Motivation

* Latency is a serious problem for modern processors
» wide gap between processol and memory speeds

. . — deeply pipelined
Architectural and Implementation

Tradeoffs for
Multiple-Context Processors

» mMuUltiprocessors

+ Three major forms of latency
» memory
— instruction

— synchronization

Coping with Latency Multiple Context Processors

+ Two-step approach to managing latency

—» First, reduce latency + Multiple context processors address latency by:
+ coherent caches » switching to another thread whenever one thread performs
) o a long latency operation
«  locality optimizations
+  pipeline bypassing — making sure that context switch overhead is low, so that
thread switches can be done often
— Then, wlerate remaining latency
+ relaxed memory consistency
«  prefetch

«  multiple context



Latency Tolerance Techniques

Trends
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+ What are the microprocessor trends?
— relaxed memory consistency

» prefetch

+ Why hasn’t multiple contexts been included?
— multiple contexts is thought to be expensive
» performance benefits are relatively unknown

— existing multiple context designs do not help uniprocessors

= For multiple contexts to gain acceptance, all these issues must
be addressed

HEP and TERA Approach

= Multiple-Context Approaches
* Performance Results
* Implementation Issues

+ Conclusions

HEP was first machine to use mult. ctxts. to hide latency

Processor architecture:
— pipelined but no interlocks, and no caches

— large # of registers (2K), cheap thread creation, F/E bits

Cycle-by-cycle context switching
Memory Instr. Dep.
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HEP and TERA Approach (cont.)

* Multiple context used to hide two kinds of latency:
» pipeline latency (8 cycles) and memaory latency

— 128 contexts per processor (total focus on toleration)

+ Drawbacks of HEP approach

» Low single context performance (bad for applns with limited
parallelism)

» Lots of contexts implied lots of hardware resources and high
cost

— No caches implied high memory bandwidth requirements
and high cost

Blocked Scheme

TERA System Pipeline

+ Combine multiple contexts with latency reduction (caches)
— Assumes a base cache-coherent system

» Assumes pipelined processor with interlocks

+ Contexts switched only at long latency operations
Cache Miss Instr. Dep.
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Design Considerations

* [ssues:
— number of contexts per PE

context switch overhead

w

— effect of memory latency

cache interference effects

w

— when to switch contexts

— implementation issues

Advantage of blocked scheme
— small number of contexts suffice o hide memory latency

Disadvantage of blocked scheme

— switch overhead still quite large to hide pipeline latency



Context Switch Cost Swicth Cost, Latency, and Num Ctxts

+ Given #-of-ctxts = k, avg-run-length = R, switch-cost = C, avg-latency = L
| IF [RF [ EX | DF | wB |
100%
cache miss * saturation
detected here processor | linear,
utilization
+ Cache miss detected late in pipeline number of contexts

+ In linear region, proc. utilization = (k xR) / (L+ C)
» squash partially executed instructions s Knee of curve is close to k = L/ (R + C)

— Costin) = $shared + n x $inc + $ovhd
» start fetching instructions from next context

+ In saturation region, max proc. utilization=R / (R + C)
— Efficiency increases only marginally with more contexts

> Important to keep C smallif R is going to be low

Interleaved Scheme Interleaved Scheme

* Assumptions

Cache Miss Instr. Dep.
» coherent caches
— paralielism available, but not necessarily abundant | =
Multiple
i i
+ Full single-thread support Threads .:l |:l 1 " -
* Cycle-by-cycle interleaving f f

3 lowers switch cost E“' El @

— instruction latency tolerance
Cache Miss Instr, Dep.
= Combines best of HEP-like and blocked approaches : : | |

Single
read  IXOOXOOXKMXK




Interleaved vs. Blocked Interleaved vs. Blocked

Thread 1 Thread 2 Thread 3 Thread 4
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Blocked
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Shared-memory multiprocessor

« Current Multiple-Context Approaches vroc Iy [ proc i [
om lem
[Cache & Dir b [Cache &Dir
= Performance Results
Network .
. Implemenlation Issues — 16 processors, 1-8 contexts per processor

— pipeline based on R4000 (pipelined floating-point)

« Conclusions » ideal instruction cache, 64K data cache

— memory latencies (1:35:105:135)

Event-driven simulation

— optimized code, scheduled for pipeline

* Parallel application suite (SPLASH)



Processor Utilization

Simulation Results MP3D: Memory Latency

Blocked Interleaved
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Number of Conlexts

8 4 8 4 8 4 8 4 8 4 8 4 8 4
MP3D  Bames  Water  Locus  Ocean  PTHOR  Cholesky + Both schemes effective in tolerating memory latency

+ Interleaved has lower context switch overhead

Water: Instruction Latency LocusRoute: Limited Latency
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Performance Summary

* Multiple contexts works well when extra parallelism is available

+ Interleaved scheme has performance advantage
— mean speedup for blocked scheme: 1.61

— mean speedup for interleaved scheme: 1.93

Uniprocessor Study

+ Several workloads composed of SPLASH and SPEC applications
— Three random (RO-R2)
» Two stress the data cache (D0-D1)
— One stresses the instruction cache (10)

» One is floating point intensive (FO)

+ Simulation parameters
| Proc |g R4000. 1-4 contexts
64K, 1 cycle -n 64K, 1 cycle

M 9 cyeles

Main Memory I 34 cycles

Uniprocessor Issues

More difficult environment for multiple contexts

Parallel Application Multiple Applications

» greater cache interference

— needs to tolerate shorter latencies

Simulation Results

Throughput Improvement

20r Interleaved
194 Blocked




Uniprocessor Summary Outline

+ Blocked scheme unable to address uniprocessor needs « Current Multiple-Context Approaches
+ Interleaved scheme able to improve uniprocessor throughput + Performance Results
» mean improvement of 50% for our workloads

= Implementation Issues

+ Conclusions

Implementation Study Basic Implementation Needs
+ Single data point in existence for blocked scheme (MIT APRIL) + Cache capable of multiple outstanding requests (lockup-free)
* Explored implementation issues for both schemes * Replication of key hardware state

» enough detail to expose major issues
«  RIL diagrams

+ transistor level + layout + Spice
+ Context scheduling logic



Lockup-free Cache

State Replication

+ Required for all latency tolerance schemes

State Replication

+ Register File

* Program Counter Related

Process Status Word

State Replication Example

+ Blocked scheme - single active context
» single set of active state
« master copy plus backup copies

« swap master and backup during context switch

* Interleaved - all contexts active
— all sets of state active

» state used changes each cycle

+ Optimizing the four-context register file

Single-context
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2x single-context area
15% longer access time
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Context Control Implementation Summary

+ Blocked Scheme

» provide context switch signal + More implementation flexibility for blocked scheme

. . most of the time looks like a single context processor
— global context identifier (CID) ’ 9 p

. . . — context control is simpler
» change CID and state during switch cycles P

+ Implementation cost and complexity is manageable for both

+ Interleaved Scheme schemes

— piovide selective squash signal » small area overhead (e.g. register file is 2% of the R4000 die)

» CID associated with each instruction (CID chain) - extra delays not in critical path
» ClD becomes another pipeline control signal

+ state used depends on CID value

Concluding Remarks

+ Multiple contexts work well when combined with caches

» better at handling unstructured programs

« Interleaved multiple context architecture offers
— better multiprocessor performance than blocked approach

» can improve uniprocessor throughput

+ Implementation of blocked and interleaved multiple-context
architectures is manageable

— more flexibility in implementing blocked scheme
— increase in area is small for both schemes

» should not impact cycle time



