
Intel® C++ Compiler 8.1 for Linux*
Release Notes

For Intel® IA-32 and Itanium® Processors

Contents
Overview
What's New
System Requirements
Installation
Known Limitations
Technical Support
Documentation
Additional Information
Copyright and Legal Information

Overview
This product provides tools for Linux* software developers to create applications to run at top
speeds on all Intel® IA-32 processors and the Intel® Itanium® processors. Optimizations
include support for Intel® Streaming SIMD Extensions 2 (SSE2) in the Intel® Pentium® 4
and Pentium M processors, Intel® Streaming SIMD Extensions 3 (SSE3) in the Intel Pentium
4 processors with SSE3 support, and software pipelining in the Intel Itanium 2 processor.
Inter-procedural optimization (IPO) and profile-guided optimization (PGO) can provide
greater application performance. Intel® Compilers support multi-threaded code development
through autoparallelism and OpenMP* support.

The paper, Optimizing Applications with the Intel® C++ and Fortran Compilers for Windows*
and Linux*, explains how to use the Intel compilers to optimize for the Pentium 4 and Itanium
processors and is available at http://www.intel.com/software/products/compilers/ . Additional
information on the Intel Software Development Products is available at
http://www.intel.com/software/products/ .

Product Contents

Intel® C++ Compiler for IA-32 Based Applications

The Intel® C++ Compiler for IA-32 based applications contains the following components:

• Intel C++ Compiler for Linux for IA-32 applications, version 8.1
• Intel® Debugger for IA-32 applications, version 8.1
• Intel Compiler code-coverage tool
• Intel Compiler test-prioritization tool
• A version of the Eclipse* Integrated Development Environment with C/C++

Development Tools for the Intel C++ Compiler, and associated components

http://www.intel.com/software/products/compilers/
http://www.intel.com/software/products/

• The product documentation, version 8.1
o The documentation index is provided for easy access of all the documents.

It's located at <install-dir>/doc/ccompindex.htm
o A training tutorial Enhancing Performance with Intel Compilers is also

included

Intel® C++ Compiler for Itanium®-Based Applications

The Intel C++ Compiler for Itanium-based applications contains the following components:

• Intel C++ Compiler for Linux for Itanium-based applications, version 8.1
• Intel Debugger for Itanium-based applications, version 8.1
• Intel® Itanium Assembler to produce Itanium-based applications, version 7.0
• Substitute headers for use with the Intel C++ Compiler, version 8.1
• Intel Compiler code-coverage tool
• Intel Compiler test-prioritization tool
• The product documentation, version 8.1

o The documentation index is provided for easy access of all the documents.
It's located at <install-dir>/doc/ccompindex.htm

o A training tutorial Enhancing Performance with Intel Compilers is also
included

What's New in Version 8.1
The following section discusses new features and changes in version 8.1.

-cxxlib-gcc Is Now the Default for C++

The STL and gcc* C++ libraries are now used by default when linking C++ applications,
rather than those from Dinkumware* used in previous releases. If you wish to use the
Dinkumware libraries, specify the new switch -cxxlib-icc.

Change in Compiler Drivers

The C compiler command driver, icc, determines the language to use based on the
filename extension. However, when compiling preprocessed files (*.i), the icc driver
assumes the C language, whereas the C++ driver, icpc, assumes the C++ language. It is
recommended to use the C++ compiler driver for C++ applications. The C compiler driver
(icc) no longer links against the C++ libraries, resulting in smaller executables. If your
application requires the use of the C++ libraries, please use the C++ compiler driver (icpc)
instead.

New Predefined Macros

The following new predefined macros are now available:

• __INTEL_STRICT_ANSI__ specifies that the strict ansi dialect has been
selected. The strict ansi dialect is selected when the -strict-ansi option is specified.

This option provides more strict ANSI conformance than the -ansi option, which is
intended to be compatible with the gcc -ansi option. This predefined macro should
only be used for behavior unique to the -strict-ansi dialect.

• __INTEL_RTTI__ specifies that RTTI has been enabled for the compilation. The
macro is not defined if the -no-rtti option is specified.

• __INTEL_COMPILER_BUILD_DATE specifies the build date of the compiler in
YYYYMMDD format. It matches the build date shown on the version banner. You can
use this predefined macro if you have a need to conditionalize code based on a
specific Inte®l compiler update. The YYYYMMDD string is guaranteed to be an
increasing integral value with each new release.

• __INTEL_CXXLIB_ICC specifies that -cxxlib-icc was present on the compile
command line. This may be used in header files dependent on the choice of C++
libraries being used.

-O3 enables high-level loop and memory optimizations

In this release, specifying -O3 enables additional loop transformations (interchange,
distribution, collapsing) and memory access optimizations which can improve performance.

Change in Meaning of -fast

As of the 8.1 release, specifying -fast implies the following options: -O3 -ipo -
static -xP

New -[no-]global-hoist Optimization Option

-[no-]global-hoist is an option that controls certain optimizations, load hoisting and
speculative loads, that can move memory loads to a point earlier in the program execution
than where they appear in the source. In most cases, these optimizations are safe and can
improve performance. The default is -global-hoist, enabling the optimizations.

However, some applications, such as those that use shared or dynamically mapped memory,
may fail if a load is moved too early in the execution stream (for example, before the memory
is mapped.) If you wish to disable these optimizations, specify -no-global-hoist
when compiling the source files which reference the mapped or shared memory.

-ipo Intermediate Language Now Contained Within Object Files

In previous releases, when -ipo was used, separate .il files were generated to contain
intermediate language. The use of these separate files could cause difficulty building with
makefiles. In this version, the intermediate language is embedded in the .o files and no
separate .il file is created.

New -ipoN Option to Create Multiple Objects

In previous versions, when -ipo was specified to perform multifile interprocedural
optimization, one object file was generated as input to the linker; this is still the default for
version 8.1. New in version 8.1 is the ability to request that the compiler create multiple
object files for input to the linker; this can, in some cases, reduce link time for large
applications. To specify the maximum number of object files to be produced, use the -ipoN
form of the option where N is the maximum number of object files to be created. For
example, -ipo4 specifies a maximum of 4 object files. The compiler may choose to create
fewer files than the maximum depending on the application size. If -ipo0 is specified, the
compiler will choose an appropriate number of object files based on the total application size.

__thread Keyword for Thread-Local Storage Now Supported

The compiler now supports the gcc-compatible __thread keyword for thread-local
storage. For details on the usage of this feature, see the gcc documentation.

-fno-exceptions is Now Supported for IA-32

The -fno-exceptions option turns off exception handling table generation, resulting in
smaller code. Any use of exception handling constructs such as try blocks, exception
handling specifications, or throw statements will be ignored or produce an error.

A preprocessor symbol __EXCEPTIONS is defined when this option is not used. It is
undefined when this option is present.

-fno-exceptions is not currently supported on Itanium-based systems.

KMP_SCHEDULE Environment Variable for OpenMP*
Scheduling Control

A new environment variable, KMP_SCHEDULE, can be used to fine tune the load balancing
of parallel loops that are statically scheduled under OpenMP with no chunk size
specification. The default value is KMP_SCHEDULE="static,greedy". This results in
(#iterations/#threads) iterations, rounded to the next higher integer, being allocated to most
threads, but the final thread(s) may be allocated much fewer, or even zero, iterations. This
corresponds to previous compiler behavior. The alternative,
KMP_SCHEDULE="static,balanced", results in (#iterations/#threads) iterations,
rounded to the next lower integer, being allocated to most threads, with at most one
additional iteration being allocated to some threads. Although the largest number of iterations
assigned to any thread remains the same, this results in a more even sharing of iterations
between threads, which may sometimes lead to a performance improvement.

For example, consider a loop of 9 iterations running on 4 threads:

KMP_SCHEDULE Number of iterations
 Thread 0 Thread 1 Thread 2 Thread 3
"static,greedy" 3 3 3 0
"static,balanced" 3 2 2 2

Additional New Options

For information on these options, please see the New Options section of the on-disk
Compiler Options Quick Reference Guide.

• -cxxlib-gcc
• -debug inline_debug_info
• -debug variable_locations
• -debug extended
• -export
• -export_dir
• -fabi-version
• -finline-functions
• -fno-implicit-inline-templates
• -fno-implicit-templates
• -ftls-model
• -g0
• -ipo_separate
• -kernel
• -MP
• -MQ
• -MT
• -Os
• -Qlocation,gas
• -Qlocation,gld
• -reserve-kernel-regs
• -std-gnu89
• -std-gnu++98
• -traceback

Eclipse*

Version 8.1 of the Intel C++ compiler for IA-32 installs the Eclipse Integrated Development
Environment (IDE) with C/C++ Development Tools (CDT), and the associated components
required to use Eclipse.

What is Eclipse?

Eclipse is an open source software development project dedicated to providing a
robust, full-featured, commercial-quality, industry platform for the development of
highly integrated tools. It is an extensible, open source IDE. It is platform and
language-neutral. Intel Corporation is a member of the Eclipse Foundation, whose
web site can be found at www.eclipse.org

What is the CDT?

The CDT (C/C++ Development Tools) Project is working towards providing a fully
functional C and C++ Integrated Development Environment (IDE) for the Eclipse
platform. The CDT is fully open-source and implemented purely in Java* as a set of
plugins to the Eclipse platform.

http://www.eclipse.org/

What versions of Eclipse, CDT and JRE are shipped with Intel® C++ Compilers for 32-
bit applications?

Intel C++ Compilers for 32-bit applications are packaged with Eclipse Version 2.1.3,
CDT version 1.2.1 and BEA* WebLogic* JRockit* JRE version 1.4.2_04.

I have installed the Eclipse, CDT and JRE along with Intel C++ Compilers for 32-bit
applications. How do I launch Eclipse now?

You will need to execute <INSTALLDIR>/bin/iccec where
<INSTALLDIR> is the location where Intel C++ Compilers are installed. By default,
<INSTALLDIR> is /opt/intel_cc_80.

I do not want to install or use the version of Eclipse which is included with Intel C++
Compiler for 32-bit applications. Can I use the Intel compiler with a differentversion of
Eclipse?

We do not prevent users from using Eclipse and CDT versions of their choice.
However, it should be kept in mind that Intel has tested Intel C++ Compilers for 32-bit
applications with Eclipse version 2.1.3 and CDT version 1.2.1 only.

Can I use a different JRE than the one supplied with the Intel C++ Compiler?

Yes. You can use a compatible JRE of your choice. Eclipse requires an appropriate
JRE to run/start. Each Eclipse build page (www.eclipse.org) contains a link to a page
of suggested Java developer kit and Java runtime downloads that are said to work
with the specified Eclipse build. You will need to decide for yourself which JRE works
best for you, and which licensing terms work best for you. Please note that Intel has
tested the included JRE for compatibility with the Intel C++ package and this
combination is supported.

I have installed my own copy of a JRE. How do I use this JRE with the Eclipse that I
installed along with the Intel C++ Compiler?

You will need to set the environment variable OTHER_JVM_BINDIR. Set the value
of the variable OTHER_JVM_BINDIR to the full path of the folder of the java file
from the JRE installed on your system. If you are using the bash shell, make sure
that you export this environment variable.

I already have a functional version of Eclipse, CDT and JRE and I do not want to install
another instance of these from the Intel C++ package. Can I still use the Intel C++
Compiler with my already-installed Eclipse, CDT and JRE?.

Yes, you can. You will need to create appropriate files and folders so that the Intel
C++ Compiler gets plugged into your pre-installed Eclipse environment. If you want
to use the <INSTALLDIR>/bin/iccec file (<INSTALLDIR> is the location
where the Intel C++ Compiler is installed), you will need to make the following
changes in the iccec file:

http://www.eclipse.org/

1. Set the value of the variable OTHER_JVM_BINDIR to the full path of the
folder of the java file from the JRE installed on your system. If you are
using the bash shell, make sure that you export this environment variable.

2. Set the value of the variable OTHER_ECLIPSE_BIN to the full path of the
eclipse binary in the Eclipse installation folder. If you are using the bash
shell, make sure that you export this environment variable. For example, if
you have installed Eclipse in /opt/intel/eclipse, then
OTHER_ECLIPSE_BIN should be set to
/opt/intel/eclipse/eclipse. (Make sure that this file exists.)

3. Create a folder called links under your Eclipse installation folder at the
same level as plugins and features. Create a file called
intel.compiler.cdt.link in the links folder you just created.
Put the following line in the intel.compiler.cdt.link file:
 path="<INSTALLDIR>"
where <INSTALLDIR> is the location where Intel C++ Compilers are
installed (By default, /opt/intel_cc_80).

4. You can then execute the iccec script and your chosen versions of Eclipse,
CDT and JRE will be used. If you get an error regarding the loading of
libraries, make sure that you set LD_LIBRARY_PATH to include the
appropriate folder in which Eclipse is installed.

During the process of installation of the Intel C++ Compiler, I chose not to install intel-
icc_ide8-8.1-xxx.i386.rpm for "Intel(R) C++ Compiler features and plugins for
integration into Eclipse* CDT development environment, Version 8.1". I changed my
mind and would now like to install this component. How do I do this?

After installing Intel C++ Compilers on IA-32, if you did not install intel-icc_ide8-8.1-
xxx.i386.rpm RPM for "Intel(R) C++ Compiler features and plugins for integration into
Eclipse* CDT development environment, Version 8.1", you can install the component
in one of two ways:

1. Run the compiler installation program and select option 3 (Eclipse Package)
in the main menu. When you choose this option, the installation program will
detect that the Intel C++ features and plugins component is not installed and
will provide you with an option to install it. Choose to install this component.
After the component installation is complete, you can either proceed with the
installation of the rest of the Eclipse Package or you can exit out of the
installation program.

2. Uninstall the Intel C++ compiler and then reinstall the compiler, selecting the
"features and plugins" component. Note that you will then have to reinstall
any product updates provided as patches.

Where can I get more information about Eclipse?

The Eclipse Foundation web site is at http://www.eclipse.org/. The Eclipse FAQ
contains introductory material and links to online documentation - it can be found at
http://www.eclipse.org/eclipse/faq/eclipse-faq.html.

What's New in Version 8.0

http://www.eclipse.org/
http://www.eclipse.org/eclipse/faq/eclipse-faq.html

New features in the 8.0 release of the Intel® C++ Compiler include optimization support for
new Intel processors, improved source and binary compatibility with gcc for C and C++
programs, improved debug support, new code-coverage and test-prioritization tools and
several other features driven by user demand.

Compiler Driver Names Changed

If you use the Intel C++ Compiler for Itanium®-based systems, note the compiler driver
names for Itanium-based systems have changed from ecc to icc, and ecpc to icpc to
be consistent with the IA-32 compiler driver names. The old driver names are currently
supported, but are deprecated.

New Package Directory Structure

The package directory structure has changed to be compliant with the Filesystem Hierarchy
Standard, part of the Linux Standard Base. See http://www.pathname.com/fhs/2.2/fhs-
3.12.html for details on the FHS.

Changes to Default Linking Behavior

The compiler configuration files, <install-dir>/bin/icc.cfg and <install-dir>/bin/icpc.cfg, have
been modified to remove the RPATH command to the linker. This was used in previous
releases to set the location of the Intel shared libraries in the executable. The disadvantage
of putting the RPATH directive in the configuration file is that just typing the compiler, icc,
would result in a cryptic error:
/usr/lib/crt1.o: In function `_start':
/usr/lib/crt1.o(.text+0x18): undefined reference to `main'
Which would confuse a large number of users, thinking that there is a problem with their
compiler or installation. The current release removes the RPATH directive, and typing icc
gives a more informative error:
icc: Command line error: no files specified; for help type
"icc -help" However, as executables no longer contain the location of the Intel shared
libraries, you need to specify the location of the shared libraries. Any of the following
techniques can be used to do this:

1. Modify the LD_LIBRARY_PATH environment variable to contain the location of the
Intel shared libraries. For sh type shells, enter: export
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:<install-dir>/lib.

2. Use the ldconfig system utility. Note: this requires root user privileges to run.
3. Modify the compiler configuration files, <install-dir>/bin/icc.cfg

If you see an error message such as this:
error while loading shared libraries: libcprts.so.5: cannot
open shared object file: No such file or directory, you need to
apply one of the 3 methods listed above to set the location of the Intel shared libraries.

Optimization support for Intel Pentium 4 Processors with SSE3
Instruction Set

http://www.pathname.com/fhs/2.2/fhs-3.12.html
http://www.pathname.com/fhs/2.2/fhs-3.12.html

A new generation of Intel Pentium 4 processors supports the Streaming SIMD Extensions 3
(SSE3) instruction set, which can improve performance of vectorized loops containing
complex data types, float-to-integer conversions, and horizontal adds.

Version 8.0 adds the ability to optimize for Intel processors that support SSE3. To do so,
specify the -xP or -axP options. For further details, please consult the sections on
optimizations in the Intel C++ Compiler User's Guide.

New IA-32 Optimization Options

This release includes two new code generation options. -xB and -axB direct the compiler
to generate code for best performance on the Intel Pentium M processor. The new -xN and
-axN options enable additional optimizations for all Intel Pentium 4 processors. Intel
recommends the use of -xN and -axN for best performance with Pentium 4 processors,
and suggests trying -xB or -axB to see if it helps your application on the Pentium M
processor. For more information, please refer to the sections on optimization in the Intel C++
Compiler User's Guide

Obsolete and Obsolescent Optimization Options

The optimization options -[a]xi (optimize for Pentium Pro and Pentium II) and -[a]xM
(optimize for MMX instruction set) are no longer supported by the Intel C++ compiler. If these
options are present on the compile command line, an informational message is displayed
and the options are ignored. If you use -[a]xi or -[a]xM, you should discontinue their
use. The default is to generate generic code that will run on Pentium processor as well as
newer IA-32 processors.

The-[a]xW (lower optimization level for Pentium 4) may be removed in a future compiler
version. If you use -[a]xW, use -[a]xN as a replacement when generating code for Intel
Pentium 4 processors.

For more information, please refer to the sections on optimization in the Intel C++ Compiler
User's Guide.

Binary Compatibility with gcc 3.2

The Intel C++ Compiler 8.0 for Linux has a high level of binary compatibility with gcc 3.2.

The new -cxxlib-gcc option allows you to build your applications using the C++ run-
time provided by gcc. The gcc C++ run-time includes the libstdc++ standard C++ header
files, library and language support. When this option is specified, these components are used
instead of the libcprts standard C++ headers, library, and libcxa and libunwind C++ language
support provided with the Intel Compiler.

When your applications are compiled and linked with the -cxxlib-gcc option, the
resulting C++ object files, libraries, and executables can interoperate with C++ object files,
libraries, and executables generated by gcc 3.2. This means that third party C++ libraries
built with gcc 3.2 will work with C++ code generated by the Intel Compiler.

Source Compatibility with gcc 3.2

The predefined macros enabled by gcc are now enabled by the Intel Compiler. For example,
the Intel Compiler now defines the __GNUC__, __GNUC_MINOR__, and
GNUC_PATCHLEVEL__ macros. If you do not want these macros to be defined, you can
specify the -no-gcc option.

Additionally, this version of the Intel C++ Compiler for Linux uses the C headers shipped with
the version of Linux you are running on, with the exception of two small substitute headers
used only by the Itanium compiler for Itanium applications. Also, the -cxxlib-gcc switch
now compiles the GNU* C++ library headers if you use the -ansi language mode.

By default, the same path (conditional code) in the headers will be used as is used by gcc
3.2, with two exceptions; The Intel Compiler 8.1 pre-defines -D__NO_INLINE__ and -
D__NO_STRING_INLINES. Note, these pre-defines have no impact on interoperability
with gcc 3.2.

The GNU C++ min/max operators are now implemented. See
http://gcc.gnu.org/onlinedocs/gcc/Min-and-Max.html for additional information.

The following new gcc attributes have been implemented:

• noinline
• always_inline
• used

Please see http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/Attribute-Syntax.html for additional
information.

A large number of gcc built-in functions have been implemented in version 8.0 of the Intel
C++ Compiler. The gcc built-in functions are documented at
http://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html. Refer to the Intel C++ Compiler User's
Guide for the list of supported gcc built-in functions.

The -ansi switch has been updated

The -ansi switch has been updated to be compatible with the gcc command line option of
the same name. The Intel compiler can support stricter conformance of semantics to ISO C
and C++ and this is implemented under the -strict_ansi command line option.

GNU environment variables

GNU environment variables that influence the preprocessor are now supported. These
include

• CPATH , C_INCLUDE_PATH , CPLUS_INCLUDE_PATH
The value of these variables specifies a list of directories that determines what
include directories are searched. The driver would translate these into -I options.

http://gcc.gnu.org/onlinedocs/gcc/Min-and-Max.html
http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/Attribute-Syntax.html
http://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html

• DEPENDENCIES_OUTPUT , SUNPRO_DEPENDENCIES
The value of these variables can be set to a filename or a filename and target name.
The driver would translate the filename into -MF filename, and the target name would
be used by the compiler when generating the dependency output.

Please see http://gcc.gnu.org/onlinedocs/gcc/Environment-Variables.html for additional
information

Precompiled headers

The Intel C++ Compiler for Linux now supports both automatic and manual precompiled
header processing. Under the right circumstances, the use of this new feature can
dramatically improve compilation time. Please see the User Guide for additional details.

To use automatic precompiled header processing add -pch to your compile options. The
first compilation may take slightly longer as it creates a .pchi file. Subsequent compiles
will use the .pchi file and can be potentially much faster.

> icc -c -pch file1.cpp
"file1.cpp": creating precompiled header file
"file1.pchi"

> icc -c -pch file1.cpp
"file1.cpp": using precompiled header file
"file1.pchi"

If disk space is an issue you could reduce the number of precompiled headers to one. To do
this you could create a new header file common.h and include all of your important headers
as illustrated in the example below.

common.h:

#include "myheader1.h"
#include "myheader2.h"
#include <iostream>

In each source file include common.h followed by #pragma hdrstop

file1.cpp:

#include "common.h"
#pragma hdrstop
#include "otherheader1.h"

file2.cpp:

http://gcc.gnu.org/onlinedocs/gcc/Environment-Variables.html

#include "common.h"
#pragma hdrstop
#include "otherheader2.h"

Compiling:

> icc -c -pch file1.cpp
"file1.cpp": creating precompiled header file
"file1.pchi"

> icc -c -pch file2.cpp
"file2.cpp": using precompiled header file
"file1.pchi"

Note that only one precompiled header is created. This produces most of the compile time
improvement with a smaller amount of disk usage.

Better debug support for -ip and -ipo options

Better debug support is now provided for -ip and the -ipo options. Some information
about variables will now be available (although values may not be completely accurate due
to optimizations).

New diagnostic switches

Following new diagnostic switches have been made available

• -Wbrief print brief one-line diagnostics
• -Wcheck enables diagnostics about non-portable constructs
• -Wp64 enables 64-bit porting specific warnings

IA-32 Floating Point Stack Checker Option-fpstkchk

This option would cause extra code to be generated after every function/subroutine call that
would assure that the FP stack was in the state the compiler expected. When a customer
calls a function that returns an FP value, the FP value is supposed to be returned on the top
of the FP stack. If the return value is unused the compiler must pop the value off the FP
stack to keep the FP stack in the correct state. However, if the application has called such a
function, but either has left out the function's prototype, or incorrectly prototyped the function
such that the compiler doesn't know the function is returning an FP value, then the FP stack
will not get popped as needed. This tends to cause the FP stack to fill up over time, and
eventually overflow. When the stack overflows this generally results in a NAN value being
put into FP calculations, and the program's results differ, or other errors may manifest
themselves. Unfortunately the point where the errors manifest can be arbitrarily far away
from the point of the actual bug. This option will force an access violation exception
immediately after such an incorrect call occurred, thus making it very easy for the user to find
these issues.

libguide can only be dynamically linked

The statically linked library, libguide, can potentially cause performance issues that are
hard to debug. The compiler will now link libguide dynamically regardless of the
command line options.

Debug support for variable in registers

More reliable debug object location information are provided with location lists. This allows
for better debug support for variables in registers.

Intel® Compilers code-coverage tool

The Intel Compilers code-coverage tool leverages the Intel Compilers profile-guided
optimization technology to present developers a complete picture of the coverage of their
application code on a particular workload. To find the application's code coverage the tool
combines static profile information generated by the compiler with dynamic profile
information generated by running the user's instrumented binaries on the workload. The
coverage tool uses this information together with the application sources to create HTML
pages with color annotations that highlight the coverage of the code. Navigation is through
frames that make it particularly easy to sort the application's files and functions and see the
least-covered modules and functions. Developers can then use their favorite browser to
display the coverage of their code.

The Intel Compilers code coverage tool can be used in a number of ways to improve
development efficiency, reduce defects, and improve application performance. When applied
to the profile of the application on its test space, the tool can be used to measure the overall
quality of testing based on the coverage information. Similarly, when applied to the profile of
a performance workload, the code-coverage information indicates how well the workload
exercises the application's critical code. High coverage of performance-critical modules is
essential to taking full advantage of the profile-guided optimizations that Intel Compilers
offer. The tool also provides an option, useful for both coverage and performance tuning,
through which the users can display the dynamic execution count of each basic block of the
application. Lastly, the coverage tool provides the ability to compare the profile of two
different runs of the application. This feature can be used to find the portion of the
application's code that is not covered by the application's tests but is exercised when the
application is used outside the test space, such as by a customer.

The Intel Compilers code-coverage tool is supported on Intel Architecture 32-bit and the
Itanium Processor Family on both Windows and Linux and seamlessly supports C, C++, and
Fortran.

Intel® Compilers test-prioritization tool

The Intel Compilers test-prioritization tool leverages the Intel Compilers profile-guided
optimizations technology to select and prioritize application's tests based on prior execution
profiles of the application. Using this tool, users can select and prioritize the tests that are
more relevant for any subset of the application's code. When certain modules of an
application are changed, the Intel Compilers test-prioritization tool suggests the tests that are
most probably affected by the given change set. The tool mines the profile data from

previous runs of the application, discovers the dependency between the application's
components and its tests, and uses this information to guide the process of testing. The tool
can be used for devising an effective hierarchical testing based on the application's code
coverage. For instance, the tool may be used to find the smallest subset of the application
tests that achieve exactly the same code coverage as the entire set of tests. The tool can
also be used to dramatically reduce the turn-around time of testing. Instead of spending a
large amount of time and finding a possibly-large number of failures, the tool may enable the
users to quickly find a small number of tests that expose the defects associated with the
regressions caused by a change set. The tool offers the potential of significant time saving in
testing and development of large-scale applications where testing is major bottleneck. The
tool can be used to minimize the number of tests that are required to achieve a given overall
coverage for any subset of the application. Moreover, when the execution times of the tests
are available, the tool may also be used to select and prioritize the tests to achieve certain
level of code coverage in a minimum amount of time.

The Intel Compilers test-prioritization tool is supported on Intel Architecture 32-bit and the
Itanium Processor Family on both Windows and Linux and seamlessly supports C, C++, and
Fortran.

Please refer to the following link for additional details:
http://www.intel.com/software/products/compilers/techtopics/pgt.htm .

Versioned Intermediate files (.il) during interprocedural
optimization (IPO)

Each .il file generated by IPO will have a version number. The compiler will only accept
.il files with matching versions. The version numbers will be automatically generated and
updated as part of the build process.

Fast Memory Copy Routines

The following is only an issue if you are not linking against the standard Intel libraries, either
as a result of specifying -nostdlib on the command line or as a result of calling the linker
directly rather than from the Intel C++ Compiler driver.

The Intel C++ Compiler uses two routines _intel_fast_memcpy and
_intel_fast_memset to perform memcpy and memset operations that are not macro
expanded to __builtin_memcpy and __builtin_memset in the source code.
These are found in libirc. If you use the gcc compiler to link your application or if you
directly call the linker, ld, you might find these unresolved symbols. For this reason, Intel
recommends using the Intel C++ Compiler for linking, using the same compiler options used
during the compilation phase. However, if you see these as undefined externals, either add
-lirc to your link line, or change your includes so that memcpy and memset will be
macro expanded to the builtin forms and recompile. The Intel C++ Compiler for IA-32 based
applications calls a routine intel_proc_init from the main routine of any program to
ensure that the processor is correctly set up. This routine is also found in libirc. These
routines used further entry points from glibc, so -lirc needs to be placed before -lc
on your command line.

http://www.intel.com/software/products/compilers/techtopics/pgt.htm

Change in Read-Only Data Behavior

The 7.1 release of the IA-32 compiler placed all constants and string literals in a writeable
data section. Starting with 8.0 release, the default behavior will change and will match the
gcc behavior. Const data will be placed in a read only data section and string literals will be
placed in the read-only section as well section. Applications that depend on the old behavior
will need to use the new compiler option, -fwritable-strings, added in the 8.0
release.

The 7.1 release of the Itanium compiler placed all dimensioned constants and string literals
in a writeable data section. Starting with the 8.0 release, the default behavior will change and
will match the gcc behavior. In 8.0, dimensioned const data will be placed in a read only data
section and string literals will be placed in the read-only section by default. Applications that
depend on the old behavior will need to use the new compiler option, -fwritable-
strings, added in the 8.0 release.

The option -fwritable-strings is a gcc compatible option that will cause string
literals to be places in a writeable data section. It is provided for backward compatibility for
applications that rely on writing to strings.

System Requirements
IA-32 Processor System Requirements

• A computer based on an Intel® Pentium processor or subsequent IA-32 based
processor. (Intel Pentium 4 processor recommended).

• 128 MB (256MB recommended).
• 100 MB of disk space, plus an additional 200 MB during installation for the download

and temporary files.
• Linux* system with glibc 2.2.4, 2.2.5, 2.2.93 or 2.3.2 and the 2.4.X or 2.6.X Linux

kernel as represented by the following distributions. Note: Not all distributions listed
are validated and not all distributions are listed.

o Red Hat* Linux 7.3, 8, 9
o Red Hat Enterprise Linux* 2.1, 3
o SUSE* Linux 8.2, 9.1
o SUSE Linux Enterprise Server* 8 or 9

• Linux Developer tools component installed, including gcc, g++ and related tools.

Itanium® Processor System Requirements

• A computer with an Intel® Itanium or Itanium 2 processor.
• 512 MB (1GB recommended).
• 150 MB of disk space, plus an additional 200 MB. during installation for the download

and temporary files.
• Linux system with glibc 2.2.4, 2.2.5 or 2.3.2 and the 2.4.X or 2.6.X Linux kernel as

represented by the following distributions. Note: Not all distributions listed are
validated and not all distributions are listed.

o Red Hat Linux 7.2
o Red Hat Enterprise Linux* AS 2.1, AS 3, WS 3
o SUSE Linux Professional 9.1

o SUSE Linux Enterprise Server 8, 9
o United Linux* 1.0

• Linux Developer tools component installed, including gcc, g++ and related tools.

We recommend using binutils 2.14 or later, especially if using shared libraries as there are a
known issues with binutils 2.11.

Note: Compiling very large source files (several thousands of lines) using advanced
optimizations such as -O3, -ipo and -openmp, may require substantially larger
amounts of RAM.

Installation
If you have Intel® C++ Compiler 8.0 or 8.1 installed, you must uninstall it prior to installing
this release of Intel C++ Compiler. Please refer to the Uninstalling the Compiler and
Debugger below for details on uninstallation.

The installation script of the Intel C++ Compiler uses the system utility RPM to install files.
Note, both RPM 4.0.2 and RPM 4.1 have a limitation, please see Known Limitations below
for details.

Installing the license

The Intel C++ Compiler uses Macrovision Corporation's FLEXlm* electronic licensing
technology. License management is transparent. The installation program of the Intel C++
Compiler 8.1 checks for a valid license before installing any component of the product. Also,
the license must remain in place on the system in order to use the Intel C++ Compiler 8.1 to
compile and build programs.

The FLEXlm license daemon for Intel software, used for floating and node-locked licenses
only, is available for many popular platforms. The daemon may be installed on any
supported platform accessible on your local network. The compiler CD contains license
daemons for several Linux* distributions. If you do not have the CD, or need a license
daemon for an additional platform, you can find all available license daemons in the
Downloads section of your Intel® Premier Support account.

Note: Your existing license for the Intel C++ Compiler for Linux will work with the 8.1
compiler provided your support services have not expired.

Here is how to setup the license file before installation.

• If you have an electronically downloaded version of the Intel C++ Compiler 8.1, the
license will be sent to you via email. Please follow the instructions in the email to
install the license file.

• If you have a CD version of the Intel C++ Compiler 8.1, a valid license is included on
the CD and the installation program can locate it automatically. But, in order to obtain
access to technical support and to be able to download and execute product
updates, as a CD-ROM user you must do the following:

1. Register your product: First, locate the serial number found on the inside
flap of the product box. Then, visit the web site

https://premier.intel.com/

http://www.intel.com/software/products/registrationcenter/ and follow the
instructions. After the registration you will receive an email within 24 hours
containing a new license.

2. Install the new license: The new license in the email entitles you to one
year of support services that allow you to download and execute product
updates and obtain full technical support. The email also contains the
instructions on how to install the license. Please follow the instructions to
finish the new license installation.

Note:
The license file must have an extension ".lic".
The default license directory is /opt/intel_cc_80/licenses/

.
For details about the support service license, please see
http://www.intel.com/software/products/compilers/clin/pricelist.htm .

Installing the Intel® C++ Compiler

Perform the following steps to install the compiler.

1. Download the compiler package.
2. Unpack the compiler package in a directory to which you have write access.

> tar -xvf l_cc_p[c]_8.1.xxx.tar
or
> tar -zxvf l_cc_p[c]_8.1.xxx.tar.gz

3. Run the installation script
Become the root user, needed to run the rpm command, and execute the install
script in the directory where the tar file was extracted.
> source ./install.sh
If you do not have access to the root account, it is possible to install the compiler
without root access by manually unpacking the RPM files with rpm2cpio and
editing the iccvars.sh (.csh) files to include the directory where the compiler is
installed. The install script automates this procedure.

4. Enter the directory for the license file
It is the directory where you saved the license file (*.lic) above. The installation
program will validate the license before installing any Intel C++ Compiler for Linux
component.

5. After the license checking, the installation program will display the Intel software
products that are already installed, and the following menu items for you to install:

o Intel Compiler for 32-bit applications if you're installing
on an IA-32 system or
Intel Compiler for Itanium architecture if you're
installing on an Itanium-based system

o Linux Application Debugger for 32-bit
applications or
Linux Application Debugger for Itanium®-based
applications

o Eclipse Package

http://www.intel.com/software/products/registrationcenter/
http://www.intel.com/software/products/compilers/clin/pricelist.htm

6. Select a package to install. All necessary packages needed to use the product will
also be installed. If an RPM package has already been installed, the install script will
report this and ask you to verify that you want to overwrite the existing installation.
The default RPM options -U --replacefiles --force are recommended
to force the update of existing files. The default installation directory is
/opt/intel_cc_80/ for the Intel C++ Compiler, and
/opt/intel_idb_80/ for the Intel Debugger.

7. After installation, the Intel packages installed will be redisplayed, followed by a
redisplay of the install menu. Enter 'x' to exit the install script.

Note: Installing the compiler also installs the Eclipse integration components (but not Eclipse
itself, which is installed when you select Eclipse Package). These components are installed
into <install_dir>/eclipse/features and
<install_dir>/eclipse/plugins. Because of this, you will also be asked to
agree to the Eclipse Disclaimer during compiler installation.

Setting Up The Compiler Environment

The programs in the Intel C++ Compiler 8.1 for Linux product rely on the environment
variables PATH and LD_LIBRARY_PATH. The installation script (install.sh) creates
compiler environment script files (iccvars.sh/ idbvars.sh) that set these
variables. It is strongly recommended that you add those script files into your login script
(.login file). Once the variables are set in the ".login" file there is no need to run the
script files for each session.

Source the script to setup the compiler environment:

• > source <install-dir>/bin/iccvars.sh(.csh)
to use icc on an IA32 system or Itanium-based system

• > source <install-dir>/bin/idbvars.sh(.csh)
to use idb on an IA32 system or Itanium-based system

The installation program also creates compiler configuration files named <install-
dir>/bin/icc.cfg on an IA32 system or an Itanium-based system that contain
common settings for all compilations. You can edit these files to add additional default
options. Note, if you install a compiler update package, you need to save the configuration
file if you have modified it to another filename so that the installation doesn't overwrite your
modified file.

Please register for support after you install this product. See Technical Support for
registration instructions.

Uninstalling the Compiler and Debugger

Please follow the steps below to uninstall the Intel Compiler and Debugger.

1. become the root user
2. to uninstall the compiler:

<compiler-install-dir>/bin/uninstall.sh

or if you've installed the compiler to the default directory, use
/opt/intel_cc_80/bin/uninstall.sh

3. to uninstall the debugger:
<debugger-install-dir>/bin/uninstall.sh
or if you've installed the debugger to the default directory, use
/opt/intel_idb_80/bin/uninstall.sh

Known Limitations
Installation Warning for RPM 4.0.2 and RPM 4.1

RPM 4.0.2 cannot install to a non-default directory. This has been resolved in RPM 4.0.3.
RPM 4.1 cannot install to a non-default directory. This has been resolved in RPM 4.11 to 4.2.

Note about installing the Intel® Debugger

When installing the Intel® Debugger version 8.1 for IA-32 or Itanium-based applications from
the Intel® C++ Compiler 8.1 package, if the Intel Debugger version 7.1, 7.2 or 7.3 is already
installed on the system, it will be upgraded to the Intel Debugger version 8.1.

OpenMP* Limitations

POSIX threaded programs that require a large stack size may not run correctly on some
versions of Linux* because of hard-coded stack size limits in some versions of the Linux
POSIX threads libraries. These limits also apply to OpenMP programs (-openmp) and
automatically generated parallel programs (-parallel) with the Intel compilers, because
the Intel compilers use the POSIX threads library to implement OpenMP based and
automatically generated parallelism. Threaded programs that exceed the stack space limit
usually experience segmentation violations or addressing errors.

To avoid these limitations, use a version of glibc built with the FLOATING_STACKS
parameter defined. For some distributions, this implies using the shared rather than the static
version of the pthreads library. Then use the ulimit -s or limit stacksize
command to set the maximum shell stack size to an explicit large value, in units of KBytes,
(not unlimited), and also set the KMP_STACKSIZE environment variable to the
needed thread stacksize in bytes. Note, in the bash shell, ulimit -s can be used to set a
large maximum stack size only once. In the C shell (csh), limit stacksize , with no
dash before the argument, can be used to reset the maximum stacksize repeatedly.

This solution has been tested on glibc version 2.2.4-13 for IA-32 and glibc 2.2.4-19 for the
Itanium Processor Family as found in the Red Hat 7.2 Linux distribution. For glibc 2.2.4-13
on IA-32, the shared version of the POSIX threads library must be used, (there should not be
a -static flag in the compiler .cfg file or on the command line).

Compile time slow down when using both -g and inlining

There will be an increase in compile time when -g is used together with inlining. Inlining can
happen if the user specifies -ipo, -ip or compiles a C++/C99 program at option levels

-O1 or above. This is due to the generation of debug information. For many applications,
this combination of compiler options will not increase compile time or compile-time memory
use.

gnu asm aliases

Under the -use_msasm compilation flag, GNU asm aliases will work only if you use the
__asm__ keyword; they will not work correctly if you use the alternate __asm or asm
keywords.

Issues relating to Multiple Object File Interprocedural Optimization

The following issues are expected to be resolved in a future update:

-qipo_separate is not recognised by xild

The -qipo_separate option is not recognized by xild. This causes IPO
compilations using this option to fail.

Explicit naming of .o and .s files ignored with -ipo multiple objects

When using -ipo_c or -ipo_S (explicit .o or ..s files, respectively), options to
explcitly name these files are ignored by the compiler for when generating multiple
objects.

.s files generated by -ipo_S fail to assemble with multiple object IPO

There are two classes of errors:

• The assembler complains that routines being called haven't been defined.
• The assembler complains that constant data (e.g. strings in printf

statements) hasn't been defined. This bug affects Itanium-based Linux
systems only.

Limited Debug Information with Automatic CPU Dispatching (-ax*)

Compilation using -ax{W|N|B|P} results in two copies of generated code for each
function. One for IA-32 generic code and one for CPU specific code. The symbol for each
function then refers to an Auto CPU Dispatch routine that decides at run-time which one of
the generated code sections to execute. Debugger breakpoints that are set on these
functions by name cause the application to stop in the dispatch routine. This may cause
unexpected behavior when debugging. This issue may be addressed in a future version of
the Intel Debugger and Compilers.

Cannot Debug or View Traceback for IA-32 Programs Built Without -fp

Compilation using -fp specifies that the IA-32 EBP register be used as a frame pointer
rather than a general purpose register. Debuggers and traceback handlers may not be able

to properly unwind through a stack that contains a call to a function that is compiled without
-fp in effect. If you compile with -g or -O0, -fp is implicitly enabled, but not if you specify
a higher optimization level explicitly (such as -O2). If you intend to use the debugger or
traceback on an application, and are using some level of optimization higher than -O0, you
should also specify -fp to ensure that the debugger and traceback handler can use frame
pointers.

GNU Assembler May Not Recognize -xP Generated Code

Older versions of the GNU Assembler may not be able to process assembly code generated
by compiling with the -[a]xP option. Use binutils version 2.14.90.0.4.1 or later, or
FSFbinutils 2.15 or later if this is an issue for you.

Using Older gdb Versions with Intel® Compilers

Intel compilers for Linux generate Dwarf2-format debugging information, including several
advanced features in Dwarf2 such as declarations nested within classes. Older gdb
debuggers, such as version 5.3.90-*, are sometimes unable to correctly handle these Dwarf
features. For best success on source code which uses the full expressiveness of the C++
language, please consider using gdb version 6.1 or newer.

Other Issues

Please click on the appropriate link below to see additional notes and known limitations in
the latest version of the compiler.

• Intel C++ Compiler to produce IA-32 applications. Note, this file is available only if the
compiler for IA-32 applications is installed.

• Intel C++ Compiler to produce Itanium-based applications. Note, this file is available
only if the compiler for Itanium-based applications is installed.

Technical Support
Your feedback is very important to us. To receive technical support for the tools provided in
this product and technical information including FAQ's and product updates, you need to be
registered for an Intel® Premier Support account on our secure web site,
https://premier.intel.com. Please register at
http://support.intel.com/support/performancetools/support.htm and click on
"Registration Center".

Note:

• Registering for support varies for release products or pre-release products (alpha,
beta, etc) - only released products have support web pages on
http://support.intel.com.

• If you are having trouble registering or are unable to access your Premier Support
account, contact developer.support@intel.com. Please do not email your technical
issue to developer.support@intel.com as it is not a secure medium.

https://premier.intel.com/
http://support.intel.com/support/performancetools/support.htm
http://support.intel.com/
mailto:developer.support@intel.com
mailto:developer.support@intel.com

• If you have forgotten your password, please email a request to:
quad.support@intel.com. Please do not email your technical issue to this email
address as it is not a secure medium.

For information about the Intel C++ Compiler's Users Forums, FAQ's, tips and tricks, and
other support information, please visit:
http://support.intel.com/support/performancetools/c/linux/. For general support information
please visit http://www.intel.com/software/products/support/.

Submitting Issues

Steps to submit an issue:

1. Go to https://premier.intel.com/.
2. Type in your Login and Password. Both are case-sensitive.
3. Click the "Submit" button.
4. Read the Confidentiality Statement and click the "I Accept" button.
5. Click on the "Go" button next to the "Product" drop-down list.
6. Click on the "Submit Issue" link in the left navigation bar.
7. Choose "Development Environment (tools,SDV,EAP)" from the

"Product Type" drop-down list.
8. If this is a software or license-related issue, choose "Intel C++ Compiler,

Linux*" from the "Product Name" drop-down list.
9. Enter your question and complete the fields in the windows that follow to successfully

submit the issue.

Guidelines for problem report or product suggestion:

1. Describe your difficulty or suggestion.
For problem reports please be as specific as possible, so that we may reproduce the
problem. For compiler problem reports, please include the compiler options and a
small test case if possible.

2. Describe your system configuration information.
Get the version of glibc and kernel with following commands:
 > uname -a
 > rpm -qa | grep glibc
If you don't have rpm installed, use the command below:
 > ls /lib/libc*
And copy the information into the corresponding Premier Support fields.

Get the Intel C++ Compiler's Package ID with the following commands:
 > icc -V
And copy the "Package ID" (e.g. l_cc_p[c]_8.1.xxx) from the output into the
corresponding Premier Support field. Please include any other specific information
that may be relevant to helping us to reproduce and address your concern.

3. If you were not able to install the compiler or cannot get the Package ID, enter the
filename you downloaded as the package ID.

mailto:quad.support@intel.com
http://support.intel.com/support/performancetools/c/linux/
http://www.intel.com/software/products/support/
https://premier.intel.com/

Resolved Issues

Please review <package ID>_README (e.g. l_cc_p[c]_8.1.xxx_README),
available for download from Intel® Premier Support, https://premier.intel.com/, to see which
issues have been resolved in the latest version of the compiler.

Documentation
You can view the Intel® compiler and related HTML-based documentation with your Web
browser, which provide full navigation, index look-up, and hyperlink capabilities. The
documents also have PDF versions for easier printing.

The documentation is installed in the <install-dir>/doc (default
/opt/intel_cc_80/doc) directory. An HTML index document can be found at
<install-dir>/doc/ccompindex.htm (default
/opt/intel_cc_80/doc/ccompindex.htm). An interactive HTML-based training
tutorial Enhancing Performance with Intel Compilers is also available from links in the
documentation index. This provides a tutorial on using compiler options that help you
optimize your application for IA-32 and Itanium-based systems and describes the Itanium
Assembler. The Intel® Debugger Manual can be found from the Intel® Debugger directory
(default /opt/intel_idb_xx/doc (xx: is the idb version number, run "idb -V" for
the version)).

The document Intel® C++ Compiler User's Guide is now organized into separate parts:

• An Options Quick Reference Guide
• User's Guide Volume I for Building Applications
• User's Guide Volume II for Optimizing Applications
• Reference Information

For information on the GNU glibc C language library, documentation can be obtained from
the Linux OS vendor or from the GNU web site, www.gnu.org.

Viewing Manpages

The icc(1) manpage provides a list of command-line options and related information for the
icc and icpc compiler commands. To display the icc(1) manpage, type the following
command after you set up your environment by using a source command to execute the
<install-dir>/bin/iccvars.*sh file:

$ man icc

The man command provides single keys or key combinations that let you scroll through the
displayed content, search for a string, jump to a location, and perform other functions. For
example, type the z to view the next screen or w to view the previous screen. To obtain help
about the man command, type the h key; when you are done viewing help, type the q key to
return to the displayed manpage. To search, type / character followed by the search string

https://premier.intel.com/
http://www.gnu.org/

(/string) and press Enter. After viewing the man command text, type q to return to the
shell command prompt.

Viewing HTML Documentation

To view the compiler User's Guide HTML-based documentation, you no longer need to use a
Java*-enabled Web browser. The documentation format has been tested to work with Web
browsers shipped on standard Red Hat* distributions. To allow the HTML-based User's
Guide help to be browser-neutral and not require java support, the Search capability has
been removed. If you need to search the User's Guide, please use the supplied User's Guide
PDF files (same content as HTML-based User's Guide) with the xpdf viewer. To effectively
use the Index tab, you may need to enlarge the left pane so that index entries do not wrap.

Viewing PDF Documentation Files

You can read the PDF files using the xpdf utility (provides search capability), or use the gv
or ghostview command. On some Linux distributions, using mozilla will display PDF
files using a PDF helper.

Additional Information
Related Products and Services

Information on Intel software development products is available at
http://www.intel.com/software/products.

Some of the related products include:

• The Intel® Software College provides training for developers on leading-edge
software development technologies. Training consists of online and instructor-led
courses covering all Intel architectures, platforms, tools, and technologies.

• The VTune™ Performance Analyzer enables you to evaluate how your application is
utilizing the CPU and helps you determine if there are modifications you can make to
improve your application's performance.

• The Intel® C++ and Fortran Compilers are an important part of making software run
at top speeds with full support for the latest Intel IA-32 and Itanium® processors.

• The Intel® Performance Library Suite provides a set of routines optimized for various
Intel processors. The Intel® Math Kernel Library, which provides developers of
scientific and engineering software with a set of linear algebra, fast Fourier
transforms and vector math functions optimized for the latest Intel Pentium® and
Intel Itanium processors. The Intel® Integrated Performance Primitives consists of
cross-platform tools to build high performance software for several Intel architectures
and several operating systems.

Copyright and Legal Information
Information in this document is provided in connection with Intel products. No license,
express or implied, by estoppel or otherwise, to any intellectual property rights is granted by
this document. Except as provided in Intel's Terms and Conditions of Sale for such products,

http://www.intel.com/software/products
http://www.intel.com/software/college/
http://www.intel.com/software/products/vtune/
http://www.intel.com/software/products/compilers/index.htm
http://www.intel.com/software/products/perflib/index.htm
http://www.intel.com/software/products/mkl/index.htm
http://www.intel.com/software/products/ipp/index.htm

Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty,
relating to sale and/or use of Intel products including liability or warranties relating to fitness
for a particular purpose, merchantability, or infringement of any patent, copyright or other
intellectual property right. Intel products are not intended for use in medical, life saving, or life
sustaining applications.

This Release Note, as well as the software described in it, is furnished under license and
may only be used or copied in accordance with the terms of the license. The information in
this manual is furnished for informational use only, is subject to change without notice, and
should not be construed as a commitment by Intel Corporation. Intel Corporation assumes
no responsibility or liability for any errors or inaccuracies that may appear in this document or
any software that may be provided in association with this document.

Designers must not rely on the absence or characteristics of any features or instructions
marked "reserved" or "undefined." Intel reserves these for future definition and shall have no
responsibility whatsoever for conflicts or incompatibilities arising from future changes to
them.

The software described in this Release Note may contain software defects which may cause
the product to deviate from published specifications. Current characterized software defects
are available on request.

Intel SpeedStep, Intel Thread Checker, Celeron, Dialogic, i386, i486, iCOMP, Intel, Intel
logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Inside, Intel Inside logo,
Intel NetBurst, Intel NetStructure, Intel Xeon, Intel XScale, Itanium, MMX, MMX logo,
Pentium, Pentium II Xeon, Pentium III Xeon, Pentium M, and VTune are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States and other
countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2004, Intel Corporation. All rights reserved.

	Intel® C++ Compiler 8.1 for Linux* �Release Notes
	For Intel® IA-32 and Itanium® Processors
	Contents
	Overview
	Product Contents
	Intel® C++ Compiler for IA-32 Based Applications
	Intel® C++ Compiler for Itanium®-Based Applications

	What's New in Version 8.1
	-cxxlib-gcc Is Now the Default for C++
	Change in Compiler Drivers
	New Predefined Macros
	-O3 enables high-level loop and memory optimizations
	Change in Meaning of -fast
	New -[no-]global-hoist Optimization Option
	-ipo Intermediate Language Now Contained Within Object Files
	New -ipoN Option to Create Multiple Objects
	__thread Keyword for Thread-Local Storage Now Supported
	-fno-exceptions is Now Supported for IA-32
	KMP_SCHEDULE Environment Variable for OpenMP* Scheduling Con
	Additional New Options
	Eclipse*

	What's New in Version 8.0
	Compiler Driver Names Changed
	New Package Directory Structure
	Changes to Default Linking Behavior
	Optimization support for Intel Pentium 4 Processors with SSE
	New IA-32 Optimization Options
	Obsolete and Obsolescent Optimization Options
	Binary Compatibility with gcc 3.2
	Source Compatibility with gcc 3.2
	The -ansi switch has been updated
	GNU environment variables
	Precompiled headers
	Better debug support for -ip and -ipo options
	New diagnostic switches
	IA-32 Floating Point Stack Checker Option-fpstkchk
	libguide can only be dynamically linked
	Debug support for variable in registers
	Intel® Compilers code-coverage tool
	Intel® Compilers test-prioritization tool
	Versioned Intermediate files (.il) during interprocedural op
	Fast Memory Copy Routines
	Change in Read-Only Data Behavior

	System Requirements
	IA-32 Processor System Requirements
	Itanium® Processor System Requirements

	Installation
	Installing the license
	Installing the Intel® C++ Compiler
	Setting Up The Compiler Environment
	Uninstalling the Compiler and Debugger

	Known Limitations
	Installation Warning for RPM 4.0.2 and RPM 4.1
	Note about installing the Intel® Debugger
	OpenMP* Limitations
	Compile time slow down when using both -g and inlining
	gnu asm aliases
	Issues relating to Multiple Object File Interprocedural Opti
	Limited Debug Information with Automatic CPU Dispatching (-a
	Cannot Debug or View Traceback for IA-32 Programs Built With
	GNU Assembler May Not Recognize -xP Generated Code
	Using Older gdb Versions with Intel® Compilers
	Other Issues

	Technical Support
	Submitting Issues
	Steps to submit an issue:
	Guidelines for problem report or product suggestion:

	Resolved Issues

	Documentation
	Viewing Manpages
	Viewing HTML Documentation
	Viewing PDF Documentation Files

	Additional Information
	Related Products and Services

	Copyright and Legal Information

