

The Intel Science and Technology Center for Embedded Computing

Investing in New Levels of Academic Collaboration

Jeff Parkhurst, Program Director ISTC-EC

Mei Chen, Intel Principal Investigator

Professor Priya Narasimhan, CMU Academic Principal Investigator

The Intel Science and Technology (ISTC) Program

- ISTCs funded for 3+2 years and span multiple institutions
- Encourage collaboration among the best researchers in the field
- Four Intel funded researchers per center work on-campus
- Encourage collaboration between Intel and academia
- Public domain IP and open source software increase impact

Introducing...

The Intel Science and Technology Center for Embedded Computing

Carnegie Mellon University

Mei Chen

Intel Co-Principal Investigator

Research: Computer vision

At Intel since 2006

Carnegie Mellon alumnus

Previously at HP Labs and Sarnoff Corporation

Tech transfer to 5 HP products

Priya Narasimhan

Carnegie Mellon Co-Principal Investigator

Research: Embedded systems

At CMU since 2001

Intel Labs Pittsburgh director, 2010

Founder and CEO, YinzCam

Previously Founder and CTO of Eternal Systems

The Intel Science and Technology Center for Embedded Computing (ISTC-EC)

- ISTC-EC Brings together thought leaders to drive research and transform experiences in the Retail, Automotive and Home of the future.
- Popularity of real-time intelligent and personalized technology is growing providing a corresponding rise in demand for specialized embedded computing systems to support a broad range of new applications — many yet to be envisioned.
- Three unique features designed to increase the probability of successful collaboration
 - Open collaborative research model
 - Multidisciplinary approach
 - "Hands-on" involvement of Intel

Distributed Collaboration Center

Faculty + Graduate students + Intel

- Carnegie Mellon is the hub of the ISTC-EC, coordinating research among:
 - Cornell
 - Georgia Tech
 - Penn State
 - University of California , Berkeley
 - University of Illinois at Urbana Champaign
 - University of Pennsylvania

Goals

Co-evolve algorithms and hardware/software architectures to deliver innovative embedded solutions, motivated by application domains

Algorithms

- Analyze heterogeneous data, at scale
- Understand human behavior and intent
- Understand the environment within the context of human behavior
- Understand the interaction between human and the environment
- Enable interpretation, decision, predict future action

Systems

- Enable algorithms in resource-constrained environments
- Enable seamless, large-scale computation in location/platform-agnostic way
- Enable crowd-sourced networked operation
- Enable real-time, high-performance, robust hardware and software
- Enable strategic interactions with cloud-computing environments

Application-Inspired Research

APPLICATION DOMAINS

Collaborative Perception

Real-time Knowledge Discovery

Robotics

Embedded Systems

THEME: Collaborative Perception

- Over-arching goals
 - Perceive accurately and react timely by synthesizing multi-modal data,
 leveraging learned prior, incorporating contextual information
 - Attention/intent analysis, behavior understanding
 - Interaction between human and environment
- Some projects of interest
 - Behavior and environment understanding using first-person sensing
 - Third-person human understanding
 - First-object dynamic scene understanding within the automotive context
 - Real-time 3D reconstruction

Perception	Learning	Robotics	Systems

THEME: Real-time Knowledge Discovery

- Over-arching goals
 - Extract information from data from both online and the physical world in a timely, scalable and reliable manner
 - Pattern discovery in con-current event streams
 - Anomaly mining
 - Learning from heterogeneous, high-dimensional data
- Some projects of interest
 - Never-ending web-scale massively parallel machine learning
 - Dimensionality reduction and distance metric learning to enable embedded solutions
 - Imitation learning

Perception Learning	Robotics	Systems
---------------------	----------	---------

THEME: Robotics

- Over-arching goals
 - Support multi-sensory exploration
 - Manipulation in human environment
 - Indoor navigation, obstacle detection/avoidance, planning
- Some projects of interest
 - Manipulation of deformable objects such as clothing
 - Reinforcement/imitation learning for manipulation
 - Automated planogram robots for retail environments
 - Embedded solution for high-precision localization

THEME: Embedded Systems

- Over-arching goals
 - Enable perception and knowledge discovery in a timely manner
 - Respect power/memory/computational constraints
 - Acquire data about human and environment (location, proximity, etc.)
- Some projects of interest
 - Embedded-to-cloud gateways for sensor networks
 - Embedded hypervisors for location-agnostic, device-independent experience
 - Multi-sensor embedded platforms for automotive telematics
 - SoCs and accelerators for machine learning and perception

Perception Lea	arning Roboti	ics Systems
----------------	---------------	-------------

Application Domains

RETAIL

- Transformative experience for the shopper
- Transformative experience for the in/cross-store retail operations

AUTOMOTIVE

- Transformative experience for the driver
- Transformative experience for the occupants

HOME

- Transformative experience for the residents
- Transformative experience for in/cross-home management

Retail 2020 Vision

- Transformative experience for the shopper
 - Locate product in real-time (in this store or other branches)
 - Store recognizes shopper's preference and makes relevant suggestions
 - Allergies, nutrition, clothing preferences
 - Enable the shopper to experience products
 - Digital unboxing, virtual dressing-rooms
 - Socialize the shopping experience
 - Real-time sharing to get/give feedback/recommendations
- Transformative experience for in/cross-store retail operations
 - Real-time inventory and planogram integrity
 - Immersive and effective training for staff, reduce injuries
 - Free staff of automat-able tasks to provide more available and attentive customer service
 - Reduce misplacement and mislabeling of products

Automotive 2020 Vision

- Transformative experience for the driver
 - Assist under adverse conditions (rain, snow, crowds)
 - Enhance trip efficiency/productivity
 - Customized recommendations/planning/deals for retail, dining, parking
 - Real-time cost consciousness
 - Telematics to enhance fuel efficiency
 - Real-time automated consultation of other drivers' experiences
 - Automated analysis of crowd-sourced sensory data of road and traffic
 - Portable driving experience
 - Capture preferences to "port" them to other vehicles for personalization
- Transformative experience for the occupants
 - Vehicle recognizes its occupants for customization
 - In vehicle entertainment
 - Routing, services (retail, dining, entertainment) recommendation

Home 2020 Vision

- Transformative experience for the residents
 - Recognizing the residents to personalize/customize
 - Temperature, entertainment, work mode, family mode
 - Home automation
 - Do programmed tasks well, e.g. unload dish washer, fold laundry
 - Learn and improve on skilled tasks, e.g. cooking, ironing
 - Support for preemptive maintenance
 - Detect wear and tear, preemptive scheduling of maintenance
 - Simulated home occupancy to enhance security
- Transformative experience for in/cross-home management

Long-Term Impact

- Advocate and foster algorithm-system co-design
 - Co-evolve
 - Co-adapt
- Transform algorithms research
 - Innovate while understanding challenges of real world scenarios
 - Optimize while negotiating resource constraints of embedded platforms
- Transform systems research
 - Innovate to influence and support algorithms of the *future*
 - Understand an algorithm beyond its being just a workload
- Shift cultural mind-set
 - Algorithms and systems do not function (nor are developed) in isolation
 - Success of ISTC depends on inter-disciplinary collaboration

Thank you 17

