
Automated MPI Correctness Checking
What if there was a magic option?

Patrick Ohly and Werner Krotz-Vogel

Intel GmbH
Hermülheimer Straße 8a
D–50321 Brühl, Germany

Abstract. Writing correct and portable MPI programs is hard. Out
of bound parameters, inconsistent use of data types and many other
complex violations of using MPI correctly can now automatically be
detected at runtime. While interactive debuggers have been extended
to handle the concurrent processes of MPI applications, still there are
numerous bugs which are hard (because it would require a prohibitive
amount of manual work) or even impossible (because it requires more
control over the program execution than available via a debugger) to
find with just a debugger. This paper presents the new MPI correctness
checking feature of Intel r© Trace Analyzer and Collector, which solves
this problem. We describe its design, implementation and performance.
As a use case an analysis of the HPCC benchmark is presented which
actually contains some violations of the MPI standard in the 1.0.0 release.
Keywords: MPI, correctness checking, errors, HPCC

1 Introduction

Writing correct and portable MPI programs is hard: the sheer number of differ-
ent MPI calls with their sometimes subtle semantic differences can easily be used
inconsistently or incorrectly, even by expert programmers. Furthermore, incon-
sistent or incorrect use of parameters may only occur at runtime. Thus significant
development time for handcraft in debugging, testing and quality assurance is
required to assure correctness and quality of an MPI application, and this time
spent is just on top of mastering the complexities of parallel programming with
MPI, while a programmer, expert, or scientist originally wanted to just focus
on the solution of a computational problem. Add to that the problem that MPI
implementations are given considerable freedom in how they implement certain
features of the standard, then it is clear that developers benefit from an MPI
correctness checking tool that helps mastering this complexity.

MPI implementations themselves typically implement only minimal sanity
checks. Their focus is on achieving the highest possible performance: expensive
checks in terms of runtime overhead are therefore prohibitive; the less expensive
checks might not get implemented because they are not considered important
enough. Hence a correct program should run perfect, while an incorrect program
may or may not fail during its run, or just produce incorrect results.

2

Using traditional debuggers fails with this class of correctness violations.
They have traditionally been used to investigate running programs or core
dumps. Even though there are debuggers which explicitly support MPI, they
are limited to presenting the current status of an application. By single stepping
through the execution the user can try to understand how the application works,
but this is a time-consuming task and to fully check an MPI application not only
requires monitoring local variables, but also all data sent between processes.

Clearly these are checks that a computer is much more capable of executing
automatically, reliably and without a gap. By encoding knowledge of MPI and
MPI constructs like data types into the checking code it becomes possible to
check MPI specific semantic. This does not replace an interactive debugger, but
rather augments it: once a problem is found, the easiest way to investigate it
maybe still to stop the application and go back to the source code where the
erroneous MPI occurred while the process is still running and all its data is
available.

The Intel r© Trace Analyzer and Collector (referred to in this paper as TAC)
[4] now supports this kind of automated MPI correctness checking. As a starting
point for the analysis of a problem a message text is printed to stderr. Because
these reports contain all relevant information, they are also sufficient for most
post-mortem analysis, or when using a debugger is impossible or not desired, as
in automatic regression testing. The MPI correctness checking with TAC also
includes full support for all common MPI debuggers as well as post-mortem
analysis of an application run.

2 Design

2.1 Goals

Out-of-the-box usability has been the primary goal in the design of the MPI
correctness checking feature for TAC, as a tool with a very fast learning curve
and immediate results will be most helpful for MPI developers. This implies
that a problem must be reported with enough information so that the report
is comprehensible on its own, ideally without even having to consult a manual
first.

Another usability aspect is that the information given on errors must be
sufficient for the user to understand which call and which condition triggered
the error report and to verify whether it actually constitutes a problem. If the
user has to gather more information himself first from other sources, he might
either fail to find it or give up because it is too much work. If the user cannot
verify easily the condition that caused such an error report, he might ignore it
as a false positive even if it is not.

A further design goal of the MPI correctness checking was to never report
false positive messages. False positives severely impact the usefulness of such
a tool because they put the effort of distinguishing between false and genuine
problem reports on the user: there is a tradeoff between finding every conceivable

3

problem with the risk of producing lots of warning at one end of the spectrum and
detecting some problems reliably without extraneous reports at the other end. If
a check cannot be implemented reliably, then it should either not be implemented
or at least not be enabled by default. As will be demonstrated below, an ample
range of real-world MPI problems can be detected reliably. So an application
run without reports does at least guarantee that none of the conditions checked
for error or warning occurred, hence it is a very good indication for correct MPI
usage, however it does not provide an absolute guarantee for correct execution
beyond that. Chances are high that most existing problems are found.

The goal for performance of MPI correctness checking was to keep the impact
on execution times of typical applications smaller than a 3-5x slowdown, which
allows an application to still complete in an acceptable time frame. The impact
should be independent of the number of processes, hence preserve the level of
scalability of an MPI application. Some errors might only occur with high num-
ber of processes or large problem sizes. Obviously runtime dependent errors will
be affected, but they might both occur or be hidden by different runtimes.

Intel r© MPI was (and still is) the only MPI implementation targeted, but
the possibility to compile for other MPIs was considered important. Therefore
the focus on Intel MPI was used to limit implementation work to those tests not
already offered by Intel MPI and to simplify testing.

2.2 Overview

Figure 1 shows how the different components fit together: in order to do the
checking, all MPI calls are intercepted using the standard MPI profiling inter-
face. The checks are executed inside the MPI wrappers. This gives them full
access to all MPI parameters and local state of the processes without requiring
intermediate disk storage or transmitting them to another process first.

The wrappers also have the possibility to influence which PMPI functions
are invoked to implement the call made by the application. For example, to find
problems caused by head-to-head sends a normal MPI Send() (which may or
may not complete, depending on message size and MPI implementation) can be
replaced by a synchronous MPI Ssend() (which will always block and thus reveal
the problem).

Another benefit is that once a problem is found inside a wrapper, the user
can go up the call stack and directly investigate the parameters of the MPI call
and where they come from. Because the application might have been compiled
without debug information, the first layer of MPI wrappers provided by TAC
contains debug information, so at least at that level a debugger is able to display
parameters. This also helps if the parameter is the result of a complex calculation
which was passed directly into the MPI call without storing it in a local variable.

MPI errors can be classified along two dimensions. First, by which informa-
tion is necessary to detect them:

local checks only need information available in the process itself and thus do
not require additional communication between processes

4

Fig. 1. Overview of TAC MPI Correctness Checking

global information from other processes is required

Second, what the effect on the application is when the problem occurs:

warning suspicious behavior is detected, but it is not clear whether it really
constitutes a problem, so the application should be left running: e.g. unusu-
ally high numbers of pending requests might be due to missing checks for
completion, but until the application completes it is impossible to tell for
sure

error something is detected which is definitely not correct, but the application
might be able to continue running, albeit with incorrect data or follow-
up errors: invalid parameters in an MPI call can be ignored by simply not
executing the call

fatal error the state of the application or the MPI implementation has been
changed so that continuing is impossible: deadlocks fall into this category
because there is no way to resolve them

The tables 4 and 3 in the appendix contain a full list of all local and global
errors currently supported and their classification. As reference the table also
contains the corresponding error number and name of the older Intel r© Message
Checker Tech Preview [1].

5

[0] WARNING: LOCAL:MEMORY:OVERLAP: warning

[0] WARNING: New send buffer overlaps with currently active send buffer at address 0x7fbfffea24.

[0] WARNING: Control over active buffer was transferred to MPI at:

[0] WARNING: MPI_Isend(*buf=0x7fbfffea24, count=1, datatype=MPI_CHAR, dest=1, tag=100,\

comm=MPI_COMM_WORLD, *request=0xaefca0)

[0] WARNING: main (local/memory/overlap/MPI_Isend.c:62)

[0] WARNING: Control over new buffer is about to be transferred to MPI at:

[0] WARNING: MPI_Isend(*buf=0x7fbfffea24, count=1, datatype=MPI_CHAR, dest=2, tag=100,\

comm=MPI_COMM_WORLD, *request=0xaefca4)

[0] WARNING: main (local/memory/overlap/MPI_Isend.c:62)

Fig. 2. Local memory overlap problem, from the local/memory/overlap/MPI Isend.c
example

3 Implementation

3.1 Infrastructure

Most of the existing infrastructure for wrapping MPI calls and tracking data
types, requests and communicators could be reused from the existing trace col-
lector and now both the library for performance data collection and the checking
library are compiled from the same source code.

Locating the place where MPI calls are made and from where that code is
called is essential for investigating problems. In contrast to other MPI check-
ing tools, TAC is able to unwind the call stack and uses debug information
to map instruction addresses to source code. For stack unwinding both a fast
frame pointer based approach is available and a slower, more reliable approach
using libunwind. libunwind also works with optimized code that has no frame
pointers. By default libunwind is used for correctness checking and for per-
formance analysis the frame pointer approach. Debug information is read via
libdwarf. Specifically for correctness checking the reading of symbol informa-
tion via libelf and tracking of shared library names was added.

To complement the information about where an MPI call is made, the check-
ing library also generates a string which represents the function name with all
its parameters. Together this forms a call site in a problem report.

A problem report1 like the one in Fig. 2 always follows the same format:

<error type>: <severity level>
<error description (possibly with line breaks)>
[<introduction for call site (no line breaks)>:

<MPI call string>?
<call stack>?]*

1 For this paper the reports were pruned and long lines were wrapped manually:
normally files are listed with an absolute path and there may be call stack entries
above the main() function.

6

Several different places in the checking library detect errors and prepare a
semantically rich reports, but they all use this format and then hand an internal
representation over to one routine which handles all reports in a consistent way:

– counting reports by type
– suppressing reports if reported too often
– keeping statistics about error reports
– printing of the report to stderr
– alerting a debugger by calling a specific function in which a debugger can

set a breakpoint
– aborting if necessary (depends on severity, report counters, configuration)

3.2 Local Checks

Because the checking library is meant to be used together with Intel r© MPI
and Intel MPI already detects out of bound parameters and invalid handles,
these checks do not have to be reimplemented in the checking library. These
problems detected inside the MPI implementation are always returned back to
the wrappers and then converted into a normal report because the error handling
policy is set to MPI_ERRORS_RETURN, even if the application tries to install its
own handler.

The checking library also installs signal handlers for those signals that would
otherwise just abort the application. In contrast to the application’s MPI error
handler which is always ignored, the application’s signal handlers are left in place
because premature exits caused by these handlers are detected via an atexit()
callback. This behavior is configurable.

On top of the Intel MPI parameter checking the checking library itself also
tracks active requests, communicators and data types so that it has additional
information not available otherwise, for example where these entities were cre-
ated. This improves the reports that involve such entities and allows printing
warnings about excessive resource usage or leaks (Fig. 3). This leak report can
also be generated at runtime to handle those cases where a leak or some other
problem prevents reaching MPI_Finalize(). It lists the most frequent places
where entities are leaked and truncates the report after a configurable number
of entries to prevent excessively long reports.

The additional information kept by the checking library for data types also
includes an internal representation of the full type map. The MPI_Type_commit()
wrapper extracts this information from MPI by calling MPI_Type_get_envelope()
and MPI_Type_get_contents(). Given that information, the checking library is
able to iterate over the content of buffers and uses this to implement several
additional checks:

– tracking which memory regions are currently owned by MPI and therefore
must not be reused by the application in other MPI calls

– checksumming read-only buffers to detect illegal modifications while the
buffer is owned by MPI

– detecting transmission problems by comparing sender and receiver check-
sums in global checks

7

[0] WARNING: LOCAL:DATATYPE:NOT_FREED: warning

[0] WARNING: When calling MPI_Finalize() there were unfreed user-defined datatypes:

[0] WARNING: 12 in this process.

[0] WARNING: This may indicate that resources are leaked at runtime.

[0] WARNING: To clean up properly MPI_Type_free() should be called for

[0] WARNING: all user-defined datatypes.

[0] WARNING: 1. 3 times:

[0] WARNING: MPI_Type_vector(count=1, blocklen=10, stride=10, old_type=MPI_CHAR,\

*newtype=...)

[0] WARNING: main (local/datatype/not_freed.c:81)

[0] WARNING: 2. 1 time:

[0] WARNING: MPI_Type_struct(count=1, *blocklens=0x7fbfffe974, *indices=0x7fbfffe948,\

*old_types=0x7fbfffe978, *newtype=0x7fbfffe970)

[0] WARNING: main (local/datatype/not_freed.c:94)

...

[0] WARNING: 5. 1 time:

[0] WARNING: MPI_Type_hvector(count=1, blocklen=2, stride=2, old_type=MPI_CHAR,\

*newtype=0x7fbfffe970)

[0] WARNING: main (local/datatype/not_freed.c:87)

[0] WARNING: Summary truncated at CHECK-LEAK-REPORT-SIZE 5.

Fig. 3. Leaked data types problem, from the local/datatype/not freed.c example

3.3 Global Checks

Global checks are harder to implement because they require data exchange be-
tween processes. This exchange must be transparent to the application. Cur-
rently there are three different ways how that information is exchanged.

The first one is an MPI-independent communication layer which connects
processes via TCP streams, accessible via an API similar to MPI, but simplified
so that it can be implemented without ever buffering data. This communication
layer is used by an additional background thread per process to monitor the
state of the whole application.

Deadlock detection is one of its purposes: if all processes are stuck inside
an MPI call for more than a certain time, then it is assumed that these calls
will not complete at all because of a deadlock. Implementing this heuristic is
considerably easier than correctly analyzing what each process is waiting for
to identify the cycle which constitutes the deadlock. However, just one process
which uses busy polling to check for progress defeats this heuristic. Therefore
there is also a warning which is triggered when the average blocking time in MPI
exceeds another, much larger threshold. The drawback is that this warning can
also be triggered by correct programs with a load balance problem.

Some deadlocks will always occur because of a true data dependency. Others,
so called potential deadlocks, depend on MPI implementation aspects: for exam-
ple, two processes sending data in both directions by first calling MPI_Send()
and then MPI_Recv() (head-to-head send) may or may not block depending on

8

whether the message is buffered. Usually this will work for small messages and
deadlock for larger ones. This problem is detected for all message sizes because
the checking library replaces all such potentially blocking sends with a corre-
sponding synchronous send: this send is guaranteed to wait until the recipient
enters a matching receive and thus the normal deadlock detection will report the
problem.

The second communication method is used for checking collective operations:
because collective operations are not allowed to overlap, their communicator can
be used inside the collective MPI wrapper call to exchange additional informa-
tion. Note that only other collective operations are allowed: messages might
interfere with application messages or requests currently pending on the com-
municator. The actual checks are similar to the ones described in [2], but the
implementation described in that paper uses messages and therefore might break
if the application overlaps collective operations with message transmission. An-
other improvement compared to that implementation is that one error report
per faulty operation is generated which then contains information about the
problem detected in each involved process in a condensed format.

Finally, for messages one extra message on a shadow communicator is sent.
There are alternative approaches (using derived data types, explicit pack/unpack,
modifying the MPI implementation), but they all have certain disadvantages (no
support for variable amount of additional data, performance penalty, costly to
implement and less flexible). Compared to those disadvantages the drawback
of the extra message approach is minor: if the recipient uses non-blocking re-
ceives with MPI ANY SOURCE then it becomes difficult to reliably associate
the application message with the corresponding extra message. There is a certain
chance that messages are not matched correctly when multiple processes send at
the same time, but this can be detected, so instead of producing a false positive
report the checking of the affected application messages is silently skipped.

One of the important global checks, both for collective operations and mes-
sages, is the one which compares data type signatures. Mismatches lead to data
transmission problems that might go completely unnoticed because MPI im-
plementations typically do not include the sender’s data type in messages and
therefore do not detect if the incoming data is interpreted incorrectly. A data
type signature hash code generated according to [7] is included in the extra data
exchanged for messages and collective operations to detect this.

4 Case Study: HPCC

4.1 Error Analysis

Running the complete HPCC [9] benchmark, version 1.0.0, under control of the
checking library revealed some problems. This section describes the steps taken
to investigate and fix these problems. After setting up the benchmark normally
for Intel r© MPI, it was run with:

mpiexec -genv LD_PRELOAD libVTmc.so -n <process count> ./hpcc

9

No recompilation is necessary to switch between runs with and without check-
ing. Having debug information in the executable helps to locate the code which
calls MPI, but is not absolutely required. Without it the checking library would
still display function names (if available) and the name of the executable or
shared library containing it (always available).

The first run with a larger problem size produced output like the one in
Fig. 4 for each process. Note that only the first ten instances of each error type
were reported, because there is a configurable limit to avoid excessive output for
problems that occur repeatedly. Currently this does not take the call site into
account, so a problem of one kind at one place can hide the same problem at
another. The problem was harmless in this case, so the benchmark continued to
run. At the end another problem was found related to unfreed requests.

It is faster and easier to work with a smaller problem size during debugging.
The HPCC startup code in src/io.c was patched so that only that benchmark
was executed. Running with just 4 processes and a smaller problem size still
triggered the same warnings about RandomAccess.

It is good practice to fix the errors at the beginning first because they might
hide and/or cause ensuing problems. Currently it is only possible to turn off
checking by type and not possible to selectively suppress problems by their
location in the source code.

In this case fixing the reuse of the send buffer at time_bound.c:233 was
trivial: the actual content of the message was irrelevant, sending an empty mes-
sage is allowed by MPI and has the same effect of telling the recipient to stop
processing (patch 16). Rerunning with that fix led to reports about to the same
problem in MPIRandomAccess.c (which seems to be a direct copy with some
modifications), which was fixed the same way.

With these fixes the remaining buffer overlaps are directly related to the
leaked request (Fig. 5): the buffer with address 0x747540 of an active request cre-
ated at MPI_Isend() in time_bound.c:222 was reused in MPIRandomAccess.c:549
while the previous send request was still active. The source shows that both calls
use the same global LocalSendBuffer. The request leak confirmed that the ap-
plication neither deleted it, nor did it wait or check for completion. This is a
potentially dangerous problem: if the application overwrites the send buffer be-
fore MPI is able to transmit it, then the recipient of the first message will not
receive the data it was supposed to receive. This is not just a theoretical problem,
during at least one run the checking library also found a corrupted transmission
where the send buffer was the same LocalSendBuffer (Fig. 6).

Because the leaked request handles are stored in local variables, it seemed ap-
propriate to add MPI_Wait() calls at the end of the HPCC_Power2NodesTime()
and Power2NodesMPIRandomAccessUpdate() functions to ensure that the re-
quests are completed before leaving these functions. A code review found two
more similar code patterns that apparently were not active during the runs. The
final patch is in Fig. 17.

10

[0] WARNING: LOCAL:MEMORY:OVERLAP: warning

[0] WARNING: New send buffer overlaps with currently active send buffer at address 0x7fbfffdb80.

[0] WARNING: Control over active buffer was transferred to MPI at:

[0] WARNING: MPI_Isend(*buf=0x7fbfffdb80, count=1, datatype=MPI_LONG_LONG, dest=1, tag=1,\

comm=MPI_COMM_WORLD, *request=0x7fbfffd924)

[0] WARNING: HPCC_Power2NodesTime (RandomAccess/time_bound.c:233)

[0] WARNING: HPCC_MPIRandomAccess (RandomAccess/MPIRandomAccess.c:786)

[0] WARNING: main (src/hpcc.c:143)

[0] WARNING: Control over new buffer is about to be transferred to MPI at:

[0] WARNING: MPI_Isend(*buf=0x7fbfffdb80, count=1, datatype=MPI_LONG_LONG, dest=2, tag=1,\

comm=MPI_COMM_WORLD, *request=0x7fbfffd928)

[0] WARNING: HPCC_Power2NodesTime (RandomAccess/time_bound.c:233)

[0] WARNING: HPCC_MPIRandomAccess (RandomAccess/MPIRandomAccess.c:786)

[0] WARNING: main (src/hpcc.c:143)

...

[0] INFO: LOCAL:MEMORY:OVERLAP: reported 10 times, limit CHECK-SUPPRESSION-LIMIT reached =>\

not reporting further occurrence

...

[0] WARNING: LOCAL:REQUEST:NOT_FREED: warning

[0] WARNING: When calling MPI_Finalize() there were unfreed requests:

[0] WARNING: 2 in this process.

[0] WARNING: This may indicate that resources are leaked at runtime.

[0] WARNING: To clean up properly MPI_Request_free() should be called

[0] WARNING: for each persistent request and MPI_Wait() for normal

[0] WARNING: requests.

[0] WARNING: 1. 1 time:

[0] WARNING: MPI_Isend(*buf=0x7475c0, count=1, datatype=MPI_LONG_LONG, dest=2, tag=2,\

comm=MPI_COMM_WORLD, *request=0x7fbfffdd7c)

[0] WARNING: Power2NodesMPIRandomAccessUpdate (RandomAccess/MPIRandomAccess.c:602)

[0] WARNING: HPCC_MPIRandomAccess (RandomAccess/MPIRandomAccess.c:837)

[0] WARNING: main (src/hpcc.c:143)

[0] WARNING: 2. 1 time:

[0] WARNING: MPI_Isend(*buf=0x7475c0, count=2, datatype=MPI_LONG_LONG, dest=2, tag=2,\

comm=MPI_COMM_WORLD, *request=0x7fbfffdd7c)

[0] WARNING: HPCC_Power2NodesTime (RandomAccess/time_bound.c:222)

[0] WARNING: HPCC_MPIRandomAccess (RandomAccess/MPIRandomAccess.c:786)

[0] WARNING: main (src/hpcc.c:143)

Fig. 4. HPCC: initial output for process #0

11

[0] WARNING: LOCAL:MEMORY:OVERLAP: warning

[0] WARNING: New send buffer overlaps with currently active send buffer at address 0x747540.

[0] WARNING: Control over active buffer was transferred to MPI at:

[0] WARNING: MPI_Isend(*buf=0x747540, count=2, datatype=MPI_LONG_LONG, dest=2, tag=2,\

comm=MPI_COMM_WORLD, *request=0x7fbfffdc6c)

[0] WARNING: HPCC_Power2NodesTime (RandomAccess/time_bound.c:222)

[0] WARNING: HPCC_MPIRandomAccess (RandomAccess/MPIRandomAccess.c:786)

[0] WARNING: main (src/hpcc.c:143)

[0] WARNING: Control over new buffer is about to be transferred to MPI at:

[0] WARNING: MPI_Isend(*buf=0x747540, count=382, datatype=MPI_LONG_LONG, dest=1, tag=2,\

comm=MPI_COMM_WORLD, *request=0x7fbfffdc6c)

[0] WARNING: Power2NodesMPIRandomAccessUpdate (RandomAccess/MPIRandomAccess.c:549)

[0] WARNING: HPCC_MPIRandomAccess (RandomAccess/MPIRandomAccess.c:837)

[0] WARNING: main (src/hpcc.c:143)

...

[0] WARNING: LOCAL:REQUEST:NOT_FREED: warning

[0] WARNING: When calling MPI_Finalize() there were unfreed requests:

[0] WARNING: 2 in this process.

[0] WARNING: This may indicate that resources are leaked at runtime.

[0] WARNING: To clean up properly MPI_Request_free() should be called

[0] WARNING: for each persistent request and MPI_Wait() for normal

[0] WARNING: requests.

[0] WARNING: 1. 1 time:

[0] WARNING: MPI_Isend(*buf=0x747540, count=17, datatype=MPI_LONG_LONG, dest=1, tag=2,\

comm=MPI_COMM_WORLD, *request=0x7fbfffdc6c)

[0] WARNING: Power2NodesMPIRandomAccessUpdate (RandomAccess/MPIRandomAccess.c:602)

[0] WARNING: HPCC_MPIRandomAccess (RandomAccess/MPIRandomAccess.c:837)

[0] WARNING: main (src/hpcc.c:143)

[0] WARNING: 2. 1 time:

[0] WARNING: MPI_Isend(*buf=0x747540, count=2, datatype=MPI_LONG_LONG, dest=2, tag=2,\

comm=MPI_COMM_WORLD, *request=0x7fbfffdc6c)

[0] WARNING: HPCC_Power2NodesTime (RandomAccess/time_bound.c:222)

[0] WARNING: HPCC_MPIRandomAccess (RandomAccess/MPIRandomAccess.c:786)

[0] WARNING: main (src/hpcc.c:143)

Fig. 5. HPCC: further output for process #0 after fixing the tag=1 (= FIN-
ISHED TAG) sends

12

[7] ERROR: GLOBAL:MSG:DATA_TRANSMISSION_CORRUPTED: error

[7] ERROR: Data was corrupted during transmission.

[7] ERROR: Data was sent by process [4] at:

[7] ERROR: MPI_Isend(*buf=0x7475c0, count=283, datatype=MPI_LONG_LONG, dest=7, tag=2,\

comm=MPI_COMM_WORLD, *request=0x7fbfffdd6c)

[7] ERROR: HPCC_Power2NodesTime (RandomAccess/time_bound.c:170)

[7] ERROR: HPCC_MPIRandomAccess (RandomAccess/MPIRandomAccess.c:786)

[7] ERROR: main (src/hpcc.c:143)

[7] ERROR: Receive request activated at:

[7] ERROR: MPI_Irecv(*buf=0x72d5c0, count=1024, datatype=MPI_LONG_LONG,\

source=MPI_ANY_SOURCE, tag=MPI_ANY_TAG, comm=MPI_COMM_WORLD, *request=0x7fbfffdbac)

[7] ERROR: HPCC_Power2NodesTime (RandomAccess/time_bound.c:140)

[7] ERROR: HPCC_MPIRandomAccess (RandomAccess/MPIRandomAccess.c:786)

[7] ERROR: main (src/hpcc.c:143)

[7] ERROR: Data was received by process [7] at:

[7] ERROR: MPI_Waitany(count=4, *array_of_requests=0x7fbfffdba0, *index=0x7fbfffdd88,\

*status=0x7fbfffdc20)

[7] ERROR: HPCC_Power2NodesTime (RandomAccess/time_bound.c:241)

[7] ERROR: HPCC_MPIRandomAccess (RandomAccess/MPIRandomAccess.c:786)

[7] ERROR: main (src/hpcc.c:143)

Fig. 6. HPCC: corrupted message originating from the reused LocalSendBuffer

After fixing RandomAccess, all benchmarks were enabled again. Then another
problem was found in the communication bandwidth and latency benchmark:
one process executes an MPI_Send() while every other process is waiting for it
to to join an MPI_Bcast() (Fig. 7). That the MPI_Bcast() blocks the recipient
of the message depends on the implementation of the operation; with other
MPI implementations or different process layouts it might not block. Because
the MPI standard does not guarantee that MPI_Send() always proceeds even
for zero-sized messages and MPI_Bcast() also may block as it does here, the
benchmark needs to be fixed. This can be done by replacing the MPI_Send()
with an MPI_Isend(), as in patch 15.

5 Performance

Several different factors are expected to affect MPI performance with checking
enabled and therefore this section investigates performance along several differ-
ent dimensions.

– additional memory accesses to calculate checksums of communication buffers
– sending one additional, small message for each application message
– executing all message sends in rendezvous-mode without buffering small mes-

sages
– executing additional collective operations for each application operation,

again with small amounts of data

13

[0] ERROR: no progress observed in any process for over 1:00 minutes, aborting application

[0] WARNING: starting premature shutdown

[0] ERROR: GLOBAL:DEADLOCK:HARD: fatal error

[0] ERROR: Application aborted because no progress was observed for over 1:00 minutes,

[0] ERROR: check for real deadlock (cycle of processes waiting for data) or

[0] ERROR: potential deadlock (processes sending data to each other and getting blocked

[0] ERROR: because the MPI might wait for the corresponding receive).

[0] ERROR: [0] no progress observed for over 1:00 minutes, process is currently in MPI call:

[0] ERROR: MPI_Send(*buf=0x75f04c0, count=0, datatype=MPI_BYTE, dest=1, tag=102,\

comm=MPI_COMM_WORLD)

[0] ERROR: cross_ping_pong_set (src/bench_lat_bw_1.5.2.c:583)

[0] ERROR: cross_ping_pong_controlled (src/bench_lat_bw_1.5.2.c:766)

[0] ERROR: bench_lat_bw (src/bench_lat_bw_1.5.2.c:1188)

[0] ERROR: bench_lat_bw_print (src/bench_lat_bw_1.5.2.c:1309)

[0] ERROR: main_bench_lat_bw (src/bench_lat_bw_1.5.2.c:1387)

[0] ERROR: main (src/hpcc.c:251)

[0] ERROR: [1] no progress observed for over 1:01 minutes, process is currently in MPI call:

[0] ERROR: MPI_Bcast(*buffer=0x912cf50, count=0, datatype=MPI_BYTE, root=3, comm=MPI_COMM_WORLD)

[0] ERROR: cross_ping_pong_set (src/bench_lat_bw_1.5.2.c:586)

[0] ERROR: cross_ping_pong_controlled (src/bench_lat_bw_1.5.2.c:766)

[0] ERROR: bench_lat_bw (src/bench_lat_bw_1.5.2.c:1188)

[0] ERROR: bench_lat_bw_print (src/bench_lat_bw_1.5.2.c:1309)

[0] ERROR: main_bench_lat_bw (src/bench_lat_bw_1.5.2.c:1387)

[0] ERROR: main (src/hpcc.c:251)

[same MPI_Bcast() callstack for processes #2 and #3]

Fig. 7. HPCC: potential deadlock triggered by blocking in MPI Send()

14

kind of communication involved different point-to-point calls, different col-
lective operations

configuration of checking checks can be enabled and disabled selectively and
there are different ways to generate stack back traces; enabling more tests
will incur a higher overhead

number of processes to test scalability
process placement affects whether communication is between nodes or inside

nodes

The results are given as slowdown, i.e. the time required for a run with check-
ing enabled in a certain configuration divided by the time required for the same
problem without checking. The set of nodes assigned by the job scheduler had
an effect because inter-node communication latencies were different, therefore
care was taken to only compare results generated on the same set of nodes in
the same job.

The influence of the different factors listed above was investigated by running
the Intel r© MPI Benchmarks [3] PingPong (blocking send/receive), PingPing
(non-blocking sends), Sendrecv (data exchange in a one-way ring implemented
with MPI_Sendrecv()), Bcast and Allgatherv. Checking collective operations
requires one additional MPI_Allreduce() to ensure that the operation and some
common parameters match, usually one gather or scatter operation to exchange
data type and checksum information, one MPI_Allreduce() to check whether
any process found a problem before executing the actual operation and–if trans-
mission error checking is enabled–two more MPI_Allreduce()\verb calls to
check for correction execution afterwards (these two could be rolled into one
call).

The choice of MPI benchmarks covers the effect on different point-to-point
and collective calls. Using different configurations covers the effect of the dif-
ferent checks and how stack back traces are generated. To limit the number of
combinations which had to be run, each configuration simplifies the work that
the checking library has to do:

default: all checks enabled; reliable, but slow stack unwinding
fast stack unwinding: all checks enabled; faster stack unwinding which relies

on frame pointers

PCTRACE-FAST ON

no stack unwinding: all checks enabled; stack unwinding disabled

PCTRACE OFF

no buffer content checks: all checks which require reading buffer content be-
fore and after communication disabled; stack unwinding disabled

CHECK LOCAL:MEMORY:ILLEGAL_MODIFICATION OFF
CHECK GLOBAL:MSG:DATA_TRANSMISSION_CORRUPTED OFF
CHECK GLOBAL:COLLECTIVE:DATA_TRANSMISSION_CORRUPTED OFF

15

Note that wild cards can be used to match checks,
this has the same effect as the two previous entries:
CHECK GLOBAL:*:DATA_TRANSMISSION_CORRUPTED OFF

PCTRACE OFF

no potential deadlock detection: same as before, but also no check for po-
tential deadlocks

CHECK LOCAL:MEMORY:ILLEGAL_MODIFICATION OFF
CHECK GLOBAL:*:DATA_TRANSMISSION_CORRUPTED OFF
CHECK GLOBAL:DEADLOCK:POTENTIAL OFF

PCTRACE OFF

The version of TAC used in all benchmarks was the official 7.0.1 release
and the version of Intel MPI 3.0 build 021. The cluster had 256 nodes with two
Intel r© Xeon r© 5100 processors per node and two cores per processor. Infiniband
was used as high-speed interconnect. For benchmarks involving two processes,
these two processes were started on different nodes. For all other benchmarks
the number of nodes was varied from 1 to 128 with four processes per node,
usually placed so that processes with ranks #0–#3 ran on the first node, #4–7
on the second, etc. With this configuration adjacent processes in the Sendrecv
benchmark can directly communicate through shared memory. To simulate the
case where all processes are forced to communicate via the network, the slowdown
was also investigated with processes placed in a round-robin fashion.

5.1 Overhead depending on Configuration

Figure 8 shows the slowdown measured for the PingPong benchmark when using
the different configurations described above. Note that it was necessary to use a
logarithmic y-axis because the high overhead for slow stack unwinding caused a
slowdown of 100 times for small messages, which is 10 times slower than using
the fast stack unwinding.

For an MPI operation where the MPI call and the correctness checking itself
are already costly the contribution of the stack unwinding is less pronounced but
still considerable, like for Allreduce in Fig. 9. In that comparison the less costly
configuration without stack unwinding has a higher overhead for small message
sizes than with fast unwinding; this anomaly indicates that MPI performance
varied between different invocations. Only one run was executed during bench-
marking. Running multiple times and averaging might have produced better
results, but as the results were mostly stable already with one run that was not
done.

There are ideas how the performance penalty for reliable stack unwinding
can be avoided; until then it is recommended to compile with frame pointers
enabled and configure the checking library to use the faster method.

16

 1

 10

 100

 1000

1Mi512Ki256Ki128Ki64Ki32Ki16Ki8Ki4Ki2Ki1Ki51225612864321684210

av
er

ag
e

tim
e/

av
er

ag
e

tim
e

[u
s/

us
]

amount of data (per process) [byte]

default configuration
fast stack unwinding
no stack unwinding

also no buffer content checks
also no potential deadlock check

Fig. 8. Slowdown for different configurations (PingPong between 2 nodes)

 1

 10

 100

1Mi512Ki256Ki128Ki64Ki32Ki16Ki8Ki4Ki2Ki1Ki51225612864321684

av
er

ag
e

tim
e/

av
er

ag
e

tim
e

[u
s/

us
]

amount of data (per process) [byte]

default configuration
fast stack unwinding
no stack unwinding

also no buffer content checks
also no potential deadlock check

Fig. 9. Slowdown for different configurations (Allreduce, 8 processes, 2 nodes)

17

The other configuration options do not have the same dramatic effect. For
very large message sizes disabling the buffer checking should have a more notice-
able effect, but this is only visible for medium-sized messages. Also the overhead
should go down as the message size increases, but instead it increases again at
the end. Profiling the checking library showed that this was due to overlap check-
ing inside the receive buffer. The initial, straight-forward implementation of that
feature has an unnecessarily high runtime complexity so that it completely dom-
inates the overhead for large messages; rewriting it should improve performance
considerably. This check could not be turned off either and thus prevented run-
ning with another less costly configuration. This will also be changed in the next
version.

Turning of potential deadlock detection only has an effect for those message
sizes where the MPI implementation itself does not yet use synchronous sends.
For messages larger than 262144 bytes Intel r©MPI itself switches to synchronous
sends so that from then one there is no difference between the last two config-
urations. Potential deadlock detection does not affect performance of collective
calls at all.

5.2 Effect on Different MPI Calls and Scalability

As seen in the previous section, the most interesting configuration is the “fast
stack unwinding” one because it leaves all checks enabled and can be used in
practice without unfavorable effects as long as the application was compiled
with frame pointers; otherwise checking still works, but might report incomplete
callstacks.

This section investigates the effect of this configuration across different com-
binations of chunk size, number of processes and calls. The PingPing test only
involves two processes, so Fig. 10 shows the slowdown for Sendrecv instead. Note
that the y-axis with the process count is reversed because low process counts
typically incur the higher overhead and thus would obscure the graph if they
were plotted at the front.

The slowdown for Sendrecv is overall higher than for PingPong because the
wrapper for MPI_Sendrecv() must replace one optimized call with several differ-
ent calls to do the checking. The slowdown is almost constant for all combinations
of message size and process count, with some variations for 8 processes; perhaps
that run was disturbed more than the others. For the round-robin process layout
the baseline run of Sendrecv is much slower as soon as more than one node is
involved. The checking overhead is not affected to the same extend, therefore
the slowdown in Fig. 11 is actually lower compared to the consecutive layout in
10.

Bcast (Fig. 12) again shows an anomaly for 8 processes; this needs further
investigations. The high slowdown of Bcast with small message sizes and high
number of processes is caused by the additional MPI_Allreduce(): without those
the original MPI_Bcast() is implemented using non-blocking sends and multiple
different broadcast operations overlap in time, leading to a very efficient execu-
tion of multiple broadcasts in the same direction. With checking each broadcast

18

4Mi1Mi256Ki64Ki16Ki4Ki1Ki25664168421

amount of data [bytes] 256
128

64
32

16
8

4

number of processes

 10

 20

 30

 40

 50

 60

slowdown [us/us]

Fig. 10. Slowdown for Sendrecv (consecutive process layout, fast stack unwinding)

4Mi1Mi256Ki64Ki16Ki4Ki1Ki25664168421

amount of data [bytes] 256
128

64
32

16
8

4

number of processes

 5
 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

slowdown [us/us]

Fig. 11. Slowdown for Sendrecv (round-robin process layout, fast stack unwinding)

19

4Mi1Mi256Ki64Ki8Ki2Ki512
6432168421

amount of data [bytes] 256
128

64
32

16
8

4

number of processes

 5
 10
 15
 20
 25
 30
 35
 40
 45
 50

slowdown [us/us]

Fig. 12. Slowdown for Bcast (consecutive process layout, fast stack unwinding)

operations blocks because the checking library has to move data to and from all
processes.

In the figure for Allreduce (13) the slowdown gets close to 5 times starting
with process counters ≥ 16 and message sizes ≥ 1Ki. Both operations show the
same behavior regardless of the process layout, which is not surprising because
the MPI automatically implements the involved collective calls so that they work
equally well in both cases.

It is worth pointing out that in almost all cases the correctness checking
overhead scales better with chunk size and process count than the implemen-
tation of the underlying MPI call and that the microbenchmarks used in this
section are not representative of normal MPI applications because they conti-
nously call MPI and/or simulate somewhat unrealistic communication patterns.
In real applications the slowdown will be proportional to the number of MPI
calls; application code is hardly affected apart from some minor background
load for deadlock monitoring. Therefore the actual slowdown for specific appli-
cations depends largely on how often they call MPI. The next section looks at
the slowdown of HPCC to give a feeling how more complex MPI code is affected.

5.3 HPCC Slowdown

HPCC was run with different process counts with and without checking, using
the fast stack unwinding configuration and both process layouts. HPCC was com-

20

4Mi1Mi256Ki64Ki
8Ki2Ki512256643216844

amount of data [bytes] 256
128

64
32

16
8

4

number of processes

 5

 10

 15

 20

 25

slowdown [us/us]

Fig. 13. Slowdown for Allreduce (consecutive process layout, fast stack unwinding)

Table 1. HPCC configuration

Processes (4 per node) Ns Ps Qs

8 40000 2 4
16 60000 4 4
32 80000 4 8
64 100000 8 8

128 120000 8 16

piled with frame pointers and full optimization. Because error reporting takes
unpredictable amounts of time (part of it is an intentional random delay to flush
the output), the problems mentioned above were fixed before compilation by ap-
plying the patches in the appendix. The problem sizes and the process grid were
adapted to match the number of processes (Tab. 1). With these configurations
the baseline run took between half an hour and an hour for all benchmarks.

This section investigates the overall slowdown for complete benchmarks, i.e.
including their setup phase. For that the different performance numbers gen-
erated by each benchmark were ignored and only the wallclock times between
start and end of each benchmark were used. Figure 14 shows the slowdown for
the consecutive process layout. The job with 64 processes did not run in time to
be included in this paper.

21

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

12832168

w
al

lc
lo

ck
 ti

m
e/

w
al

lc
lo

ck
 ti

m
e

[s
/s

]

number of processes [process]

PTRANS
HPL

StarDGEMM
SingleDGEMM

StarSTREAM
SingleSTREAM

MPIRandomAccess
StarRandomAccess

SingleRandomAccess
MPIFFT
StarFFT

SingleFFT
total

Fig. 14. Slowdown for HPCC (consecutive process layout, fast stack unwinding)

The LatencyBandwidth was excluded from the plot because its slowdown is
considerably higher than for the other benchmarks: 20.2x slower for 8 processes,
11.9x for 16, 4.9x for 32 and 2.2x for 128. Thus for LatencyBandwidth and
also the MPIFFT benchmark the slowdown decreases for higher process counts,
whereas it increases for PTRANS, HPL and MPIRandomAccess. Overall the slow-
down increases moderately from 1.3x to slightly less than 1.5x.

For the round-robin process placement the results are very similar and thus
not presented in another diagram. For 128 processes the MPIRandomAccess trig-
gered a warning about using more than 100 concurrently active requests, most of
them created in RandomAccess/time_bound.c:233. For reasons that were not
investigated further this did not occur when laying out processes consecutively.
The threshold for printing warnings at 100, 200, etc. requests is configurable; per-
haps this default value (and some others) should be proportional to the number
of processes.

6 Related Work

The taxonomy of errors and the importance of detecting them is based on the
experience with the Intel r© Message Checker prototype, in particular the user
survey described in [1]. The post-mortem trace analysis approach of the Intel

22

Message Checker was replaced with an online analysis because that is more
scalable and better supports error analysis with an interactive debugger.

NEC MPI/SX ([10]) and MPICH2 ([2]) collectives checking, MARMOT ([5],
[6]), Umpire ([11]) and MPI-CHECK ([8]) use the same online approach. MPI-
CHECK also includes a compiler component to check for some errors at the
source level. Apart from MARMOT and Umpire all of them use distributed
checking, just like TAC correctness checking.

Table 2 is an updated version of the same table in [10], taking into account
more recent publications and adding information about TAC correctness check-
ing. What sets TAC correctness checking apart from all other tools is that it
covers all the important MPI-1 checks and pays special attention to usability: it
is the only tool which provides special support for investigating problems inter-
actively with a debugger and that uses debug information, function names and
stack back traces to provide problem reports that directly map to the source
code.

7 Conclusion

TAC correctness checking, available from http://www3.intel.com/cd/software/products/asmo-
na/eng/306321.htm addresses all of the major concerns for MPI developers in
an easy-to-use tool. It has found problems in HPCC that did not show up be-
fore. The initial release focused on correct error detection, not performance. This
paper identified some obvious ways to improve performance which will be ad-
dressed in future releases. For non-MPI intensive applications the slowdown is
already below a factor of 2 times. Scalability for high process counts and large
data volumes is very good.

Another aspect that could be improved is more fine-grained suppression of
specific problems. The tool should already never report false positives, but some
of its warnings may refer to problems that cannot be fixed or are of low priority.
Currently it is only possible to disable checks completely.

The potential deadlock in HPCC also demonstrates another area for im-
provement: some users will want to know about potential deadlocks to ensure
maximum portability, others might only be interested in problems which really
occur with specific MPI implementations. “Checking profiles” could be added to
enable just the desired checks.

8 Acknowledgements

We thank Bob Kuhn for starting the MPI Correctness Checking work at Intel
and pursuing it together with Jay DeSouza, Victor Samofalov, Sergey Zheltov,
Stanislav Bratanov and several other colleagues. The experience gathered while
collaborating with them on the Intel r© Message Checker has been instrumental
for kick-starting the development of TAC Correctness Checking.

For TAC Correctness Checking we thank those who believed in it in 2006 and
gave permission to go ahead with its implementation, in particular Bill Magro

23

Table 2. Key characteristics of different MPI verification approaches

architecture collective

NEC MPI/SX distributed intra & inter
MPICH2 distributed intra
MARMOT centralized (distributed memory) intra
Umpire centralized (shared memory) intra
MPI-CHECK distributed, instrumentation intra
MC tracefile (offline) intra
TAC distributed intra

point-to-point checking PMPI

NEC MPI/SX deadlock available
MPICH2 data type used
MARMOT deadlock used
Umpire deadlock, buffer used
MPI-CHECK deadlock used
MC deadlock, buffer, data type used
TAC deadlock (hard + potential), buffer, data type used

portable opaque objects

NEC MPI/SX no (NEC MPI) yes
MPICH2 yes no
MARMOT yes yes
Umpire limited (SMP only) no
MPI-CHECK limited (Fortran only) no
MC yes (preview for Intel MPI & MPICH) some
TAC yes (available for Intel r© MPI) some

data type checking MPI-2

NEC MPI/SX setup of file view full
MPICH2 communication (hash) partially
MARMOT construction partially
Umpire no no
MPI-CHECK no no
MC communication (partly) no
TAC communication (full) no

24

and Karl Solchenbach. The discussions with colleagues like Alexander Supalov,
Georg Bisseling, Werner Krotz-Vogel, Klaus Dieter-Oertel, Hans Plum, Heinrich
Bockhorst and Jim Cownie about usability and MPI semantic have been very
helpful.

Victor Shumilin joined the TAC Correctness Checking project as a co-developer
and has been an invaluable help for getting it released in time as a stable and
reliable product, together with all the application engineers who tried out inter-
nal versions with different ISV codes. Besides some colleagues already mentioned
above, Tim Prince, Scott McMillan, Henry Gabb and Jonathan Anspach must
be mentioned here.

Julien Langou and George Bosilca were so kind to publish their data type
hashing code [7] and allow reuse in closed-source applications. The open source
libunwind is another reused component with various contributors outside and
inside Intel (Andrey Veskov).

25

References

[1] Jayant DeSouza, Bob Kuhn, Bronis R. de Supinski, Victor Samofalov, Sergey
Zheltov, and Stanislav Bratanov. Automated, scalable debugging of MPI pro-
grams with Intel r©Message Checker. In SE-HPCS ’05: Proceedings of the second
international workshop on Software engineering for high performance computing
system applications, pages 78–82, New York, NY, USA, 2005. ACM Press.

[2] Chris Falzone, Anthony Chan, Ewing Lusk, and William Gropp. Col-
lective Error Detection for MPI Collective Operations. In Proc.
of the 12th European PVM/MPI Users’ Group meeting, Recent Ad-
vances in Parallel Virtual Machine and Message Passing Interface, Lec-
ture Notes in Computer Science 3666, pages 138–147. Springer, 2005.
http://www.mcs.anl.gov/ gropp/bib/papers/2005/collective-checking.pdf.

[3] Intel r©MPI Benchmarks 3.0. http://www.intel.com/cd/software/products/asmo-
na/eng/307696.htm#mpibenchmarks.

[4] Intel r© Trace Analyzer and Collector. http://www.intel.com/cd/software/products/asmo-
na/eng/306321.htm.

[5] Bettina Krammer, Matthias S. Müller, and Michael M. Resch. Runtime Checking
of MPI Applications with MARMOT. In ParCo 2005, Malaga, September 2005.
Elsevier, 2005.

[6] Bettina Krammer and Michael M. Resch. Correctness Checking of MPI One-
sided Communication Using MARMOT. In Proceedings of EuroPVM/MPI 2006,
Lecture Notes in Computer Science Vol. 4192, pages 105–114. Springer, 2006.

[7] Julien Langou, George Bosilca, Graham E. Fagg, and Jack Dongarra. Hash func-
tions for datatype signatures in MPI. In Proc. of the 12th European PVM/MPI
Users’ Group meeting, Recent Advances in Parallel Virtual Machine and Mes-
sage Passing Interface, Lecture Notes in Computer Science 3666, pages 76–
83. Springer, 2005. http://www.cs.utk.edu/ library/TechReports/2005/ut-cs-05-
552.pdf.

[8] Glenn R. Luecke, Hua Chen, James Coyle, Jim Hoekstra, Marina Kraeva, and Yan
Zou. MPI-CHECK:a tool for checking Fortran 90 MPI programs. In Concurrency
and Computation: Practice and Experience 15(2), pages 93–100, 2003.

[9] P. Luszczek, J. Dongarra, D. Koester, R. Rabenseifner, B. Lucas, J. Kepner,
J. McCalpin, D. Bailey, and D. Takahashi. Introduction to the HPC Challenge
Benchmark Suite. http://icl.cs.utk.edu/hpcc/, 2005.

[10] Jesper-Larsson Träff and Joachim Worringen. The MPI/SX Collectives Verifica-
tion Library. In ParCo 2005, Malaga, September 2005. Elsevier, 2005.

[11] Jeffrey S. Vetter and Bronis R. de Supinski. Dynamic software testing of
MPI applications with Umpire. In In Supercomputing (SC), 2000, 2000.
http://www.sc2000.org/proceedings/techpapr/index.htm#01.

26

A Patches for HPCC V1.0.0

--- src/bench_lat_bw_1.5.2.c.orig 2007-02-21 17:09:03.000000000 +0100

+++ src/bench_lat_bw_1.5.2.c 2007-02-21 17:22:08.000000000 +0100

@@ -442,6 +442,9 @@

/* do the measurements */

for (i_meas=0; i_meas < number_of_measurements; i_meas++)

{

+ MPI_Request tokensendreq = MPI_REQUEST_NULL;

+ MPI_Status ignoredstatus;

+

result_index = 0;

for (client_rank=client_rank_low; client_rank <= client_rank_high;

client_rank += client_rank_stride)

@@ -580,11 +583,12 @@

* messages to server processes

*/

if ((myrank == client_rank) && (client_rank < client_rank_high))

- MPI_Send (sndbuf, 0, MPI_BYTE, client_rank + client_rank_stride,

- NEXT_CLIENT, MPI_COMM_WORLD);

+ MPI_Isend (sndbuf, 0, MPI_BYTE, client_rank + client_rank_stride,

+ NEXT_CLIENT, MPI_COMM_WORLD, &tokensendreq);

MPI_Bcast (sndbuf, 0, MPI_BYTE, client_rank_high, MPI_COMM_WORLD);

}

+ MPI_Wait (&tokensendreq, &ignoredstatus);

number_of_results = result_index;

}

Fig. 15. The code should handle the case that MPI Send() and MPI Bcast() block

27

--- ./RandomAccess/time_bound.c.orig 2006-12-05 11:06:38.000000000 +0100

+++ ./RandomAccess/time_bound.c 2007-02-20 16:00:38.000000000 +0100

@@ -230,7 +230,7 @@

for (proc_count = 0 ; proc_count < NumProcs ; ++proc_count) {

if (proc_count == MyProc) { finish_req[MyProc] = MPI_REQUEST_NULL; continue; }

/* send garbage - who cares, no one will look at it */

- MPI_Isend(&Ran, 1, INT64_DT, proc_count, FINISHED_TAG,

+ MPI_Isend(&Ran, 0, INT64_DT, proc_count, FINISHED_TAG,

MPI_COMM_WORLD, finish_req + proc_count);

}

@@ -513,7 +514,7 @@

for (proc_count = 0 ; proc_count < NumProcs ; ++proc_count) {

if (proc_count == MyProc) { finish_req[MyProc] = MPI_REQUEST_NULL; continue; }

/* send garbage - who cares, no one will look at it */

- MPI_Isend(&Ran, 1, INT64_DT, proc_count, FINISHED_TAG,

+ MPI_Isend(&Ran, 0, INT64_DT, proc_count, FINISHED_TAG,

MPI_COMM_WORLD, finish_req + proc_count);

}

--- RandomAccess/MPIRandomAccess.c.orig 2007-02-21 14:47:42.000000000 +0100

+++ RandomAccess/MPIRandomAccess.c 2007-02-21 14:48:33.000000000 +0100

@@ -346,7 +346,7 @@

for (proc_count = 0 ; proc_count < NumProcs ; ++proc_count) {

if (proc_count == MyProc) { finish_req[MyProc] = MPI_REQUEST_NULL; continue; }

/* send garbage - who cares, no one will look at it */

- MPI_Isend(&Ran, 1, INT64_DT, proc_count, FINISHED_TAG,

+ MPI_Isend(&Ran, 0, INT64_DT, proc_count, FINISHED_TAG,

MPI_COMM_WORLD, finish_req + proc_count);

}

@@ -610,7 +610,7 @@

for (proc_count = 0 ; proc_count < NumProcs ; ++proc_count) {

if (proc_count == MyProc) { finish_req[MyProc] = MPI_REQUEST_NULL; continue; }

/* send garbage - who cares, no one will look at it */

- MPI_Isend(&Ran, 1, INT64_DT, proc_count, FINISHED_TAG,

+ MPI_Isend(&Ran, 0, INT64_DT, proc_count, FINISHED_TAG,

MPI_COMM_WORLD, finish_req + proc_count);

}

Fig. 16. Avoid reuse of Ran in multiple simultaneous messages

28

--- RandomAccess/time_bound.c.2 2007-02-21 15:41:05.000000000 +0100

+++ RandomAccess/time_bound.c 2007-02-21 15:43:03.000000000 +0100

@@ -293,6 +293,7 @@

MPI_Cancel(&inreq);

MPI_Wait(&inreq, &ignoredStatus);

#endif

+ MPI_Wait(&outreq, &ignoredStatus);

/* end multiprocessor code */

}

@@ -575,6 +576,7 @@

MPI_Cancel(&inreq);

MPI_Wait(&inreq, &ignoredStatus);

#endif

+ MPI_Wait(&outreq, &ignoredStatus);

/* end multiprocessor code */

}

--- RandomAccess/MPIRandomAccess.c.2 2007-02-21 15:40:29.000000000 +0100

+++ RandomAccess/MPIRandomAccess.c 2007-02-21 15:46:13.000000000 +0100

@@ -399,6 +399,7 @@

MPI_Cancel(&inreq);

MPI_Wait(&inreq, &ignoredStatus);

#endif

+ MPI_Wait(&outreq, &ignoredStatus);

/* end multiprocessor code */

}

@@ -662,6 +663,7 @@

MPI_Cancel(&inreq);

MPI_Wait(&inreq, &ignoredStatus);

#endif

+ MPI_Wait(&outreq, &ignoredStatus);

/* end multiprocessor code */

}

Fig. 17. Check for completion of LocalSendBuffer send before leaving functions

29

B Supported Error Checks

Table 3. Supported Global Errors

Error Name Type Description

Error Name in 1.0 Tech Preview

GLOBAL:MSG/COLLECTIVE:DATATYPE:MISMATCH error the type signature does not
match8. Not matched data types in operation

9. Wrong send-recv type signatures
37. Wrong data type in collective operation

GLOBAL:MSG/COLLECTIVE:DATA_TRANSMISSION_CORRUPTED error data modified during
transmission28. Send-receive checksum mismatch

36. Checksum mismatch for collective operation

GLOBAL:MSG:PENDING warning program terminates with
unreceived messages22. Non-paired send

GLOBAL:DEADLOCK:HARD fatal a cycle of processes waiting
for each other23. Non-paired receive

31. Incomplete collective operation
40. Deadlock

GLOBAL:DEADLOCK:POTENTIAL fatala a cycle of processes, one or
more in blocking send41. Potential deadlock

GLOBAL:DEADLOCK:NO_PROGRESS warning warning when application
might be stucknot detected

GLOBAL:COLLECTIVE:OPERATION_MISMATCH error processes enter different
collective operationsnot detected

GLOBAL:COLLECTIVE:SIZE_MISMATCH error more or less data than
expected35. Send-receive size mismatch for collective operation

GLOBAL:COLLECTIVE:REDUCTION_OPERATION_MISMATCH error reduction operation
inconsistent38. Different reduction operations

GLOBAL:COLLECTIVE:ROOT_MISMATCH error
root parameter inconsistent

39. Wrong root process

GLOBAL:COLLECTIVE:INVALID_PARAMETER error invalid parameter for
collective operationreported individually for each process

GLOBAL:COLLECTIVE:COMM_FREE_MISMATCH warning MPI Comm free() must be
called collectivelynot detected

a if check is enabled, otherwise it depends on the MPI implementation

30

Table 4. Supported Local Errors

Error Name Type Description

Error Name in 1.0 Tech Preview

LOCAL:EXIT:SIGNAL fatal process terminated by fatal
signal1. Process abort - forced program termination

4. Incomplete function call - a call to an MPI function without return
32. Unfinished collective operation
42. Process hang-up

LOCAL:EXIT:BEFORE_MPI_FINALIZE fatal process exits without
calling MPI Finalize()2. Abnormal process end (abend)

4. Incomplete function call - a call to an MPI function without return
42. Process hang-up

LOCAL:MPI:CALL_FAILED depends on MPI and error MPI itself or wrapper
detects an error3. MPI uninitialized: call to MPI functions before MPI Init()

5. Wrong function parameters
6. Error return code for function
7. Unknown data type
14. Repeated buffer attach
15. Repeated buffer detach
16. No attached buffer for point
17. Detach of unattached buffer
25. Wrong point operation
26. Wrong peer process
30. Wrong size in send-receive operation

LOCAL:MEMORY:OVERLAP warning multiple MPI operations
are started using the same
memory

10. Overlapped elements in derived data type for receive
24. Overlapping buffers error in Sendrecv
27. Overlapping buffers error with previously started point operation
33. Buffers overlapping error with previous started point-to-point operation
34. Send and receive buffers overlapping in collective operation

LOCAL:MEMORY:ILLEGAL_MODIFICATION error data modified while owned
by MPI21. Wrong checksum at start and end of non-blocking point

LOCAL:MEMORY:INACCESSIBLE error buffer given to MPI cannot
be read or writtensegfault and incomplete call were reported

LOCAL:REQUEST:ILLEGAL_CALL error
invalid sequence of calls

not detected

LOCAL:REQUEST:NOT_FREED warning program creates
suspiciously high number of
requests or exits with
pending requests

11. Non-freed request - non-freed passive request
13. Non-waited request - no MPI Test() or MPI Wait()
23. Non-paired receive

LOCAL:REQUEST:PREMATURE_FREE warning freeing an active receive
request is discouraged12. Wrong request free

19. Unfinished send
20. Unfinished receive

LOCAL:DATATYPE:NOT_FREED warning program creates high
number of data typesnot detected

