
Page 1

Parallel Programming:
Performance

CS 418
 Lectures 6-8

CS 418 S’04– 2 –

Introduction

Rich space of techniques and issues
• Trade off and interact with one another

Issues can be addressed/helped by software or hardware
• Algorithmic or programming techniques
• Architectural techniques

Focus here on performance issues and software techniques
• Point out some architectural implications
• Architectural techniques covered in rest of class

CS 418 S’04– 3 –

Programming as Successive Refinement
Not all issues dealt with up front
Partitioning often independent of architecture, and done first

• View machine as a collection of communicating processors
– balancing the workload
– reducing the amount of inherent communication
– reducing extra work

• Tug-o-war even among these three issues
Then interactions with architecture

• View machine as extended memory hierarchy
– extra communication due to architectural interactions
– cost of communication depends on how it is structured

• May inspire changes in partitioning
Discussion of issues is one at a time, but identifies tradeoffs

• Use examples, and measurements on SGI Origin2000

CS 418 S’04– 4 –

Outline
Partitioning for performance

Relationship of communication, data locality and architecture

Programming for performance

For each issue:
• Techniques to address it, and tradeoffs with previous issues
• Illustration using case studies
• Application to grid solver
• Some architectural implications

Components of execution time as seen by processor
• What workload looks like to architecture, and relate to software

issues

Page 2

CS 418 S’04– 5 –

Partitioning for Performance

Balancing the workload and reducing wait time at synch
points

Reducing inherent communication
Reducing extra work

Even these algorithmic issues trade off:
• Minimize comm. => run on 1 processor => extreme load imbalance
• Maximize load balance => random assignment of tiny tasks => no

control over communication
• Good partition may imply extra work to compute or manage it

Goal is to compromise
• Fortunately, often not difficult in practice

CS 418 S’04– 6 –

Load Balance and Synch Wait Time

Limit on speedup: Speedupproblem(p) <

• Work includes data access and other costs
• Not just equal work, but must be busy at same time

Four parts to load balance and reducing synch wait time:

1. Identify enough concurrency

2. Decide how to manage it

3. Determine the granularity at which to exploit it

4. Reduce serialization and cost of synchronization

Sequential Work
Max Work on any Processor

CS 418 S’04– 7 –

Identifying Concurrency
Techniques seen for equation solver:

• Loop structure, fundamental dependences, new algorithms
Data Parallelism versus Function Parallelism
Often see orthogonal levels of parallelism; e.g. VLSI routing

Wire W2 expands to segments

Segment S23 expands to routes

W1 W2 W3

S21 S22 S23 S24 S25 S26

(a)

(b)

(c)

CS 418 S’04– 8 –

Identifying Concurrency (contd.)

Function parallelism:
• entire large tasks (procedures) that can be done in parallel
• on same or different data
• e.g. different independent grid computations in Ocean
• pipelining, as in video encoding/decoding, or polygon rendering
• degree usually modest and does not grow with input size
• difficult to load balance
• often used to reduce synch between data parallel phases

Most scalable programs data parallel (per this loose
definition)
• function parallelism reduces synch between data parallel phases

Page 3

CS 418 S’04– 9 –

Deciding How to Manage Concurrency

Static versus Dynamic techniques
Static:

• Algorithmic assignment based on input; won’t change
• Low runtime overhead
• Computation must be predictable
• Preferable when applicable (except in multiprogrammed or

heterogeneous environment)
Dynamic:

• Adapt at runtime to balance load
• Can increase communication and reduce locality
• Can increase task management overheads

CS 418 S’04– 10 –

Dynamic Assignment

Profile-based (semi-static):
• Profile work distribution at runtime, and repartition dynamically
• Applicable in many computations, e.g. Barnes-Hut, some graphics

Dynamic Tasking:
• Deal with unpredictability in program or environment (e.g.

Raytrace)
– computation, communication, and memory system interactions
– multiprogramming and heterogeneity
– used by runtime systems and OS too

• Pool of tasks; take and add tasks until done
• E.g. “self-scheduling” of loop iterations (shared loop counter)

CS 418 S’04– 11 –

Dynamic Tasking with Task Queues

Centralized versus distributed queues
Task stealing with distributed queues

• Can compromise comm and locality, and increase synchronization
• Whom to steal from, how many tasks to steal, ...
• Termination detection
• Maximum imbalance related to size of task

QQ 0 Q2Q1 Q3

All remove tasks

P0 inserts P1 inserts P2 inserts P3 inserts

P0 removes P1 removes P2 removes P3 removes

(b) Distributed task queues (one per process)

Others may
steal

All processes
insert tasks

(a) Centralized task queue

CS 418 S’04– 12 –

Impact of Dynamic Assignment

On SGI Origin 2000 (cache-coherent shared memory):

S
pe

ed
up

1 3 5 7 9 11 13 15 17

Number of processors Number of processors

19 21 23 25 27 29 31
0

5

10

15

S
pe

ed
up

20

25

30

0(a) (b)

5

10

15

20

25

30

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Origin, dynamic
Challenge, dynamic
Origin, static
Challenge, static

Origin, semistatic
Challenge, semistatic
Origin, static
Challenge, static

Page 4

CS 418 S’04– 13 –

Determining Task Granularity

Task granularity: amount of work associated with a task

General rule:
• Coarse-grained => often less load balance
• Fine-grained => more overhead; often more communication &

contention

Communication & contention actually affected by
assignment, not size
• Overhead by size itself too, particularly with task queues

CS 418 S’04– 14 –

Reducing Serialization

Careful about assignment and orchestration (including
scheduling)

Event synchronization
• Reduce use of conservative synchronization

– e.g. point-to-point instead of barriers, or granularity of pt-to-pt
• But fine-grained synch more difficult to program, more synch ops.

Mutual exclusion
• Separate locks for separate data

– e.g. locking records in a database: lock per process, record, or field
– lock per task in task queue, not per queue
– finer grain => less contention/serialization, more space, less reuse

• Smaller, less frequent critical sections
– don’t do reading/testing in critical section, only modification
– e.g. searching for task to dequeue in task queue, building tree

• Stagger critical sections in time

CS 418 S’04– 15 –

Reducing Inherent Communication

Communication is expensive!
Measure: communication to computation ratio
Focus here on inherent communication

• Determined by assignment of tasks to processes
• Later see that actual communication can be greater

Assign tasks that access same data to same process
Solving communication and load balance NP-hard in
general case

But simple heuristic solutions work well in practice
• Applications have structure!

CS 418 S’04– 16 –

Domain Decomposition

Works well for scientific, engineering, graphics, ...
applications

Exploits local-biased nature of physical problems
• Information requirements often short-range
• Or long-range but fall off with distance

Simple example: nearest-neighbor grid computation

Perimeter to Area comm-to-comp ratio (area to volume in 3D)
•Depends on n,p: decreases with n, increases with p

P0 P1 P2 P3

P4

P8

P12

P5 P6 P7

P9 P11

P13 P14

P10

n

n n
p

n
p

P15

Page 5

CS 418 S’04– 17 –

Domain Decomposition (Continued)

Comm to comp: for block, for strip
• Retain block from here on

Application dependent: strip may be better in other cases
• E.g. particle flow in tunnel

4*√p
n

2*p
n

Best domain decomposition depends on information requirements
Nearest neighbor example: block versus strip decomposition

P0 P1 P2 P3

P4

P8

P12

P5 P6 P7

P9 P11

P13 P14 P15

P10

n

n

n

p

n

p

CS 418 S’04– 18 –

Finding a Domain Decomposition

Static, by inspection
• Must be predictable: grid example above, and Ocean

Static, but not by inspection
• Input-dependent, require analyzing input structure
• E.g sparse matrix computations, data mining

Semi-static (periodic repartitioning)
• Characteristics change but slowly; e.g. Barnes-Hut

Static or semi-static, with dynamic task stealing
• Initial decomposition, but highly unpredictable; e.g ray tracing

CS 418 S’04– 19 –

Other Techniques

Scatter Decomposition, e.g. initial partition in Raytrace

Preserve locality in task stealing
•Steal large tasks for locality, steal from same queues, ...

1

43

Domain decomposition Scatter decomposition

2

1

3 4

2

1

3 4

2

1

3 4

2

1

3 4

2

1

3 4

2

1

3 4

2

1

3 4

2

1

3 4

2

1

3 4

2

1

3 4

2

1

3 4

2

1

3 4

2

1

3 4

2

1

3 4

2

1

3 4

2

1

3 4

2

CS 418 S’04– 20 –

Implications of Comm-to-Comp Ratio

If denominator is execution time, ratio gives average BW
needs

If operation count, gives extremes in impact of latency and
bandwidth
• Latency: assume no latency hiding
• Bandwidth: assume all latency hidden
• Reality is somewhere in between

Actual impact of comm. depends on structure & cost as well

• Need to keep communication balanced across processors as well

Sequential Work
Max (Work + Synch Wait Time + Comm Cost)

Speedup <

Page 6

CS 418 S’04– 21 –

Reducing Extra Work

Common sources of extra work:
• Computing a good partition

– e.g. partitioning in Barnes-Hut or sparse matrix
• Using redundant computation to avoid communication
• Task, data and process management overhead

– applications, languages, runtime systems, OS
• Imposing structure on communication

– coalescing messages, allowing effective naming
Architectural Implications:

• Reduce need by making communication and orchestration efficient

Sequential Work
Max (Work + Synch Wait Time + Comm Cost + Extra Work)

Speedup <

CS 418 S’04– 22 –

Summary: Analyzing Parallel Algorithms

Requires characterization of multiprocessor and algorithm
Historical focus on algorithmic aspects: partitioning,
mapping

PRAM model: data access and communication are free
• Only load balance (including serialization) and extra work matter

• Useful for early development, but unrealistic for real performance
• Ignores communication and also the imbalances it causes
• Can lead to poor choice of partitions as well as orchestration
• More recent models incorporate comm. costs; BSP, LogP, ...

Sequential Instructions
Max (Instructions + Synch Wait Time + Extra Instructions)

Speedup <

CS 418 S’04– 23 –

Limitations of Algorithm Analysis

Inherent communication in parallel algorithm is not all
• artifactual communication caused by program implementation and

architectural interactions can even dominate
• thus, amount of communication not dealt with adequately

Cost of communication determined not only by amount
• also how communication is structured
• and cost of communication in system

Both architecture-dependent, and addressed in
orchestration step

To understand techniques, first look at system
interactions

CS 418 S’04– 24 –

What is a Multiprocessor?

A collection of communicating processors
• View taken so far
• Goals: balance load, reduce inherent communication and extra

work
A multi-cache, multi-memory system

• Role of these components essential regardless of programming
model

• Programming model and comm. abstraction affect specific
performance tradeoffs

Most of remaining performance issues focus on second
aspect

Page 7

CS 418 S’04– 25 –

Memory-Oriented View

Multiprocessor as Extended Memory Hierarchy
• as seen by a given processor

Levels in extended hierarchy:
• Registers, caches, local memory, remote memory (topology)
• Glued together by communication architecture
• Levels communicate at a certain granularity of data transfer

Need to exploit spatial and temporal locality in hierarchy
• Otherwise extra communication may also be caused
• Especially important since communication is expensive

CS 418 S’04– 26 –

Uniprocessor

Performance depends heavily on memory hierarchy
Time spent by a program

Timeprog(1) = Busy(1) + Data Access(1)

• Divide by instructions to get CPI equation

Data access time can be reduced by:
• Optimizing machine: bigger caches, lower latency...
• Optimizing program: temporal and spatial locality

CS 418 S’04– 27 –

Extended Hierarchy

Idealized view: local cache hierarchy + single main memory
But reality is more complex

• Centralized Memory: caches of other processors
• Distributed Memory: some local, some remote; + network topology
• Management of levels

– caches managed by hardware
– main memory depends on programming model

» SAS: data movement between local and remote transparent
» message passing: explicit

• Levels closer to processor are lower latency and higher bandwidth
• Improve performance through architecture or program locality
• Tradeoff with parallelism; need good node performance and

parallelism

CS 418 S’04– 28 –

Artifactual Comm. in Extended Hierarchy

Accesses not satisfied in local portion cause communication
• Inherent communication, implicit or explicit, causes transfers

– determined by program
• Artifactual communication

– determined by program implementation and arch. interactions
– poor allocation of data across distributed memories
– unnecessary data in a transfer
– unnecessary transfers due to system granularities
– redundant communication of data
– finite replication capacity (in cache or main memory)

• Inherent communication assumes unlimited capacity, small
transfers, perfect knowledge of what is needed.

• More on artifactual later; first consider replication-induced
further

Page 8

CS 418 S’04– 29 –

Communication and Replication

Comm. due to finite capacity is most fundamental artifact
• Like cache size and miss rate or memory traffic in uniprocessors
• Extended memory hierarchy view useful for this relationship

View as three level hierarchy for simplicity
• Local cache, local memory, remote memory (ignore network topology)

Classify “misses” in “cache” at any level as for uniprocessors
– compulsory or cold misses (no size effect)
– capacity misses (yes)
– conflict or collision misses (yes)
– communication or coherence misses (no)

• Each may be helped/hurt by large transfer granularity (spatial
locality)

CS 418 S’04– 30 –

Working Set Perspective

• Hierarchy of working sets
• At first level cache (fully assoc, one-word block), inherent to algorithm

– working set curve for program
• Traffic from any type of miss can be local or non-local (communication)

•At a given level of the hierarchy (to the next further one)

First working set

Capacity-generated traffic
(including conflicts)

Second working set

D
at

a
tr

af
fi
c

Other capacity-independent communication

Cold-start (compulsory) traffic

Replication capacity (cache size)

Inherent communication

CS 418 S’04– 31 –

Orchestration for Performance

Reducing amount of communication:
• Inherent: change logical data sharing patterns in algorithm
• Artifactual: exploit spatial, temporal locality in extended

hierarchy
– Techniques often similar to those on uniprocessors

Structuring communication to reduce cost

Let’s examine techniques for both...

CS 418 S’04– 32 –

Reducing Artifactual Communication

Message passing model
• Communication and replication are both explicit
• Even artifactual communication is in explicit messages

Shared address space model
• More interesting from an architectural perspective
• Occurs transparently due to interactions of program and system

– sizes and granularities in extended memory hierarchy
Use shared address space to illustrate issues

Page 9

CS 418 S’04– 33 –

Exploiting Temporal Locality
• Structure algorithm so working sets map well to hierarchy

– often techniques to reduce inherent communication do well here
– schedule tasks for data reuse once assigned

• Multiple data structures in same phase
– e.g. database records: local versus remote

• Solver example: blocking

•More useful when O(nk+1) computation on O(nk) data
–many linear algebra computations (factorization, matrix multiply)

(a) Unblocked access pattern in a sweep (b) Blocked access pattern with B = 4

CS 418 S’04– 34 –

Exploiting Spatial Locality
Besides capacity, granularities are important:

• Granularity of allocation
• Granularity of communication or data transfer
• Granularity of coherence

Major spatial-related causes of artifactual communication:
• Conflict misses
• Data distribution/layout (allocation granularity)
• Fragmentation (communication granularity)
• False sharing of data (coherence granularity)

All depend on how spatial access patterns interact with data
structures
• Fix problems by modifying data structures, or layout/alignment

Examine later in context of architectures
• one simple example here: data distribution in SAS solver

CS 418 S’04– 35 –

Spatial Locality Example
• Repeated sweeps over 2-d grid, each time adding 1 to elements
• Natural 2-d versus higher-dimensional array representation

P6 P7P4

P8

P0 P3

P5 P6 P7P4

P8

P0 P1 P2 P3

P5

P2P1

Page straddles
partition boundaries:
difficult to distribute
memory well

Cache block
straddles partition
boundary

(a) Two-dimensional array

Page does not
straddle partition
boundary

Cache block is
within a partition

(b) Four-dimensional array

Contiguity in memory layout

CS 418 S’04– 36 –

Tradeoffs with Inherent Communication

Partitioning grid solver: blocks versus rows
• Blocks still have a spatial locality problem on remote data
• Rows can perform better despite worse inherent c-to-c ratio

•Result depends on n and p

Good spatial locality on
non-local accesses at
row-oriented boundary

Poor spatial locality on
non-local accesses at
column-oriented boundary

Page 10

CS 418 S’04– 37 –

Example Performance Impact

Equation solver on SGI Origin2000

S
pe

ed
up

Number of processors

S
pe

ed
up

Number of processors

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
0

5

10

15

20

25

30

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
0

5

10

15

20

25

30

35

40

45

50
4D
4D-rr

2D-rr
2D
Rows-rr
Rows2D

4D
Rows

CS 418 S’04– 38 –

Structuring Communication
Given amount of communication, goal is to reduce cost
Cost of communication as seen by process:

C = f * (o + l + + tc - overlap)
– f = frequency of messages
– o = overhead per message (at both ends)
– l = network delay per message
– nc = total data sent
– m = number of messages
– B = bandwidth along path (determined by network, NI, assist)
– tc = cost induced by contention per message
– overlap = amount of latency hidden by overlap with comp. or comm.

• Portion in parentheses is cost of a message (as seen by processor)
• That portion, ignoring overlap, is latency of a message

• Goal: reduce terms in latency and increase overlap

nc/m
B

CS 418 S’04– 39 –

Reducing Overhead

Can reduce # of messages m or overhead per message o
o is usually determined by hardware or system software

• Program should try to reduce m by coalescing messages
• More control when communication is explicit

Coalescing data into larger messages:
• Easy for regular, coarse-grained communication
• Can be difficult for irregular, naturally fine-grained communication

– may require changes to algorithm and extra work
» coalescing data and determining what and to whom to send

– will discuss more in implications for programming models later

CS 418 S’04– 40 –

Reducing Network Delay

Network delay component = f*h*th
– h = number of hops traversed in network
– th = link+switch latency per hop

Reducing f: communicate less, or make messages larger
Reducing h:

• Map communication patterns to network topology
– e.g. nearest-neighbor on mesh and ring; all-to-all

• How important is this?
– used to be major focus of parallel algorithms
– depends on no. of processors, how th, compares with other components
– less important on modern machines

» overheads, processor count, multiprogramming

Page 11

CS 418 S’04– 41 –

Reducing Contention

All resources have nonzero occupancy
• Memory, communication controller, network link, etc.
• Can only handle so many transactions per unit time

Effects of contention:
• Increased end-to-end cost for messages
• Reduced available bandwidth for individual messages
• Causes imbalances across processors

Particularly insidious performance problem
• Easy to ignore when programming
• Slow down messages that don’t even need that resource

– by causing other dependent resources to also congest
• Effect can be devastating: Don’t flood a resource!

CS 418 S’04– 42 –

Types of Contention
Network contention and end-point contention (hot-spots)
Location and Module Hot-spots
Location: e.g. accumulating into global variable, barrier

• solution: tree-structured communication

•In general, reduce burstiness; may conflict with making messages
larger

Module: all-to-all personalized comm. in matrix transpose
•solution: stagger access by different processors to same node
temporally

Flat Tree structured

Contention Little contention

CS 418 S’04– 43 –

Overlapping Communication

Cannot afford to stall for high latencies
• even on uniprocessors!

Overlap with computation or communication to hide latency
Requires extra concurrency (slackness), higher bandwidth
Techniques:

• Prefetching
• Block data transfer
• Proceeding past communication
• Multithreading

CS 418 S’04– 44 –

Summary of Tradeoffs

Different goals often have conflicting demands
• Load Balance

– fine-grain tasks
– random or dynamic assignment

• Communication
– usually coarse grain tasks
– decompose to obtain locality: not random/dynamic

• Extra Work
– coarse grain tasks
– simple assignment

• Communication Cost:
– big transfers: amortize overhead and latency
– small transfers: reduce contention

Page 12

CS 418 S’04– 45 –

Processor-Centric Perspective

CS 418 S’04– 46 –

Relationship between Perspectives

Synch wait

Data-remote

Data-localOrchestration

Busy-overheadExtra work

Performance issueParallelization step(s) Processor time component

Decomposition/
assignment/
orchestration

Decomposition/
assignment

Decomposition/
assignment

Orchestration/
mapping

Load imbalance and
synchronization

Inherent
communication
volume

Artifactual
communication
and data locality

Communication
structure

CS 418 S’04– 47 –

Summary

Speedupprob(p) =

• Goal is to reduce denominator components
• Both programmer and system have role to play
• Architecture cannot do much about load imbalance or too much

communication
• But it can:

– reduce incentive for creating ill-behaved programs (efficient naming,
communication and synchronization)

– reduce artifactual communication
– provide efficient naming for flexible assignment
– allow effective overlapping of communication

Busy(1) + Data(1)
Busyuseful(p)+Datalocal(p)+Synch(p)+Dataremote(p)+Busyoverhead(p)

