Design Issues
Functional and performance issues apply at all layers

Functional: Naming, operations and ordering

Performance: Organization, latency, bandwidth,
overhead, occupancy

Replication and communication are deeply related
• Management depends on naming model

Goal of architects: design against frequency and type
of operations that occur at communication
abstraction, constrained by tradeoffs from above or
below
• Hardware/software tradeoffs

CS 418 S’04– 16 –

Recap
Parallel architecture is an important thread in the
evolution of architecture
• At all levels
• Multiple processor level now in mainstream of computing

Exotic designs have contributed much, but given way to
convergence
• Push of technology, cost and application performance
• Basic processor-memory architecture is the same
• Key architectural issue is in communication architecture

Fundamental design issues:
• Functional: naming, operations, ordering
• Performance: organization, replication, performance characteristics

Design decisions driven by workload-driven evaluation
• Integral part of the engineering focus

