Safer Software Execution

through Log-Based Architectures

(Motivation: Safer Software Execution oy )
Eliminating all software bugs prior to release is difficult

Lifeguards (software monitoring tools) can catch failures at runtime
Unfortunately, software-only lifeguards are too slow (10X-100X slowdown)

\_

-
Project goal: Design hardware support enabling a broad range of powerful

lifeguards without sacrificing main program performance
L J

Application: ADD"CB'[iOI'] Lifeguard Example lifequards:

Unmodified, but = Data flow tracker
optional library @ = Data race detector
annotations bridge = Memory access checker
software-hardware _ = Control flow verifier
semantic gap
Operating system: Core 1 Core 2 Event-driven support:
' Log record Log record Elimi .

: iminates lifeguard

Stop-on-system call N capture dispatch _ 9

fetch-and-decode loop and
enables efficient filtering

support limits damage
from software bugs

& store decompress

(Key Hardware Ideas \
Multi-core processors provide additional execution resources to run lifequards

Fine-grained application events are captured in a log during execution

The log can be transported via on-die cache, reducing bus contention

Log compression reduces cache space and bandwidth requirements

I 2 e S e a rc I | a t I I I t e I Intel and the Intel logo are trademarks or registered trademarks of Intel u =
Corporation or its subsidiaries in the United States and other countries.
*Other names and brands may be claimed as the property of others.

WWW.iﬂtEl.Com/researCh Copyright ° 2007, Intel Corporation. All rights reserved.




	Safer Software Execution�through Log-Based Architectures

