Intel 32nm Technology

Mark Bohr

Intel Senior Fellow
Logic Technology Development
Feb. 10, 2009

Key Messages

- Intel has developed a 32nm logic technology with industry-leading features
- Intel is first to demonstrate working 32nm processors
- Intel's 32nm process is on track for production readiness in Q4 '09
- Both CPU and SoC versions of this 32nm process will be available
- Intel's strength as an integrated device manufacturer allows us to continue to deliver new generations of advanced process technology on a 2 year cadence

Intel Logic Technology Development

P1266 **Process Name** P1264 P1268 P1270 P1272 32nm 22nm Lithography 45nm 16nm 65nm 2007 2009 2011 1st Production 2005 2013 Manufacturing Development

45nm High-k + Metal Gate Transistors

Revolutionary transistor technology for improved performance and lower leakage

45nm Microprocessor Products

Single Core

Dual Core

Quad Core

6 Core

8 Core

45nm production ramp has been the fastest yet Twice as fast as the 65nm ramp in its first year

Intel Logic Technology Evolution

P1268 P1266 P1264 P1270 **Process Name** P1272 22nm Lithography 45nm 32nm 16nm 65nm 2009 1st Production 2005 2007 2011 2013 Manufacturing Development

32nm Technology

- 2nd generation high-k + metal gate transistors
- Immersion lithography on critical layers
- 9 copper + low-k interconnect layers
- ~70% dimension scaling from 45nm generation
- Pb-free and halogen-free packages

32nm Transistors

- 2nd generation high-k + metal gate
 - 0.9nm equivalent oxide thickness high-k (scaled from 1.0 nm on 45nm)
 - Replacement Metal Gate process flow
 - 30nm gate length
 - 4th generation strained silicon
- >22% performance increase
- Tightest reported gate pitch
- Highest reported drive currents

Transistor Pitch Scaling

Transistor gate pitch continues to scale 0.7x every 2 years Tightest gate pitch of all reported 32nm technologies

32nm Transistor Performance

32nm provides improved performance or reduced leakage Highest drive current of all reported 32nm technologies

SRAM Cell Size Scaling

Transistor density doubles every 2 years
Moore's Law continues!

32nm SRAM Test Chip

- 0.171 um² cell
- 291 Mbit
- >1.9 billion transistors
- 4 GHz operation
- First demonstrated Sep '07

Rapid Yield Improvement

32nm yield improvement on track for Q4 '09 production

32nm Manufacturing Fabs

D1D Oregon - Now

Fab 32 Arizona - 2010

D1C Oregon - 4Q 2009

Fab 11X New Mexico - 2010

System Integration

System integration will continue, using key elements such as the AtomTM core, to realize improved performance and power in a smaller form factor

32nm SoC Process

<u>45 nm</u>

<u>32 nm</u>

<u>22 nm</u>

Process:

P1266 P1266.8

P1268 P1269

P1270 P1271

Products:

CPU

SoC

CPU

SoC

CPU SoC

Intel is developing both CPU and SoC versions of each process generation, to provide transistors, interconnects and other device features optimized for each product line

Integrated Device Manufacturer Advantage

Process

Product

Design Tools

Design for Manufacturing
Co-Optimized Process+Product
Rapid Yield Learning
Early Product Ramp

Manufacturing

Packaging

Summary

- Intel has developed a 32nm logic technology with industry-leading features
- Intel is first to demonstrate working 32nm processors
- Intel's 32nm process is on track for production readiness in Q4 '09
- Both CPU and SoC versions of this 32nm process will be available
- Intel's strength as an integrated device manufacturer allows us to continue to deliver new generations of advanced process technology on a 2 year cadence

