80 core Teraflops Research Processor

First tera-scale silicon prototype

Tiled architecture

Measured frequency with peak teraflops

Chip micrograph and characteristics

Measured power with peak teraflops

Key Features

- ♦ 80 tiles connected in a 2D mesh
- **♦ Single precision FPMAC cores**
- Non-blocking double-pumped crossbar router w/ 6 ports, 2 VCs
- Dynamic power management
- ♦ 1.01 teraflops @ 0.95V, 62 W

80 core Teraflops Research Processor

First tera-scale silicon prototype

Compute Core

- **★**Single Precision FPMAC engine.
 - ♦Fast single-cycle accumulate loop.

On-die Interconnect

- ★ 2-dimensional mesh
 - Scalable, reconfigurable, partitionable, power-aware
 - ♦ 1.62 Terabits/s bisection BW 75 GB/s aggregate BW

Power Management

- ★ Mesochronous clocking
 - ♦ Scalable, low-power

Dynamic sleep instructions

- ♦ Put FP engine or tile to sleep
- ★ Memory clamping circuits
 - ♦ Retain state in arrays in sleep
- ★ Sleep transistors
 - ♦ 6x standby leakage reduction
- ★ Voltage and frequency control

FPMAC engine

Router

Mesochronous clocking

FPMAC wakeup

