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Key messages

• Process variation is not a new problem

• A variety of process, design and layout 

techniques can be applied to mitigate the 

impact of random and systematic variation  
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• Improvements in variation in 45nm illustrate 

that variation does not pose an insurmountable 

barrier to Moore’s Law, but is simply another 

challenge to be overcome 



History
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1974:
W. Schemmert, G. Zimmer,

Threshold-voltage sensitivity of ion-

implanted m.o.s. transistors due to 

process variations, Electronics 

Letters, Volume 10, Issue 9, May 2 

1974 Page(s):151 - 152 

Process variation 
Not a new problem
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Concerns about 

threshold voltage 

variation are not 

new!



Process variation 
Not a new problem

Attempts to 

model variation 

are not new!
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1984:
Y. Aoki, T. Toyabe, S. Asai, T. Hagiwara, 

CASTAM: A process variation analysis simulator 

for MOS LSI's, IEEE Transactions on Electron 

Devices, Volume 31,  Issue 10,  Oct 1984 

Page(s):1462 - 1467 



Process variation 
Not a new problem

Concerns about 

interconnect 

variation are not 

new!
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1998:
Z, Lin, C.J. Spanos, L.S. Milor, 

Y.T. Lin; Circuit sensitivity to 

interconnect variation, IEEE 
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So what is new?
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An increasing number of process elements               

possess feature sizes on the order of                    

fundamental dimensions                              

(such as atomic dimensions and light wavelengths)
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1997 process1997 process

31.35 A

(10 spacings)

2005 process2005 process



Random Variation
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Random Dopant Fluctuations (RDF)
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Decreased channel area means that 

MOS threshold voltage variation due to random dopant 

fluctuations (RDF) is an increasingly significant effect
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RDF: Driven by the decrease in the average number 

of dopant atoms/device per technology generation
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C2 is proportional 

to the slope of the 

1 /                    

line            
 ⋅ZeffLeff

Characterizing RDF
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RDF is frequently described by (Stolk):   

1/ √√√√LeffZeff (1/µµµµm)
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P. Stolk, F. Widdershoven, and D/ Klaassen, “Modeling statistical dopant fluctuations in MOS transistors”

IEEE Trans. on Elec. Dev., 45:9, pp 1960-1971, Sept. 1998
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• 180nm to 90nm:                         

Improved with Tox 

scaling  

• 90nm to 65nm:                      

No improvement,           

gate leakage concerns 

limited Tox scaling 

Scaling of C2

Tox scaling
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• 65nm to 45nm:                 

Improved, HiK+MG 

enabled a return to a 

historical scaling trend   
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RDF – Silicon to Simulation 

• Correlation of  theoretical 

RDF predictions against 

experimental data can 

provide insight into non-

RDF variation sources.    
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RDF variation sources.    

• RDF simulations 

performed using a 3D 

numerical model with 

adaptive local meshing for 

arbitrary dopant profiles
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1/ √√√√LeffZeff      (1/µµµµm)
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σσ σσ
V
T
(m

V
)

20

30

40

50

60

45nm sim

65nm data

65nm sim

45nm data

RDF – Silicon to Simulation 

12-11-07 IEDM 2007 18

1/ √√√√LeffZeff      (1/µµµµm)

σσ σσ

0

10

20

0 20 40 60

65nm: RDF sim ~65% of Si data  

45nm: RDF sim ~60% of Si data The remainder can then 

be targeted for process 

improvement.



Process 

solution

Design 

solution

Systematic

(ex: topology, 
correlatedRandom

(ex: RDF,

But what happens next with RDF?

Does scaling stop?
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Innovation needed

(ex: topology, 

strain)
(ex: RDF,

LER)

A variety of paths exist for variation improvement

RDF can be addressed through innovation
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FD device: 6X decrease

from 45nm doping 

~60% improvement (sim)

Fully depleted devices (such as tri-gate or UTB devices) are examples of 

innovations which permit significant improvement in RDF due to the ability 

to maintain channel control at lower channel doping. 



Measurement of Random Variation 

with Ring Oscillators  
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One powerful tool for assessment of variation is locating 

ring-oscillators (ROs) routinely in all product designs 

The detailed RO data can be used to identify areas of 

concern for process teams to resolve 



Normalized random WIW variation 

(standard deviation per oscillator)
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0
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Comparisons from RO data show that                          

random WIW variation has improved significantly                

between 65nm and 45nm due to HiK-MG 

Random WIW variation in 45nm is comparable                   

to prior generations



Systematic Variation
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Critical to management of variation is the ability to deliver            

a 0.7X poly CD variation improvement in each generation

enabled by continuous process technology improvements  



Process-Design Mitigation for Variation Management

90nm – tall

1.0 µµµµm2

Design mitigation

65nm – wide - 0.57 µµµµm2

Process mitigation - 45nm – wide 

w/ patterning enhancement 0.346 µµµµm2
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Systematic Mismatch in the SRAM  

65nm – WIDE

0.57 µm2

12-11-07 IEDM 2007 26

• SRAM circuits exercise the smallest area devices in the technology

• SRAM static noise margin (SNM) is sensitive to device mismatch

• Although RDF is the fundamental limit for mismatch in the SRAM

a large variety of systematic issues also contribute to SRAM cell mismatch  

àààà These systematic issues can be mitigated with design and process changes

0.57 µm2

K. Zhang, VLSI 2004



90nm – TALL

1.0 µm2

65nm – WIDE

0.57 µm2

45nm – WIDE 

w/ patterning enhancement 0.346 µm2

Systematic Variation Mitigation Strategies
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1.0 µm2 0.57 µm2 w/ patterning enhancement 0.346 µm2

DESIGN MITIGATION

90nm to 65nm:  “tall” design to a “wide” design. 

• Single direction poly

• Elimination of diffusion corners

• Relaxation of patterning constraints on other critical layers



90nm – TALL

1.0 µm2

65nm – WIDE

0.57 µm2

45nm – WIDE 

w/ patterning enhancement 0.346 µm2

Systematic Variation Mitigation Strategies
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1.0 µm2 0.57 µm2 w/ patterning enhancement 0.346 µm2

PROCESS MITIGATION

65nm to 45nm:  Patterning enhancements

• Square corners (eliminate “dogbone” and “icicle” corners)

• Improved CD uniformity across STI boundaries
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Across Wafer Location

Temperature

Simulation

Before

Optimization

After

Optimization

Addition of poly (gate) 

dummies to improve RTA 

temperature uniformity 

and reduce systematic 

transistor variation
S. Rikhi, SEMI ISS 2007



MT1 within-wafer resistance uniformity 
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center edge

• Recent literature has devoted to modeling interconnect variation

• While improved modeling can be valuable, a better approach is to 

resolve the issue at the origin by eliminating the original source of 

the variation 

• Example is 65nm to 45nm MT1 within-wafer resistance uniformity 

improvement due to improvements in etch and Cu CMP 



Backend Computational Lithography - DFM example

Top-down resist CD meets spec, but poor contrast leads to poor resist profile which gets 

transferred to metal pattern after etch, resulting in shorting marginality
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transferred to metal pattern after etch, resulting in shorting marginality

Computational lithography solution



Measurement of Systematic WID Variation

NMOS
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Comparisons from RO data show that systematic WID              

VT variation is improving from the 65nm to 45nm generation

PMOS

65nm microprocessor 45nm microprocessor



Scaling of Systematic WIW Variation    
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Comparisons from RO data show that systematic WIW 

variation is comparable from one generation to the next
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45nm: Variation matched/better to past technologies
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VTN variation (Mean die VTN – VTN)

Range: 20mV for 65nm à 11mV for 45nm
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Key messages

• Process variation is not a new problem

• A variety of process, design and layout 

techniques can be applied to mitigate the 

impact of random and systematic variation  
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• Improvements in variation in 45nm illustrate 

that variation does not pose an insurmountable 

barrier to Moore’s Law, but is simply another 

challenge to be overcome 
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For further information on Intel’s silicon technology, 

please visit our Technology & Research page at:

www.intel.com/technology
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www.intel.com/technology



Q & A
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