

Usable Mobile Security

Intel Institute for Collaborative Research in Helsinki, Finland

N. Asokan

Professor, Department of Computer Science

About Finland

Home to leading universities

University of Helsinki: Traditional university

Aalto¹ University: Helsinki U. of Tech. + schools of design & business

Tampere University of Technology

. . .

Innovation hub

Local giants: Nokia, Ericsson, Nokia-Siemens, ...

Recent arrivals: Intel, Samsung, Huawei, ...

New tigers: Rovio, Supercell, ..., lots of startups

1. http://en.wikipedia.org/wiki/Alvar Aalto

ICRI-SC Helsinki personnel

Two researchers funded by Intel

Postdoc: Sini Ruohomaa

Graduate student: Thomas Nyman

Matching funding by University

Postdoc (50%): Hien Truong

Graduate student: Sourav Bhattacharya (full-time from Jan)

Graduate student: Jian Liu

Graduate student: Tanel Dettenhorn (fill-time from Jan)

Intel researchers pursuing PhD

Elena Reshetova (SSG/OTC)
Brian McGillion (MCG)

Secure Systems group http://www.cs.helsinki.fi/group/secures/

* Initial topics

Mobile security that is easy to use and inexpensive to deploy.

- 1. **Next generation hardware TEEs**: how to safely expose hardware-based *TEE functionality to app developers*?
- 2. Novel applications of platform security: can existing platform security mechanisms address security needs of new usage scenarios?
- 3. Malware insights: can we use *lightweight instrumentation* on a device to predict if it will (eventually) get malware?

How prevalent is mobile malware?

domains. We make several important observations. The mobile malware found by the research community thus far appears in a minuscule number of devices in the network: 3,492 out of over 380 million (less than 0.0009%) observed during the course of our analysis. This result lends cre-

Get realistic data directly from devices

Estimate malware infection rate (for Android)

Identify risk factors

See if we can predict likelihood of infection!

"The Company you Keep"

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI http://carat.cs.berkeley.edu

Incidence of infection

Type	Malware Genome	Mobile Sandbox	McAfee	Total
No. of dc matches (bad devcerts)	6	150	31	158
No. packages				

Classifying based on set of apps

Can the set of apps run on device predict infection?

Classification attempt using Naïve Bayes (5-fold CV)

		Infected (prediction)	Clean (prediction)
	Infected (actual)	9	47
HELSINGIN YLIOPIS HELSINGFORS UNIV UNIVERSITY OF HELSI	Clean (actual)	753	29910

9

Classifying based on set of apps

Recall (9/56) and precision (9/762) low?

for classifying infected devices

Lightweight instrumentation: at virtually no cost

Supplementing AV tools, not replacing them

Could serve as inexpensive early warning?

Focus on a small subset for closer analysis

Competition: baseline = 0.18%!

Predicting zero day malware

Multinomial Naïve Bayes

Malware divided into 4 groups

2 groups constitute "unknown malware" in each round(6 combinations)

training set: 50% clean devices + devices infected by known malware (2 combinations)

test set: 50% clean devices + devices infected by unknown malware

6 rounds, TP/FP ratio 5.0 times better than baseline

	Infected (prediction)	Clean (prediction)
Infected (actual)	32	304
Clean (actual)	3558	180420

Predicting previously unknown malware

Multinomial Naïve Bayes

Malware divided into 4 groups.

2 groups constitute "unknown malware" in each round(6 combinations) devices in training set (50% of all) containing unknown malware marked "clean" (2 combs.) devices in test set (50% of all) containing known malware removed before prediction

6 rounds, TP/FP ratio 2.4 times better than baseline

	Infected (prediction)	Clean (prediction)
Infected (actual)	12	156
Clean (actual)	2776	181202

Identify vulnerable devices **before** they are infected?

1. Secure Open Access to TEEs

Question: how to safely expose hardware-based *TEE functionality* to app developers?

Rationale:

- TEE hardware widespread; limited access to app developers
- Emerging standardization (Global Platform, TPM.2, TPM Mobile)

Use case: eg, Apps use TEE crypto for app-specific secure storage.

Stakeholder liaison: Brian McGillion (MCG)

Tanel Dettenhorn, Grad student

2. Novel Applications of Platsec

Question: can *existing platform security* mechanisms address security needs of *new usage scenarios*?

Rationale: Gap in platform security research and deployment.

Sub themes:

- how to securely migrate apps between devices using existing lightweight isolation mechanisms?
- can we aggregate feedback from social circles to ease user burden of authorizing apps?

Stakeholder liaison: Elena Reshetova (SSG/OTC)

3. Malware Insights

Question: can we use *lightweight instrumentation* on a device to predict if it will (eventually) get malware?

Rationale:

 signals indicative of user's habits (e.g., set of apps) may predict susceptibility to malware.

Use case: (1) cheaply identify suspicious apps for further analysis (2) corporate IT admin can monitor "health indicator" of BYO devices of employees

Stakeholder liaison: Igor Muttik (McAfee)

* Summary

Intel Collaborative Research Institute for Secure Computing expands to Finland.

Theme of research: usable mobile security

Began operations in August:

- 1. Next generation hardware TEEs
- 2. Novel applications of platform security
- 3. Malware insights