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Key messages

 Process variation is not a new problem

« A variety of process, design and layout
techniques can be applied to mitigate the
impact of random and systematic variation

Improvements in variation in 45nm illustrate
that variation does not pose an insurmountable
barrier to Moore’s Law, but is simply another
challenge to be overcome
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Process variation
Not a new problem

THRESHOLD-VOLTAGE SENSITIVITY OF 1 974.
ION-IMPLANTED M.0.S. TRANSISTORS ]
DUE TO PROCESS VARIATIONS

Indexing terms: Field-effect transistors, fon implantation

W. Schemmert, G. Zimmer,
Threshold-voltage sensitivity of ion-

Adjustment of the threshold voltage_ir’_,- by ion imp]unu;-lian

vields a certain distribution of threshold voliages determined imp/anted m.o.S. transistors due to

by different process parameters. A procedure 1s presented

for minimising the threshold-voltage sensitivity of implanted pI’OCGSS Variations’ E|eCtroniCS

m.o.5. transistors due to these parameters for a typical set of

process parameters.
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The threshold-voltage shift AVy due to ion implantation 1974 Page(s): 151 - 152
depends, among other parameters, on the depth of penetration

of the ions into the semiconductor.' The depth of penetration
is related to the implantation energ- ~=- *&~ ~=id~ shictomnn

tox. The standard m.o.s. process n
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energy may be of interest, too.
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Process variation
Not a new problem

CASTAM: A Process Variation Analysis Simulator
for MIOS LSI's

YUKIO AOKI, TORU TOYABE, MeMBER, IEEE, SHOJIRO ASAI MEMBER, 1EEE, anD TAKAAKI HAGIWARA

P
tions through the analysis of variations in electrical characteristics of
fabricated MOS devices using the Monte Carlo method.

Analysis accurscy using the simulator is examined, Investigation
shows that process parameter variations can be estimated with an ermor
of less than 10 percent if an appropriate set of device characterlstic
items is chosen,

‘Wafer inspection data for a CMOS pilot line can be analyzed with this
simulator, and the main cause of threshold voltage v on pinpointed.

confirmed us-
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Attempts to
model variation
are not new!
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Y. Aoki, T. Toyabe, S. Asai, T. Hagiwara,
CASTAM: A process variation analysis simulator
for MOS LSI's, IEEE Transactions on Electron
Devices, Volume 31, Issue 10, Oct 1984
Page(s):1462 - 1467
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Process variation
Not a new problem

Circuit Sensitivity to Interconnect Variation

Abstract—Deep submicron technology makes interconnect one
of the main factors determining the circui ance. Previous

'k, we develop app

to study the influence of the interconnect 11:mau on circuit

performance and to uate the circuit sensitivity to interconnect

parameters. First, an accurate interconnect modellm technique

is presented. and an interconnect model library is developed.

Then, we explo h using parameterized interconnect

i cillator circuit.

tical

experimental design techniques to study the sensitivity of a large
and complicated circunit to interconnect variatio

Index Terms—Circuit analysis, interconnect, statistical analy-
is, worst case d

I used in the design and proce
has drawn special at‘tﬂmon toward interconnect e
the minimum feature JLSI sys

a smaller factor compared to
r} vices ip complexity and speed adv
will -:lcpenﬁ on thc abdm to model the electrical behavior ot
interconnect in an accurate and efficient fashion.
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Concerns about
interconnect
variation are not
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1998:

Z, Lin, C.J. Spanos, L.S. Milor,
Y.T. Lin; Circuit sensitivity to
interconnect variation, |IEEE
Transactions on Semiconductor

Manufacturing, Volume 11, Issue
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So what is new?
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An increasing number of process elements
possess feature sizes on the order of
fundamental dimensions

2005 process
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Random Variation
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Random Dopant Fluctuations (RDF)

Decreased channel area means that
MOS threshold voltage variation due to random dopant
fluctuations (RDF) is an increasingly significant effect

12-11-07 IEDM 2007




RDF: Driven by the decrease in the average number
of dopant atoms/device per technology generation
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Characterizing RDF

C2 is proportional
to the slope of the

1/ JLeff - Zeff

line

40

[ VLetZesr  (1/nm)
RDF is frequently described by (Stolk):

L, L{/‘ 1 G
- Leﬁ Zeﬁ) \/E[Leﬁ-Zeﬁ‘j @

P. Stolk, F. Widdershoven, and D/ Klaassen, “Modeling statistical dopant fluctuations in MOS transistors”
IEEE Trans. on Elec. Dev., 45:9, pp 1960-1971, Sept. 1998




Scaling of C2

* 180nm to 90nm:
1.1 Improved with Tox

1 1 Minimal _ scaling
| oxide scale HiK+MG
0.9 \ 90nm to 65nm:

0.8 - / — No improvement,
0.7 1 Tox scaling gat_e leakage concerns
0.6 - limited Tox scaling

0.5 1 65nm to 45nm:
0.4 . . . . Improved, HIK+MG

180nm 130nm 90nm 65nm 45nm enabled a return to a
historical scaling trend
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RDF - Silicon to Simulation

« Correlation of theoretical
RDF predictions against
experimental data can
provide insight into non-
RDF variation sources.

RDF simulations
performed using a 3D
numerical model with
adaptive local meshing for
arbitrary dopant profiles
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RDF — Silicon to Simulation

60 -
N 65nm sim
50 -
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RDF — Silicon to Simulation
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RDF — Silicon to Simulation

60 -

50 3 45nm data

e il 65nm data
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The remainder can then
be targeted for process
improvement. .
20 40

1/ VLegZegr  (1/pm)
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But what happens next with RDF?
Does scaling stop?

Design
Process solution
solution

‘ correlated Systematic
(ex: topology,
strain)

<_ _—

A variety of paths exist for variation improvement
RDF can be addressed through innovation




RDF: Improvement with fully depleted devices

60 -

o dsnm sim.

40 -

30

20 -

FD device: 6X decrease
from 45nm doping

~60% improvement (sim)

20
1/ VLegZegr  (1/pm)

Fully depleted devices (such as tri-gate or UTB devices) are examples of
innovations which permit significant improvement in RDF due to the ability
to maintain channel control at lower channel doping.




Measurement of Random Variation
with Ring Oscillators

One powerful tool for assessment of variation is locating
ring-oscillators (ROs) routinely in all product designs

The detailed RO data can be used to identify areas of
concern for process teams to resolve
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Scaling of Random WIW Variation

Normalized random WIW variation
(standard deviation per oscillator)
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Comparisons from RO data show that
random WIW variation has improved significantly
between 65nm and 45nm due to HIK-MG

Random WIW variation in 45nm is comparable
to prior generations
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Systematic Variation
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Scaling Systematic Poly CD (gate CD)
Lithography Variation
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Critical to management of variation is the ability to deliver
a 0.7X poly CD variation improvement in each generation
enabled by continuous process technology improvements
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Process-Design Mitigation for Variation Management

. |J £ "

90nm - tall Design mitigation Process mitigation - 45nm — wide
1.0 pm? 65nm — wide - 0.57 um? w/ patterning enhancement 0.346 um?

Before After
iza Optimization

AFTER :
' naonaead?tbabsfonitls

center RADIUS (mm)

Design mitigation Process/design mitigation with Process mitigation
w/ dummification computational lithography w/ CMP improvements
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Systematic Mismatch in the SRAM

“mismatch”

us \ Voltage
o scaling
o4 \
\ \

65nm — WIDE

Node 2 (V)

K. Zhang, VLSI 2004

Node 1 (¥}

« SRAM circuits exercise the smallest area devices in the technology
« SRAM static noise margin (SNM) is sensitive to device mismatch
« Although RDF is the fundamental limit for mismatch in the SRAM
a large variety of systematic issues also contribute to SRAM cell mismatch

- These systematic issues can be mitigated with design and process changes
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Systematic Variation Mitigation Strategies

90nm — TALL 65nm — WIDE 45nm — WIDE
1.0 um? 0.57 um? w/ patterning enhancement 0.346 pum?

—
~
DESIGN MITIGATION

90nm to 65nm: “tall” design to a “wide” design.

 Single direction poly
 Elimination of diffusion corners
* Relaxation of patterning constraints on other critical layers
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Systematic Variation Mitigation Strategies

90nm — TALL 65nm — WIDE 45nm — WIDE
1.0 um? 0.57 um? w/ patterning enhancement 0.346 pum?

7
~
PROCESS MITIGATION

65nm to 45nm: Patterning enhancements

« Square corners (eliminate “dogbone” and “icicle” corners)
* Improved CD uniformity across STI| boundaries
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Systematic Front-End Variation

Before After In Fab Temperature Profile
Optimization Optimization

Layout
Extraction

Temperature

Across Wafer Location

After
Optimization

Addition of poly (gate)
Temperature - dJummies to improve RTA
temperature uniformity
and reduce systematic
S. Rikhi. SEMI ISS 2007 transistor variation
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Systematic Interconnect Variation

MT1 within-wafer resistance uniformity
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Normalized WIW variation

* Recent literature has devoted to modeling interconnect variation

 While improved modeling can be valuable, a better approach is to
resolve the issue at the origin by eliminating the original source of
the variation

Example is 65nm to 45nm MT1 within-wafer resistance uniformity
improvement due to improvements in etch and Cu CMP
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Backend Computational Lithography - DFM example

L6
=l

Top-down resist CD meets spec, but poor contrast leads to poor resist profile which gets
transferred to metal pattern after etch, resulting in shorting marginality

: I
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0 i

2 id—

bW ot
Computational lithography solution




Measurement of Systematic WID Variation

" Mean die VTN-mean(VTN)

Color Range:
20mV for 65nm
~11mV for 45nm

... Mean die VTP-mean(VTP)

-  Color Range:
- 9mV for 65nm
. fmV for 45nm

65nm microprocessor 45nm microprocessor

Comparisons from RO data show that systematic WID
VT variation is improving from the 65nm to 45nm generation
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Scaling of Systematic WIW Variation

Normalized systematic WIW variation
standard deviation per oscillator
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Comparisons from RO data show that systematic WIW
variation is comparable from one generation to the next
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45nm variation
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45nm: Variation matched/better to past technologies

2

{ Systematic WIW — FMAX% Random WIW — FMAX%

130nm 90nm 65nm 45nm 130nm 90nm 65nm 45nm

0.7X scaling
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Normalized C2 to 180nm

180nm 130nm 90nm 65nm 45nm '
VTN variation (Mean die VTN — VTN)

Range: 20mV for 65nm - 11mV for 45nm
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Key messages

 Process variation is not a new problem

« A variety of process, design and layout
techniques can be applied to mitigate the
impact of random and systematic variation

Improvements in variation in 45nm illustrate
that variation does not pose an insurmountable
barrier to Moore’s Law, but is simply another
challenge to be overcome
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For further information on Intel’s silicon technology,
please visit our Technology & Research page at:
www.intel.com/technology
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