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Supply Voltage Effects
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Gain as a Function of VDD
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The gain can be improved by lowering the supply voltage, 
however, below a few tenths of a volt, the gain deteriorates.
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Effects of Reducing the Supply Voltage

Gain improves
Energy dissipation is lowered
Reduces internal noise (crosstalk)

dc characteristics become sensitive to 
variations in device parameters
Increases sensitivity to external noise
Increases the propagation delay times!
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Supply Voltage Effect on Propagation Delay

Average equivalent resistance during the load capacitance 
discharge.  
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6Supply Voltage Effect on 
Propagation Delay
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Note that supply 
voltages below 1.1 V 
cause an enormous 
increase in the 
propagation delay.
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Propagation Delay Effects
from Sizing
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Transient Response
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A CMOS Inverter
*
.MODEL nch NMOS
+ LEVEL=3 PHI=0.70 TOX=1.0E-08 XJ=0.20U TPG=1
+ VTO=0.8 DELTA=2.5E-01 LD=4.0E-08 KP=1.88E-04
+ UO=545 THETA=2.5E-01 RSH=2.1E+01 GAMMA=0.62
+ NSUB=1.4E+17 NFS=7.1E+11 VMAX=1.9E+05 ETA=2.2E-02
+ KAPPA=9.7E-02 CGDO=3.7E-10 CGSO=3.7E-10 CGBO=4.0E-10
+ CJ=5.4E-04 MJ=0.6 CJSW=1.5E-10 MJSW=0.3 PB=0.99
*
.MODEL pch PMOS
+ LEVEL=3 PHI=0.70 TOX=1.0E-08 XJ=0.20U TPG=-1
+ VTO=-0.9 DELTA=2.5E-01 LD=6.7E-08 KP=4.45E-05
+ UO=130 THETA=1.8E-01 RSH=3.4E+00 GAMMA=0.52
+ NSUB=9.8E+16 NFS=6.5E+11 VMAX=3.1E+05 ETA=1.8E-02
+ KAPPA=6.3E+00 CGDO=3.7E-10 CGSO=3.7E-10 CGBO=4.3E-10
+ CJ=9.3E-04 MJ=0.5 CJSW=1.5E-10 MJSW=0.3 PB=0.95
*
M1 3 2 0 0 nch W=4u L=0.6u AS=7.2p PS=7.6u AD=7.2p PD=7.6u
M2 3 2 1 1 pch W=5.5u L=0.6u AS=9.9p PS=9.1u AD=9.9p PD=9.1u
CL 3 0 0.006pF
*
VDD 1 0 2.5V
VIN 2 0 PULSE(0 2.5 0 10p 10p 150p 1n)
*
.TRAN 0.005n 1n
*
.DC VIN 0V 2.5V 0.01V
*
.PROBE
*
.END
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NMOS/PMOS Ratios

For equal resistance values, the width ratio, β = Wp/Wn , 
should be 3 to 3.5. If symmetry and reduced noise 
margins are not primary, then reducing the PMOS 
channel width can reduce the propagation delay.

Consider two identical cascaded inverters where the drain 
diffusion capacitances of the first inverter and the gate 
capacitances of the second inverter plus the interconnect 
capacitance between them are included :

WgngpdndpL CCCCCC ++++= )()( 2211
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NMOS/PMOS Ratios

When the PMOS are made  β times larger than the 
NMOS, then all capacitances scale the same way.  

Propagation delay then becomes: (where Reqn and Reqp
are resistances of identically sized transistors):
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Inverter Sizing
•Assume a symmetrical inverter (PMOS and NMOS are 
sized to give identical rise and fall times).

•Load capacitance can be divided into intrinsic and 
extrinsic components:

•Intrinsic capacitance represents the intrinsic output 
capacitance of the inverter or the self-loading.

•It is composed of the diffusion capacitances of 
transistors and gate-drain overlap (Miller) 
capacitances.

•Extrinsic capacitance is the extrinsic load capacitance 
made up of the input gate capacitances (fan-out) and 
wiring capacitance.

extL CCC += int
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Inverter Sizing

Let Req be the equivalent resistance of 
the gate.  Then the propagation delay is:

)/1()/1(69.0)(69.0 intintintint CCtCCCRCCRt extpoexteqexteqp +=+=+=

tpo is the intrinsic or unloaded delay.
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Sizing a Chain of Inverters

Increasing an inverter’s size decreases 
the delay, but it increases the input 
capacitance.  The intrinsic output 
capacitance is proportional to the gate 
capacitance and both are proportional 
the transistor/inverter sizing.

gCC η=int

η is the proportionality factor and is near to unity in value.
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Sizing of Inverter Chain

Therefore, the delay of an inverter is only a function 
of the ratio, f, between its external load capacitance 
and its input capacitance!!

)/1()/1( ηη ftCCtt pogextpop +=+=
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Inverter Chain Sizing

Input Output

Cg1 CLN

Cg1 is the input capacitance of the 1st inverter.
CL is the load capacitance at the end of the fixed chain.
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Inverter Chain Sizing

Input Output

Cg1 CLN

Delay expression for the jth stage is:

)/1()/1( ,1,, ηη jpojgjgpojp ftCCtt +=+= +
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Inverter Chain Sizing
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There are N-1 unknowns, given Cg1 and CL.  The 
minimum delay is found by taking N-1 partial 
derivatives and setting them each to 0:

0/ , =∂∂ jgp Ct
Result is:

1,,,1, // −+ = jgjgjgjg CCCC
Or:

1,1,, +−= jgjgjg CCC
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Inverter Chain Sizing

1,1,, +−= jgjgjg CCC

This expression means that each inverter in the chain 
is sized up by the same factor, f, with respect to the 
preceding gate, has the same effective fan-out (fj=f), 
and therefore the same delay.

Thus, given Cg,1 and CL, the sizing factor for each 
stage to give the same delay through each stage, 
and the minimal total delay is:

NN
gL FCCf ≡= 1,/
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Inverter Chain Sizing

The minimal delay through the inverter chain is then:

)/1( ηN
pop FNtt +=

1,/ gL CCF =
F  represents the overall effective fan-out of the circuit 
and is equal to:
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Inverter Chain Sizing: 
The Problem Posed One way

Usually Cg,1 is associated with a minimally-sized gate. 

)/1( ηN
pop FNtt +=

For a given F (e.g. given a load capacitance to drive 
from a minimally-sized gate), what is the number of 
stages that obeys the minimal propagation delay 
expression derived above?

If N is too large then the first term dominates 
(intrinsic delay of the stages dominates).  If N is too 
small then the effective fan-out of each stage 
becomes too large and the second term dominates.
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Inverter Chain Sizing: The Solution

01)(ln)/1(/ 2 =





 −








++=∂∂

N
FFNtFtNt

N

po
N

pop η
η

Differentiate the delay expression with respect to N 
and set to 0. 
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Inverter Chain Sizing: The Solution

Given the first gate (usually minimally-sized), then 
we know its input capacitance, Cg,1 and its intrinsic 
output capacitance, Cint. 

1,int / gCC=η

)/1( fef η+=

Knowing η, iteratively solve for f using the derived 
expression:

We know the load capacitance we are trying to drive, 
CL, so we also know F = CL/Cg,1. 
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Inverter Chain Sizing: The Solution

Finally, having values for f and F, we can find N;
the number of stages needed to drive the load 

capacitance that gives a minimal propagation delay 
of the signal through the stages.

N Ff =

Also, we can compute the delay time using 
the expression previously derived:

)/1( ηN
pop FNtt +=
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Example 1

CL= 8 C1

In Out

C1
1 f f2

CL/C1 has to be evenly distributed across N = 3 stages:

28/ 33
1 === CCf L
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Example 2: Optimum Number of Stages

For a given load, CL and given input capacitance Cin
Find optimal sizing f and minimal delay.
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Number of Stages to Minimize tp

N f tp

1 64 65

2 8=641/2 18

3 4=641/3 15

4 2.8=641/4 15.3

1 64

1 8

1 4

1 642.8 8 22.6

16

64

64
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Homework #1

Using the Level-3 CMOS inverter model 
given above, determine the tpHL and tpLH
for 6 to 10 different supply voltage 
values from 2.5 to 1.1 V.
Do the simulations again using 
Ln=Lp=0.25 µm, Wn=2 µm, and Wp=4 µm.

You will need to modify the VIN values 
for the pulse and dc analysis as VDD is 
changed.
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Homework #2
Determine the sizes (f) of the inverters in 
the circuit below such that the delay time 
between input and output is minimized.  (Hint:  
First find the ratios between the devices 
that minimize the delay.  You should find 
that:
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Determine the sizes of the inverters if the 
extra fan-out at each stage is not taken into 
account.
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Homework #2 - Circuit

CL = 64Cg,1 1  3 2

Input
Output
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