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Key Messages



 
Record PMOS drive current of 1.2mA/um is 
presented for devices on (110) silicon substrates



 
For short gate lengths, NMOS drive currents on 
(110) substrates are not degraded as much as 
believed by many in literature



 
The fundamental physics behind these behaviors is 
understood
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Traditional Scaling



 

Traditional device scaling requires all dimensions to scale to 
maintain performance and leakage


 

Scaling junction depths and S/D areas is causing Rext

 

increase
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Constant Leakage Scaling



 

Junction scaling is slowing due to unacceptable resistance increases


 

Scaling gate lengths at constant leakage requires increasing Vt which 
results in drive current reduction



 

Traditional device scaling is losing steam

Id=Cox/Le(Vg-Vt)
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Mobility Scaling



 

Increasing mobility increases device 
performance without increasing leakage


 

Reducing scattering mechanisms, 
applying stress and surface orientation 
all affect mobility
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Silicon Band Structure
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Stress and Band Structure



 

Compression lowers the energy of (C,D)



 

Holes redistribute from (A,B) to (C,D)



 

The effective mass is reduced

M.Giles, AVS 2006
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Conduction Band Stress 
Response

z

x

y

Mobility gain comes from valley repopulation, 
valley warping, and scattering suppression
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Stress Effects on Mobility



 

Longitudinal tension and vertical compression increases electron

 

mobility


 

Longitudinal compression and vertical tension increases hole mobility


 

Transverse tension increases both electron and hole mobility


 

Hole mobility shows a greater sensitivity to stress for (100)
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Capping Layers Gate Induced

Contacts

Stress Methods

Epitaxial Layers
C. Auth, VLSI 2008
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NMOS Stress 

C. Auth, VLSI 2008
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K.Mistry, 2004 VLSIK.Mistry, 2004 VLSI

PMOS Stress

SiGe Stress
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Substrate Orientation
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using MASTAR

 

(http://www.itrs.net/models.html) 
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PMOS Hole Occupation and 
Band Structure



 

More dense contour lines show lower effective mass for (110)


 

PMOS hole occupation of band structure shows a larger 
difference between unstressed and stressed devices for (100)
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Stress Response of Electron 
Mobility



 

Longitudinal tension improves (100) and (110) mobility


 

Vertical and transverse stress show opposite dependencies


 

Stress sensitivity is larger for (110) substrate orientation
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Stress Response of Hole 
Mobility
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

 

Longitudinal compression improves (100) and (110) mobility


 

Vertical and transverse tension improves (100) and (110) mobility


 

Stress sensitivity is larger for (100) substrate orientation
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Simulated Hole and Electron 
Mobility



 

Hole mobility increases and electron mobility decreases for 
(110) substrates


 

The difference in mobility depends on device stress
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45 nm Hi-K+Metal
 

Gate Technology



 

Based on Intel’s 45 nm 
process technology


 

High-k first, metal gate last 
process architecture



 

35nm gate length


 

160 nm contacted gate pitch



 

1.0 nm EOT High-k


 

Dual workfunction

 

metal gate 
electrodes



 

3RD

 

generation strained 
silicon 

K.Mistry

 

IEDM 2007
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(110) and (100) PMOS Idsat



 

Record PMOS drive 
currents of 1.2 mA/um 
at 1.0V and 100nA/um 
Ioff are reported for 
(110) substrates


 

The performance 
improvement is 15% 
for (110) substrates 
compared to (100) 
substrates
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PMOS (110)/(100) Idsat 
Improvement versus Stress



 

Under stress, the relative hole mobility between (110) and 
(100) substrates decreases due to the larger stress sensitivity 
of mobility on the (100) substrate 


 

Even under high stress, substantial performance improvement 
is seen
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(110) and (100) NMOS Idsat



 

As channel lengths are decreased, NMOS performance 
loss on (110) substrates is reduced


 

Why is the degradation reduced?
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Surface Confinement Effect

[110] [110]

(100) surface confinement

Ground state

(110) surface confinement
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

 

Surface confinement changes ground state transport mass


 

Separation depends on confinement field
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Local Electron Mobility



 

k.p

 

calculations for an unstressed device show the maximum 
degradation occurs near the middle of the channel


 

As the channel lengths is decreases, the carrier confinement 
is reduced due to 2D short channel effects
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2D Effects on Valley Splitting



 

Reduced carrier confinement in short channel devices due to 
2D effects reduce the valley splitting


 

This reduction results in reduced NMOS performance loss for 
(110) substrates 
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Simulated 2D Effects



 

Simulated NMOS and 
PMOS performance 
both with and without 
2D effects


 

The NMOS devices 
shows a large 
reduction in short 
channel degradation 
when 2D effects are 
included 


 

Due to high stress 
effects in the PMOS 
device, little change is 
seen by including the 
2D effects.
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Narrow Width Stress Effects



 

STI causes compressive transverse stress in the channel which 
increases at narrower device widths



 

Transverse compression improves (110) and degrades (100) electron 
mobility



 

NMOS performance for typical devices is only degraded by 5-8%
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Reliability Data



 

BTI reliability data for 45nm high-k+metal

 

gate devices 
show no intrinsic difference between (100) and (110) 
substrate orientations
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Summary


 
Record PMOS drive current of 1.2mA/um are shown



 
PMOS drive currents on (110) substrates show a 
15% performance improvement



 
NMOS drive currents on (110) substrates for typical 
device widths are only degraded 5-8%



 
The fundamental physical reason behind these 
behaviors is understood



 
The use of (110) silicon substrates is a promising 
technology option 
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For further information on Intel's silicon technology, 
please visit our Technology & Research page at

www.intel.com/technology
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