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ABSTRACT 

A 32nm generation logic technology is described 
incorporating 2nd-generation high-k + metal-gate technology, 
193nm immersion lithography for critical patterning layers, 
and enhanced channel strain techniques. The transistors 
feature 9Å EOT high-k gate dielectric, dual band-edge 
workfunction metal gates, and 4th-generation strained silicon, 
resulting in the highest drive currents yet reported for NMOS 
and PMOS. Process yield, performance and reliability are 
demonstrated on a 291 Mbit SRAM test vehicle, with 
0.171m2 cell size, containing >1.9 billion transistors. 

INTRODUCTION 
For the past 40 years, relentless focus on transistor scaling 
and Moore’s Law led to ever-higher transistor performance 
and density, translating into tremendous increases in 
microprocessor functionality and performance. Traditional 
device scaling led to a steady increase in leakages which 
threatened the continuance of Moore’s Law. The introduction 
of high-k + metal gate transistors on the 45nm generation[1] 
broke through some of these scaling barriers. This paper 
reports on a 32nm process technology, including a 2nd 
generation high-k + metal-gate, which provides 
industry-leading transistor performance and density. 
KEY DESIGN RULES & TECHNOLOGY FEATURES 

Table 1 summarizes key design rules and layer thicknesses 
for the 32nm node. Contacted gate pitch, a key measure of 
transistor density, is scaled to 112.5nm (drawn at 116nm 
pitch and shrunk 3% to 112.5nm pitch), maintaining 0.7x 
scaling trend (Fig. 1). This is the most aggressive contacted 
gate pitch reported for 32nm high-performance logic 
technologies. 193nm immersion lithography is used at critical 
patterning layers to enable aggressive design rule scaling. 
Channel-strain techniques are used to increase drive currents, 
including optimizing the strain enhancement benefit of the 
replacement metal gate (RMG) process flow[2] (Fig. 2). 

TRANSISTOR PERFORMANCE 
Physical gate length scaling, from 35nm in the 45nm 
generation[1] to 30nm in the 32nm generation, is enabled by 
high-k dielectric scaling and shallow junction engineering. 
NMOS and PMOS Idsat/Ioff curves are shown in Fig. 3. At 
1.0V Vdd, 100nA/um Ioff, and 112.5nm contacted gate pitch, 
NMOS and PMOS saturated drive currents are 1.55mA/um 
and 1.21mA/um, respectively (drive currents are higher at 
larger gate pitch). Idsat is improved ~14% over 45nm[1] for 
both NMOS and PMOS, and these are the best drive currents 
reported to-date for 32nm technology. NMOS and PMOS 
linear drive currents, shown in Fig. 4, are 0.228mA/um and 
0.198mA/um, respectively, at 100nA/um Ioff, Vgs=1.0V, and 
Vds=50mV. These represent an improvement of 19% for 
NMOS and 11% for PMOS over 45nm[2]. 112.5nm pitch 
transistor I-V and sub-threshold characteristics are shown in 
Figs. 5 and 6. Sub-threshold slopes are maintained at 

~100mV/decade. Fig. 7 shows NMOS and PMOS Vt vs 
Lgate, showing good Vt roll-off and DIBL. Cgate is reduced 
due to gate length scaling, and CV/I gate delay is improved 
22% compared to 45nm[1] at the same leakage and Vcc.  

RELIABILITY 
Optimization of the high-k + metal-gate stack yields excellent 
reliability characteristics. Figs. 8 and 9 show PMOS NBTI 
and NMOS PBTI, respectively, compared to 45nm[1]. NBTI 
is matched to 45nm, while PBTI is improved relative to 45nm. 
Fig. 10 shows superior oxide breakdown relative to 45nm[1], 
supporting 10-15% higher E-field. 

INTERCONNECTS 
9 layers of Cu interconnect are employed, using low-k CDO 
dielectrics on the first 7 layers. The interconnect stack up to 
Metal-8 is shown in Fig. 11. Lower-layer metal pitches are 
matched to contacted-gate pitch while upper layer pitches 
increase progressively to provide optimal density and 
performance. Fig. 12 shows the M9, Via9, and C4 layers. 
Thick M9 is used for improved on-die power distribution. 
Compared to [1], interconnect capacitance is reduced by 
etch-stop layer scaling and lower-k CDO. Fig. 13a shows 
measured capacitance and resistance values at the M2 layer, 
with median values of 0.2fF/um and 8 ohm/um at 112.5nm 
pitch. Resistance at lower metal layers includes a penalty to 
enable high electromigration (EM) current density required 
for high performance products. Fig. 13b shows healthy M2 
EM performance for multiple wafers. 

SRAM  
The 32nm yield learning vehicle is a 291Mbit SRAM 
featuring a 0.171m2 SRAM cell, >1.9B transistors, and an 
array density of 4.2Mb/mm2. The first functional 32nm 
291Mb SRAM was reported in September 2007 and is the 
largest functional SRAM reported to-date on any 32nm 
technology. Fig. 14 shows the 0.171m2 cell and a die photo 
(taken at upper-level metal layer) of the 291Mb SRAM die. 
The SRAM demonstrates 3.8GHz operating frequency at 
1.1V (Fig. 15), and Fig. 16 shows excellent active Vmin 
characteristics for 3.25Mb sub-arrays (770mV median Vmin) 
to enable healthy low-voltage performance. 

CONCLUSIONS 
We have demonstrated an industry-leading 32nm CMOS 
technology for high-performance microprocessors with 
excellent transistor and interconnect performance and 
aggressive design rule scaling. We have shown a 
high-performance, high-density 291Mb SRAM test vehicle 
featuring 0.171m2 cell size fabricated using all 32nm 
process features. We have shown the highest drive currents 
and largest functional SRAM array reported to date. This 
process is on track for high-volume manufacturing in 2009. 
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Layer Pitch (nm) Thick (nm) Aspect Ratio 

Isolation 140.0 200 - 

Contacted Gate Pitch 112.5 35 - 

Metal 1 112.5 95 1.7 

Metal 2 112.5 95 1.7 

Metal 3 112.5 95 1.7 

Metal 4 168.8 151 1.8 

Metal 5 225.0 204 1.8 

Metal 6 337.6 303 1.8 

Metal 7 450.1 388 1.7 

Metal 8 566.5 504 1.8 

Metal 9 m 8m 1.5 

Bump m 25.5m - 
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Figure 1: Intel contacted-gate pitch and SRAM cell scaling trends

Figure 4: NMOS and PMOS Idlin vs Ioff

Table 1: Layer pitch, thickness and aspect ratio

PMOSNMOS

Figure 5: Transistor I-V curves
)

SS ~ 98mV/dec
DIBL ~130mV/V

SS ~ 98mV/dec
DIBL ~160mV/V

Figure 6: Sub-threshold curves

Figure 2: Increased channel strain due to RMG process flow
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Figure 3: NMOS and PMOS Idsat vs Ioff at 1.0V
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Figure 9: NMOS PBTI Vt shift vs electric field

Figure 10: NMOS TDDB time-to-fail vs electric field

Figure 12: SEM image detailing Metal 9 and Cu Bump layers

Figure 13: (a) Metal-2 min-pitch R and C values and 
(b) electromigration fail-rate

 15: Voltage-frequency shmoo for 291Mb SRAM

re 16: Vmin distribution for 3.25Mb sub-arrays

SRAM 

Figure 8: PMOS NBTI Vt shift vs electric field 

Figure 14: (a) diffusion and poly layers of 0.171m2

and (b) 291Mb SRAM die photo

Figure

Figure 11: Cross-section of interconnect stack (8 layers)
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