Checking DLLs for Thread Safety

Introduction

There might be situation where you need to check if the DLLs provided by 31 party is thread safe or not.
This can be done by writing a short test driver (given below) to encompass DLL calls with OpenMP
directives. The entire application is then analyzed with Intel® Thread Checker and checked to see if
there are any errors. Please note this test is not a guarantee of thread safety, but it is an excellent test
when source is available and the only test we know of when source is not available.

DLL

Let us consider the PrimesDLL which returns the number of primes within the range that are mentioned
as arguments.

Entire DLL code

extern "C" long FindPrimes(long start, long end, long skip, CALLBACK FUNC func)
{

gPrimesFound = 0;
for(int i = start; i <= end; 1 += skip)

{
if(TestForPrime (i))
gPrimesFound++;

(*func) (1);

}
return gPrimesFound;

}

static bool TestForPrime (int val)

{

int limit, factor = 3;
limit = (long) (sqrtf ((float)val)+0.5f);
while((factor <= limit) && (val % factor))

factor ++;

return (factor > limit);

Test Driver

The test driver calls the DLL twice in each of the section. You can replace the FindPrimes with the DLL
function you are interested in.

PrimeDLL test driver:

PrimeData test[2];

#fipragma omp parallel sections num_threads (2)

{
#fpragma omp section
primesFoundl = FindPrimes (test[0].start, test[0].end, ...);
#pragma omp section
primesFound2 = FindPrimes (test[1l].start, test[l].end, ...);
}

Thread Checker Analysis

The test driver was run with the Intel Thread Checker and it points out threading issues related to data-
races, deadlocks and stalls.

If Intel® Thread Checker only reports informational issues (blue circles with an ‘i’ inside), it means
Intel® Thread Checker did not identify any issues indicating the dll is not thread safe. Intel® Thread
Checker only checks routines exercised by the data. You may want to vary the data set to exercise
additional code path and repeat.

If Intel® Thread Checker identifies issues with red (hexagon) or yellow (polygon) then this indicates the
dll is not thread safe. If source is available you can double click to go to source view. If source is not
available you can double click to see a call stack view of where issue occurred.

The output below shows Write->Write data races in the FindPrimes function in the DLL code. If you
right click on the source code, it pinpoints to the exact line in the code where there is a memory conflict.

emony write of Unknown at “primedll.cpp:51 conflicts with a

: .

a, ontex ort Description everity escription aunl ilteres o
Context I | Shot D I Sever b] I Count Filtered o

I

- P ny 3 Read -» ‘wWite b emony write of Unknown at "'main.cpp': 80 conflicts with a prior 1 Fal %

= main. cpp-- data-race memorny read Unlkcnown at "main. cpp':82 (anti dependence] el o

E w

21 ny 4 ‘wiite -»> Read M emony read of Unknown at “main.cpp' 80 conflicts with a priar 1 Fal 5

2 | man-chp data-race memony wite of Unknown at “main.cpp' 80 (flow dependence) ake g

Ll

ol w77 5 ‘wirike -» WWrite M emory wiite of Unknown at 'main.cpp':80 conflicts with a prior 1 Fal 5

S mnain. cpp:- data-race memony wite of Unknown at “main.cpp' 80 (output dependence] alse

:

o

=

“primedl.cpp'b0 2 E!:t:i;;'\irite 0 Egloj;?de;nnocri]read Unknown at "primedl. cpp':60 (anti 1 Falze
“primedl.cpp'b0 B E!:t‘:i;;'\ilite 0 gi?ﬂgmwonrfrgfagrﬂlknnlfnt';:\lzt;Llj'[:;-?i?ndélai?cp;;ﬁ?Bgo[gﬂit?ts wihe 1 Falze
dependence]
Unkrawn 10 Thead temination o l:ée:sdelr;frod%tagr;l;?::\ln -includes stack allocation of 1048576 1 False
Unkrawn 1 Thiead termination o l:ée:sdelr;ffodatagr;l;?::\ln -includes stack allocation of 1048576 1 False
Whols Program 1 7 Thiead termnination o ;:1 E?%lan;ijﬁ;ﬂi?fggg;ﬁi; (=l B R = 1 False
Whols Program 2 8 Thiead termnination o Igéea%%lsngjﬁ;ﬂﬂ?fggggﬁi; (=l B R = 1 False
Whole Program 3 9 Thread temination o ISTB%%E";%datL,;ISn;aDi?.Ec‘lpg;;ﬂLS- iEchcesBlacislocationk! 1 False

|

Diagnostics | Stack TracesJ Source ViewJ

]
£

JI2WUO AT SOUELLORE J 4y, 20

E 15t Access |v Stack: IFmdanes ‘primedl.cpp"55

Le|

E 2nd Access |v Stack: IFmdanes "mrimedll.cpp51

|I||I
Ll

=

RERR| L% 47|55

|I||I
Ll

=

RERR| L% 47|55

<

1 | [3]+

<

ALddres|Li m dource |b Lddres|Li m dource |b
3a static long gPrimesFound = 0; 34
37 35 static bool TestForPrime (int va
38 static bool TestForPrime (int w: 36 static long gPrimesFound = 0;
Ox1l...:39 i a7
Oxl...id40 int limit, factor = 3: 358 static bool TestForPrime(int wva
41 Ox... 39 {
Oxl...i42 limit = (long) (sgrof((float Ox... i40 int limit, factor = 3:
Oxl...:43 while| [(factor <= limit) & 41
Oxi...i44 factor ++; Ox... 42 limit = (long) (sgrtf((float
45 Ox... 43 while| (factor <= limit) &&
Ox1...:46 return [(factor > limit); Ox... 44 factor ++;
Oxi...:47 ' 45
48 4p return (factor > limit);
43 extern M"C" long FindPrimes|lont 47 I
Ox1l...:50 { 45
Oxl...:i51 gPrimesFound = O; 49 extern "C" long FindPrimes|long
il 2 for(int i = start; i <= et &0 i 3
""")@3 ¢
if| TestForPrlme(l] 1 5z for{ int i = start; 1 <= en
ound++; 53 {
54 if{ TestForPrimeii) 1 L]
Ox1...:57 (*func) ([1 9; 55 Q gPrimesFound++;
Oxl...:58 i 1

I | [3]»

Diagnostics | Stack Traces Souce View |

