Safer Software Execution

through Log-Based Architectures

(Motivation: Safer Software Execution oy )
Eliminating all software bugs prior to release is difficult

Lifeguards (software monitoring tools) can catch failures at runtime
Unfortunately, software-only lifeguards are too slow (10X-100X slowdown)
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Project goal: Design hardware support enabling a broad range of powerful

lifeguards without sacrificing main program performance
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(Key Hardware Ideas \
Multi-core processors provide additional execution resources to run lifequards

Fine-grained application events are captured in a log during execution

The log can be transported via on-die cache, reducing bus contention

Log compression reduces cache space and bandwidth requirements
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