
Page 1

Parallel Programming:
Case Studies

CS 418
 Lecture 9a

CS 418 S’04– 2 –

Parallel Application Case Studies

Examine Ocean and Barnes-Hut (others in book)
Assume cache-coherent shared address space
Five parts for each application

• Sequential algorithms and data structures
• Partitioning
• Orchestration
• Mapping
• Components of execution time on SGI Origin2000

CS 418 S’04– 3 –

Case 1: Simulating Ocean Currents

• Model as two-dimensional grids
• Discretize in space and time

– finer spatial and temporal resolution => greater
accuracy

• Many different computations per time step
– set up and solve equations

• Concurrency across and within grid computations

(a) Cross sections (b) Spatial discretization of a cross section

CS 418 S’04– 4 –

Time Step in Ocean Simulation
Put Laplacian�
of ψ1 in W11

Add f values to columns�
of W11 and W13

Update the γ expressions

Solve the equation for ψa and put the result in γa

Compute the integral of ψa

Use ψ and Φ to update ψ1 and ψ3

Update streamfunction running sums and determine whether to end program

Put Jacobians of (W1, T1),�
(W13, T3) in W51, W53

Compute ψ = ψa + C(t) ψb (Note: ψa �
and now ψ are maintained in γa matrix)

Solve the equation for Φ and put result in γb

Put Laplacian�
of ψ3 in W13

Copy ψ1, ψ3 �
into T1, T3

Copy ψ1M, ψ3M �
into ψ1, ψ3

Copy T1, T3 �
into ψ1M, ψ3M

Put ψ1− ψ3 �
in W2

Put computed ψ2 �
values in W3

Initialize �
γa and γb

Put Laplacian of �
ψ1M, ψ3M in W71,3

Put Laplacian of�
W71,3 in W41,3 �

�

Put Laplacian of�
W41,3 in W71,3

Put Jacobian of�
(W2,W3) in W6

Page 2

CS 418 S’04– 5 –

Partitioning

Exploit data parallelism
• Function parallelism only to reduce synchronization

Static partitioning within a grid computation
• Block versus strip

– inherent communication versus spatial locality in communication
• Load imbalance due to border elements and number of boundaries

Solver has greater overheads than other computations

CS 418 S’04– 6 –

Two Static Partitioning Schemes

Which approach is better?

Strip Block

CS 418 S’04– 7 –

Orchestration and Mapping

Spatial locality similar to equation solver
• Except lots of grids, so cache conflicts across grids

Complex working set hierarchy
• A few points for near-neighbor reuse, three subrows, partition of

one grid, partitions of multiple grids…
• First three or four most important
• Large working sets, but data distribution easy

Synchronization
• Barriers between phases and solver sweeps
• Locks for global variables
• Lots of work between synchronization events

Mapping: easy mapping to 2-d array topology or richer

CS 418 S’04– 8 –

Execution Time Breakdown

• 4-d grids much better than 2-d, despite very large caches on machine
– data distribution is much more crucial on machines with smaller caches

• Major bottleneck in this configuration is time waiting at barriers
– imbalance in memory stall times as well

•1030 x 1030 grids with block partitioning on 32-processor Origin2000

Ti
m

e
 (s

)

Process

13579 11 13 15 17 19 21 23 25 27 29 31
0
1
2
3

4
5
6
7

Ti
m

e
 (s

)

Process

13579 11 13 15 17 19 21 23 25 27 29 31
0
1

2
3
4

5

7
6

Busy
Synch
Data

Busy
Synch
Data

Page 3

CS 418 S’04– 9 –

Impact of Line Size & Data Distribution

no-alloc = round-robin page allocation; otherwise, data assigned to local
memory. L = cache line size.

CS 418 S’04– 10 –

Case 2: Simulating Galaxy Evolution

• Simulate the interactions of many stars evolving over time
• Computing forces is expensive
• O(n2) brute force approach
• Hierarchical Methods take advantage of force law: G m1m2

r2

•Many time-steps, plenty of concurrency across stars within one

Star on which forces
are being computed

Star too close to
approximate

Small group far enough away to
approximate to center of mass

Large group far
enough away to
approximate

CS 418 S’04– 11 –

Barnes-Hut

Locality Goal:
• particles close together in space should be on same processor

Difficulties:
• nonuniform, dynamically changing

CS 418 S’04– 12 –

Application Structure

• Main data structures: array of bodies, of cells, and of pointers to them
– Each body/cell has several fields: mass, position, pointers to others
– pointers are assigned to processes

Compute
forces

Update
properties

Ti
m

e-
st

ep
s

Build tree

Compute
moments of cells

Traverse tree
to compute forces

Page 4

CS 418 S’04– 13 –

Partitioning

Decomposition: bodies in most phases, cells in computing
moments

Challenges for assignment:
• Nonuniform body distribution => work and comm. Nonuniform

– Cannot assign by inspection
• Distribution changes dynamically across time-steps

– Cannot assign statically
• Information needs fall off with distance from body

– Partitions should be spatially contiguous for locality
• Different phases have different work distributions across bodies

– No single assignment ideal for all
– Focus on force calculation phase

• Communication needs naturally fine-grained and irregular

CS 418 S’04– 14 –

Load Balancing

• Equal particles ≠ equal work.

– Solution: Assign costs to particles based on the work they do

• Work unknown and changes with time-steps

– Insight : System evolves slowly

– Solution: Count work per particle, and use as cost for next time-
step.

Powerful technique for evolving physical systems

CS 418 S’04– 15 –

A Partitioning Approach: ORB
Orthogonal Recursive Bisection:

• Recursively bisect space into subspaces with equal work
– Work is associated with bodies, as before

• Continue until one partition per processor

• High overhead for large number of processors
CS 418 S’04– 16 –

Another Approach: Costzones

Insight: Tree already contains an encoding of spatial locality.

• Costzones is low-overhead and very easy to program

(a) ORB (b) Costzones

P1 P2 P3 P4 P5 P6 P7 P8

Page 5

CS 418 S’04– 17 –

Barnes-Hut Performance

• Speedups on simulated multiprocessor
• Extra work in ORB is the key difference

Ideal
Costzones

ORB

CS 418 S’04– 18 –

Orchestration and Mapping
Spatial locality: Very different than in Ocean, like other aspects

• Data distribution is much more difficult
– Redistribution across time-steps
– Logical granularity (body/cell) much smaller than page
– Partitions contiguous in physical space does not imply contiguous in array
– But, good temporal locality, and most misses logically non-local anyway

• Long cache blocks help within body/cell record, not entire partition

Temporal locality and working sets:
• Important working set scales as 1/θ2log n
• Slow growth rate, and fits in second-level caches, unlike Ocean

Synchronization:
• Barriers between phases
• No synch within force calculation: data written different from data read
• Locks in tree-building, pt. to pt. event synch in center of mass phase

Mapping: ORB maps well to hypercube, costzones to linear array

CS 418 S’04– 19 –

Execution Time Breakdown

•Problem with static case is communication/locality, not load balance!

Ti
m

e
 (s

)

Process

Data
Synch
Busy

Data
Synch
Busy

13579 11 13 15 17 19 21 23 25 27 29 31
0
5

10
15
20
25
30
35
40

Ti
m

e
 (s

)

Process

13579 11 13 15 17 19 21 23 25 27 29 31
0
5

10
15
20
25
30
35
40

(a) Static assignment of bodies (b) Semistatic costzone assignment

•512K bodies on 32-processor Origin2000
–Static, quite randomized in space, assignment of bodies versus costzones

CS 418 S’04– 20 –

Case 3: Raytrace

Rays shot through pixels in image are called primary rays
• Reflect and refract when they hit objects
• Recursive process generates ray tree per primary ray

Hierarchical spatial data structure keeps track of
primitives in scene
• Nodes are space cells, leaves have linked list of primitives

Tradeoffs between execution time and image quality

Page 6

CS 418 S’04– 21 –

Partitioning
Scene-oriented approach

• Partition scene cells, process rays while they are in an assigned cell
Ray-oriented approach

• Partition primary rays (pixels), access scene data as needed
• Simpler; used here

Need dynamic assignment; use contiguous blocks to exploit
spatial coherence among neighboring rays, plus tiles for
task stealing

A block,
the unit of
assignment

A tile,
the unit of decomposition
and stealing

Could use 2-D interleaved (scatter) assignment of tiles instead
CS 418 S’04– 22 –

Orchestration and Mapping

Spatial locality
• Proper data distribution for ray-oriented approach very difficult
• Dynamically changing, unpredictable access, fine-grained access
• Better spatial locality on image data than on scene data

– Strip partition would do better, but less spatial coherence in scene
access

Temporal locality
• Working sets much larger and more diffuse than Barnes-Hut
• But still a lot of reuse in modern second-level caches

– SAS program does not replicate in main memory
Synchronization:

• One barrier at end, locks on task queues
Mapping: natural to 2-d mesh for image, but likely not
important

CS 418 S’04– 23 –

Execution Time Breakdown

• Task stealing clearly very important for load balance

Ti
m

e
 (s

)

Process

13579 11 13 15 17 19 21 23 25 27 29 31

Ti
m

e
 (s

)

Process

13579 11 13 15 17 19 21 23 25 27 29 31

20
40

0

60
80

100
120
140

180
200

160

20
40

0

60
80

100
120
140

180
200

160

Data
Synch
Busy

