

Software defined radio networking: Opportunities and challenges

Putting more IT/SW to the network

Navid Nikaein

EURECOM, Mobile Communication Department

Eurecom

- Graduate school and research center in the form of consortium
- Brings together French and international industries and academies

Communication Theory Group

Mobile Communication Department http://www.eurecom.fr/cm

Trends and use cases

Drivers

User Requirements, Cost, Energy, and Sustainability

Enablers

Ubiquity, Mobility, and Wireless

Fundamental Challenges

★ Deep Impact of the network architecture

Mobility and Energy

- Mobility creates network dynamics
- Time-varying energy consumption

Energy Environmental and Cost Aspect

Worldwide energy consumed by ICT, currently, is 3%

> 2% of total carbon emission, of which 0.2% represents wireless 1

Fundamental Trade-offs

- Interplay between energy and cost / bandwidth / rate / delay
- Trading for Energy
 - Increasing network cost for a given performance?
 - Expanding the bandwidth for a given rate requirement?
 - Reducing the transmission rate for a given bandwidth?
 - Delaying the service time without deviating a given QoS?

Business Model **Economics** Paradigm Shift **Technology**

Source: C. Yan

Paradigm Shift to Maintain Profitability

Current Network

- Fixed power
- **Full coverage**
- Full load
- Max. spectral efficiency
- HTC traffic

Challenges

- Power Proportional
- Coverage scaling
- Load-aware
- **Energy-aware**
- Mixed HTC and MTC
 - Cyber-physical systems +

Paradigm Shift to Maintain Profitability

Current Network

- Seen as different transport pipes
- Not flexible
- Not scalable
- Costly
- Homogeneous
- **-**

Emerging Technologies

- SDN: Cost ↓
- SON: <40%</p>
- XaaS/NFV: Cost ↓
- SDR : Cost & Energy ↓
- Spectrum Sharing: <50%</p>
- Heterogeneous: <60%</p>
- Cooperation, ...

SDN iJoin and CellSDN projects

Switches can easily handle the
state and bandwidth

Improves the scalability and flexibility

Prio	Predicates	Service Actions
1	provider = B	Firewall
2	provider != A	Drop
3	$\mathrm{app} = \mathrm{video} \wedge \mathrm{plan} = \mathrm{Silver}$	[Firewall, Transcoder]
4	app = VoIP	[Firewall, Echo-Cancel]
5	device type=M2M fleet	[HighPriority, Firewall]

SDN

★ OpenRadio: Why aren't network and apps/user/device a partner?

Open the wireless infrastructure to provide users, applications, and carriers control over their state across all layers in an end to end manner?

Cloudification of Radio Network MCN project

- On-Demand, Self-Service, Elasticity, Pay-as-you-Go, Remote Access
- Infrastructure- Platform- Software-as-a-Service (laaS/PaaS/SaaS)
- CAPEX : # of equipment↓
- OPEX: centralization and energy saving

OPEN AIR INTERFACE

★ Full GPP BBU is not a myth: Local or in the Cloud

eNBRX

eNB Tx

OFDM demod time

:202.992302 us (100 trials)

ULSCH demodulation time

:347.516264 us (100 trials)

ULSCH Decoding time (39.23 Mbit/s, avg iter 2.000000)

:1271.786873 us (100 trials)

OFDM mod time

:176.144838 us (100 trials)

DLSCH modulation time

:55.319101 us (100 trials)

DLSCH scrambling time

:22.194255 us (100 trials)

DLSCH encoding time

:79.016000 us (100 trials)

Summary (processing for 1ms subframe)

RX : 1820 ms (< 2 cores)TX : 330 ms (1/3 core)

- On 3 GHz machine, < 2 cores for 20 MHz eNB
- On future AVX2 (256-bit SIMD), turbo decoding and FFT processing will be exactly twice as fast

1 core per eNB

Unified Software Interface

- ★ Build a Complex Service as a software
 - Fine-grain control on how application, user, device, and/or operator are served?

Conclusion

- Requirement for next generation mobile network are defined
- Need for a paradigm shift is there
 - Most of possible enabling technology ingredients are available
- Towards smarter wireless networks: Unified cross technology wireless network OS and APIs
 - Fine-grained network-wide measurement and control
 - > End-to-end realtime network adaptation and optimization
- Network function virtualization (NFV)
 - Complex network function/service as software apps
- Radio networking architecture depends on the deployment and scenario
 - D-RAN vs C-RAN
 - Heterogeneity: Marco, micro, pico, femto
 - mW vs mmW
 - Licenses vs unlicensed bands

>

EURECOM MEMBERS

