Microsoft Exchange Server Message Transfer Agent
Page 95

Microsoft® Exchange Server Message Transfer Agent

Microsoft Exchange

Message Transfer Agent

[image: image1.wmf]
 WHITE PAPER.
ENTERPRISE TECHNICAL SUPPORT

Content contributors:
Perry Owen, Kevin Bushnell, Marc Stanton, Paul Bonrud, Rabih Andari, and Sameer Patel

ARCHITECTURE
4
MTA General Property Page
4
Transport Configuration
5
TCP Transport Property Page
5
TP4 Transport Property Page
6
X.25 Property Page
7
Link Configuration
8
Link General Property Page
8
Permissions Property Page
9
Schedule Property Page
9
Stack Property Page
10
Override Property Page
10
Advanced Property Page
12
Connected Sites Property Page
15
Address Space Property Page
15
X.25 Link Property Page
15
Dynamic RAS Connector
16
MTA RAS General Property Page
16
RAS Override Property Page
16
Transport Class 4 (TP4) Installation and Configuration
17
Microsoft Exchange Server to Microsoft Exchange Server Setup
18
Microsoft Exchange Server to Other Mail System Setup
18
Configuring the OSIRTE File
19
Additional Suggestions
20
Message Flow
21
Troubleshooting
21
Categories of problems
21
Troubleshooting with MTA objects and Message IDs
21
Tools
21
Objects that don't make it to disk
22
Deleting *.DAT files
22
Why should you track an object back to its source?
22
What happens when the MTA receives a message
22
What happens when an Exchange user sends a message
24
What happens when the MTA is stopped with messages in the system
25
Common object related events
29
How to use event logs to track a Message ID or Object
30
Tracking with Message IDs
34
Identifying MTA queues not described in MTACHECK.LOG
35
Logging
35
Application Event Log
35
Text Event Log (Ev0.log)
41
Application Protocol Data Unit (APDU) Logs (Bf0.log)
41
Interoperability Logs (Ap0.log)
42
Mtacheck.log
42
Dr. Watson Log / User.dmp
43
Perfopt.log
46
Tracking Log
46
Link Monitor Log
46
Server Monitor Log
47
RAM Logging
47
Call Stack Dumping (Calls.out)
49
MTA Check
51
MTA Wipe
52
Replaying DAT files
53
Complete Replay
53
Remote Replay
53
Incremental Replay
54
Monitoring
56
Overview
56
Windows NT Performance Monitor
56
Server Monitor
61
Link Monitors
62
Microsoft Exchange MTA Queues
65
Escalation Procedure
67
Preparing to escalate an MTA issue to Critical Problem Resolution team(CPR)
67
Preparing for remote debug
68
Debugging/Code Tree
69
Code Tree Structure of the MTA:
69
How to Debug the MTA:
70
Finding the MTA version (build number) from the event logs.
70
Generating and examining the Calls.Out file
70
Generating and analyzing the APDU (BF*.LOG) log files
72
Generating the Interoperability (AP*.LOG) log files
74
Configuring DRWTSN32 to Generate a DRWTSN32.LOG and USER.DMP
74
Analyzing the DRWTSN32.LOG
75
Analyzing the USER.DMP
77
Appendices
81
Exchange MTA registry Settings
81
Request for Comments (RFC’s)
88
Perfmon Counters
89
Tools
91
Admin Dumps (Admindmp.txt)
91
Aspirin (including command line version)
91
Eicon Tools
91
EcVer.exe
92
EcCard.exe
92
EcDialer.exe
92
EcModule.exe
92
Event Log Filter (ELF)
92
Event Viewer
92
Event Log Scanner (EVTSCAN)
92
ExDump
93
Hex2Str
93
Kill
93
Log Conversion Utility (Logconv.exe)
93
Log Filter Utility (Logfilt.exe)
94
Message Flow Log Analisys Utility (Logflow.exe)
94
Link Monitor
94
MDBView
94
Message Tracking
94
Mtacheck
94
MTAWipe
94
Network Monitor
94
Performance Monitor
95
Ping
95
PView
95
QSlice
95
RAMDEC
95
RPC Counter ?
95
RPC Ping
95
Server Monitor
95
TP4 Ping
95
Traced MTA
95

ARCHITECTURE

The Microsoft Exchange Message Transfer Agent (MTA) submits, routes, and delivers messages to other Microsoft Exchange Server MTAs, information stores, connectors, third party gateways, and foreign X.400 MTAs. It also converts documents as needed from MAPI to native X.400.

Each MTA, depending upon the installed hardware options, can connect to other MTAs over the following transports:

· X.25

· TCP/IP

· TP4

· Dynamic RAS

One or more link objects can be associated with a specific transport. These link objects define the parameters of the remote system.

The link and transport information is combined to supply the information necessary to make a connection to a remote system. These connections can be to other Microsoft Exchange Server MTAs or third party X.400 MTAs that support these transports. Please note that third party MTAs must be RFC1006 compliant in order to connect to a Microsoft Exchange MTA.

At the time of installation, an MTA object will be created with default values. The configuration of this MTA object will be applied to all of the transport links created on it afterwards.

MTA General Property Page

Schema Attributes can be obtained by running the Microsoft Exchange Administrator program in Raw mode. To do this, start Admin.exe with the “/r” switch, as follows:

Admin.exe /r

An additional Raw Properties command will be available on the File menu. A dump of the Raw properties can be saved to text file, Admindmp.txt, in the \Exchsrvr\Bin directory by performing the following steps:

1. Select the MTA Object.

2. Depress the CTRL key.

3. Open the File menu and click the Raw Properties command.

4. Release the CTRL key.

Property Attribute
Schema Attribute
Type

MTA Local Name
MTA-Local-Desig
Text (12)

MTA Local Password
MTA-Local-Cred
Text (62)

MTA Version
Version-String
Text(128)

Maximum Message Size
Deliv-Cont-Length
Integer

Expand Distribution Lists Locally
Expand-DLs-Locally
Boolean

Enable message tracking
X.400 Service Event Log (Registry Parm)
Boolean (default ON)

Administrative Note
Description
Text (1024)

Created
When-Created
UTC-Time

Home Site
Server Name
Text (15)

Last Modified
When-Changed
UTC-Time

MTA General DS Attributes

MTA Local Name: This is the name of the MTA. It will be used for identification purposes when connecting to remote MTAs. This field is required and will default to the name of the server on which the MTA is installed.

MTA Local Password: This is the password that the MTA will use when connecting to a remote MTA. This field is not required. Please note that the password is stored and transmitted in clear text.

Max Message Size: When this radio button is selected, the value in the edit control will contain the maximum message size that this MTA will process. Any message greater than the allowed limit will result in a Non-Delivery Report (NDR).

No Limit: When the radio button is selected, the MTA will allow any message size.

Expand Remote Distribution Lists Locally: If set, the default, this MTA will expand any Distribution Lists (DLs) it can. By default, the MTA will only expand DLs that reside within the local Microsoft Exchange Site. This check-box will enable the MTA to expand DLs that reside on remote Sites that have been replicated into this Site. If a DL has the Home-Server attribute set, it will override this field and the message will be routed to the specified MTA for expansion.

Enable message tracking: If set, a tracking log will be created.

Administrative Note: This is a free form comment entered by the Administrator.

Transport Configuration

The transport information defines the local system configuration for the X.400 transports supported by the Microsoft Exchange Server. A new transport stack will be created and will be associated with one, and only one, MTA. Each MTA can have all the transport stacks available and used at the same time. Please note, however, that only one transport stack of each kind can be created on each Microsoft Exchange Server.

You can add new transports by following these steps:

1. Start the Microsoft Exchange Administrator program.

2. Open the File menu.

3. Select the New Other command.

4. Select the MTA Transport Stack command.

When you are adding a new transport, a configuration menu will be displayed. The Type listbox will present all of the available transport types that are installed. The Server listbox will contain all of the Microsoft Exchange Servers within the local Site.

When a Type and a Server have been selected, the new transport stack will be created and the transport property page for that transport type will be displayed. In the standard edition of Microsoft Exchange Server, only the Dynamic RAS transport stack will be available. This will also be true with the enterprise edition if you have not installed an X.400 connector. In the standard version, a connector must be installed to expose the remaining transport stacks. With the enterprise version, use the Microsoft Exchange Setup program to install additional connectors.

TCP Transport Property Page

The Microsoft Exchange Server MTA can connect to another X.400 MTA using the TCP/IP transport. This includes foreign MTAs as well as other Microsoft Exchange MTAs. T,S, and P, when defined, will become global to this Microsoft Exchange Server and must be supplied by any other MTA when it attempts to communicate over this transport stack. These values can be left blank, the default. T, S, and P values are not mandatory, based on RFC 1006.

T, S, and P selectors serve as entry points to the OSI stack at the transport, session, and presentation layers, respectively. Since no NT security context is applied here, these selector values will also serve as the security context that both connecting MTAs must have to create an association and transfer mail.

Property Attribute
Schema Attribute
Type

Name
Common-Name
String(Teletext)

Server Name
N-Address
String(Octet) - 4 bytes

T Selector
T-Address
String(Octet)

S Selector
S-Address
String(Octet)

P Selector
P-Address
String(Octet)

Created
When-Created
UTC-Time

Home Site

Last Modified
When-Changed
UTC-Time

MTA TCP/IP Directory Attributes

Name: This is the Common-Name of the Transport Stack object. This field will be set at creation time and once created, will be read-only.

Server Name: This is the name of the server upon which the TCP stack is being installed. The server name will be automatically added and read-only.

OSI Address Information: If required, these values represent the P-Selector, S-Selector, and T-Selector. These values are configured in conjunction with the remote system and represent the values for the local MTA. These values are entered in either HEX or the textual representation of their HEX values. The lengths of the fields are as follows:

T Selector: 32 Bytes

S Selector: 16 Bytes

P Selector: 4 Bytes.

TP4 Transport Property Page

When you install the TP4 transport stack, verify that the following registry entry exists. If the entry is absent, the Microsoft Exchange Administration program will display a message stating that TP4 is not installed on this Microsoft Exchange Server. You must install the TP4 protocol using Control Panel Network applet. The TP4 protocol is included on the Microsoft Exchange Server compact disk.

Hkey_Local_Computer

\System

\CurrentControlSet

\Services

\IsoTP

\Parameters

\CLNP

\LocalComputerNSAP

Property Attribute
Schema Attribute
Type

Name
Common-Name
String(Teletext)

Address
N-Address
String(Octet) - 12 bytes

T Selector
T-Address
String(Octet)

S Selector
S-Address
String(Octet)

P Selector
P-Address
String(Octet)

Created
When-Created
UTC-Time

Home Site

Last Modified
When-Changed
UTC-Time

MTA TP4 Directory Attributes

Name: This is the Common-Name of the Transport Stack object. This field will be set at creation time and once created, will be read-only.

OSI Address Information: See the description in the TCP Transport section above.

X.25 Property Page

Property Attribute
Schema Attribute
Type

Name
Common-Name
String(Teletext)

Call User Data
X25-Call-User-Data-Incoming
String(Octet)

Facilities Data
X25-Facilities-Data-Incoming
String(Octet)

Leased Line Port
X25-Leased-Line-Port
String(Octet)

X.121 Address
N-Address
String(Octet) - 15 bytes

T Selector
T-Selector
String(Octet)

S Selector
S- Selector
String(Octet)

P Selector
P- Selector
String(Octet)

Created
When-Created
UTC-Time

Home Site

Last Modified
When-Changed
UTC-Time

MTA X.25 Directory Attributes

Unless otherwise noted, the format of the data entered in these fields is the textual representation of the HEX values. Once entered, the data is converted to HEX and stored in HEX within the Microsoft Exchange Directory service.

Name: This is the Common-Name of the Transport Stack object. This field will be set at creation time and once created, will be read-only.

Leased Line Port: This is the port number that you provided as part of the Eicon configuration and can be obtained from the Eicon configuration program. This control will accommodate a single byte value and will display the value as a decimal integer.

Facilities Data: This is the Facilities Data associated with this computer. These values can be up to 109 bytes long.

Call User Data: Like the Facilities Data, there are provisions to supply Call User Data values for this computer. These values can be up to 128 bytes long.

X.121 Address: This is the X.121 address of this computer. The length of this field is up to 15 bytes and it will be entered in HEX.

OSI Address Information: See rules and description in the TCP Transport section above.

Phone Number Info: There are two ways to make X.25 connections; dedicated leased lines and dial-up X.25 services. These radio buttons are used to select the line type for this transport stack. The X.25 configuration of the connection will vary, depending on the option selected here.

Link Configuration

When making a connection to another mail system’s MTA using X.400 transfer mechanisms, the link to every MTA must be configured. A Microsoft Exchange MTA can support X.25, TP4, and TCP (RFC1006) connections to other X.400 systems. In addition, RAS connections can be made to other Microsoft Exchange MTAs. Each link will be specific to one connection because remote systems can have different conformances or attributes that might require some specific options.

By default, the link will have the eight property pages listed below. The Microsoft Exchange MTA does not support connecting to any MTA that does not use TCP PORT 102, mandated by RFC1006.

· General

· Permissions

· Stack

· Override

· Connected Sites

· Address Space

· Delivery Restrictions

· Advanced

If you cannot see the Permissions page, enable it by following these steps:

1. Open Tools menu in the Microsoft Exchange Administrator’s program.

2. Select the Options command.

3. Click the Permissions tab.

4. Check the Show Permissions for All Objects.

Link General Property Page

Property Attribute
Schema Attribute
Type

Name
Common-Name
Text(64)

Remote MTA Name
Gateway-Local-Design
Text(12)

Remote MTA Password
Gateway-Local-Credentials
Text(62)

Transport Stack
Supporting-Stack
Text(64)

Remote clients support MAPI
Encapsulation-Method
Enumeration

Message text word-wrap
Line-Wrap
Integer

Administrative Note
Description
Text(1024)

Created
When-Created
UTC-Time

Home Site
(Site Name)

Last Modified
When-Changed
UTC-Time

Link General Property Page Attributes

Display Name: Add the name of the connector in this field. It can be changed at any time.

Directory Name: Add the name of the Directory in this field. When entered, it will be read-only because it is part of the Microsoft Exchange Directory. Changes to this will require you to delete the connector and recreate it.

Remote MTA Name: This is the name of the remote MTA. This information needs to be obtained from the remote site. This field can be case sensitive, depending on the remote MTA.

Remote MTA Password: This is the password for the remote MTA. This password, in combination with the Remote MTA Name, will be used to validate the connection between the two MTAs. It will be stored and displayed in clear text. It is not mandatory, but remote MTA administrators can require it. In any case, the remote MTA administrator must provide the password.

Transport Stack: This field is used to relate this link object back to the transport stack running on a Microsoft Exchange Server. This dropdown listbox will show the available transports and their associated Microsoft Exchange Servers. The list will be filtered to only contain entries of the proper transport type. The format of the items in this list will be Servername\Transport Common-Name and will be sorted by Servername.

Remote clients support MAPI: This checkbox is used to decide if the TNEF information will be sent on this link. When selected, it will indicate that a TNEF attachment will be included in the transmitted message. When not selected, there will be no encapsulation. This is set by default. If the remote system does not support MAPI, recipients of the message on the remote system might find a Winmail.dat attachment in the message. This attachment contains the MAPI commands that will not be understood by the remote System. It must be turned off to stop the Winmail.dat attachment.

Message text word wrap: The Microsoft Exchange MTA is able to wrap the lines in the message at a given byte value. The Microsoft Exchange administrator can choose to perform no line wrapping or choose the character position within each line to wrap at. Line wrap is required by some down level clients that cannot handle non-terminated text strings. The default is to perform no line wrap.

Administrative Note: This is a free form comment entered by the administrator.

Permissions Property Page

The Permissions property page relates only to the connector as an object in the Microsoft Exchange Directory and has no impact on message transfer between this MTA and other MTAs.

Schedule Property Page

The Schedule property page contains four options. Changes to the schedule are dynamic and do not require restarting the MTA to take effect.

Selected Times: When this option is selected, the schedule will be editable to allow you to select the times that the connector will start. Prior to the scheduled time, all mail sent over this link will be queued.

The Detail View will be editable only when the Scheduled Times option is used. It will provide a detailed view based on the selection.

Always: This option will activate the link as soon as any message is queued to the connector.

Never: This option will disable the connector.

Remote Initiated: If this option is chosen, the remote MTA will always initiate the connection, the pull model. When the remote MTA connects, it will deliver its mail and request that local queued mail to the remote MTA be sent. This model is beneficial in providing administrators control over access to their systems, and control of where the costs of connections are maintained.

Microsoft Exchange will support the pull model as follows:

· One system will be configured for Remote Initiated activation and the remote system will be configured for either Full Time or Scheduled connections. In addition, the Two Way Alternate (TWA) option in the Advanced tab must be checked. TWA is required so that bi-directional message traffic can occur on the link.

· The remote system will connect to the local system when messages are ready to be sent from the remote system, or when the scheduled activation time occurs. At this time, the remote system will establish a connection and open an association to the local MTA. When this association is opened, the two MTA’s will negotiate who will send their messages first and then message transfer will begin. Once all messages have been sent/received, the link will be closed.

The only other requirement for this to work is that the remote administrator needs to set the TWA option on the remote link. This property will be set by default, so there should be little chance of improper configuration. If the TWA option is not set, the messages on the remote system will not be sent.

Stack Property Page

Remote Host Name: When checked, the remote MTA or Host name will be entered in the address field. Names will be resolved by whichever name resolution method is used by Windows NT. For foreign systems, an entry in the LMHOSTS or HOST files can be added. A common mistake is that you enter an IP number instead of the host name. The IP number will be allowed as a valid entry, but will cause the connection to fail.

IP Address: If chosen, the IP address of the target MTA will be entered. This option is very useful in troubleshooting connection problems because name resolution is not used.

Outgoing OSI Address Information: T, S, and P selectors. These values are for the remote MTA and must be obtained from the remote system. It is very important that the T,S,P values match exactly with the remote system. They can be represented as HEX or text, the radio button will determine this.

Incoming OSI Information: The incoming OSI information will be the same as the outgoing OSI information and refers to the remote system. For example, if the outgoing T,S,P values are MHS, MA, and F8, respectively, the outgoing T,S,P for this link will be MHS, MA, and F8 as well.

Use Expedite Data: This option can be used if the network protocol (TCP, X25, or TP4) can recognize data packets marked for accelerated transfer. This will increase the speed of this link by giving priority to these packets.

Override Property Page

There are times when it becomes necessary to override the values that the local MTA is using internally in order to communicate with a remote system. This property page is used to specify the values that can be overridden to match those of the remote system. If these values are changed, changes will only be applicable to this specific link.

Property Attribute
Schema Attribute
Default
Type

Local MTA Name
MTA-Local-Desig

Text(12)

Local MTA Password
MTA-Local-Cred

Text(62)

Checkpoint Size
RTS-Checkpoint-Size
30
Integer

Recovery Timeout
RTS-Recovery-Timeout
60
Integer

Window Size
RTS-Window-Size
5
Integer

Lifetime
Association-Lifetime
300
Integer

Disconnect
Session-Disconnect-Timer
120
Integer

Threshold
Temp-Assoc-Threshold
50
Integer

Max Open Retries
Num-Of-Open-Retries
144
Integer

Max Transfer Retries
Num-Of-Transfer-Retries
2
Integer

Open Interval
Open-Retry-Interval
600
Integer

Transfer Interval
Transfer-Retry-Interval
120
Integer

Urgent
Transfer-Timeout-Urgent
1680
Integer

Normal
Transfer-Timeout-Normal
10080
Integer

Non-Urgent
Transfer-Timeout-Non-Urgent
15120
Integer

Link Override Attributes

Local MTA Name: There are times when the remote MTA cannot accommodate the existing name of the Microsoft Exchange Server, usually due to size limitations on MTA names. This field will allow you to enter a name to be used when the Microsoft Exchange MTA is linked to a remote MTA. This overrides the local MTA name specified on the transport stack for this link only.

Local MTA Password: Like the MTA Name, the defined password can be overridden to match the configuration of the remote system. The password will be stored and displayed in clear text.

RTS Values: It might become necessary to override the existing RTS values to match those of the remote system. The local RTS Checkpoint Size, RTS Recovery Timeout value, and RTS Window Size values of the Site object can be overridden for this link only. The MTA will negotiate values with the remote MTA.

Check Point Size: When a message is transmitted, a check point is inserted after a certain amount of data has been sent. If an error occurs and retransmission of the message is required, the MTA will retransmit from the last check point. When a network link is unreliable, the check point size can be decreased. Decreasing the check point size will reduce the overall speed of the link because many check points will have to be inserted. A Zero check point can also be used but some Remote MTAs do not support it.

Recovery Timeout: When a transmission error occurs and retransmit is required, the MTA will wait for reconnection the length of time specified by this value. If the recovery timeout has been reached and the connection has not been re-established, the MTA will delete all of the check points and restart the transfer.

Window Size: This will determine the number of check points that can go without any acknowledgment before the MTA suspends the transmission. Increasing this will increase the speed. However, on an unreliable link, the window size might have to be decreased. A bigger widow size will require more resources to be set aside for remote system.

Association Parameters:
Lifetime: This is the amount of time that the association will be open to a remote system after the message has been sent. The default is 300 sec. This means that after the last message has been sent, the MTA will wait 300 seconds before ending the connection. Lowering the parameter will help save connection charges by hanging up sooner. A good example of when this value needs to be lowered is with Dynamic RAS Connector scheduled dial-up connections. When the Dynamic RAS dial-up is on a schedule and delivering messages, a scenario in which mail trickles in to the connector every few minutes can keep the line up indefinitely. If the Lifetime has not been exhausted, the connection will stay open, causing additional Phone charges. Lowering the value to 15 seconds will hang up the line quickly. The mail will then queue until the next scheduled dial-up.

Threshold: Because the MTA is capable of opening multiple associations on a given connection, the value here will determine when a new association will be opened. This is based on the number of messages queued up in the connector. Increasing the threshold can slow the delivery. Decreasing the threshold can increase the speed of the mail being dispatched by opening another association to the remote MTA. The Microsoft Exchange MTA can open 40 concurrent associations at one time. This number can be increased by editing the registry.

Connection Retry Values: The Connection Retry Values specify the number of attempts that will be made to contact, or transfer data to, the remote system. They also specify how long to wait between attempts.

Max Open Retries: When a message is queued to the connector, the MTA will open a connection with the remote MTA. If opening the connection fails, the MTA will try until this value is exhausted. The message will then be returned to the originator with an NDR and the reason will be congestion in the MTA.

Max transfer Retries: If the MTA has an open connection to the remote MTA, the value in this field determines the number of attempts that the MTA will try before returning the message to the originator with and NDR as undeliverable.

Open Interval: If a connection to the remote MTA fails, the value in this field determines the amount of time, in seconds, that the MTA will wait before trying the connection again.

Transfer interval: If message delivery to a remote system fails when the connection is opened, the value in this field determines the amount of the time that the MTA waits before trying again.

Note: The transfer retry value will determine when the MTA will NDR the message based on the value set. These values can be changed depending on the connection reliability. The defaults are usually adequate for all systems.

Using the defaults for connection retries, a message will take 24 hours to return an NDR to the originator if the MTA could not connect to the remote system. This is derived by taken the Max Open Retries (144) and multiplying it by Open Interval (600 seconds). The result is 86,400 seconds. The maximum time that the message can stay in the queue is 7 days, the limit for any message within a Microsoft Exchange System.

Transfer Timeouts: The Transfer Timeout values will override the values of the MTA Site Configuration object. Please note that the MTA Site Configuration value will only apply to messaging within a Microsoft Exchange Site.

The Transfer Timeout values are used determine when an NDR should be sent to the originator if the message transfer fails. A high priority message might require more attention from the MTA. These values are in seconds.

Advanced Property Page

Property Attribute
Schema Attribute
Type

X.400 bodypart used for message text
Translation-Table-Used
DN

X.400 bodypart used for attachments
Deliv-EITs
String(Octet)

MTA Conformance
Supported-Appl-Context
String(Octet)

X.400 Message Contents
Deliv-Ext-Cont-Types
String(Octet)

PRMD
PRMD
Text(16)

ADMD
ADMD
Text(16)

Maximum Message Size
Deliv-Cont-Length
Integer

Use Expedited Data
Transport-Expedited-Data
Boolean

Two-Way Alternate
Two-Way-Alternate-Facility
Boolean

Link Advanced Attributes

X400 bodypart used for message text: The default value is IA5. This entry will be used to determine the textual content type of the messages on this link. The conversion to this body part will only occur when the message is converted from MDBEF (native Microsoft Exchange format) to a native X400 message. If MDBEF is being sent to the remote system, no conversion will take place. Microsoft Exchange supports conversion of the following:

· IA5

· Swedish IA5

· German IA5

· Norwegian IA5

· T.61 (Teletext)

· ISO 6937

In order for the MTA to support backboning operations, the Deliv-EITs attribute is set to include support for all textual body part types. The following table describes the values that will always be configured in the Deliv-EITs attribute:

Body Part
OID

IA5
56030402

T.61
56030405

ISO 6937
5603040B

Table 1 - Text Bodypart OIDs

X400 bodypart used for attachments: This is used to select the format of the X400 attachment that will be sent to the remote system if conversion to X400 format is required. The following table describes the matrix of the attachment types that are allowed based on the setting of the MTA Conformance selection. In the event that an attachment type is not supported, the UI option will not be selectable.

MTA Conformance
Attachment types

1984
BP14 ONLY

1988 subset
BP14 and BP15 (default BP15)

1988
BP14 and BP15 (default BP15)

MTA Conformance Matrix

The following table defines the OID HEX values for the supported body parts:

Body Part
OID

BP-14
56030400

BP-15
56010C00

Table 2 - Supported Body Part OIDs

If BP15 is selected, Microsoft Exchange will actually send a FTPB formatted message in the BP15 body part.

It is possible to send BP14 only on a 1988 or 1988 sub-set link. This is done by selecting the BP-14 radio button. It is also possible to restrict a 1988 link to just BP-14 or BP-15 by selecting the appropriate radio button. By default, both will be set when 1988 or 1988 sub-set is selected so that the MTA can transmit both BP-14 and BP-15 in a backboning scenario. BP-14 will be selected when 1984 mode is selected for the remote system.

MTA Conformance: This is used to specify if the remote system is a 1984, 1988, or sub-set 1988 (X410) X.400 system.

1984
HEX 5600010D

1988 - Sub-Set
HEX 5600010C

1988
HEX 56000106

Table 3 - MTA Conformance

When 1984 mode is selected, the Remote X.400 Global Domain Identifier information is required.

X.400 Message Contents: The MTA needs information in order to determine the types of messages that the remote MTA can accept. By default, the Auto Select option will be selected. This allows the MTA to use routing rules to determine if the message will be sent with MDBEF formatted messages, or if conversion to X.400 formats is required. This determination will be based on the information that the MTA has with regard to proper routing. Care must be taken to insure that a message sent to a remote system with MDBEF will be able to be properly handled in the remote system. If there is doubt, the MTA will convert the message. The administrator can choose to override the MTA decision making process by forcing the MTA to convert the outgoing message to the 1984 P2 format or the 1988 P22 format. All OID types will be written to the Microsoft Exchange Directory to allow the MTA to send any message format to the remote system. If X400 only is selected, the OID value will be determined by the setting of the MTA conformance value. If 1988 or 1988 subset is selected, then the OID for P22 will be written to the Directory. If 1984 is selected, the OID for P2 will be written to the Directory. The following table defines the OID HEX values for the supported content types:

Content Type
OID

P2
56010A00

P22
56010A01

MDBEF
2A864886F71140501

Content Type OIDs

The MTA will make the determination to auto convert from MDBEF by checking the routing information for the remote system. If there is valid X500 (DN) routing information for the recipient in the GWART (Rabih says this should be part of the routing section in the message flow chapter…), the MTA will send MDBEF to the remote system. If only X.400 O/R Name routing information exists, the message will be converted to P2 prior to transmittal.

Global Domain Identifier Information

PRMD: If required, this will be the PRMD of the target MTA. This field is left blank by default.

ADMD: This field is required. This will be the ADMD of the target MTA. If ANY is selected, a single blank will be stored in the Directory. The default is ANY.

Country: This field is required. This will be the country of the target MTA. By default, the country will be the same as the Country-Name attribute on the local Site object.

Use The GDI from Site Addressing: This option will be checked if the Microsoft Exchange GDI is the same as the remote system’s PRMD, ADMD, and Country.

Use the GDI Specified Below: This will specify the remote X.400 Global Domain Identifier when a relay MTA is not in the same Management Domain (MD) as this MTA.

X.400 Link Options

Two Way Alternate (TWA) is set if the link is going to support bi-directional message traffic. Without TWA set on a link, messages can be sent but no messages can be received from the remote system. By default, TWA will be set. Having a link set to Remote Initiated and TWA turned off is an invalid configuration.

The only other X.400 option is Local Initial Turn (LIT). LIT has not been exposed because the MTA will negotiate this option with the remote MTA in most cases. LIT determines which MTA in a bi-directional link will send the data first. Typically, the calling MTA will send the first message and from then on, the MTAs will negotiate who will send next, based on the message priorities of the messages to be sent. If a remote system requires that LIT be configured off initially, you can use Raw properties to disable LIT on the link. In Raw properties, the key is Local-Initial-Turn and the default value is 1, enabled, 0 is disabled. When changing this, the MTA must be restarted for the change to take effect.

Maximum Message Size: All messages larger than this will be returned to the originator. This information is entered in Kbytes.

No Limit: Any message size will be processed.

Connected Sites Property Page

Connected Sites are used in routing and only necessary when connecting to other Microsoft Exchange Servers, When adding a connected Site, the Organization Name will default to the current Origanization and will be grayed out.

Organization Name: By default, this will be set to the name of the current Organization.

Site Name: This is the remote Site name.

Cost: This is the cost value of the remote Site.

Address: This button will bring up the X.400 addressing dialog. The Country, ADMD, PRMD, Organization, and Organizational Units for the remote Site can be set in this dialog. This is the address space of the remote Site and is required because the administrator of the remote Site might have changed the default values of this address. By default, the remote Organization Name will be filled in for the PRMD and the Site Name will be filled in for the Organization. The ADMD will be set to <SPACE> to denote ANY and the Country will be set to the Country value of the current Site. These values can be changed to match the remote Site.

Connected Sites will appear in the available Sites when setting up directory replication and are not required if the remote system is not Microsoft Exchange.

Address Space Property Page

The Address Space should contain the minimum information necessary to determine that a message should be sent through this connector. If all X.400 mail should be routed through this connector, a blank X.400 address space is enough to properly route these messages out of the system. Different type addresses will use the connector if the address space is defined to allow the particular address type. For example, site A is connected via X.400 to site B and site B has an Internet Mail Connector. Site A will be able to route all SMTP mail via the X.400 connector if an SMTP address space is added to the X.400 connector. The route will be automatically added if these sites are replicating their directories.

X.25 Link Property Page

The X.25 Stack property page is used to specify the X.25 parameters necessary to establish a link with the remote MTA. Because there are multiple link types available to Microsoft Exchange, a trigger will expose the proper Link property page for the type of link being created. The types are X.25, TCP, TP4, and RAS. The trigger will display the appropriate property page on the Stack tab.

Property Attribute
Schema Attribute
Type

Call User Data
X25-Call-User-Data-Outgoing
String(Octet)

Facilities Data
X25- Facilities –Data-Outgoing
String(Octet)

Phone number
X25-Remote-MTA-Phone
String(Octet)

X 121 Address
N-Address
String(Octet) - 15 bytes

T Selector
T-Selector
String(Octet)

S Selector
S-Selector
String(Octet)

P Selector
P-Selector
String(Octet)

X.25 Link Attributes

Call User Data: Like the Facilities Data, there are provisions to supply Call User Data values to match the remote computer. These values can be up to 128 bytes long.

Facilities Data: This is the Facilities Data associated with the remote computer. These values can be up to 109 bytes long.

Phone number: If the transport stack has been configured to support asynchronous dial-up operation instead of Leased Line operation, this control will be displayed on the property page. If present, this edit control will allow for the entry of the phone number to dial to reach the remote system.

X.121 Address: This is the X.121 address for the remote computer. It can be up to 15 bytes long. This field will be entered in HEX. If specified, these values will be used to override the values associated with the transport stack. This field is required.

(T, S, P) Selector: The rules for the T, S, P selectors specified in the Stack section above apply to stack objects as well.

Dynamic RAS Connector

The Dynamic RAS Connector makes it possible to connect Microsoft Exchange Servers to other Microsoft Exchange Servers within or in a different Microsoft Exchange Organization via the Remote Access Services (RAS) of Windows NT. The Dynamic RAS Connector differs from the X.400 Connector in many ways. Most importantly, it uses RPCs (Remote Procedure Calls).

MTA RAS General Property Page

Property Attribute
Schema Attribute
Type

Name
Common-Name
String(Teletext)

MTA Callback Number
RAS-Callback-Number
String(Unicode)

Created
When-Created
UTC-Time

Home Site

Last Modified
When-Changed
UTC-Time

Table 4 - MTA RAS Directory Attributes

Name: This is the Common-Name of the Transport Stack object. This field will be set at creation time and once created, is read-only. The Directory Name will become a part of the Directory and cannot be changed. However, the Display Name can be changed at any time.

MTA Callback Number: This phone number will be passed on the RASDIAL command as the callback phone number. In the event that the RAS configuration is set up for dialback security, this is the phone number of the local MTA that will be used by the remote system to call back the originating MTA. This field contains text and is not required. The maximum size of this field is 48 bytes.

RAS Override Property Page

Property Attribute
Schema Attribute
Type

User Name
RAS-User-Name
Unicode

Password
RAS-Password
Unicode

Verify Password
 “
 “

Windows NT Domain Name
RAS-Domain
Unicode

MTA Callback Number
RAS-Callback-Number
Unicode

Overriding Phone Number
RAS-Phone-Number
Unicode

RAS Override Attribute Table

User Name: The User Name is the name of a Windows NT account in the remote domain. This is the account that will be used to logon to the remote Windows NT domain. This account must have the appropriate permissions within the remote domain for proper messaging transfer to occur. If this field is not specified, the Username specified within the RAS phone book entry will be used. This field is just for override purposes and has a maximum length of 20 bytes. The account used in the property page must have Service Account Admin rights on the remote Site / Configuration container. Specifically, SEND AS and MailBox Owner rights. Permission admin does not have these rights by default. Without the above rights, mail transfer will fail. In addition, the override account used must have dial in privileges on the Windows NT RAS Server.

Password: This is the password for the Windows NT account specified in the User Name field. This password will by entered in text but the UI will echo back a “*” for each character entered. The password will never be displayed or stored in clear text. This field is required because the password is not cached within the Windows NT RAS phone book. This field can be 14 bytes long. This field is required if the User Name is being overridden.

Verify Password: This is identical to the Password field and is required if the User Name is being overridden.

Windows NT Domain Name: This is the name of the remote Windows NT domain in which to logon the specified account. This is an override field for the domain entry within the RAS phone book. By default, the RAS phone book entry for the Domain will be used. This field contains text with a maximum size of 15 characters. This field is required if the User Name is being overridden.
Optional Phone Numbers

MTA Callback Number: This phone number will be passed on the RASDIAL command as the callback phone number. In the event that the RAS configuration is set up for dialback security, this is the phone number of the local MTA that will be used by the remote system to call back the originating MTA. This field contains text with a maximum size of 48 characters.

Overriding Phone Number: This is the phone number that will be used to over ride the phone number configured within the RAS phone book. This is not a required field and contains text with a maximum size of 128 characters.

Dynamic RAS Connector Special Configuration issues.
The Microsoft Exchange MTA uses Windows NT RAS Server functionality to connect Microsoft Exchange Servers and transfer mail. The protocols supported by Dynamic RAS are:

1. Netbeui

2. TCP/IP

3. IPX/SPX

Special configuration problems can be encountered using the above protocols when the RAS link is established but no mail transfer occurs.

When using the Netbeui protocol, the Microsoft Exchange MTA might not transfer mail because the default MTA binding order does not specify RPC over netbios or named pipes. In most cases, the Windows NT registry will have to be modified on both Microsoft Exchange Servers to allow message flow on the RAS Connector. For more information about how to deliver mail over the Dynamic RAS Connector using Netbeui, please refer to the following article in the Microsoft Knowledge Base:

ARTICLE-ID:
Q153717

TITLE:

XCON: Dynamic RAS Connector Not Sending Over NetBeui

Transport Class 4 (TP4) Installation and Configuration

This section describes how to set up a Microsoft Exchange Server to run over the Transport Class 4 OSI product using the Windows NT 3.51 operating system.

TP4 Pre-installation Requirements

To install the TP4 product on your Microsoft Exchange Server, you must first make sure you have the correct files for installation. The TP4 product consists of the following files:

ISOTP.SYS

OSIRTE

WSHISOTP.DLL

TP4CFG.DLL

PLUMBING.EXE

DISK1

OEMSETUP.INF

The TP4 installation files can be found in the TP4 SETUP directory at the root of the Microsoft Exchange Server compact disk.

You must already have added and configured a network card prior to TP4 installation.

Microsoft Exchange Server to Microsoft Exchange Server Setup

To install the TP4 product:

1. Copy the TP4SETUP directory from the Microsoft Exchange Server compact disk to a directory on your hard drive.

2. To install the TP4 product, open the Control Panel and double-click the Network icon. Make sure that the network card is listed in the Installed Adapter Cards section and that it is functioning correctly.

3. Click the Add Software button.

4. Scroll through the Network Software list and select the <Other> Requires Disk From Manufacturer field. Click the Continue button.

5. Enter the path to the directory where your seven TP4 files are located. Select the ISO TP4/CLNP Stack and click OK. When this finishes, you should see that the TP4/CLNP Protocol has been added to the Installed Network Software section.

6. Click the OK button. You will see that Windows NT is reconfiguring all your network settings and is adding the TP4 protocol to your configuration.

7. It will then begin to configure your TP4 stack. You will be prompted to
nter a Local Address and an NSAP. You should see that the default values for these two fields are preset to the computer name. We strongly suggest that these values should NOT be changed if you are using a Microsoft Exchange Server to Microsoft Exchange Server connection.

8. Choose OK to accept the values. You should be notified that the Network settings have changed and that a restart is required so that the new changes can take effect.

9. Choose the Restart Now button to restart your computer.

It might be necessary to set the TP4 protocol to start up manually instead of automatically at startup time. To do this, double-click the Services icon in the Control Panel, select the TP4/CLNP Protocol, and click the Startup button. Set the startup option to Manual and click OK.

Microsoft Exchange Server to Other Mail System Setup

TP4 Stack Addressing Requirements

Before you begin to install the drivers, you need to gather the following address information prior to using the TP4 stack:

Ethernet (or MAC) address.

LSEL: This is always HEX 'fe'.

NSAP address type: NBS, GOSIP-V1, GOSIP-V2, OSINET, or user-defined.

NSAP address.

TSEL.

SSEL.

PSEL: This is only for MHS 88 implementations.

The Ethernet address is always made up of 12 hexadecimal values. You can find your local Ethernet address by typing the following on the command line within Windows NT:

NET CONFIG SERVER or IPCONFIG /all

This will return a physical address similar to:

08-00-20-01-96-8d

The NSAP address cannot be longer than 40 hexadecimal characters. An example of an NBS formatted address is:

$49000308002001968dfe00

A lot of implementations do not have a 40 hex character limit. Therefore, in order for the NBS format to work, you would have to drop the optional N-Selector off the end of the above address. So your new NBS formatted address would be:

$49000308002001968dfe

The TSEL, SSEL, and PSEL can be either ASCII or hex. It is suggested to keep all values in hex so that no conversion problems occur. Examples of these selectors are:

'4242'H

An example of a user-defined formatted address is:

4e4343 (In ASCII this is "NCC")

Configuring the OSIRTE File

Once the TP4 protocol is installed on your Windows NT computer, it is sometimes necessary to manually modify the file OSIRTE located in the directory:

WINNT35\SYSTEM32\DRIVERS\etc.

It is necessary to modify this file only if the other mail system is not running the ES-IS protocol. That means that your TP4 stack must use STATIC routing to connect to the other mail system. The default for this TP4 installation is to run the ES-IS protocol.

To add a remote system to the OSIRTE file:

1. Open the file with a text editor.

2. Scroll to the end of the file.

3. Add the remote computer's addressing to the end of the file.

4. Save and close the OSIRTE file.

5. Stop and start the TP4 protocol using Services in Control Panel.

Follow the instructions that are listed at the beginning of the OSIRTE file to add the line required for the non-ES-IS system. The line you need to add consists of the following:

Use a dollar sign ($) sign at the beginning of any field that requires an entry in hexadecimal format. Your remote MAC address is always entered in hex format, so be sure to add the dollar sign. There are three examples of entries given, and here is another one that is known to work:

$49000300805f48478bfe:$00805f48478b:1:\Device\NETFLX1

The first field ($49000300805f48478bfe) is the remote NSAP. The second field ($00805f48478b) is the MAC or Ethernet address. The third field (1) is the priority (which is only viable if a remote computer has more than one NSAP address and you want to prioritize each NSAP). The last field (\Device\NETFLX1) is taken from an entry in your register. The value you want is the device name of the network card that the remote end system will use to connect to the local computer. To find this last value for your local computer do the following:

1. Start the register editor REGEDT32.

2. Go to SYSTEM/CURRENTCONTROLSET/SERVICES/ISOTP/LINKAGE.

3. On the right side, you should see a line that starts with the word "Bind." Double-click this line, and record the string for later use.

4. Go back to your OSIRTE file and append to the end of the line exactly the same string except remove the \STREAMS portion. For example:

\Device\NETFLX1

Note: Remember that this device is the correct one to be used by the remote computer to connect to the local computer.

Additional Suggestions

When configuring two or more computers that are using Microsoft Exchange Server, it is advisable to always leave the Local NSAP addresses as the computer name. Sometimes, problems can occur when the default NSAPs are changed. The registry sometimes has trouble configuring NSAPs correctly, and there is always bound to be some discrepancies between ASCII and hexadecimal configuration. Therefore, you should try to stay with the defaults if at all possible and use only hex or only ASCII.

Many other mail systems will require one of the standard formatted NSAP addressing schemes (OSINET, NBS, and so forth). If the mail system you are trying to connect to has limitations like this, you will have to change your Microsoft Exchange Server configuration appropriately.

To change your local NSAP:

1. In Control-Panel, select Networks

2. Reconfigure the TP4/CLNP Protocol. Change both the NSAP address and the Local name. They must be set to the same values. If you use the hex value put $ at the beginning.

3. Stop and Start TP4 service

To change any remote NSAP:

1. In the Microsoft Exchange Server Administrator program, double-click Connections.

2. Double-click the appropriate TP4 Connector.

3. Select the Stack tab.

4. Type the new NSAP address (this is the ADDRESS field). If hex, DO NOT enter $ in this field. Select the “display fields as HEX”. All fields on this page must be Hex OR Text.

5. Choose the OK button

Note: If the other mail system is not running ES-IS protocol, you must make an entry to the OSIRTE file as well. For more information, see "Configuring the OSIRTE File."

If you are running strictly Microsoft Exchange Server/TP4 to Microsoft Exchange Server/TP4, no manual entry is required in the OSIRTE file because the ES-IS protocol is being used by both end systems. The ES-IS protocol allows the dynamic configuration of remote computers, so no static addressing is necessary.

When trying to connect a Microsoft Exchange Server to another type of mail system, it is sometimes necessary to add some override values in order to interoperate. Some transport products require that Expedited Data be used. Others may only be able to run in 84 conformance mode, and others might only be able to handle a maximum checkpoint size of 5. It is the administrator's responsibility to know these limitations in advance so that the correct configuration can be created. The Microsoft Exchange Server and the TP4/CLNP product are both US GOSIP certified. This certification demonstrates that the products conform to ISO and CCITT standards. Because of this certification, the products are more likely to interoperate with other products that conform to these standards.
Message Flow

Troubleshooting

Categories of problems

Troubleshooting with MTA objects and Message IDs

The focus of this document is troubleshooting errors or problems identified in the NT application log where an MTA object id is involved.

For every object the Exchange MTA processes there is an associated eight-digit object id. The first two digits of the id identify the class of object. The last six digits of the id correspond with a DB<6digit>.DAT file if the object has been written to disk. MTA object classes range in hex from 01 to 0E, but troubleshooting most issues only involves classes 01 (queues) and 06 (messages) so that’s all we’ll focus on here.

Each message also has an associated id. This is referred to as ether the Message ID or MTS identifier. Unlike object ids, which are only used by the local Exchange MTA, the Message ID is part of the message itself and can be tracked across MTAs. A typical Message ID generated by an exchange server looks like C=<country>;A= ;P=<organization>;L=<server>-<date><greenich mean time>-<message number>, though there are several variation of the L= value depending on the message’s source. Message IDs from outside Exchange will differ as well.

Even when a simple message is sent to only one user, Exchange will create several 06 class objects to process the message. Conversely, if one message is sent to a distribution list (DL) containing 100’s of recipients each generated copy of the message will have the same Message ID even after the message leaves the first MTA.

Tools

The primary tool used to begin troubleshooting most Exchange MTA issues is the application log displayed in the NT Event Viewer. The same is true for the types of troubleshooting described in this section. A solid understanding of how to use Filters and the Find option is important.

An often overlooked or at least underused tool is a current, verbose MTACHECK.LOG. This log is most useful when it is used along with the NT application event log. For purposes of troubleshooting object ids the MTACHECK.LOG is useful as follow:

· It contains a quick list of all the secured queues and their associated object ids

· It can be used to quickly identify which queue a message object resides in at MTA startup

· Many times it is the only way to link Data and Reference objects that are in the work queue at startup

The Message Tracking tool in the Exchange Administrator program can also be useful once a specific Message ID has been identified via the NT application log.

A text event log (EV0.LOG) used in conjunction with the Log Filter Utility (LOGFILT.EXE) can also be useful to filter for specific object related MTA event ids.

Objects that don't make it to disk

While reading event logs you will often see MTA events referring to objects and even queues that have no corresponding DAT files. These objects are referred to as unsecured objects. Unsecured objects exist only in computer memory. They are used where no message data will be lost if there is a crash or sudden shutdown. Examples of unsecured queues are timers, held-for-delivery, held-for-transfer, and XAPI sessions. The most common unsecured message objects are ones that have a secured object as a source, but are then expanded or fanned out in memory. An example would be a message sent to a distribution list.

Deleting *.DAT files

OK, you’ve got an error message and it refers to an object id which you translate into a DB*.DAT file. Do you just delete the problem file? ABSOLUTELY NOT! Deleting individual DAT files should be one of your last options. Even then, you should be absolutely sure that you have an up to the minute full backup of the MTADATA directory(s), the MTA must be stopped, and you must have performed a full, knowledgeable inspection of detailed NT application and MTACHECK logs so that you know exactly what, if any, object(s) to delete.

CAUTION: Deleting the wrong DAT file can lead to serious data loss!

Why should you track an object back to its source?

Just because an error message refers to a specific object id that has a matching DAT file, that is no indication that the DAT file still contains the data that caused the original error. DAT file and object ids are often reused very rapidly. Files are not necessarily deleted once the associated object is deleted; an algorithm is used to re-use files. Often the object id reported in an error message is not the source of the problem. However, the source can usually be traced with detailed logs though multiple object ids to the original bad message/object.

The only way to be sure you have identified the correct source object is to have high levels of logging turned on capturing the complete startup, processing, and shutdown or termination of the MTA. You will also need a verbose MTACHECK.LOG. Logging needs to be at level 6 for Field Engineering to fully track all object manipulation by the MTA. If you will also be trying to use the Message ID to either identify the object or use an object id to attempt to identify the sender or recipient then you will also want to set X.400 logging to Maximum.

To give you a basic framework we’ll first give you a little bit of an idea of what happens to a message from an object perspective as it is received and sent by the MTA. Then we’ll get into the details of how to identify the “correct” object id (not just the one in an error message).

What happens when the MTA receives a message
In the simplest of scenarios the MTA will generate at least 3 objects for each incoming message. The first object created is the data object. It contains the data while other objects contain references to it in place of raw data. The second object that is spun off from the first is the one that makes it into the MTA’s work queue. The third object is typically the one placed in the destination queue for delivery (e.g. the queue for the private store or a queue for another MTA). If added layers of complexity, such as a distribution list, are added then several more objects can be spun off and mapping out all the objects and relationships becomes much more complex.

Following is a pruned and summarized version of the object related events from an event log containing the receipt of a simple message. Keep in mind that these events were spread among literally thousands of other events.

Event
Summary Description
Category

2160
Creating object 06000045
Field Engineering

2215
Reference count incremented to 1 on object 06000045
Field Engineering

2161
Copying object 06000045 to 06000046
Field Engineering

2115
Write data buffer for object 06000045
Field Engineering

2166
Adding object 06000046 to queue 0100002B (work queue)
Field Engineering

 272
Object 06000046 received from entity (1984 X400 MTA)
X.400 Service

2215
Reference count incremented to 2 on object 06000045
Field Engineering

2162
Copying object 06000046 to 06000048
Field Engineering

 296
Message content type converted from P2-84 to MDBEF
X.400 Service

2166
Adding object 06000048 to queue 01000039 (private store)
Field Engineering

2163
DBI usage count for object 06000046 decremened to 1
Field Engineering

 271
Object was sent to entity (private store)
X.400 Service

2167
Removing object 06000048 from queue 01000039 (private store)
Field Engineering

2163
DBI usage count for object 06000048 decremened to 1
Field Engineering

2167
Removing object 06000046 from queue 0100002B (work queue)
Field Engineering

2115
Write data buffer for object 06000046
Field Engineering

2216
Reference count decremented to 1 on object 06000045
Field Engineering

2169
Deleting object 06000046
Field Engineering

2169
Deleting object 06000048
Field Engineering

2169
Deleting object 06000045
Field Engineering

To log all the events above, Field Engineering has to be set to log at level 6 (greater than Maximum) via the registry. X.400 Service would have to be set to log at level 2 (greater than Minimum) or higher. In most cases, setting X.400 Service to Medium is sufficient. However if you are troubleshooting a problem where mail isn’t flowing you will likely want to set X.400 Service to Maximum as well.

Even this summarized version is hard to visualize from just the event log. Below is a graphical representation of the same set of events.

Object 06000045
Object 06000046
Object 06000048

2160

2215

2161
2161

2115
|

|
2166

|
272

2215
|

|
2162
2162

|
|
296

|
|
2166

|
2163
|

|
|
271

|
|
2167

|
|
2163

|
2167
|

|
2115
|

2216
|
|

|
2169
|

|

2169

2169

Event Log Map 1

Sending the same message to the same recipient but via a distribution list containing only that user results in two additional objects being created along with many more events written to the application log. If a message is sent to many users and/or distribution lists the trail can become extremely complex. In addition, you are likely to see some of the same object ids re-used by a different branch of the fanout process.

What happens when an Exchange user sends a message

In one of the simplest mail-sending scenarios, a simple message sent directly to a single user on another server, the MTA will work with at least 4 object ids. The first object will be one of the core MTA boot file objects. It will be copied to the second object, which will be the data/reference object. The first object is used as a template to create the second object in the correct format. The third object that is spun off from the second is the one that makes it into the MTA’s work queue. The forth object is typically the one placed in the destination queue for delivery (e.g. a queue for another MTA). If added layers of complexity, such as a distribution list, are added then several more objects can be spun off and mapping out all the objects and relationships becomes much more complex.

Following is a pruned and summarized version of the object related events from an event log containing the sending of a simple message. Keep in mind that these events were spread among literally thousands of other events.

Event
Summary Description
Category

2217
Roll-in of object 06000013 (a core MTA boot object)
Field Engineering

2112
Read of data buffer for object 01000013
Field Engineering

2162
Copying object 06000013 to 06000044
Field Engineering

2215
Reference count incremented to 1 on object 06000044
Field Engineering

2161
Copying object 06000044 to 06000045
Field Engineering

2115
Write data buffer for object 06000044
Field Engineering

2166
Adding object 06000045 to queue 0100002B (work queue)
Field Engineering

272
Object 06000045 received from entity (Private Store)
X.400 Service

2215
Reference count incremented to 2 on object 06000044
Field Engineering

3270
Message submitted successfully by application (Private MDB)
Field Engineering

2162
Copying object 06000045 to 06000047
Field Engineering

 296
Message content type converted from MDBEF to P2-84
X.400 Service

2166
Adding object 06000047 to queue 01000027
Field Engineering

309
Held-for-transmit timer on object 06000047
X.400 Service

2166
Adding object 06000047 to queue 01000040 (other MTA)
Field Engineering

2163
DBI usage count for object 06000045 decremented to 1
Field Engineering

2167
Removing object 06000047 from queue 01000027
Field Engineering

2167
Removing object 06000047 from queue 01000040 (other MTA)
Field Engineering

312
Held queue message timer was cancelled
X.400 Service

2163
DBI usage count for object 06000047 decremented to 1
Field Engineering

271
Object was sent to entity (other MTA)
X.400 Service

2167
Removing object 06000045 from queue 0100002B (work queue)
Field Engineering

2115
Write data buffer for object 06000045
Field Engineering

2216
Reference count decremented to 1 on object 06000044
Field Engineering

2169
Deleting object 06000045
Field Engineering

2169
Deleting object 06000047
Field Engineering

2169
Deleting object 06000044
Field Engineering

To log all the events above, Field Engineering has to be set to log at level 6 (greater than Maximum) via the registry. X.400 Service would have to be set to log at Maximum or higher. In most cases, setting X.400 Service to Medium is sufficient.

Below is a graphical representation of the same set of events.

Object 06000013
Object 06000044
Object 06000045
Object 06000047

2217

2112

2162
2162

2215

2161
2161

2115
|

|
2166

|
272

2215
|

3270
|

|
2162
2162

|
|
296

|
|
2166

|
|
309

|
|
2166

|
2163
|

|
|
2167

|
|
2167

|
|
312

|
|
2163

|
|
271

|
2167
|

|
2115
|

2216
|
|

|
2169
|

|

2169

2169

Event Log Map 2
Sending the same message to the same recipient but via a distribution list containing only that user results in two additional objects being created along with many more events written to the application log. If a message is sent to many users and/or distribution lists the trail can become extremely complex. In addition, you are likely to see some of the same object ids re-used by a different branch of the fanout process.

What happens when the MTA is stopped with messages in the system

The simple examples above are great if you have a very basic and underutilized system, but what happens in a more real world environment where communications to one or more MTAs may be down, where a particular MTA may be backlogged due to message overload or resource shortages? What do you do when a problem occurs and you weren’t already running high levels of logging? After all, if you are running maximum logging levels on the MTA in a non-troubleshooting situation then you are seriously impacting your server’s performance and possibly disk usage.

Scenario 1

First let’s look at the situation where the MTA your server is attempting to send to is down temporarily.

Let’s call your own Message Transfer Agent MTA1 and the destination Message Transfer Agent MTA2. The following table shows the same object from the sending sample above. The first column is what you would expect to see if MTA2 was up and running normally (just like in the sample above). The second column shows the beginning of the events MTA1 would log if MTA2 were temporarily down.

Notice that events initially proceed identically until about the point you see the X.400 Service 310 event. The 310 is a transfer-out message timer expiring. At that point the events begin repeating themselves until either MTA2 comes back up and the message is sent or the message hits its retry count limit. Then the message is NDR’d (Non-Delivery Receipted) back to the originator (assuming MTA1 is not aware of any alternate routes to the same destination).
Object 06000047

With MTA2

Running
Object 06000047

With MTA2

Down

2162
2162

296
296

2166
2166

309
309

2166
2166

2167
2167

2167
2167

312
2163

2163
310

271
Pattern repeats

2169
2166

309

2166

2167

2167

2163

310

Pattern repeats

Etc.

This is still not significantly more complex than the samples above. However if MTA1 is stopped and then restarted before a message received by MTA1 has been passed on to MTA2, tracking all the objects related to the same message through event logs becomes substantially more challenging.

Extended Scenario 2

The next situation is as follows: MTA0 successfully sends a message to MTA1, which MTA1 is to pass on to MTA2 for delivery. If everything work fine we would expect to see the following in the MTA1 logs:

Object 06000042
Object 06000043
Object 06000047

2160

2215

2161
2161

2115
|

|
2166

|
272

2215
|

|
2162
2162

|
|
2166

|
|
309

|
|
2166

|
2163
|

|
|
2167

|
|
2167

|
|
312

|
|
2163

|
|
271

|
2167
|

|
2115
|

2216
|
|

|
2169
|

|

2169

2169

Event Log Map 3

If MTA2 were down, events in the log would look like the following:

Object 06000042
Object 06000043
Object 06000047

2160

2215

2161
2161

2115
|

|
2166

|
272

2215
|

2162
2162

|
2166

|
309

|
2166

2163
|

2167

2167

2163

310

Pattern repeats

2166

309

2166

2167

2167

2163

310

Pattern repeats

Event Log Map 4

Following is a sample of the series of events you would see if MTA1 was stopped and then restarted while it contained a message destined for MTA2 which was still down.

Stated another way:

1. MTA0 sends a message destined for MTA2 to MTA1

2. MTA1 receives the message fine but is unable to forward it to MTA2 as MTA2 is down

3. MTA1 is then stopped

4. “MTACHECK /V /F mtacheck.log” is run to capture information on the objects present in the MTA database

5. When MTA1 is restarted with the message already present in it’s work queue the following events are logged

Object 06000042
Object 06000043
Object 06000033

2215
2112

2217
2112

2167
2112

2166
2217

2167
2112

2112
2162
2162

2215
|
2166

|
309

|
2166

2163
|

2167

2167

2163

310

Pattern repeats

Event Log Map 5

There are two important things to note in terms of different behavior on the logged events above:

1. New Field Engineering event 2217 has entered the picture. A 2217 represents the “Roll-in” of an object that has either not been used since the MTA was restarted or has previously been rolled out. A 2217 is a severity 2 event and requires MTA logging at level 6 (higher than Maximum).

2. An event 2160, 2161, or 2162 logically tying the first two objects together no longer exists. In all previous examples one of these three events could be used to link one object to another while creating an object map or tracing an object back to it’s source object.

.

NOTE: There is no way at this point using just event logs to identify the relationship between the data and reference objects (first two objects). Here is where having a recent copy of an MTACHECK log comes into play. This is why in step 4 above we ran MTACHECK.

The portion of the mtacheck.log related to our sample message would look like this:

 Checking object 06000042 - OK, on queue 0100002B

 Checking object 06000043 - and data object 06000042...OK.

OK, on queue 0100002B

Note that both objects 06000042 and 06000043 exist in the work queue (0100002B).

Note also that object 06000033 from the Event Log Map 5 does not exist on disk and was created in memory during processing. In Event Log Map 4, object 06000047 was created in the same manner for the same message. If the MTA is restarted multiple times with a corrupted object in its work queue, the object that is actually associated with a warning or error logged to the application log may change each time.

In Event Log Map 5 the first 2167 event logged the removal of 06000042 from the work queue. The next paired set of 2166 and 2167 events for object 06000042 were adding and removing the object from a temporary queue. The important point to notice here is that object 06000042 was removed from the work queue and was never added back.

If we make no other change other than to stop MTA1 again, run a new MTACHECK and then restart MTA1 we would see the following events which are slightly different from the last example.

Object 06000042
Object 06000043
Object 06000037

2215
2112

2217
2112

2112
2112

2215
2217

2112

2162
2162

|
2166

|
309

|
2166

2163
|

2167

2167

2163

310

Pattern repeats

Event Log Map 6

The important change to note in this example is that the source object no longer shows in the work queue (or any other queue). Also, there is still no apparent connection between the first two objects.

The MTACHECK log also shows a slightly different pattern than it did the last time:

 Referenced object 06000042 - OK.

 Checking object 06000043 - and data object 06000042...OK.

OK, on queue 0100002B

Note object 06000042 no longer shows in the work queue (0100002B), but only as a referenced object.

The lack of any apparent linkage between the first and second objects in the last two examples, at least as far as can be told from event logs, is a primary reason you should have a current MTACHECK log when troubleshooting object ids.

Common object related events

The following events are the most important ones for tracing objects as they deal with object roll-in, creation, copying or deletion. These are the events that show the beginnings, ends, and linkages of objects.

Event
Log Level Needed
Summary Description

2217
Level 6
Roll-in of object

2160
Maximum
Creating an object

2161
Maximum
Copying an object

2162
Maximum
Copying an object

2169
Maximum
Deleting the object

The following events are used to track message movement in and out of queues. If errors always revolve around a certain queue, that may indicate a problem area. If queues do not appear to be part of the issue, you can skip these events and go to the next event without opening up the description when you are searching through the application log.

2166
Maximum
Adding object to queue

2167
Maximum
Removing object from queue

If a specific queue appears to be related to the problem, then the following events can sometimes be used to associate the object id of the queue with a more meaningful name. These events are not part of your normal message object tracing. They only come into play if you want to find out more information about what a specific, in-memory-only queue was.

285
Level 4
A held-for-delivery/transfer queue was created

2164
Maximum
A new queue was created

3535
Level 4
The first session started

3536
Level 2
An additional session was initiated.

These events show successful receiving and sending. For simply tracking objects to their source they can be skipped. The 272 and 271 events are some of the more informational though as they contain not only object ids but the message id as well as either the source or destination entity the message came from or was sent to respectively.

3270
Level 4
Message submitted successfully by application

 272
Level 2
Object received from entity

 271
Level 2
Object was sent to entity

The following event is logged when the message’s content is converted to another. If can be skipped if you are just interested in tracking the source object id. To decode the content types contained in the event see Knowledge Base article Q162430.

 296
Level 2
message content type converted

The MTA references the original data object with a pointer from the object that was spun off rather than make multiple copies of raw data. A reference count is maintained for each object to insure that the original object is not removed when another object still exists with a pointer to the original. For purposes of tracking objects back to their source, these events can be skipped.

2215
Level 6
Reference count incremented on object

2216
Level 6
Reference count decremented on object

2163
Maximum
DBI usage count for object decremented

2168
Maximum
object deleted but preserved for reference by other objects

These events log low level read and writes to memory and can be skipped when tracking objects.

2112
Level 6
Read of data buffer for object

2115
Level 6
Write of data buffer for object

These timer related messages are used to make sure that a message does not get stuck in a queue to a connection that is never able to be established. For purposes of tracking objects, they can typically be ignored.

 309
Level 4
Held-for-transmit timer

 312
Maximum
Held queue message timer was cancelled

How to use event logs to track a Message ID or Object

Now that we’ve examined several basic examples to see how the pieces fit together it’s time to tie that conceptual framework to the mechanics of using the tools and resources at our disposal, but first a few fundamental guidelines.

· Be sure your application event log has a large enough maximum size that you do not over write anything from the startup of the MTA until where the problem occurs in the log. By default the Application log only is allowed 512 bytes, which is typically not enough when the MTA is logging at high levels. A log size of 5 or 6 megabytes is usually a better choice. Configuring the log to not over write events is a good idea as well. Remember you will stop the MTA or save the application log as soon as you can reproduce the errors you are investigating.

· Once you capture the problem error(s) in your log, save the log to file before beginning your detailed inspection. If you don't and the logs are configured to overwrite events (as is typically the case) you may end up overwriting some of the information you need. If you have overwritten an event since you last refreshed the display, the Event Viewer will display a Stop message that says "The parameter is incorrect" when you try to view an event.

NOTE: The default view in the NT Event Viewer is to View Newest First. Stated another way, the most recently logged events are at the top of the viewer and the oldest logged items are at the bottom. All samples and descriptions provided here will assume Newest First.

Basic Procedure

Once you’ve determined that you wish to track an object id from a recurring error message back to its source you should follow a sequence similar to the following:

1. Verify Log Settings for the Application log to be sure the Maximum size is sufficient

2. Turn up logging on the MTA. Field Engineering should be at level 6. Level 6 has to be set via the Registry Editor (HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services \MSExchangeMTA\Diagnostics\5 Field Engineering: REG_DWORD: 6). X.400 Service can be Medium or Maximum depending on what you are trying to capture. All other logging should be off to minimize the size of the log.

3. Stop the MTA

4. Clear the Application event log (saving is optional)

5. Run a manual MTACHECK using the /V and /F options

6. Start the MTA

7. Confirm duplication of the problem events in the Application log

8. Stop the MTA

9. Save the Application log to an *.EVT file

10. Open the *.EVT and MTACHECK log files for analysis.

11. Trace the object in first the EVT log and then the MTACHECK log

12. If at that point a file(s) needs removed

13. Confirm that the object is class 06 and that a matching DB*.DAT file exists

14. Make a complete backup of the MTADATA directory(s)

15. Use Admin to generate a Directory Export CSV file containing all Mailboxes, Custom Recipients, and Distribution Lists (needed along with the backup for further troubleshooting)

16. Delete the DB*.DAT file(s)

17. Rerun MTACHECK

18. Restart the MTA

Mechanics of tracing objects to their source

Probably the best way to illustrate the tracking process is by using some of our earlier samples.

When tracking source objects the starting point is usually an error recorded in the application event log. Using that as an entry point you then move backward in time through the logs until the trail ends. Tracking objects back to their source is much easier than trying to map out all object activity from the source object to all expanded branches.

In general terms you begin at the error event containing an object id and then:

1. Search backwards in time for linkage events (2161, 2162), creation events (2160) or roll-in events (2217)

2. If you find a linkage event you note the new object id and then search for it

3. If you find a creation event you have found the source object

4. If you find a roll-in event you can’t go any further with the event logs but have not yet identified the source object

a. If the roll-in object was one of the MTA boot files then the next to last object you identified is likely your source object (the MTA boot object was simply used to create a correctly formatted object before adding data to the object)

b. If the roll-in object is not one of the MTA boot objects it was already in the MTA database at MTA startup (usually the work queue) and you will need a recent MTACHECK log to identify the reference/source object.

The examples below have been inverted from what was used earlier to match the direction flow in a typical event log. Newest events are on top and oldest at the bottom.

In the first example we will go through the tracking in great detail. Following examples will just hit the high points.

Object 06000045
Object 06000046
Object 06000048

Error Event
Newest Event

2166

296

2162
2162
Linking Event

272

2166

2161
2161

Linking Event

2215

2160

Oldest Event

Tracking Example using Event Log Map 1

1. To start, you are in the NT Event Viewer with the Application event log open. You are viewing the Event Details on an error event that refers to an object.

06000048
2. Either write down the object id or copy it to the clipboard by highlighting it and pressing Ctrl-C

3. Hit the Escape (Esc) key or click the Close button to close out the Event Detail window

4. Select Find from the View Menu

5. Press the Clear button (if you skip this because fields are blank, make sure the find Direction is Down)

6. Type or Paste (Ctrl-V) the object id into the Description field

Description: 06000048

7. Hit Enter or Click Find next

At this point the highlighter bar will be on event 2166

8. If the event id is not one of the roll-in, creation or linkage ids, you do not need to view details and can simply press the F3 key to repeat the search

At this point the highlighter is on event 296 so you would press F3

9. Repeat the search (pressing F3) until you reach a 2217, 2160, 2161 or 2162 event

The last F3 put the highlighter on a 2162 (linkage) event

10. Once the highlighter is on a roll-in, creation or linkage event, press the Enter key (or double-click the event) to bring up the Event Detail window

11. If the event indicates that the object you were tracking was copied from another object, then either write down the new object id or copy it to the clipboard. If you are on a roll-in event (2217) or Creation event (2160) then you will not be able to track any further.

06000048 was copied from 06000046

12. Hit the Escape (Esc) key or click the Close button to close out the Event Detail window

13. Re-select Find from the View Menu

14. Replace the old object id in the Description field with the new object id

06000046 replaces 06000048

15. Hit Enter or Click Find next

At this point the highlighter would end up on event 272

16. Repeat the search by pressing F3 as needed until you reach a 2217, 2160, 2161 or 2162 event

Your first search hit the 272 id. Your next the 2166. Finally you ended up on a 2161

17. Press the Enter key (or double-click the event) to bring up the Event Detail window

18. If the event indicates that the object you were tracking was copied from another object, then either write down the new object id or copy it to the clipboard. If you are on a roll-in event (2217) or Creation event (2160) then you will not be able to track any further.

06000046 was copied from 06000045

19. Hit the Escape (Esc) key or click the Close button to close out the Event Detail window

20. Re-select Find from the View Menu

21. Replace the old object id in the Description field with the new object id

06000045 replaces 060000468

22. Hit Enter or Click Find next

At this point the highlighter would end up on event 2215
23. Repeat the search by pressing F3 as needed until you reach a 2217,2160,2161 or 2162 event

Your next hit is a 2160 (object creation) event

24. If you find an object creation event (2160) you have the source object. If you find a roll-in event you haven’t yet found the source object but have gone as far as you can with the event log.

The following example has had all but the linkage and roll-in events removed for simplification.

Object 06000013
Object 06000044
Object 06000045
Object 06000047

Error Event

2162
2162

2161
2161

2162
2162

2217

Tracking Example using Event Log Map 2
In this tracking you would start with object 06000047 and then using the 2162 and 2161 linking events would eventually end up on object 06000013. Tracking 06000013 further turns up the 2217 roll-in event. When hitting a roll-in event we either have to move on to an MTACHECK log or identify the last object as one of the MTA boot objects.

MTA boot objects have different classes but end in 6 digit hex numbers ranging from 000001 to 000026

Since 06000013 is a boot object then the real source object was the next to last one found (06000044)

The following example has once again had all but the linkage and roll-in events removed for simplification.

Object 06000042
Object 06000043
Object 06000037

2217

2217

2162
2162

Error Event

Tracking Example using Event Log Map 6

In this tracking you would start with object 06000037 and then using event 2162 would link to object 06000043. Tracking 06000043 further turns up the 2217 roll-in event. As object 06000043 is not one of the MTA boot objects (Hex 000001 to 000026), we then transition to the recent MTACHECK log.

Searching the log for object 06000043 turns up the following:

 Referenced object 06000042 - OK.

 Checking object 06000043 - and data object 06000042...OK.

OK, on queue 0100002B

From the MTACHECK log we can tell that the source object is 06000042

Tracking with Message IDs

All of the focus so far has been on tracking on object ids. Sometimes, in addition to wanting to just remove a problem object, you will want to find out where it came from and what path it took. Several of the X.400 Service events contain both object ids and message ids (271 and 272 events are examples). These events can be used to transition to or from tracking by object versus by message id. If you want more information on where a bad object came from you can use the message id from the event in conjunction with the Message Tracking tool within the Exchange Administrator program.

You can also use the message id from any mail you receive or keep a copy of in you sent items folder to search event logs (use the Description field in the Find window) for events that will let you switch from a message id search to an object id one.

To find the message id on a message: open the message, select Properties from the File menu, then click on the Message ID tab.

Identifying MTA queues not described in MTACHECK.LOG

If you get an error on one or more objects and they refer to a queue that doesn't show up when you check the latest MTACHECK.LOG or you get several errors each on a different message object but always on the same queue object, you want to know what the queue is because it might help narrow the issue some.

Often a description of the queue or its purpose can be determined with the following procedure.

Preliminary Requirement:
The Application log must still contain the MTA startup sequence with logging for Field Engineering at Maximum or higher.

Methodology:
1. Note the full object id for the queue (e.g.. 01000034)

2. Highlight the oldest event in the application log

3. Perform a Find from the View menu with the following criteria

Event ID: 2164

Description: 01000034 (use whatever the id you noted in step 1)

Search Direction: Up

*4. Look for the first 285 Field Engineering event written after the 2164 you found (above)

Be careful of the sequence. Often several 2164's and 285's are written back to back. For each pair the 2164 is written first and then the 285.

*5. Look at the Description of the 285 event for the queue's name/purpose

In some cases it may appear that 3 queues are created for the same purpose. If you look closely you will see that there are different queues to the same location for priority 0, 1 and 2 messages.

In my example:

A priority 1 held-for-delivery/transfer queue for /O=MICROSOFT/OU=BOND007/CN=CONFIGURATION/CN=SERVERS/CN=DRNO/CN=MICROSOFT PRIVATE MDB was created and given the 52 identifier. [MTA MAIN BASE 1 213] (8)

* While 285 events are the most common they are not always present. If you don’t find a 285 then look for any 3535 or 3536 events in place of the 285’s

Logging

Application Event Log

The majority of MTA events are automatically recorded in the Windows NT Application Event Log. Use the Windows NT Event Viewer to view events that are logged according to the Diagnostics Logging settings. Event logs can be viewed locally or remotely and they can be saved to *.EVT files. Troubleshooting most MTA issues should begin with the Application Event Log.

Diagnostic Logging Levels

The Diagnostic Logging Levels determines the Microsoft Exchange Server events that are written to the Application Event Log (and the Ev0.log if enabled). They represent a progression of detail from recording only highly significant events, like an application failure, through moderately important events, like receipt of messages across a gateway, to events relevant only to debugging. Normally, you should only log critical events. However, when problems occur, diagnostics logging lets you change the logging levels to capture more detailed events.

During routine operation, all categories of a component application should have a logging level of None. At this level, only error events and critical messages are written to the log. When you increase a logging level, be selective. Increase levels on only those categories that might be implicated in your problem. Setting a level too high can produce a log filled with events irrelevant to your investigation. Potentially, events can be logged from every category of every service on every Microsoft Exchange Server. However, the sheer volume of this information would be overwhelming, and its accumulation is likely to degrade the performance of the Microsoft Exchange Server.

Logging levels are a property of a component, so they are saved in the Microsoft Exchange Directory and replicated to other Microsoft Exchange Servers. Thus, you can change the logging levels of Microsoft Exchange Server components from any computer running the Microsoft Exchange Administrator program and can log on to a Microsoft Exchange Server in the target Microsoft Exchange Site.

Diagnostics Logging Categories

Diagnostics logging levels are set by category within the MTA. Each category of the MTA has a diagnostics logging level. When the MTA generates an event with a significance number less than or equal to the logging level, the event is recorded in the Event Log. If the significance number of the event is greater than the logging level, it will not be logged.

Diagnostics Logging and

Event Viewer category
Description

X.400 Service
X.400 protocol events, such as submission and delivery reports.

Resource
Events related to the use of MTA resources.

Security
Events related to attempted security violations.

Interface
Communication among MTA components and between MTAs. Includes RPC use.

Field Engineering
Internal debugging trace.

MTA Administration
Administrator program access to MTA queues and routing information.

Configuration
The configuration of internal parameters and/or problems in one or more MTA configuration files.

Directory Access
Events related to the MTA’s use of the Directory.

Operating System
Events related to the MTA’s use of Windows NT functions, such as thread creation and file operations.

Internal Processing
Events related to the internal operation of MTA application code. Error events in this category indicate serious problems in the MTA.

Interoperability
Tracks the binary content of protocol messages. Use this category and Interface to log stack traces and XAPI traces to MTADATA\AP*.LOG.

NOTE: No additional events are logged to the Application or EV0 Logs when logging is turned up on this category.

APDU (Application Protocol Data Unit)
Tracks full P1 content (MTA send/receive) and fully-encoded P1 APDU (communication between remote MTAs) to diagnose interoperability or conformance problems. Use this category and X.400 Service to log binary data to MTADATA\BF*.LOG.

NOTE: No additional events are logged to the Application or EV0 Logs when logging is turned up on this category.

Changing the Diagnostics Logging Level

You can set the logging levels of the MTA using:

· The Diagnostics Logging property page of the MTA object.

· The Microsoft Exchange Server object's Diagnostic Logging property page.

· Directly in the registry.

MTA logging is set on a Microsoft Exchange Server by Server basis. The categories listed in the MTA Diagnostics Logging property page match the categories of events shown in the Application Event Log.

Logging Level
Description

0 (None)
Only critical events and error events are logged. This is the default and should be changed only if a problem occurs. Level 0 is reserved for error events and other critical application events, so those will still be recorded even when the logging level is set to None (0).

1 (Minimum)
Very high-level events are recorded in the event log. These might include one message for each major task performed by the service. Use this setting to begin an investigation when the location of the problem is in doubt.

2
Must be set manually via the registry. Logging levels of 1 or 3 will likely be sufficient as both can be set via the User Interface (UI).

3 (Medium)
Messages are sent to the event log to record steps taken to run a task. This provides more information than the minimum level but not the detail of the maximum level. Use this when the problem has been narrowed to a service or group of categories.

4
Must be set manually via the registry. Logging levels of 3 or 5 will likely be sufficient as both can be set via the UI.

5 (Maximum)
Provides a nearly complete trail of the operation of the service; messages can be sent for each line of code in the service. Use this level when the problem has been traced to a particular category or a small set of categories.

6
Must be set manually via the registry. Generates the highest level of logging detail. This level should only be used after an issue has been narrowed down and either Level 5 logging does not provide enough detail to quite isolate the problem or the issue is being prepared for escalation. To log severity 2 MTA events this must be set. The LogFlow utility requires an Ev0.log with this level of logging.

7 or Greater
Must be set manually via the registry. This level doesn't write any more details to Event Logs than level 6 would. It's purpose is to kick off a Call Stack Dump (Calls.out). Each time an MTA category is set above 6 a new dump is triggered and appended to the current file. Call Stack Dump is a snapshot at a given time. To be useful it is usually required that you generate several dumps over a given time.

MTA Event Severity Levels

MTA Events all have severity levels ranging from 2 through 16 in even numbers. A level 16 event is the most severe and will show up in the Application Event Log even when logging levels are set to None. A level 2 event is very granular informational that will only show when Diagnostic Logging is set to level 6.

Note: While there is some correlation between severity levels and the type of event (Informational, Warning, and Error), there are no hard rules. A level 16 event can be an Informational (blue) event though it is typically an Error (red). Also, not all events with the same severity level are triggered at the same logging level.

In a Text Event Log (Ev0.log) the event severity is specifically stated as in the Ev0.log example below (severity 14). In a Windows NT Application Event Log, the severity of Microsoft Exchange events is indicated in parentheses at the end on the event description, as in the Application Log example below, (14).

Events and Source Code Files

The ..\Mta\Jobs\Mtalog.mc file contains 9 sections that give the generic format of each event ID.

The ..\Mta\Lang\<country>\Mtalog.mc files give the localized strings of each event ID.

The ..\Mta\Jobs\Mtalog.mc file contains the structure of the event logging used in the Text Event Log (Ev0.log). For example, the Event ID 2181 from ..\Mta\Jobs\Mtalog.mc is:

MessageId=02181

SymbolicName=MTA02181

Language=English

(%5 %6(%7) Proc %8)

Error securing object

Called from %1 Proc %2

Database error code : %3

Object at fault %4

An actual 2181 event in an Ev0.log will look similar to the following:

message NMI2181: Internal Processing, severity 14

(DB Server MAIN BASE(1) Proc 38) 09-16-96 05:22:14pm

Error securing object

Called from SNAP-BASE Proc 422
Database error code : ODXAATRW - I/O Error on AAT file (read/write)
Object at fault 06000032
The ..\Mta\Lang\<country>\Mtalog.mc files contain the structure for the event logging used in the Application Event Log for the particular country version. This localized version of event messages is more verbose than what is used to generate Ev0.log files. For example, the 2181 in ..\Mta\Usa\Mtalog.mc contains the same basic information as in the example above, but with more verbiage:

MessageID=02181

SymbolicName=MTA02181

Language=English

An MTA database server error was encountered while securing an object. Called from %1. Procedure %2. Database error code: %3. Object at fault: %4. [%5 %6 %7 %8] (14)

The same 2181 event in an Application Event Log will look similar to the following:

Event ID: 2181
Source: MSExchangeMTA
Type: Warning

Category: Internal Processing
An MTA database server error was encountered while securing an object. Called from SNAP-BASE. Procedure 422. Database error code: ODXAATRW - I/O Error on AAT file (read/write). Object at fault: 06000032. [DB Server MAIN BASE 1 38] (14)

Tips for Dealing with Event Logs to Troubleshoot MTA Problems

· If you don't have the log file and are getting it relayed to you, make a point of the following:

1. Confirm MSExchangeMTA as the source of the event.

2. Get the Event ID.

3. Get the Category.

4. Get the values for the variables.

The rest of the error can be reconstructed using the appropriate Mtalog.mc file. It is particularly important to get the category because that cannot be easily determined through source files.

· Of the variable information that is in events, pay particular attention to any:

1) Objects at fault.

2) Queues at fault.

3) Database error codes.

4) Embedded RAS Error Codes.

5) Embedded Windows NT Error Codes.

RAS and Windows NT error codes embedded in Microsoft Exchange errors are done so by number, not by description. To turn the number into a description for a Windows NT error code, type “NET HELPMSG error#” at a Windows NT command line. As an example, for the Windows NT error code 5 you can type:

NET HELPMSG 5

Windows NT will reply with "Access is denied." This might help you narrow down the problem. To translate a RAS error number into a description, open the RAS help file, Rasphone.hlp, and search the Error Messages section.

· If a high level error is logged in a category, that's a good indication to turn up logging in that category.

· If you still receive multiple database errors after running the "Mtacheck /V /F Mtacheck.log" command and the objects keep changing, but the Queue ID remains constant, search the Mtacheck.log for the queue ID from the Event Log. If it exists, the log will tell you the queue that is involved. If it doesn't, then it is likely a temporary queue created in memory that is never written to disk.

CAUTION: Do not delete *.DAT files that correspond with an apparent problem queue! Most common queue IDs begin with 01 in the 8 digit hex number. If an object begins with 01 do not delete it!

· If you receive multiple database error events all referring to the same object even after a manual Mtacheck has been run, it might be worth renaming the offending *.DAT file and rerunning Mtacheck if you can confirm that the *.DAT file is a message and not a queue.

The most common message IDs begin with a 06 in the 8 digit hex number. The last 6 digits of the hex ID will correspond with a \Mtadata\Db<6hex>.dat file if the object has been written to disk and is not simply a temporary object in memory.

· Event IDs 9298 and 9299 from the MSExchangeMTA X.400 Service include the MTA version and build numbers along with the MTA Startup and Shutdown confirmation respectively.

· In some environments where severe and unrepairable corruption has occurred in Mtadata, an MTAWipe procedure might need to be performed. If so, you must save all files in the Mtadata directory containing the *.DAT files. If the wipe doesn't correct the problems immediately, you should restore the files. If after the wipe, the problems go away, Microsoft needs copies of all the old files from the Mtadata directory so that the problem files can be identified. Once this has been done, those files can be removed and the MTA *.DAT files can be replayed.

Text Event Log (Ev0.log)

The Ev0.log is a non-localized, text copy of the same MSExchangeMTA events that are logged to the Application Event Log. The categories and levels of events written are controlled as described for Application Event Logs above.

Setting the Text Event Log registry value to "1" will generate EV*.LOG files in the \Exchsrvr\Mtadata directory. The current log is always named Ev0.log. Prior logs are named EV#.LOG with the # increasing with the age of the log. When a log reaches 5 megabytes in size, it will be renamed and a new log begun.

The registry setting to turn on Text Event Logging is:

HKEY_LOCAL_COMPUTER

\SYSTEM

\CurrentControlSet

\Services

\MSExchangeMTA

\Parameters

\Text Event Log: REG_DWORD: 1 (the default is 0)

Ev0.log files are often easier to read, search, and clip from when troubleshooting MTA issues than the corresponding Application Event Log. They do use more technical jargon, however. Tools such as the LogFlow utility, used to assist in identifying connectivity issues, require EV*.LOG files.

Application Protocol Data Unit (APDU) Logs (Bf0.log)

Application Protocol Data Unit (APDU) text logs are binary representations of communication between MTAs in different Sites and between MTA and client applications within a Site. The log includes the fully-encoded ASN.1 envelope. This is useful for verifying when messages from remote MTAs are bad or invalidly formatted.

Increasing diagnostic logging levels to Medium or higher for both the APDU and X.400 Service categories will generate BF*.LOG files in the \Exchsrvr\Mtadata directory. The current log is always named Bf0.log. Prior logs are named BF#.LOG with the # increasing with the age of the log. When a log reaches 5 megabytes in size, it will be renamed and a new log begun.

NOTE: There is no difference between Medium and Maximum for the APDU category. However, in addition to its influence on APDU logs, the diagnostics logging level of the X.400 Service category determines the X.400 events that are written to event logs.

APDU logs can be instrumental in diagnosing problems with the MTA. However, they are valuable only to those familiar with ASCII translations of X.400 protocol. These logs can grow quite large very quickly and cause performance on the Microsoft Exchange Server to suffer.

An ASN.1 Parser tool such as Aspirin can be used to decode the data in a Bf0.log.

If the logging levels of both the X.400 Service and the APDU are set to Minimum, the first four events in the table below will be written to the Event Log. If the logging levels of both categories are set to Medium or greater, all six events will be logged and the APDU text logs will be generated as well.

Event #
Description
Logging Level

200
Bad APDU transferred in from another MTA
Minimum

220
Bad APDU submitted to this MTA
Minimum

269
APDU delivery failed temporarily
Minimum

270
APDU delivery failed permanently
Minimum

271
APDU sent
Medium

271
APDU received
Medium

Interoperability Logs (Ap0.log)

Interoperability text logs consist of the binary content of X.400 protocol messages passed between MTAs on different Microsoft Exchange Servers and between MTAs and client applications. They are used to log messages sent over internal interfaces (XAPI, ACSI, TSI, and NSI).

Increasing diagnostic logging levels to Medium or higher for both the Interoperability and Interface categories will generate AP*.LOG files in the \Exchsrvr\Mtadata directory. The current log is always named Ap0.log. Prior logs are named AP#.LOG with the # increasing with the age of the log. When a log reaches 5 megabytes in size, it will be renamed and a new log begun.

NOTE: There is no difference between Medium and Maximum for the Interoperability category. However, in addition to its influence on Interoperability logs, the diagnostics logging level of the Interface category determines which Interface events are written to event logs.

Interoperability logs can be instrumental in tracking down configuration problems on MTAs. However, they are valuable only to those familiar with ASCII translations of X.400 protocol. These logs can grow quite large very quickly and cause performance on the Microsoft Exchange Server to suffer.

Mtacheck.log

Mtacheck logs are text files that show the results of running the Mtacheck.exe utility. This utility scans the internal database of the MTA looking for objects that are damaged and might be interfering with the queue processing. It places defective objects from the queues in files for you to examine later. In addition, Mtacheck rebuilds the queues so the MTA can be restarted and return to processing.

Mtacheck.exe can be run manually, but is also run automatically when the MTA service determines that the MTA was not shut down gracefully. If an automatic Mtacheck is run, events will be logged to the Application Event Log and an Mtacheck.log file will be generated in the Mtacheck.out subdirectory of the directory containing the DB*.DAT files used by the MTA, usually \Exchsrvr\Mtadata. If the Microsoft Exchange Performance Optimizer has been used to move Mtadata files, there might be more than one Mtadata directory.

If Mtacheck is run manually, no logging is performed unless specified on the command line. In addition, logs can be created in any location and with any name. In terms of logging, the automatic Mtacheck is the equivalent of executing the following at the command line (except an automatic run also logs events to the event logs):

c:\exchsrvr\bin> mtacheck /V /F \exchsrvr\mtadata\mtacheck.out\mtacheck.log

Interpreting Mtacheck Output

Mtacheck examines each queue in the database. If it finds an error, it reports the name of the queue, the type of error, and the number of messages returned to the rebuilt queue.

For example:

Queue ‘xxxxxxx’ required reconstruction

 – corrupted queue file

23 messages recovered to the queue

It then examines objects in the queues. If an object is in error, it removes the it from the queue and places it in a file called \exchsrvr\MTADATA\Mtacheck.out. It reports the object ID, error type, queue name, and the MTS-ID of the corrupted message, if known.

An MTS-ID is assigned to each message by its transport service and remains with the message to its destination, although gateways might assign additional identifiers. It consists of the originating server, the date and time the message was sent, and a unique hexadecimal identifier for the message.

A sample Mtacheck log can include:

Object 300596 invalid

 – missing object file

Object removed from queue ‘xxxxxxx’

MTS-ID: c=US;a=;p=Ferguson;l=NEWYORK0196012020010800000CDE

When the MTA finishes processing, it displays one of following messages to describe the results:

· Database clean, no errors detected

· Database repaired, some data may have been lost

<number> queue(s) required repair out of <percent> detected

<number> object(s) damaged out of <percent> detected

· Database has serious errors and cannot be reconstructed.

· Some objects missing from the Boot Environment. Please reload the files from the BOOTENV directory on the install CD.

The boot environment message indicates that report templates and other objects that the MTA needs are missing and the MTA cannot generate them. These objects are included in the files in the \Bootenv directory. Once you have installed them, rerun Mtacheck. When the process is complete, restart the MTA.

Warning: Copy only objects that are missing. If you replace existing objects, all messages in MTA queues will be deleted.

Searching Message Logs by Message ID

Mtacheck also reports the message ID of removed objects in its log if they can be determined. If message tracking is enabled, you can search the tracking log for the object by its message ID. Determining the path of the bad message can lead you to the cause of the problem. You might need to search the logs of more than one Site to find the complete path of the message.

Dr. Watson Log / User.dmp

In Windows NT, when an application exception occurs a Drwtsn32.log and sometimes a User.dmp file are created if the Microsoft Exchange Server is correctly configured. By default, both files are written to the Windows NT root directory.

The Drwtsn32.log file contains system information, the task list, and state dumps for threads including functions and stack information. The User.dmp file contains a dump of what was in memory for the application at the time of the crash.

To verify that Dr. Watson is configured correctly:

1. At the console, run Drwtsn32 -i. This installs Dr. Watson as the default application error debugger.

2. Run Drwtsn32.exe without any parameters to get to the options screen.

3. Verify the following check boxes:

· Checked

Dump Symbol Table

· Checked

Dump All Thread Contexts

· Checked

Create Crash Dump File

· Unchecked

Append to Existing Log File

4. Verify the Log File Path and Crash Dump locations. The defaults of %windir% and %windir%\user.dmp should be fine.

After making this change, crashes should not stop the service. Instead, they will be raised as exceptions and crash dumps will be created. The exception will be 0xE005xxxx, where xxxx is the error, if appropriate.

Configuring Microsoft Exchange for Dr. Watson/User.dmp on Fatal MTA Errors

To set Microsoft Exchange to generate a Dr. Watson log and a User.dmp file, set the following registry key:

HKEY_LOCAL_COMPUTER

\SYSTEM

\CurrentControlSet

\Services

\MSExchangeMTA

\Parameters

\Raise Exception on Fatal Error: REG_DWORD: 1

Loading Symbol Files

To make the information dumped to the Dr. Watson log useful, you will need to make sure both Windows NT and Microsoft Exchange symbol files are installed. After loading the symbols, Dr. Watson logs will contain references to global variables and function names that will aid in troubleshooting.

Debug symbol files (symbols) are required to perform debugging in Windows NT. Symbols provide a way to reference global variables and function names in the loaded executable. Symbols are removed from the retail product and saved in a separate file (*.DBG). This considerably reduces file size, which decreases file load time and thus increases system performance. Symbols represent function/API names and global variables.

Steps to load Windows NT and Microsoft Exchange Symbols:

1. Copy the Symbols directory and subdirectories from the Windows NT Server compact disc, \Support\Debug\<platform>\Symbols, to the WinNT directory on the Microsoft Exchange Server. You will have \Winnt\Symbols with 9 subdirectories under Symbols.

2. Run Setup.bat from the Microsoft Exchange Server compact disc:

3. \Support\Debug\Symbols\<platform>\setup.bat

4. If any Windows NT Service Packs have been installed, you will need to copy the symbol files from the Service Pack as well. On a compact disc, they can be found in \Support\Debug\<platform>\Symbols.

5. If any Microsoft Exchange Service Packs, or HotFixes, have been installed, you will need to copy their symbol files as well. On a Microsoft Exchange Service Pack compact disc, the symbol files can be found in the \Server\<Language>\Support\Symbols\<platform> directory.

6. From File Manager, run Drwtsn32.exe -I, and click OK. This sets Dr. Watson as the default debugger for Windows NT.

Generating a Dr. Watson and User.dmp on a Non-Fatal MTA Error

In rare cases, you might need to intentionally cause the MTA to Dr. Watson and create a User.dmp file on a non-fatal error. You might need to do this when you have narrowed a recurring issue down to a specific event that occurs with no apparent correlation to Windows NT, Network, or MTADATA corruption causes. You should also fully exhaust all Microsoft Knowledge Base and other informational resources first.

To configure Microsoft Exchange to Dr. Watson and User.dmp on a non-fatal MTA Error do the following:

CAUTION: Be very careful to follow these steps Exactly!

1. Confirm the Event ID number and that its source is MSExchangeMTA.

2. Identify the file from the table below that contains the event ID. For example, ID 2192 is in the Infodlog.cfg file.

Each of the following CFG files located in the \exchsrvr\MTADATA directory includes a range of event IDs by component.

Infotlog.cfg
POP MTA
0001- 0665

Infoplog.cfg
POP Platform
1001 - 1512

Infoblog.cfg
SNAP BASE
2000 - 2086

Infodlog.cfg
DB database
2100 - 2218

Inforlog.cfg
R&D server
2220 - 2257

Infoxlog.cfg
POP XAPI
3040 - 3598

Info4log.cfg
POP4
4256 - 4500

Infoilog.cfg
POP XAPI
6001 - 6613

Infollog.cfg
NT spitfire
9102 - 9319

3. Make a backup of the file to restore from after generating the dump.

4. Open the correct Info?log.cfg file in Notepad and search on the event ID. For example, 2192.

5. Confirm that you have a complete match with the ID and that you are 2 lines below an INFOID. The ID should also be left justified with the I in INFOID. If you don't have an exact match or aren't exactly justified 2 lines below an INFOID, you aren't in the right place and need to continue searching.

6. Move the cursor to the exact left of the Event ID. For example, before the first 2 in 2192.

7. Use the right arrow key to move exactly 8 spaces to the right. The cursor should be directly in front of a blank space, a W, or an E.

8. Hold the Shift Key down and press the right arrow one more time to highlight one position; the space, W, or E.

9. Type a capital E. It is VERY important that the E replace one character - no more, no less. After the E you just added, there should be one more space followed by the first number in the INFOTYPE column. The number in the INFOTYPE column should still be left justified beginning directly under the I in INFOTYPE.

10. Move the cursor to the very beginning of the SEVERITY column.

11. Hold the Shift Key down while pressing the Right Arrow twice to highlight the first two positions in the SEVERITY column.

12. Type 16. The 1 in 16 should be directly under the S in SEVERITY, and the error's comment should begin directly under the C in the COMMENT column.

For Example, the 2192 Event in the Infodlog.cfg file would originally look like this:

**

* MESSAGE DESCRIPTION: ERROR REMOVING FROM QUEUE

**

*

* MSG LABEL INFOID INFOTYPE SEVERITY COMMENT

*

ODXQURMB 2192 W 9 12 ERROR REMOVING FROM QUEUE

*

After editing the file it would look like this

**

* MESSAGE DESCRIPTION: ERROR REMOVING FROM QUEUE

**

*

* MSG LABEL INFOID INFOTYPE SEVERITY COMMENT

*

ODXQURMB 2192 E 9 16 ERROR REMOVING FROM QUEUE

*

13. Save the file
14. Once a dump has been generated, you should replace the original Info?log.cfg file.

Perfopt.log

When the Microsoft Exchange Performance Optimizer is used to make changes to the Microsoft Exchange configuration, it appends a record of those changes to the \winnt\system32\Perfopt.log file. The latest changes are always appended, so for the most current information, read the file from the bottom up.

Perfopt.log can be especially useful to MTA troubleshooting when directories have been wiped out, there are multiple MTADATA directories and it's not clear which is which, or an administrator needs to quickly determine where the different Microsoft Exchange files are located on a system that they are not familiar with.

Tracking Log

Messages sent to and from Microsoft Exchange Server can be tracked to help determine the cause of mail-related problems. When message tracking is enabled, each component handling mail records its activities in a log maintained by the Microsoft Exchange System Attendant on each Microsoft Exchange Server. The log becomes a trace of the processing of each message as each component receives, processes, and delivers it to the next component. Some examples of where message tracking might be used are to:

· Track messages to locate slow or stopped connections.

· Find “lost” mail.

· Determine the delay on each segment of a route for link monitoring and performance tuning.

· Assist troubleshooting routing issues in a large environment.

The tracking log is created when message tracking is enabled on one or more of the mail handling components of Microsoft Exchange Server. Message tracking can be enabled on the MTA, Information Store, and MS Mail Connector.

Activities recorded in the tracking log often include a message ID, a unique message identifier. A message ID also appears in some Microsoft Exchange Server events in the Application Event Log, in the lists of queues of the MTA and gateways, and in other logs. By searching the tracking log for the message ID, you can follow the message as it is handled and transported within the Site.

Tracking logs are stored in the \Exchsrvr\Tracking.log directory. Each log records one day’s activities on the Microsoft Exchange Server. A new log is created on each day in GMT. The log can be displayed in any text editor, imported into spreadsheets such as Microsoft Excel, and used as input data to custom applications.

Enabling Message Tracking

Message tracking must be enabled for a component to begin recording its activities in the tracking log. Message tracking for Microsoft Exchange Server components is enabled for a Site. When you enable message tracking for any component, all like components on Microsoft Exchange Servers in that Site write to the tracking log. Message tracking is enabled separately for each connector in a Site.

The default for message tracking is off (not enabled). Excessive logging can degrade the performance of the Microsoft Exchange Server.

After you enable message tracking, you must restart all components writing to the tracking log for message tracking to take effect. For example, if you enable message tracking on MTAs, you must restart all MTAs in the Site.

Link Monitor Log

With a Microsoft Exchange Link Monitor, you have the option of creating a log with a name and location of your choice. The log file stores information about changes in the status of your connections and the resulting notifications. Creating log files is optional. However, it is very helpful for troubleshooting problems with connections within your Microsoft Exchange Organization. If no directory and filename are specified, a log file is not created.

The log file will be easy to find from anywhere on the network if you specify the path using the Universal Naming Convention, such as:

\\ServerName\C$\Link1.log

Server Monitor Log

With a Microsoft Exchange Server Monitor, you have the option of creating a log with a name and location of your choice. The log file stores information about Microsoft Exchange Servers and systems configured for that Microsoft Exchange Server Monitor. The log contains the results of RPC requests for information. Creating log files is optional. However, log files are very helpful for troubleshooting problems with services within your Organization. If no path and filename are specified, a log file is not created.

The log file will be easy to find from anywhere on the network if you specify the path using the Universal Naming Convention, such as:

\\ServerName\C$\Svrmon1.log

RAM Logging

RAM logging is useful for obtaining detailed logs for rare and unpredictable events. RAM logging can give you high levels of logging without slowing the Microsoft Exchange Server down as would be the case with other types of logging.

Diagnosing MTA problems often requires the use of detailed diagnostic logs. Unfortunately, high levels of MTA logging often leads to a degradation of Microsoft Exchange Server performance. This is due to the increased volume of MTA events being written to disk. The necessary diagnostic detail can often be captured as soon as logging levels are increased and thus logging levels can be reduced down to suitable levels without placing a huge burden on the Microsoft Exchange Servers. However, for intermittent or unpredictable MTA issues, running with high levels of logging for an extended period of time clearly isn’t practical. Fortunately, there is a solution.

RAM logging allows detailed logs to be generated when a particular event is encountered. RAM logs contain the same detail that can be obtained in the Text Event logs. However, the level of detail logged to the RAM logs is independent of the way the MTA diagnostics logging is configured through the Microsoft Exchange Administrator program. Therefore, minimal MTA logging can be implemented for Text Event and Event Viewer logging while maximum logging information is generated for particular MTA events in RAM logs.

RAM logging detail is configured via ten registry settings that do not exist by default. The ten RAM log registry settings need to be created in the following registry key:

HKEY_LOCAL_COMPUTER

\SYSTEM

\CurrentControlSet

\Services

\MSExchangeMTA

\Parameters

The RAM log registry values need to be defined as DWORDS. The registry values are as follows:

RAM log severity (Configuration)

RAM log severity (Directory Access)

RAM log severity (Field Engineering)

RAM log severity (Interface)

RAM log severity (Internal Processing)

RAM log severity (Operating System)

RAM log severity (Operator event)

RAM log severity (Resource)

RAM log severity (Security)

RAM log severity (X.400 Service)

These registry values can be set from 0, for maximum logging, up to 16, for minimum logging. A good guideline for general MTA diagnostics is to set both Field Engineering and Interface to 0 while all other RAM log severity settings should be set to 12. These values correspond directly to the severity of the events being logged. If Internal Processing was set to a value of 12, only Internal Processing events with a severity of 12 or greater will be logged to the RAM logs. Thus, the lower the number, the more detail will be logged. In order to disable RAM logging, all of these registry values should be set to a value greater than 16. Therefore, setting all of the RAM log settings to values of 18 will disable RAM logging. Please note that the registry values mentioned above are all decimal values.

In order for the RAM logs to be generated, the MTA must be configured to dump the RAM logs to disk when a particular event is encountered. This is done by modifying one of the Info?log.cfg files in the Mtadata directory of your Microsoft Exchange Server. For example, if the MTA occasionally encounters 2127 events, the 2127 event in the Infodlog.cfg file would need to be modified by placing an asterisk ‘*’ two characters before the actual event number. The Info?log.cfg files must not be modified to contain any more characters than they do by default. The asterisk must replace the space ‘ ‘ that originally existed in its place. Thus, all data must line up in the same position it did before the asterisk was added to the file. Here is an example of a modified event in the Infodlog.cfg file. Please note the asterisk ‘*’ two characters before the 2127:

**

* MESSAGE DESCRIPTION: SERVER AAT FILE CAUSING I/O READ/WRITE ERR

**

*

* MSG LABEL INFOID INFOTYPE SEVERITY COMMENT

*

ODXAATRW * 2127 W 8 14 AAT FILE I/O RW ERROR

The MTA might terminate unexpectedly when initializing if the formatting of the Info?log.cfg files is not correct. Therefore, it is best to always have a backup of all Info?log.cfg files prior to making the modification required to enable RAM logging. The Info?log.cfg files are only read when the MTA is starting up. Thus, the MTA must be restarted in order for it to recognize that RAM logging has been enabled for a particular event.

The RAM log data is saved in a circular RAM buffer that is normally 256K in length. By default, the RAM log detail is saved to a circular list of four Ramdump?.log files that reside in the Mtadata directory. The data is initially written to Ramdump0.log and continues to the maximum configured file before wrapping around back to Ramdumpo.log.

The RAM log circular buffer can be increased by using a modified version of the Sct.inp file available through Microsoft Enterprise Technical Support. The modified version of Sct.inp increases the RAM log circular buffer to 1024K. In addition, the number of Ramdump?.log files is also increased to 16.

The Ramdump?.log files will only be written when the MTA encounters the event marked with an asterisk ‘*’ in the Info?log.cfg file. The Ramdump?.log files are dumped in binary form by flushing the current RAM buffer. The files can be decoded by using the Ramdec.exe utility available through Microsoft Enterprise Technical Support. Ramdec.exe automatically decodes the file Ramdump0.log to Ramdump0.txt. Unfortunately, there is a bit of manual work required in order to decode all of the RAM logs. For example, in order to decode Ramdump6.LOG, Ramdump0.LOG and Ramdump0.txt should be renamed or moved into a different directory, Ramdump6.log must be renamed to Ramdump0.log, and Ramdec.exe needs to be executed. Nevertheless, RAM logging is a useful tool for efficiently diagnosing intermittent MTA problems without infringing greatly on the overall performance of the Microsoft Exchange Server.

Call Stack Dumping (Calls.out)

Calls.out dumps are text files that contain call stacks, internal message queues, buffer diagnostics, control block information and semaphore diagnostics. They are used to determine the state of associations between MTAs.

Calls.out is used to:

· Examine spinning threads using a call stack

· Examine associations for a given entity

· Examine control information for different stack layers

· Determine the cause of inter-thread semaphore hangs

The way that Calls.out is generated is through setting one of the MTA diagnostics logging parameters to 7. This will immediately write the file to the MTADATA directory.

Interpreting Calls.out

Calls.out logs:

1. Threads in the MTA (the debug version logs threads, the stacks, and buffers).

2. ECB’s(Entity control blocks) - there is 1 of these per MTA.

3. From ECB’s are the ACB’s, one per association.

4. This points to the RTS CB in the PLATFORM layer.

5. This in turn points to the Kernel CB in the Presentation/Session layer.

6. This finally points to either the RPC LTAB(locality table) or POP4 (which is not listed in calls.out).

In the debug version of the MTA, you can get semaphore diagnostics in the Calls.out file.
The debug version of the MTA dumps out the following information:

1. The Call stack for each thread.

2. The version and time.

3. The stack when it terminates.

Sample Calls.out

Call-stack for TID 001 (NT:0149) : MAIN BASE waiting on q 001

Call-stack for TID 002 (NT:0268) : BASE-MS waiting on q 002

Call-stack for TID 003 (NT:0374) : TIMER services no q

Call-stack for TID 004 (NT:0247) : POP4 DOWN waiting on q 004

Call-stack for TID 005 (NT:0350) : POP4 UP waiting on q 003

Call-stack for TID 006 (NT:0158) : MAIN BASE services no q

Call-stack for TID 007 (NT:0351) : MAIN BASE services no q

Call-stack for TID 008 (NT:0375) : DELIVER waiting on q 006

Call-stack for TID 009 (NT:0168) : DELIVER waiting on q 006

Call-stack for TID 010 (NT:0392) : DISP:ROUTER waiting on q 007

Call-stack for TID 011 (NT:0157) : DISP:ROUTER waiting on q 007

Call-stack for TID 012 (NT:0338) : XFER-OUT waiting on q 008

Call-stack for TID 013 (NT:0294) : SUBMIT waiting on q 005

Call-stack for TID 014 (NT:0397) : SUBMIT waiting on q 005

Call-stack for TID 015 (NT:0171) : XFER-IN waiting on q 009

Call-stack for TID 016 (NT:0144) : DISP:RESULT waiting on q 011

Call-stack for TID 017 (NT:0335) : OPERATOR waiting on q 010

Call-stack for TID 018 (NT:0339) : KERNEL waiting on q 012

Call-stack for TID 019 (NT:0293) : KERNEL waiting on q 013

Call-stack for TID 020 (NT:0211) : RTSE waiting on q 015

Call-stack for TID 021 (NT:0102) : RTSE waiting on q 016

Call-stack for TID 022 (NT:0174) : OPERATOR waiting on q 022

Call-stack for TID 023 (NT:0178) : APPLICATION waiting on q 018

Call-stack for TID 024 (NT:0317) : APPLICATION waiting on q 018

Call-stack for TID 025 (NT:0366) : DELIVER waiting on q 020

Call-stack for TID 026 (NT:0121) : DELIVER waiting on q 020

Call-stack for TID 027 (NT:0221) : GATEWAY waiting on q 019

Call-stack for TID 028 (NT:0385) : TRANSFER waiting on q 021

Call-stack for TID 029 (NT:0000) : MAIN BASE services no q

Call-stack for TID 030 (NT:0391) : OPERATOR services no q

OPERATOR THREAD:

This handles admin queue operations and is used to list all objects.

KERNEL THREAD:

There are two types of kernel threads here that provide the SESSION layer functions within the PLATFORM layer.

1. The Kernel send thread

2. The Kernel receive thread

RTSE THREAD:

There are two types of kernel threads here that provide the RTSE functions within the PLATFORM layer.

1. The RTSE send thread.

2. The RTSE receive thread.

XAPI OPERATOR:
This handles delivery from and transfer to gateways.

MAIN-BASE:
This thread is responsible for handling RPC-CANCELS. This code is held within SBPITRIN.C.

OPERATOR:

This is responsible for handling DS_WAITS, connectors, stacks, and routing.

TCP-IP/TP4:

There are two threads for each:

1. The send-out thread picks up work to do.

2. The Async notification thread is notified of work to do. This can either be from the MTA or outside, for example, XAPI. At this point the message is placed on the driver thread.

MT Base Qs:
This refers to the internal queues that the MTA uses .You should never expect to see any data under these queues. If you do, it might highlight a problem that the system is experiencing.

MTA Check

MTA Wipe

Occasionally the MTA might encounter difficulties in processing a message in the Mtadata directory. Most of the MTA message queues and their corresponding messages are temporarily stored in the Mtadata directory in the Db*.dat files. When troubleshooting a suspected MTA database problem, it can often be beneficial to stop the MTA and temporarily move all of the Db*.dat files out of the Mtadata directory. After all of the Db*.dat files have been safely moved to another location, the Mtadata directory needs to be repopulated with the Db*.dat files that can be found on the Microsoft Exchange Server compact disc in the Bootenv directory. Once the new Db*.dat files have been copied into the Mtadata directory, the MTA can be safely restarted. This procedure is known as performing an MTA Wipe.

Note: This procedure should never be performed without obtaining authorization from Microsoft Enterprise Technical Support.
The messages present in the Db*.dat files that were moved to a different location will not be delivered until the source of the MTA problem is discovered and the messages are then replayed. Nevertheless, performing an MTA Wipe is useful for determining if the problem is due to the data in one of the Db*.dat files. In addition, performing an MTA Wipe will allow the MTA to return to normal operation so that message delivery will be reestablished.

The procedures for performing a MTA Wipe are as follows:

1. Stop the Microsoft Exchange Message Transfer Agent service using the Control Panel Services dialog box.

2. Copy the entire contents of the Mtadata directory to a different location. This is preferable to moving only the Db*.dat files. This is due to the fact that Microsoft Enterprise Technical Support will request the entire contents of the Mtadata directory when trying to determine what caused the problem.

3. After confirming that the backup is complete, delete the Db*.dat files from the Exchsrvr\Mtadata subdirectory.

4. Copy all Db*.dat files from the Setup\I386\Bootenv subdirectory on the Microsoft Exchange Server compact disc to the Exchsrvr\Mtadata subdirectory of your Microsoft Exchange Server.

5. The files copied in step 4 have read-only file attributes. Remove the read-only attributes from the copied files. No files in the Exchsrvr\Mtadata subdirectory should be read only.

The Db*.dat files that were moved in step 2 most likely contain undelivered mail messages. They will need to be replayed at a later time once the problem has been resolved. The Db*.dat files should not be deleted until the messages have been recovered.

Replaying DAT files

The undelivered messages that were moved out of the Mtadata directory when the MTA Wipe was performed will eventually need to be delivered. This procedure is referred to as Replaying the Db*.dat files. There are three different ways that the Db*.dat files can be replayed: Complete Replay, Remote Replay, and Incremental Replay.

Complete Replay

The easiest way to replay the DAT files is to replay them all at once on the computer where they originally resided. In order to do this, the MTA on this Microsoft Exchange Server should ideally have nothing in its queues. If there are no messages currently residing in the MTA queues, the MTA can be stopped and the current Db*.dat files can be safely moved off to the side and eventually deleted since there were no messages pending delivery. Obviously, this is quite desirable since it is best to avoid an unnecessary and additional replay. If there are messages in the MTA queues, the MTA should be allowed to finish sending the messages until all of the queues are empty. The MTA should be stopped immediately once all of the queues are empty. After the MTA has stopped, the current Db*.dat files should be moved to a different location. No old Db*.dat files should be left in the Mtadata directory. The Db*.dat files that need to be replayed should then be copied into the Mtadata directory. Once again, the instructions for replaying a complete set of Db*.dat files on the Microsoft Exchange Server from where they originated are as follows:

1. Verify that all of the MTA queues on the Microsoft Exchange Server are empty. If the queues are not empty the MTA should be allowed to finish delivering any messages that remain in the present queues. The WorkQueue displayed in PerfMon should be considered the most authoritative source for the overall number of messages that the MTA is currently processing.

2. Stop the MTA as soon as all of the MTA queues are empty.

3. Copy the entire contents of the Mtadata directory to a different location. These files will eventually be discarded provided that the WorkQueue prior to stopping the MTA in Step 2 was at zero, the replay was successful, and the MTA continues to deliver messages.

4. Delete the Db*.dat files from the Mtadata directory.

5. Copy the Db*.dat files from the directory that contains the original set of DAT files that need to be replayed to the Mtadata directory.

6. Restart the MTA.

7. Monitor the MTA queues and event logs to make sure that all of the messages are delivered successfully and that the MTA is functioning normally.

Remote Replay

The Db*.dat files don’t have to be replayed on the Microsoft Exchange Server where they originally resided. Administrators with large or busy Microsoft Exchange Servers that continually move vast amounts of mail through their MTA queues benefit greatly from this feature. Administrators can choose to replay the Db*.dat files on a Microsoft Exchange Server that has less MTA traffic. The server chosen for the Remote Replay can exist anywhere within the Organization. The steps for replaying the Db*.dat files remotely are quite similar to the steps required to replay the Db*.dat files on the original Microsoft Exchange Server. However, there is one additional step that is required. A new registry value must be added to the following registry key on the Microsoft Exchange Server where the Db*.dat files will be replayed:

HKEY_LOCAL_COMPUTER

\SYSTEM

\CurrentControlSet

\Services

\MSExchangeMTA

\Parameters

The following is the new registry value that needs to be created:

Dispatch remote MTA messages

Please note that this registry value is case sensitive and must be entered as displayed above. This new registry value is a DWORD and should be set to a value of 1.

The Microsoft Exchange Server chosen to be used for the Remote Replay should ideally have nothing in its MTA queues. If there are no messages currently residing in the MTA queues, the MTA can be stopped and the current Db*.dat files can be safely moved off to the side and eventually deleted since there were no messages pending delivery. If there are messages in the MTA queues, the MTA should be allowed to finish sending the messages until all of the queues are empty. The MTA should be stopped immediately once all of the queues are empty. After the MTA has stopped, the current Db*.dat files should be moved to a different location. No old Db*.dat files should be left in the Mtadata directory. The Db*.dat files that need to be replayed should then be copied into the Mtadata directory. Once again, the instructions for remotely replaying a complete set of Db*.dat files are as follows:

1. Verify that all of the MTA queues on the Microsoft Exchange Server are empty. If the queues are not empty the MTA should be allowed to finish delivering any messages that remain in the present queues. The WorkQueue displayed in PerfMon should be considered the most authoritative source for the overall number of messages that the MTA is currently processing.

2. Stop the MTA as soon as all of the MTA queues are empty.

3. Copy the entire contents of the Mtadata directory to a different location. These files will eventually be discarded provided that the WorkQueue prior to stopping the MTA in Step 2 was at zero, the replay was successful, and the MTA continues to deliver messages.

4. Delete the Db*.dat files from the Mtadata directory.

5. Create the “Dispatch remote MTA messages” registry value and set it equal to 1.

6. Copy the Db*.dat files from the directory that contains the original set of DAT files that need to be replayed to the Mtadata directory.

7. Restart the MTA.

8. Monitor the MTA queues and event logs to make sure that all of the messages are delivered successfully and that the MTA is functioning normally.

9. When the MTA has successfully finished delivering all of the messages, the registry value “Dispatch remote MTA messages” can be set to zero.

Incremental Replay

The third and final method for replaying Db*.dat files is the Incremental Replay. The Incremental Replay should be viewed as a last resort for replaying messages. This method should be used only when the Complete Replay or Remote Replay have failed due to an excessively large replay queue or when important messages need to be delivered but a suspected “bad” message is causing the MTA to terminate unexpectedly. The best thing to do when a MTA crashes is to call Microsoft Enterprise Technical Support immediately. The Incremental Replay should only be attempted after all of the data required to determine the exact cause of the crash has been collected by Microsoft Enterprise Technical Support.

The Incremental Replay is performed by dividing the Db*.dat files into several smaller groups that are replayed individually on the Microsoft Exchange Server. The complete set of Db*.dat files should be kept in two separate locations. One set should be kept for a backup while the other set will be used during the Incremental Replay. The set that will be replayed should be located on the same drive as the Mtadata directory. The Incremental Replay can be performed on the original Microsoft Exchange Server or on any other server in the Organization provided that the “Dispatch remote MTA messages” registry value has been set to 1. The Incremental Replay is typically performed as a modified Remote Replay due to the fact that the Incremental Replay takes longer and because it is only performed when problems are anticipated.

The Microsoft Exchange Server that you chose for the Incremental Replay should ideally have nothing in its MTA queues. If there are no messages currently residing in the MTA queues, the MTA can be stopped and the current Db*.dat files can be safely moved off to the side and eventually deleted since there were no messages pending delivery. If there are messages in the MTA queues, the MTA should be allowed to finish sending the messages until all of the queues are empty. The MTA should be stopped immediately once all of the queues are empty. After the MTA has stopped, the current Db*.dat files should be moved to a different location. No Db*.dat files should be left in the Mtadata directory.

The Microsoft Exchange Server compact disc Bootenv\Db*.dat files should be copied to the Mtadata directory. These Db*.dat files will all be read-only once they are copied off of the compact disc. Remove the read-only attribute from the Db*.dat files.

A portion of the Db*.dat files that need to be replayed should be moved to the Mtadata directory. Once again, it is important to keep a complete set of the Db*.dat files in a separate location so that a full backup will still be available provided the Incremental Replay fails. Having an additional working copy of the Db*.dat files on the same directory as the Mtadata directory provides an easy mechanism for moving portions of the Db*.dat files into position to be replayed while the remaining DAT files that haven’t been replayed are kept separate. For example, if there are 30000 DB*.DAT files that need to be replayed, 10000 Db*.dat files could be moved into the Mtadata directory for the replay thus leaving the remaining 20000 Db*.dat files to be replayed in two subsequent attempts.

Run Mtacheck /V. After Mtacheck has completed, start the MTA and repeat this process until all of the Db*.dat files have been replayed. Once again, the instructions for an Incremental Replay of the Db*.dat files are as follows:

1. Verify that all of the MTA queues on the Microsoft Exchange Server are empty. If the queues are not empty the MTA should be allowed to finish delivering any messages that remain in the present queues. The WorkQueue displayed in PerfMon should be considered the most authoritative source for the overall number of messages that the MTA is currently processing.

2. Stop the MTA as soon as all of the MTA queues are empty.

3. Copy the entire contents of the Mtadata directory to a different location. These files will eventually be discarded provided that the WorkQueue prior to stopping the MTA in Step 2 was at zero, the replay was successful, and the MTA continues to deliver messages.

4. Delete the Db*.dat files from the Mtadata directory.

5. Create the “Dispatch remote MTA messages” registry value and set it equal to 1.

6. Create a new directory called Replay on the same drive that contains the Mtadata directory. The Replay directory will contain the working copy of Db*.datfiles.

7. Copy the complete set of Db*.dat files that need to be replayed to the Replay directory.

8. Copy the Db*.dat files from the Microsoft Exchange Server compact disc Bootenv directory into the Mtadata directory.

9. Remove the Read-Only attribute from the Db*.dat files that currently reside in the Mtadata directory.

10. Move a portion of the Db*.dat files from the Replay directory to the Mtadata directory. For example, if there are 30000 Db*.dat files in the Replay directory, move 10000 Db*.dat files to the Mtadata directory. Thus, 20000 Db*.dat files will remain in the Replay directory and will need to be replayed in subsequent attempts.

11. Run Mtacheck /V.

12. Restart the MTA.

13. Monitor the MTA queues and event logs to make sure that all of the messages are delivered successfully and that the MTA is functioning normally.

14. Repeat the steps above as needed until all of the Db*.dat files have been replayed.

15. When the MTA has successfully finished delivering all of the messages, the registry value “Dispatch remote MTA messages” can be set to zero.

Monitoring

Overview

Monitoring the MTA is a good way to keep the Microsoft Exchange Server healthy and running at peak performance all the time as well as aiding in diagnosing any problems an administrator might encounter.

This section will discuss three primary means of monitoring the MTA. First we will discuss the Windows NT Performance Monitor, then the Microsoft Exchange Server and Link Monitors, and finally the MTA Queues themselves

Windows NT Performance Monitor

Performance Monitor is a Windows NT tool that can be used with Microsoft Exchange Server. It provides a graphical user interface for measuring the performance of your own computer and any other computers on your network. Performance Monitor is very flexible, allowing you to perform a variety of monitoring tasks, including:

· Monitoring hardware

· Comparing hardware before installation

· Monitoring workload queues

· Monitoring routing

· Detecting bottlenecks

· Tuning performance

Performance Monitor provides charting, alerting, and reporting capabilities that reflect current activity along with ongoing logging. You can also open log files at a later time for browsing and charting as if they were reflecting current activity. Performance Monitor is located in the Administrative Tools group in Program Manager.

Monitoring involves looking at discrete components of a system. In Windows NT, an object represents an individual process, a section of shared memory, or a physical device. An object can have several “counters” associated with it. For example, the Memory object has many counters, including Available Bytes, Pages/Sec, and Page Faults/Sec. You can monitor any one of these memory counters.

Microsoft Exchange Server does install new counters for Performance Monitor, however, there are a few native Windows NT counters that can be useful in monitoring and troubleshooting the MTA.

Here is a list of the relevant counters:

Object
Counter
Usage

LogicalDisk
% Disk Time
The percentage of time a hard drive is either reading or writing. A sustained value over 90 percent indicates that the hard drive is a performance bottleneck. Use the diskperf command at the Windows NT command prompt to activate disk monitoring.

Memory
Pages/sec
Measures paging of memory from or to the virtual memory paging file. A high average value indicates the computer is short on memory. Sudden spikes in use should be ignored.

Processor
% Processor Time
The percentage of time the processor is running non-idle threads. If your server has multiple processors, you can watch each instance. Microsoft Exchange Server services can use multiple processors. An average value that is below 20 percent indicates the server is unused or services are down. An average value that is consistently above 90 percent indicates that the server is overburdened.

Process
Elapsed Time
This counter records the number of seconds a process has been running. This gives you a quick way to see if a server or service has recently been restarted without looking through the Event Log.

Redirector
Bytes Total/sec
The number of bytes per second sent and received by the network redirector. Compare the maximum throughput of your network card with the maximum value of this counter to see if network traffic is a bottleneck in your system.

Redirector
Network Errors/sec
Measures the number of unexpected errors the redirector receives. If you suspect network problems, check to see if this counter is above zero. If it is above zero, check the system Event Log for details on the network error.

More often the counters installed with Microsoft Exchange Server will be used to maintain and troubleshoot the MTA. For a complete list of MTA Performance Monitor counters, please see Appendix C - Perfmon Counters.
Microsoft Exchange MTA Connections Object
MTA Connections object counters display information for each connection established by the MTA. This is broken up by each connector installed on the system and can be selected by choosing an Instance from the Add to Chart dialog within Performance Monitor.

[image: image2.png]= Add to Chart
Computer: [\\ALAMEDA |

Obiect: [MSExchangeMTA Connections [¥] Instance: [MICROSOFT
A0S0

MICROSOFT Pt

MICROSOFT Pl

Counter:
Queue Length MS MAIL CON
Receive Bytes/sec NC_EMS2
Receive Messages/sec RAS T0 HoR
Send Bytes/sec «)
Send Messages/sec

Coloy: M [3] Scale: [Defaul__[#] width[—— [3] Stylee[—— [3]

Counter
Description

Associations
Associations is the number of associations between the MTA and the connected entity. MTAs can open multiple associations if additional transfer throughput is necessary.

Queue Length
Queue Length is the number of outstanding messages queued for transfer to the entity.

Receive Bytes/sec
Receive Bytes/sec is the rate that bytes are received from the connected entity.

Receive Messages/sec
Receive Messages/sec is the rate that messages are received from the connected entity.

Send Bytes/sec
Send Bytes/sec is the rate that bytes are sent to the connected entity.

Send Messages/sec
Send Messages/sec is the rate that messages are sent to the connected entity.

Setting up Performance Monitor Alerts

Alerts enable you to continue working while Performance Monitor tracks events and notifies you the way you specify. In Alert view, you can create an alert log that enables you to monitor the current performance of selected counters and instances for objects on Windows NT and Microsoft Exchange Server.

The Alert window has an Alert Log box reflecting current activity, an Alert Legend box showing the information that you selected for logging, and an Alert Interval box showing, in seconds, how often you want the system to be monitored.

In the following example, an alert was set to record and alert whenever the queue was over 20 items. This alert will continue until the queue us under 20 items.

[image: image3.png]=] Performance Monitor - mt

View _Options _Help

QB +Ex| il &
Alert Interval:

Aent Log:
[©10/14/96 1:46555PM 42.000 > 20000 Queue Length, X400 TO RAIDER (TP4). . MSExchangeMTA Connd #]
10/14/96 1:47:05PM 42000 > 20,000 Queue Length, X400 TO RAIDER (TP4). . MSExchangeMTA Conng |
[©10/14/96 1:47.55PM 42,000 > 20000 Queue Length, X400 TO RAIDER (TP4). . MSExchangeMTA Conne
1010114/ 1:47:105PM 42,000 > 20000 Queue Length, X400 TO RAIDER (TP4). . MSExchangeMTA Conne
010114/ 1:47:155PM 42,000 > 20000 Queue Length, X400 TO RAIDER (TP4). . MSExchangeMTA Conne
10/14/96 1:47.206PM 42000 > 20000 Queue Length, X400 TO RAIDER (TP4). . MSExchangeMTA Conne
010114/ 1:47.255PM 42,000 > 20000 Queue Length, X400 TO RAIDER (TP4). . MSExchangeMTA Conne
(©10/14/96 1:47:306PM 42,000 > 20000 Queue Length, X400 TO RAIDER (TP4). . MSExchangeMTA Conne
010114/ 1:47.356PM 42,000 > 20000 Queue Length, X400 TO RAIDER (TP4). . MSExchangeMTA Conne
10/14/96 1:47.406PM 42000 > 20000 Queue Length, X400 TO RAIDER (TP4). . MSExchangeMTA Conne
(010/14/96 1:47.456PM 42,000 > 20000 Queue Length, X400 TO RAIDER (TP4). . MSExchangeMTA Conne
010114/ 1:47.506PM 42,000 > 20000 Queue Length, X400 TO RAIDER (TP4). . MSExchangeMTA Conne
(©10/14/96 1:47.556PM 42,000 > 20000 Queue Length, X400 TO RAIDER (TP4). . MSExchangeMTA Conne
10/14/96 1:48:0.6PM 42000 > 20000 Queue Length, X400 TO RAIDER (TP4). . MSExchangeMTA Conne
[©10/14/96 1:4856PM 42,000 > 20000 Queue Length, X400 TO RAIDER (TP4). . MSExchangeMTA Conne
010114/ 1:48106PM 42,000 > 20000 Queue Length, X400 TO RAIDER (TP4). . MSExchangeMTA Conne
010114/ 1:48:156PM 42,000 > 20000 Queue Length, X400 TO RAIDER (TP4). . MSExchangeMTA Conne
10/14/96 1:48:206PM 42000 > 20000 Queue Length, X400 TO RAIDER (TP4). . MSExchangeMTA Conne
[©10/14/96 1:48:306PM 42.000 > 20.000 Queue Length, X400 TO RAIDER (TP4). , MSExchangeMTA Conng |
¢ e et
|

Alest Legend:

Color Value Counter Instance Parent Obiect Computer

@ > 2000000 Associstons 40070 RAIDER (MSEschangeMTA i \\ALAMEDA

@ > 2000000 SendMessages/sec X400 T0 RAIDER (MSEschangeMTA C \VALAMEDA

@ o 200000 Receive Messages/sec 400 10 RAIDER [MSE schangeh TA L MALAMEDA
0 400 10 RAIDER [

[X400 10 RAIDER (

Data: Curtent Activiy, Save Fie: mta pma

Performance Monitor can be setup to log these events in the Event Viewer application log or even sent a Windows NT Alert message across the network.

Using Reports with Performance Monitor

The report view provides a simple report format for displaying constantly changing values.

With Performance Monitor, you can create reports showing current information on counter and instance values for selected objects. The information is presented in columns for each individual instance. You can adjust report intervals, print snapshots, and export data.

In this example, a report is being generated to show the message flow over an X400 connector.

[image: image4.png]= Performance Monitor - x400rpt.pmr -]-

im

View _Options _Help

uuole +Ex| w|s|

Computer: \\ALAMEDA

Object: MSExchangeMTA Connections X400 TO RAIDER (TP4)
Assosiations 1.000
Quee Lenalh om0
Fleceive Bles/sae 000
Fieceve Messagessec 000
Send Butes/sec 56881.051
Send Messages/sec. 1.997

Data: Curtent Activi, Save File: +4001ptprt o1

Using Logs with Performance Monitor

The Windows NT Performance Monitor has the ability to log system activity by object for an extended period of time. This is helpful for gauging the Microsoft Exchange Server performance under load as well as troubleshooting MTA problems as they arise.

The Performance Monitor log can be setup to monitor the MTA and MTA Connection objects at user specified time interval as follows

[image: image5.png]["Log File

Directories:

rrra—

3]

3 bluework

£ clean

£ Customer Files.
£ 00s

B eds

£ EFORM

List Files of Iype: Drives:

Log Files (*.log) [= o aLamepa

StastLog

[Update Time

Interval seconds]:

® Poridic Update]

O Manual Update

The Update Time field is where the user specifies the interval for logging. The shorter the interval, the larger the log file will become. For performance tests, setting the interval from 1-5 seconds is usually the best method. For troubleshooting MTA problems that might takes days, it is advisable to set the interval anywhere from 30 to 300 seconds depending on the rate of the problem.

Once the interval is decided, the objects to be monitored must be chosen. Only the objects can be added for the log file. Counters are selected after the log has been created.

In this example, the MTA and MTA Connections objects have been chosen.

[image: image6.png]= Add To Log

Computer: ‘\\ALAMEDA D | Add |

Obiocts: [MSExchangels <

MSExchangel$ Private
MSExchangelS Public

Network Segment

Now go back into Option >> Log and press the Start Log option.

After the log is created, the information from the log can be viewed in either the Chart or Report modes of Performance Monitor. This is done by selecting Options >> Data From and choosing the desired log file. After the log file is selected, the desired counters are chosen from the available list. Only counters from the logged objects will be available.

Server Monitor

Server Monitors check services running on Microsoft Exchange Servers in the Site by using remote procedure calls (RPCs). They also check Microsoft Exchange Servers in other Sites if they are connected with RPCs. No special permissions are required to check the state of the services on Microsoft Exchange Servers in a remote Site. However, without the correct permissions on those servers, it will not be possible for a monitor to synchronize the clocks or restart services.

You can use Server Monitors to check the condition of all Microsoft Exchange Servers, including services and clocks, running in a Site. You can also specify the notification actions when a service or computer has stopped, including restarting servers and services, and resetting clocks.

One Server Monitor can monitor multiple Microsoft Exchange Servers, and each Microsoft Exchange Administrator program can have multiple Server Monitors running. If you have different people to notify for different groups of Microsoft Exchange Servers, you can create multiple Server Monitors.

By default, the Server Monitor only monitors the MTA, Directory Service, Information Store, and the PC-MTA if installed. Additional services can be installed by going into property page for the Microsoft Exchange Server in the Microsoft Exchange Administrator program and selecting the Services tab.

[image: image7.png]ALAMEDA Properties

e e R M|
Geredl | Pemisons | Sewices | Losoks | DetobascPabs |

] ALAMEDA

Instald sevices
e

ClipBoo Seiver
Computer Browser =
DHCP Ciert

Ditectory Replicator
EveniLog

Gateway Servics for Netware

Monitored services

sl Exchange igston
icioso Evchanae maon Sore O —
o Exbaras vt ot gt

e

. [

To setup a Server Monitor, select File >> New Other >> Server Monitor from the Microsoft Exchange Administrator program.

From the Server Monitor properties, you can set up a log file. The log file stores information about Microsoft Exchange Servers and systems configured for that Server Monitor. The log contains the results of RPC requests for information. Creating log files is optional. However, log files are very helpful for troubleshooting problems with services within your Organization. If no path and filename are specified, a log file is not created.

In the Notification tab, the type of event notification must be chosen. A process can be launched, a message can be mailed to an administrator or the Windows NT Alert service can be used to send a server message.

From the Servers tab, the servers to be monitored can be chosen. The Microsoft Exchange Servers from the local Site and other Sites can all be monitored.

The Actions tab is used to select the desired response when the Microsoft Exchange Server encounters a problem that stops a service. In this example, when a service shuts down, no actions is taken on the first action although a notification is sent out based on the settings in the Notification tab. On the seconds service stop, the system attempts to restart the service. On the third service stop, the Windows NT server will reboot.

[image: image8.png]= Alameda Server Monitor Properties

Generl] Notfoaion| Servers. Actons | Cock |

Alameda Server Monitor

Actian when a service is stoppect

Second attempt: Restart the service: :

Bestat delay seconds} [30

Restat message:
& problem has accured vith tis Microsaft Exchange E

Server that villrequie a system reboot n 30 seconds.

. [

The Clock tab is used to make sure all Microsoft Exchange Servers are in proper time synchronization.

Link Monitors

Link Monitors are used to check that test messages sent to other Microsoft Exchange Servers in the same or different Site or to foreign systems are making the round-trip within a specified length of time. These messages are called ping messages. At every polling interval, a ping message is sent to every server and system configured in the monitor.

The Link Monitor is set up from the Microsoft Exchange Administrator program by selecting File >> New Other >> Link Monitor.

The polling interval and log file settings are on the General tab. It is highly advisable to set up a log file when creating a Link Monitor.

The Notification and Server tabs are identical in function to those of the Server Monitor discussed earlier in this chapter.

The Bounce tab is used to specify the length of time elapsed before entering a warning and then alert state. The default is to enter warning after 30 minutes and start sending alerts after 60 minutes.

[image: image9.png]=| k Monitor to NC_EMS2 Properties

Genera| Notfcation | Servers | Feciprts Bounce |

Link Monitor to NC_EMS2

Bounce message retu e

Enterwaring stteater [[Miutes 2
Enter st stale e @ e [

This server il rter a wairing of an alert sate after the tine you specily.

. [

Checking Link Status

Link status show the last bounce message sent to each Microsoft Exchange Server. The data shown tracks the bounce message along its path to its destination and back again and provides details on the amount of time the message spent between key points in the path. This information can be used to determine why a message has exceeded its maximum acceptable threshold. Also, link properties show the current status of notifications sent in response to alerts on this link. You can see whether notifications and repairs have been suspended.
After creating a Link Monitor, go into the Microsoft Exchange Administrator program and select Tools >> Start Monitor and select the desired Microsoft Exchange Server to monitor.

By going into the properties for the link detailed information about the last ping made across the link can be viewed.

[image: image10.png]=| Panthers\NC_EMS2 Properties

General | Natficaton | Maintenance status |

A Panthers\NC_EMS2

Lastreceived baunce mait

Flequest sent

Flequest time:

Flequest received: 00626
10/14/96 3:34 PM Tumaround time: Total time:
Fleply sent: 00013 00049
1071479 236PM R
Rep\y received 007.02

[torarse aaip

Pending request ’—@

= | ree

Option

Detail

Request sent
Time the ping message was submitted by the System Attendant on the sending Microsoft Exchange Server.
Request received
Time the ping message was received by the Information Store on the destination Microsoft Exchange Server.
Request time
The elapsed time between request sent and request received.
Reply sent
The time the System Attendant on the destination Microsoft Exchange Server sent the ping message back.
Turnaround time
The elapsed time between request received and reply sent. This includes processing time of the System Attendant on the destination Microsoft Exchange Server.

Reply received
The time the Link Monitor received a reply to the ping message.

Reply time
The elapsed time between reply sent and reply received. This includes MTA transport time on both Microsoft Exchange Servers.

Total time
The elapsed time between request sent and reply received.

Pending request
The date and time of all ping messages sent but not yet returned.

Link Monitors outside of a Microsoft Exchange Organization

To setup a Link Monitor outside a Microsoft Exchange Organization, the Servers tab cannot be used because this will only contain a list of Microsoft Exchange Servers within the Organization.

The Recipients tab is used to establish a Link Monitor to check connections to other Organizations or foreign systems. The Link Monitor watches for replies to ping messages sent to recipients. Based on whether or not a reply is returned, you can determine whether the link is working correctly.

When you test a connection using Link Monitor, you should specify a recipient that does not exist, so that you will get a Non-Delivery Report (NDR) as a response. If you specify a valid destination, you will not receive a reply and will not know if the ping message reached the recipient.

When the Link Monitor receives a reply, it does not read the contents of the message, but instead, looks for the subject of the original message. You must specify how you expect the subject of the original message to be returned. If you know that the recipient’s system has an automatic reply program (and that the program puts the original subject text in the reply subject field), you can specify the Message subject returned from box. If you do not know how the recipient will return the subject, you specify the Message subject or body returned from box.

Link Monitors to a foreign mail system

Write a utility that recognizes Microsoft Exchange Server ping messages. If you can ensure that the subject of the original ping message will be included in the subject of the returned ping message, add the recipient to the Message subject returned from box list.

If you do not control or have access to the foreign system:

Try sending a ping message to a mailbox that doesn’t exist. A mail message with an invalid address would make it across the gateway and into the system but would be rejected as invalid by the foreign system and returned to Microsoft Exchange Server addressed to the sender. On return, examine the subject and body of the ping message to see if the subject or body is preserved. If the subject is preserved, add the recipient to the Message subject returned from box list. If only the body is preserved, add the recipient to the Message subject or body returned from box list.

Create a custom recipients container specifically for this Link Monitor for these invalid recipients. When creating a custom recipients container, it is recommended that once custom recipients have been set up in the monitor, you use the Custom Recipients Advanced property page and select the Hide from Address Book option. This prevents anyone from accidentally sending messages to custom addresses.

Clear the MAPI Recipients option if you are not sure that the foreign system can interpret MAPI properties.

Microsoft Exchange MTA Queues

The MTA queues can be a valuable aid in troubleshooting MTA problems. The queues can be viewed in the Microsoft Exchange Administrator program's Servers Container >> Message Transfer Agent >> Queues.

[image: image11.png]Message Transfer Agent Properties

General Queves | Diagnostcs Logaing |

Message Transfer Agent

Gueue name I

Private Information Stare 0 [
Directon Service
M5 Hai Connector (ALAMEDA)
NC EMS2

Irfomali
Publc Infomation St
RAS 1o Hormets
X400 to Raider (1P4)

[
0

ok][concel Apply Help

The queues should be either empty or constantly adding and removing messages on a healthy Microsoft Exchange Server. If messages are stuck in the queue, or the queue keeps getting larger, it could point to a problem with either the local MTA or the transport to the destination server.

The queue will contain messages with the name of the originator and the time they were submitted to the MTA as well as the size of the message.

In a hypothetical situation, Mtacheck has found a message to be corrupt and shows an object ID of 060005A.DAT. Looking in the Mtadata directory it is determined that this is a large file of almost 6 megs. From the example below, we can see the message in the queue and have the option of deleting it. This does not simply delete the message, but sends an NDR, with the full contents of the message intact, to the sender.

[image: image12.png]= Message Transfer Agent Properties

General Queves | Diagnostcs Logaing |

Message Transfer Agent

Queue name [

[40010 Raider (TP4) 12

Originator Subrit time Size (K]
Direcioy Servee T R T
The Adrin 101475 445PM 2
The Adrin 101475 445PM 2
The Adrin 101475 446PM 3
The Adrin 1014556 446PM 35
The Adrin 101475 446 21
The Adrin 1014756 446PM 20
Diccloy Senice 101475 446 1
Diccloy Senice 1071475 446PM 1
The B AR

. [

A single message might be the cause of MTA hangs. A good resolution is to select the first few messages in the queue and give them a low priority. This will move them to the bottom of the queue. If messages start flowing, it can be determined that there are some corrupt messages that will need to be deleted from the queue so the users can re-send them.

If an MTA queue to the Information Store, Directory, or a gateway is blocked, it is probably due to a problem with a message or with the receiving service that is not retrieving its messages from the queue. In the unlikely case that an MTA queue to an X.400 Connector, RAS Connector, Site Connector, or another MTA is blocked, the problem is likely to be the message or the MTA.

Escalation Procedure

Preparing to escalate an MTA issue to Critical Problem Resolution team(CPR)

This section will attempt to outline the steps that the IES engineer will need to perform along with the data the IES engineer will need to collect prior to escalating to CPR. This section assumes all other troubleshooting steps as described in the Troubleshooting section of this document have been performed, These steps are to ensure the hand off between IES and CPR is as smooth as possible. By performing the following steps and collecting the following pieces of data, the IES engineer can ensure the CPR engineer will have the tools necessary to move the case forward.

As in all troubleshooting documentation, this is only a guide. Furthermore, this section describes the minimum information that is necessary for the case to be escalated to CPR. Any other information or data that the IES engineer feels might be helpful to the CPR engineer should be outlined or attached to the Service Request.

Depending on the type of problem you are seeing, the steps necessary to properly hand the issue off to CPR will vary. As outlined in the preceding section Categories of Problems, there are five classes of MTA problems. As each requires a different approach to troubleshooting, each has a different list of tasks that should be done in order to collect all the necessary data needed by CPR to move the case along.

Startup

Crash

Hang

Congestion/Back Log

Misroute/No Route/NDR

MTA Fails to Start

1. Set Diagnostic Logging for all components of the MTA to 6 via the registry.

2. Turn on Text Event Logging. (See Logging)

3. Collect the Ev?.log files.

MTA is Crashing

1. Install the Windows NT and Microsoft Exchange symbols on the crashing server. (See Logging)

2. Set registry to create Drwtsn32.log and User.dmp files. (See Logging)

3. Set Raise Exception on Fatal Error in registry. (See Logging)

4. Set Diagnostic Logging for all components of the MTA to 6 via the registry.

5. Turn on Text Event Logging. (Qxxxxxx)

6. Collect the Ev?.log, Drwtsn32.log, and User.dmp files.

7. Get a complete copy of the Mtadata directory when possible. Both Mtadata directories if it has been split using the Performance Optimizer.

MTA Hangs

1. Set Diagnostic Logging for all components of the MTA to 6 via the registry.

2. Turn on Text Event Logging. (See Logging)

3. Create Calls.out. (See Logging)

4. Collect the Ev?.log and Calls.out files.

5. Prepare the server and customer for a potential remote debug. (Described Below)

MTA Congestion or Backlogging of Messages

1. Set Diagnostic Logging for all components of the MTA to 6 via the registry.

2. Turn on Text Event Logging. (See Logging)

3. Create Calls.out. (See Logging)

4. Capture Network Traces between any computers that seem to be having communication problems.

5. Collect the Ev?.log, Calls.out and Network Trace files.

6. Prepare the server and customer for a potential remote debug. (Described Below)

MTA Misrouting Message or NDR’ing Messages

1. Set Diagnostic Logging for all components of the MTA to 6 via the registry.

2. Turn on Text Event Logging. (See Logging)

3. Capture Network Traces between any computers that seem to be having communication problems.

4. Create Admindmp.txt files for all connector objects involved. (See Logging)

5. Collect the Gwart0.log from the \Exchsrvr\Mtadata directory.

6. Collect the Ev?.log, Network Traces, Admindmp.txt, and copies of the NDRs.

Preparing for remote debug

1. Set up an account in your domain with RAS rights and Microsoft Exchange Admin rights.

2. If you do not have RAS installed, you will need to set up a RAS Server with a minimum of a 14.4 and preferably a 28.8 baud modem.

3. Start Windbgrm.exe on the failing Microsoft Exchange Server. Windbgrm.exe is located on the Microsoft Exchange Server compact disc under \xxx\xxx\xxx.

4. Test Debug capabilities

· Dial into the RAS Server.

· Start Notepad.exe (to be used as a test) on the Microsoft Exchange Server.

· Using Windbg.exe, attach to Notepad.exe on your Microsoft Exchange Server.

Step 4 assures that all user rights and RAS rights are setup correctly to perform a remote debug.
Debugging/Code Tree

Code Tree Structure of the MTA:

· ADDRESS: This is not specific to the MTA Code, global, used for the X.400 proxy address manipulation.

· BASE: OSI/SNA Base code. These are common utility routines such as buffer and Q manipulation and memory management.

· BIN: Build related information. It has build area for the EXEs.

· BOOTENV: Consists of the basic .DAT files, which correspond to the XAPI Work Queue.

· DBI: Database Interface, contains the DBI Server Code.

· DIRECTRY: Static Configuration Files, have been retired in the 1300 builds as hard coded constants are used.

· DUA: Directory User Agent, historical, does the mapping between the Strings found from the Directory.

· LANG: Localized Error Log files.

· METAMORF: Content Conversion Code. Conversion MDBEF < ---- > P2.

· MTA: Core MTA Code responsible for the routing, DL Expansion and so forth.

· NCCTP0: Test for the OSI Stack.

· NTIL: NT Operating System Interface Code.

· NT_PORT: No longer used for the 1300 Build.

· OS2IL: Historical. No longer used with the 1300 Build.

· PLATFORM: OSI Stack: Layer 5 – Layer 7: RTSE, Presentation and Session Layer.

· POP4V3: OSI Stack Layer 4: Transport TPO Layer.

· RDI: Routing and Directory Interface Code: This information contains the routing, address parsing, XDS (historical) access code, and so forth

· RID: Routing Information Daemon, code responsible for generating the GWART.

· SPIFIRE: How the Administrator program interacts with the MTA e.g. Admin\Queues.

· SYNTAX: ASN.1 Syntax Server, SPDU Handling.

· XAPI: XAPI V1 (P2 content unaware code) how MTA talks to the Store, IMC, and so forth.

· XAPISTHN: Client XAPI Code.

· XAPIV2: XAPI V2 P2, P772 Content aware code.

For the 1300 Builds the Code Structure has been changed.

EXPORT: contains the headers, files exported to EXEC. Build Information.

LANG: Localized logging files.

SRC: All source code and Header files.

INC: Includes all the header files.

BOOTENV: DB Server boot files.

CONFIG: config files.

COMMON: Source code common for EXEs/DLLs.

COMMON\ASN1: ASN.1 Syntax Server.

COMMON\BASE: Base MTA Code.

COMMON\DATABASE: DB SERVER Code.

COMMON\XAPI: XAPI V2 Code.

EMSMTA: MTA specific Code.

EMSMTA\CONTENT: Content Conversion Code.

EMSMTA\MTA: Core MTA Code which includes routing, DL Expansion, and so forth.

EMSMTA\OSISTACK: OSI Stack which includes the Layer 5 – Layer 7 Code (RTSE, Presentation, Session).

EMSMTA\ROUTING: Routing and XDS Access.

EMSMTA\SYSGLUE: NT Operating System “Glue” Code.

EMSMTA\TRANS: OSI Stack Layer 4: Transport Layer.

EMSMTA\XAPI: XAPI V1 Code.

EMSMTA\SYSMON: System Monitor Code.

How to Debug the MTA:

Finding the MTA version (build number) from the event logs.

The MTA automatically logs its build number in the NT Application Event Log when the service is started. This information is written to Event ID 9298 and looks similar to the following:

Event ID:
9298

Source:

MSExchangeMTA

Type:

Information

Category:
X.400 Service

Description:

Microsoft Exchange Server MTA Service startup complete, version 4 (build 995.17). [BASE IL MAIN BASE 47 490] (14)

The build number is also indicated in the 9299 Event ID’s. It is always important to know the exact build number of the MTA when debugging a MTA problem. In addition, it is also important to know the versions of Exchange and NT.

Generating and examining the Calls.Out file

A CALLS.OUT file can be generated using both the retail or debug version of EMSMTA.EXE. However, the debug version of the MTA will include each thread’s call stack which is very useful for debugging MTA problems. When a CALLS.OUT file needs to be generated, it is almost always worth the time to get a debug build of the MTA to the customer.

The CALLS.OUT file is a useful diagnostic tool in cases where the MTA isn’t functioning properly but fails to crash. For example, if the MTA is failing to deliver any mail while messages are present in the workqueue, a CALLS.OUT file may indicate the function the MTA is trying to perform. A perfmon chart displaying the processor utilization for each MTA thread will also help narrow the search. This perfmon chart can be created for the Exchange Server as follows:

· Start NT Performance Monitor

· Select Edit, Add to chart

· Enter the name for the Exchange server in the “Computer” field if monitoring the server remotely.

· Select “Thread” from the “Object” field’s drop down box.

· Note that the “Counter” field should have “% Processor Time” highlighted by default.

· Highlight all of the EMSMTA threads in the “Instance” field.

· Click “Add”.

· Click “Done”.

· Select Options, Chart from the menu.

· Check the radio button for “Histogram”.

· Click “OK”.

· Press the Back Space key once to toggle the highlight feature to “on”.

· Press the left and right arrow keys until a persistently busy thread is highlighted.

· Note the “Instance” number for each of the busy threads and write these down.

The instance numbers correspond to the MTA thread ID’s. Note that these are not the same as their corresponding NT thread ID’s. Once the persistently busy MTA thread ID’s have been determined, a CALLS.OUT file should be generated immediately. Thread states can change over time. Therefore, the MTA thread analysis in perfmon must coincide with the generation of the CALLS.OUT file. It is best to keep the perfmon chart active while generating the CALLS.OUT file to verify the actual state of the threads at the precise moment the CALLS.OUT file is generated. The CALLS.OUT file is generated as follows:

· Start REGEDT32 for the Exchange Server.

· Open the following registry key:

HKEY_LOCAL_MACHINE

 System

 CurrentControlSet

 Services

 MSExchangeMTA

 Diagnostics

· Select the X.400 Service diagnostic value.

· Enter the value of 7 in the Data field.

· Click OK.

· Select the X.400 Service diagnostic value.

· Enter the previous value for this registry setting in the Data field.

The CALLS.OUT file is created by default in the EXCHSRVR\MTADATA whenever one of the MTA diagnostic values is set to 7. Once again, this is done best using the debug build of the MTA. The retail build will not include the stack trace. The CALLS.OUT file is a text file and can be viewed by any text editor like NOTEPAD.

After the CALLS.OUT file has been generated, the next step is to find out what function the persistently stuck thread is trying to perform. Display the CALLS.OUT file in NOTEPAD and search for the thread of interest. Each thread (TID) will have a corresponding stack, NT thread number, function name, and percent utilization. The calculation for the percent utilization is extremely inaccurate. The value calculated in perfmon for the thread’s percent utilization is more accurate. The hanging thread of interest may look similar to the following:

Call-stack for TID 014 (NT:0285) : DISP:ROUTER Busy 89%, working, normally services q 007

 Product Routine

 36 115

 36 117

 36 119

 36 328

 39 052

 39 177

 39 171

 39 116

 39 167

Object 53 is locked non-transiently by routine 117

The product numbers in the left hand column can be found in the SBCGPROD.C file. For example, the product #39 maps to the following in the SBCGPROD.C file:

#define ORPROD 39 /* POPS R AND D SERVER PRODUCT NUMBER X'27' */

The first two letters of the definition name for the product number tell us which C file to look in next. All of the C files for these product numbers end in “pgtrin.c”. In the case of product #39, the file we need to look at next is orpgtrin.c where the “or” was derived from the first two characters of ORPROD.

The process that is causing the thread to hang is the last routine listed which in this example is:

39 167

Searching through orpgtrin.c for routine number 167 yields the following:

P_STRCOPY(otracer.trorname[167 - 1],(CHAR*)"ds_searc",CHAR8);

Therefore, this thread was apparently hung while performing a ds_search. The CALLS.OUT file can be very useful in determining problems with persistently stuck threads. However, in cases where the thread states are changing rapidly, generating a CALLS.OUT file may provide very little useful information.

Generating and analyzing the APDU (BF*.LOG) log files

The APDU (BF*.LOG) logs are generated by setting the following MTA diagnostic logging levels:

APDU

Maximum (or 5 in the registry)

X.400 Service
Minimum or Medium (depending on level of detail desired)

These logs can be very useful when troubleshooting message transfer problems over an X.400 connector. ASN.1 decoders like ASPIRIN.EXE or ASN1PARS.EXE are invaluable while attempting to analyze the APDU log files. Detailed text event logging (EV*.LOG) should always be enabled when using BF*.LOG files for troubleshooting. The text event logs are generated by setting the Text Event Log registry parameter to a value of 1 under the following registry key:

HKEY_LOCAL_MACHINE

 System

 CurrentControlSet

 Services

 MSExchangeMTA

 Parameters

The BF*.LOG files may be used to troubleshoot issues where there is a suspected problem with message formats that are being exchange over an X.400 connector. For example, there is a foreign X.400 MTA configured to communicate with an Exchange server over an X.400 connector. The Exchange MTA logs an event 2050 whenever it receives a message from this foreign MTA. Based on other errors in the event log, you suspect that the foreign MTA may be improperly encoding their message content sizes.

Text event logging and APDU logging should be enabled right away so that the EV*.LOG and BF*.LOG files are generated. Once a message is sent to Exchange causing the 2050 event to occur, the EV*.LOG and BF*.LOG files should be saved and examined. Search the EV0.LOG file for the event of interest (in this example, the event was a 2050). Once this error is located, scroll back through the logs until the last 272 event is displayed. Event 272’s are logged whenever the Exchange MTA receives a message. Examine the 272 event to verify that the message was received over the X.400 connector. The event log may look similar to the following:
message NMI0272: X.400 Service Event, severity 10

 (MTA XFER-IN(20) Proc 101) 03-19-97 02:18:14pm

 Object 06000098 received from entity /O=MSFT/OU=CORP/CN=CONFIGURATION/CN=CONNECTIONS/CN=X.400 CONNECTOR TO COMET GATEWAY

 Entity is a Adjacent-MTA

 Object is a Message priority Message

 MTS Identifier

 Content length 458756

 External Trace Information (first 100 bytes)= 00

 No. of objects received so far = 767

 PDU dump reference 2247

message NMI2050: Internal Processing Error, severity 16

 (BASE XFER-IN(20) Proc 9) 03-19-97 02:18:14pm

 Illegal put to element 8CEBF100 at offset 31081

In this example, the last message received was delivered over the X.400 connector to the “Comet” gateway and the PDU reference for this message was:

PDU dump reference 2247

Finding the PDU reference for the message of interest is critical before proceeding to analyze the BF*.LOG files. After the PDU reference has been determined, the BF0.LOG file should be parsed using either ASPIRIN or ASN1PARS. To parse the BF0.LOG file using ASPIRIN:

· Run ASPIRIN

· Select File, Parse MTA Log

· Select the BF0.LOG file (or BF*.LOG file where you expect to find the referenced PDU)

· Click Open

· Select the reference file for this PDU (Bf0-ref2247.hex for this example)

· Click Open

· The default of “Hex” should be selected.

· Click OK

Once the appropriate PDU is displayed in Aspirin, selected the object called "X400_COM_Content". The hex data for this object will be highlighted over to the right. The first few bytes of highlighted data for the content were:

04 83 A0 2F 79

The first byte highlighted is the "tag" which is 04. The next byte tells us how many bytes were required to encode the length. The encoding table for the second byte is as follows:

80 - No length (rely on reading two nulls in a row for the end of content)

81 - Content length is encoded in the next (1) byte of data.

82 - Content length is encoded in the next 2 bytes of data.

83 - Content length is encoded in the next 3 bytes of data.

In this example, the second byte is 83. Thus, the content length we expect to receive over the wire is encoded in the next three bytes of data. The third, fourth, and fifth bytes displayed in the highlighted hex dump which were:

A0 2F 79

Converting the expected message size A02F79 to decimal yields a value of 10497913. This was the content length we expected to receive for the PDU. The highlighted content started at 400 and went to 2165. Subtract 400 from 2165:

2165-400=1765

Add 1 for being off by one brings it to 1766 bytes. Since the header was 5 bytes long (1 byte for the tag, 1 byte for the content length encoding byte, and three bytes for the actual content length), 5 bytes must be subtracted from the content data in order to determine the actual amount of content received. Subtracting 5 bytes for the header results in the actual amount of content receive being 1761 bytes. Thus, the foreign MTA has improperly encoded the message and that is the cause of the event 2050.

Generating the Interoperability (AP*.LOG) log files

One other additional log that is sometimes used in troubleshooting MTA problems is the Interoperability log file. The Interoperability log files (AP*.LOG) are generated by setting the Interoperability logging level. The level of detail captured in the AP*.LOG files depends on the level of logging:

Interoperability Logging > 2 turns on ACSI, TSI and NSI logging

Interoperability Logging > 4 turns on XAPI logging

Most of the time this diagnostic logging level is set to maximum (5) when capturing interoperability logs.

Configuring DRWTSN32 to Generate a DRWTSN32.LOG and USER.DMP

Dr. Watson (DRWTSN32.EXE) is a useful tool for troubleshooting severe MTA problems. This NT utility will capture details of a user mode crash in a text based log file called DRWTSN32.LOG which is logged by default in the \WINNT directory. This utility can also be configured to dump the full details of a crash to the USER.DMP file. The USER.DMP file can then be analyzed in a user mode debugger such as WINDBG.EXE.

Dr. Watson must be configured on the Exchange server in order to generate the DRWTSN32.LOG and USER.DMP files. To configure Dr. Watson:

· At the console, run Drwtsn32 -i. This initializes the registry with the Dr. Watson keys.

· Run Drwtsn32 without any parameters to get to the options screen.

· Verify that the Create Crash Dump File box is checked.

· Verify that the Log File Path and Crash Dump location is the Windows NT directory. This is usually represented by the variable %windir% in the dialog box.

· Clear the Visual Notification box. This will allow Dr. Watson to complete the crash dump without user intervention. Otherwise, a pop-up on the screen will pause the crash dump / Application Log event process.

The Dr. Watson configuration can also be verified in the registry. After Dr. Watson has been initialized, there will be three registry values under the following registry key:

HKEY_LOCAL_MACHINE

 Software

 Microsoft

 Windows NT

 Current Version

 Aedebug

The three Dr. Watson registry values are typically set as follows:

Auto (REG_SZ) = 1

Debugger (REG_SZ) = DRWTSN32.EXE -P %LD -E %LD –G

UserDebuggerHotKey (REG_DWORD) = 0

One very important detail to note is that all of the NT and Exchange symbols should be installed on the Exchange server. Without symbols, the DRWTSN32.LOG will provide very little information. The most current symbols should always be installed including hotfixes, particularly the MTA hotfixes! Even if the correct symbols were not installed on the server prior to a crash, the USER.DMP file is still useful provided that the engineer performing the debug knows exactly which symbols should be loaded by the debugger. NT and Exchange version numbers, including service packs and hotfixes, are vital pieces of information in pursuing a crash dump analysis.

There is one additional registry parameter specific to the Exchange MTA which must be set manually. The registry value:

Raise Exception on fatal error

Is a dword and should be set to a value of 1. This registry value must be added to the following registry key:

HKEY_LOCAL_MACHINE

 System

 CurrentControlSet

 Services

 MSExchangeMTA

 Parameters

This registry value causes the MTA to raise an exception whenever a fatal error (sev 16) is logged. When Dr. Watson has been configured to produce a USER.DMP file and the Raise Exception on fatal error registry setting is set to 1, MTA fatal errors will be logged to a USER.DMP file for later debug analysis.
Analyzing the DRWTSN32.LOG

The header of a DRWTSN32.LOG looks similar to the following:

Microsoft (R) Windows NT (TM) Version 4.00 DrWtsn32

Copyright (C) 1985-1996 Microsoft Corp. All rights reserved.

Application exception occurred:

 App: emsmta.DBG (pid=83)

 When: 3/18/1997 @ 16:39:10.457

 Exception number: e0050802
The exception number typically maps to the fatal MTA event that caused the exception to be raised. The last 4 digits are the hex values for the NT event ID. In this case, the error code was:

0802 (hex)

Converting the hex value 802 to decimal results in a decimal value of 2050. Searching through the text event log (EV0.LOG) reveals that the last MTA event logged was:

message NMI2050: Internal Processing Error, severity 16

 (BASE XFER-IN(23) Proc 9) 03-18-97 04:38:48pm

 Illegal put to element 5CE0F600 at offset 31081

Note that this event has a severity of 16 and thus is considered a fatal error. Another thing that is always worth checking is to compare the time stamps to make sure that the DRWTSN32.LOG matches the EV0.LOG as well as the USER.DMP. Note in this example that the DRWTSN32.LOG was logged at 16:39 (4:39 pm) and the 2050 event was logged at 4:38pm. Therefore, it is clear that these logs are from the same crash.

The next step is to locate the faulting thread’s details in the DRWTSN32.LOG file. The easiest way to do this is to search for the word “fault” using a text editor like notepad. The faulting thread may look similar to the following:

State Dump for Thread Id 0x135

eax=052ff480 ebx=00000084 ecx=0000002c edx=00000000 esi=00000010 edi=010a79e0

eip=77f1ca1b esp=052ff47c ebp=052ff4d0 iopl=0 nv up ei pl zr na po nc

cs=001b ss=0023 ds=0023 es=0023 fs=0038 gs=0000 efl=00000246

function: RaiseException

 77f1c9fe 83c604 add esi,0x4

 77f1ca01 8bc1 mov eax,ecx

 77f1ca03 49 dec ecx

 77f1ca04 85c0 test eax,eax

 77f1ca06 75ef jnz RaiseException+0x46 (77f1c9f7)

 77f1ca08 eb07 jmp RaiseException+0x60 (77f1ca11)

 77f1ca0a c745c000000000 mov dword ptr [ebp-0x40],0x0 ss:0610ded6=????????

 77f1ca11 8d45b0 lea eax,[ebp-0x50] ss:0610ded6=????????

 77f1ca14 50 push eax

 77f1ca15 ff1594b3f377 ds:77f3b394=77f88894

 call dword ptr [_imp__RtlRaiseException (77f3b394)]

FAULT ->77f1ca1b 5e pop esi

 77f1ca1c 8be5 mov esp,ebp

 77f1ca1e 5d pop ebp

 77f1ca1f c21000 ret 0x10

----> Stack Back Trace <----

FramePtr ReturnAd Param#1 Param#2 Param#3 Param#4 Function Name

052ff4d0 0200502e e0050802 00000000 00000000 00000000 kernel32!RaiseException

052ff574 020069cd 00000010 00000020 00000802 00000010 emsmta!sgplinfo [omap]

052ff648 020cb679 00000020 00000802 00000000 00000000 emsmta!sapufill

052ff678 0207c5a0 00f6e05c 02517969 00000e00 0251978e emsmta!snpuputi_71 [omap]

052ff7c4 02081624 0251978e 052ff84c 01010200 025198cb emsmta!odpbdrrf [omap]

052ff830 02082e5b 0251978e 052ff84c 00000000 00000efb emsmta!odpbapnd [omap]

052ff8a4 02051b12 0251978e 010fd88c 02291e22 00000003 emsmta!_odpdoapa [omap]

052ff8cc 0206f1d1 02519717 801e0efb 00000194 052ffa02 emsmta!otpip1dt [omap]

052ffa04 0206f408 02519717 d02206f6 02051920 02067ce8 emsmta!ospadrec [omap]

052ffb4c 0206e73f 02519717 12c80b68 02051920 02067ce8 emsmta!ospadrec [omap]

052ffbac 02051a31 02519717 12c80b68 00000001 02051920 emsmta!ospadeco_917 [omap]

052ffbf4 0206f1d1 02519717 12c80b68 00000001 052ffd2a emsmta!otpip1dt [omap]

052ffd2c 0206e73f 02519717 025100e3 02051920 02067ce8 emsmta!ospadrec [omap]

052ffd8c 0204e9a1 02519717 025100e3 00000001 02051920 emsmta!ospadeco_917 [omap]

052fff24 0204e045 02519717 0251976c 00000000 052fff8c emsmta!otpirtid [omap]

052fff38 0204def3 2fffb817 00000000 00000398 00000017 emsmta!otpixfok [omap]

052fff8c 0201697b 00000000 00000000 00000017 052fff94 emsmta!otpimain [omap]

052fffb8 77f04f4a 00000017 00000000 00000000 00000017 emsmta!sbpiwbep [omap]

052fffec 00000000 00000000 00000000 00000000 00000000 kernel32!BaseThreadStart

00000000 00000000 00000000 00000000 00000000 00000000 emsmta!wnshdc

----> Raw Stack Dump <----

052ff47c 10 00 00 00 02 08 05 e0 - 00 00 00 00 00 00 00 00

052ff48c 1b ca f1 77 00 00 00 00 - b4 89 f4 00 22 f4 2f 05 ...w........"./.

052ff49c 20 00 02 08 c8 4d e9 00 - 00 00 00 00 c8 95 24 02 M........$.

052ff4ac 01 00 00 00 02 00 00 00 - 00 00 00 00 17 00 00 00

052ff4bc 00 00 00 00 e3 03 00 00 - 2d 00 00 00 3c b1 c9 00 -...<...

052ff4cc a0 2d 00 00 74 f5 2f 05 - 2e 50 00 02 02 08 05 e0 .-..t./..P......

052ff4dc 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

052ff4ec 3e 00 00 00 3d 00 00 00 - 47 5e f0 77 00 f5 2f 05 >...=...G^.w../.

052ff4fc 08 f5 2f 05 32 be 2f 02 - b8 f5 2f 05 00 00 f4 00 ../.2./.../.....

052ff50c 12 00 00 09 4c f5 2f 05 - b7 ca 00 02 8c 89 f4 00 L./.........

052ff51c 2a 00 00 00 00 09 00 00 - 17 00 00 00 73 87 2e 02 *...........s...

052ff52c bb 89 f4 00 3c f5 2f 05 - 01 00 00 00 98 89 f4 00 <./.........

052ff53c 32 be 2f 02 b8 f5 2f 05 - 00 00 00 00 88 f5 79 69 2./.../.......yi

052ff54c 88 f5 2f 05 b7 ca 00 02 - 8c 89 f4 00 3c 00 00 00 ../.........<...

052ff55c b8 f5 2f 05 e5 02 00 00 - 18 b9 2e 02 b8 f5 2f 05 ../.........../.

052ff56c 09 00 00 00 01 00 01 17 - 48 f6 2f 05 cd 69 00 02 H./..i..

052ff57c 10 00 00 00 20 00 00 00 - 02 08 00 00 10 00 00 00

052ff58c 00 00 00 00 00 00 00 00 - b4 4d e9 00 00 00 00 00 M......

052ff59c 00 00 00 00 5c e0 f6 00 - 00 00 00 00 10 02 00 00 \...........

052ff5ac dc 51 e9 00 bc 70 ec 00 - 01 00 00 00 8c 89 f4 00 .Q...p..........

The information for the faulting thread is dumped in four sections:

Registers

Assembly code (with fault location indicated)

Stack trace

Raw Stack Dump

Each thread logged in the DRWTSN32.LOG begins with the NT thread ID for that particular thread. In this case, the NT thread ID was 0x135:

State Dump for Thread Id 0x135
Unfortunately, the NT thread ID is not used in WINDBG. WINDBG refers to each thread by the MTA thread ID which is most likely not the same as the number for the NT thread ID. The MTA thread ID for the faulting thread can be calculated by simply counting the number of threads (starting at zero) from the beginning of that particular crash logged in the DRWTSN32.LOG until reaching the thread ID of the faulting thread. The easiest way to do this is to search from the beginning of the crash for the string “State Dump for Thread Id” until reaching the faulting thread ID. The computed MTA thread ID will be the thread of interest when analyzing the USER.DMP in WINDBG. Fortunately, the faulting thread is typically the default thread when viewing a USER.DMP but knowing the computed (expected) MTA thread ID for the faulting thread is often useful.
Taking a closer look at the last few entries on the stack, we see that the familiar value of 00000802 was a parameter passed onto the stack in several locations. Recall that 802 was the hex equivalent of the fatal 2050 event ID and was also the last 3 digits in the actual exception code raised (e0050802). Here are the stack entries of immediate interest with the parameter of 802 being passed up the stack:

FramePtr ReturnAd Param#1 Param#2 Param#3 Param#4 Function Name

052ff4d0 0200502e e0050802 00000000 00000000 00000000 kernel32!RaiseException

052ff574 020069cd 00000010 00000020 00000802 00000010 emsmta!sgplinfo [omap]

052ff648 020cb679 00000020 00000802 00000000 00000000 emsmta!sapufill

052ff678 0207c5a0 00f6e05c 02517969 00000e00 0251978e emsmta!snpuputi_71 [omap]

Note that the last parameter placed onto the stack (Param #1 passed to kernel32!RaiseException) was the actual exception that was raised. In addition, the first time the value 802 appears on the stack was when emsmta!snpuputi passed the value of 00000802 to the function emsmta!sapufill. Therefore, we can safely assume that the last three functions on the stack were handling the error that had already occured further back on the thread’s stack. Thus, valuable debugging time can be saved later by jumping directly to the function that first raised the error.

Analyzing the USER.DMP

WINDBG is the user mode debugger used by the Exchange Escalation Engineers and Exchange Developers to analyze USER.DMP files. Before debugging a USER.DMP file, the following things must be known:

Version of NT (including service packs and hotfixes)

Version of Exchange (including service packs and hotfixes)

Start WINDBG under NT by running WINDBG.EXE. Once WINDBG is running, select Options, User DLLs. Enter the search path for the appropriate symbols for the crash dump you wish to debug. For example:

d:\symbols\exchange\995sp4; d:\symbols\exchange\837;d:\symbols\NT\1381

It’s always best to have the service pack listed first followed by the original release. Once the symbol path has been configured, this setting can be saved by selecting Program, Save Common. The next step is to load the USER.DMP file. Select Program, Open. Click New, select All Files for “List files of type”, and locate the USER.DMP file. Once the USER.DMP file has been located, highlight the USER.DMP file in the left hand box and click “OK”. Click “OK” once more. At this point the debugger is ready to play through the crash dump. Click on the “play” button (icon on the far left at the top of the window) or select Run, Go. Many threads will be listed until the exception is reached and the faulting thread will be stopped. The debugger may report something similar to the following in the Command window:

Second chance exception e0050802 (Unknown) occurred

Thread stopped.

>

Note that the exception (e0050802) is identical to the exception logged in the DRWTSN32.LOG.

The debugger should currently have the focus set to the faulting thread. The following command dumps the stack:

> kb

FramePtr RetAddr Param1 Param2 Param3 Function Name

052ff4d0 0200502e e0050802 00000000 00000000 KERNEL32!RaiseException+0x6a

052ff574 020069cd 00000010 00000020 00000802 EMSMTA!sgplinfo+0x35d

052ff648 020cb679 00000020 00000802 00000000 EMSMTA!sgpminfo+0x990

052ff678 0207c5a0 00f6e05c 02517969 00000e00 EMSMTA!snpuputi+0xbcc13

052ff7c4 02081624 0251978e 052ff84c 01010200 EMSMTA!odpbdrrf+0x1dc

052ff830 02082e5b 0251978e 052ff84c 00000000 EMSMTA!odpbapnd+0x48d

052ff8a4 02051b12 0251978e 010fd88c 02291e22 EMSMTA!odpdoapa+0xc1

052ff8cc 0206f1d1 02519717 801e0efb 00000194 EMSMTA!otpip1dt+0x1f2

052ffa04 0206f408 02519717 d02206f6 02051920 EMSMTA!ospadrec+0x98d

052ffb4c 0206e73f 02519717 12c80b68 02051920 EMSMTA!ospadrec+0xbc4

052ffbac 02051a31 02519717 12c80b68 00000001 EMSMTA!ospadeco+0x466

052ffbf4 0206f1d1 02519717 12c80b68 00000001 EMSMTA!otpip1dt+0x111

052ffd2c 0206e73f 02519717 025100e3 02051920 EMSMTA!ospadrec+0x98d

052ffd8c 0204e9a1 02519717 025100e3 00000001 EMSMTA!ospadeco+0x466

052fff24 0204e045 02519717 0251976c 00000000 EMSMTA!otpirtid+0x955

052fff38 0204def3 2fffb817 00000000 00000398 EMSMTA!otpixfok+0x69

052fff8c 0201697b 00000000 00000000 00000017 EMSMTA!otpimain+0x939(...)

052fffb8 77f04f4a 00000017 00000000 00000000 EMSMTA!sbpiwbep+0x5c

052fffec 00000000 0201691f 00000017 00000000 KERNEL32!BaseThreadStart+0x51

Module Load: c:\customers\compaq\debug\emsmta.DBG (symbols loaded)

The stack displayed in WINDBG should look virtually identical to the stack displayed for the faulting thread in the DRWTSN32.LOG. The only difference should be that the WINDBG stack only displays three parameters where the DRWTSN32.LOG displays four parameters. If the functions on the stack do not match, then the symbols loaded on the Exchange server were incorrect or the symbols currently loaded on the debugger are incorrect. Verify the versions being run on the Exchange server atthe time of the crash and make sure that the correct symbols are being loaded in the debugger.

Most likely the stack displayed will be for the faulting thread. A quick comparison between the WINDBG call stack for the default thread and the call stack for the faulting thread in the corresponding DRWTSN32.LOG should confirm that you are viewing the correct thread. Performing the following command lists out all of the threads:

> ~

 0 55 Stopped 9 _BaseProcessStart@4

 1 250 Stopped 9 sbpiwbep

.

.

.

 19 308 Stopped 9 sbpiwbep

*20 309 Stopped, 2nd chance 9 sbpiwbep

 21 310 Stopped 9 sbpiwbep

.

.

.

 56 362 Stopped 9 _KiUserApcDispatcher@20

 57 209 Stopped 9 _KiUserApcDispatcher@20

The asterisk in front of thread number 20 indicates that the debugger is currently focused on this thread. This should be the thread number that was calculated by counting the number of threads in the DRWTSN32.LOG starting at zero and continuing until the faulting thread was reached. Note that the second chance exception is indicated for this thread.

Reviewing the call stack indicates that the error code (00000802) was first passed onto the stack by EMSMTA!snpuputi. Therefore, this function is a good place to begin the source level debugging. In order to begin the source level debugging, select Calls from the Window menu. This will display the call stack in a different window which will look similar to:

052ff4d0 0200502e KERNEL32!RaiseException+0x6a

052ff574 020069cd EMSMTA!sgplinfo+0x35d

052ff648 020cb679 EMSMTA!sgpminfo+0x990

052ff678 0207c5a0 EMSMTA!snpuputi+0xbcc13

052ff7c4 02081624 EMSMTA!odpbdrrf+0x1dc

052ff830 02082e5b EMSMTA!odpbapnd+0x48d

052ff8a4 02051b12 EMSMTA!odpdoapa+0xc1

052ff8cc 0206f1d1 EMSMTA!otpip1dt+0x1f2

052ffa04 0206f408 EMSMTA!ospadrec+0x98d

052ffb4c 0206e73f EMSMTA!ospadrec+0xbc4

052ffbac 02051a31 EMSMTA!ospadeco+0x466

052ffbf4 0206f1d1 EMSMTA!otpip1dt+0x111

052ffd2c 0206e73f EMSMTA!ospadrec+0x98d

052ffd8c 0204e9a1 EMSMTA!ospadeco+0x466

052fff24 0204e045 EMSMTA!otpirtid+0x955

052fff38 0204def3 EMSMTA!otpixfok+0x69

052fff8c 0201697b EMSMTA!otpimain+0x939(...)

052fffb8 77f04f4a EMSMTA!sbpiwbep+0x5c

052fffec 00000000 KERNEL32!BaseThreadStart+0x51

Double click on the function of interest (in this example that function would be EMSMTA!snpuputi). A window will be displayed stating that the source was not found. Select the "Browse for Source File" button. Locate the appropriate sourcefile (for this example it was snpuputi.c which can be found in the \MTA\base\cc subdirectory. The C code for this function will be displayed. The line highlighted will be very close to the last line executed prior to calling the next function. This procedure can be followed for the other functions on the stack as well. In this particular case, we see that the debugger jumped directly to the call to sgpminfo in the source code which was the function that followed snpuputi on the stack:

 lsnenv = &snenv[sbpiwtid() - MINTHDIX];

 lsnenv->envproc = TRBGCON;

 lsnenv->envparm1 = offset;

 lsnenv->envptr = (CHAR*)hdreptr;

 sgpminfo(SBPROD,ERPUTELT,FALSE,(LONGINT)(0),chr(CSGMLAST),obpcparm);

Viewing the assembly code is often necessary in order to pinpoint a problem. A function can be unassembled in the command window using the unassemble command (U) followed by the address operator (&) as follows:

> U &EMSMTA!snpuputi

EMSMTA!_snpuputi@12+0x0:

0x0200ea66 55 push ebp

0x0200ea67 8bec mov ebp,esp

0x0200ea69 83ec04 sub esp,04

0x0200ea6c 53 push ebx

0x0200ea6d 56 push esi

0x0200ea6e 57 push edi

0x0200ea6f 8b5d08 mov ebx,dword ptr [ebp+08]

0x0200ea72 668b7d0c mov di,word ptr [offset]

The rest of the assembly code can be displayed for a function by continually entering the unassembly command:

> U

EMSMTA!_snpuputi@12+0x39:

0x0200ea9f 75dd jne snpuputi+00000018 (0200ea7e)

0x0200eaa1 668b4510 mov ax,word ptr [intin]

0x0200eaa5 85f6 test esi,esi

0x0200eaa7 668945fe mov word ptr [trick],ax

0x0200eaab 0f8488cb0b00 je snpuputi+00000047 (020cb639)

0x0200eab1 0fbf5606 movsx edx,word ptr [esi+06]

0x0200eab5 0fbf4604 movsx eax,word ptr [esi+04]

0x0200eab9 0fbfcf movsx ecx,di

Eventually, you may need to find a value for a particular symbol. For example, in the unassembled code listed above, there is a "mov" command that references a symbol labeled "trick". By selecting Debug from the Options menu, a window of debug settings is displayed. By default, the box labeled "Display Symbols" is checked. By unchecking that box and then unassembling the same section of code again, the location of the symbol will be revealed. In this example, we see that the symbol "trick" was offset by a value of 2 from the base pointer.

> U 0x0200ea9f

EMSMTA!_snpuputi@12+0x39:

0x0200ea9f 75dd jne 0200ea7e

0x0200eaa1 668b4510 mov ax,word ptr [ebp+10]

0x0200eaa5 85f6 test esi,esi

0x0200eaa7 668945fe mov word ptr [ebp-02],ax

0x0200eaab 0f8488cb0b00 je 020cb639

0x0200eab1 0fbf5606 movsx edx,word ptr [esi+06]

0x0200eab5 0fbf4604 movsx eax,word ptr [esi+04]

0x0200eab9 0fbfcf movsx ecx,di

This is a very useful technique for examining the assembly code.

Appendices

Exchange MTA registry Settings

All of the following MTA registry values are REG_DWORD decimal values. All of these values can be present in the following registry key on a Microsoft Exchange Server:

HKEY_LOCAL_COMPUTER

\SYSTEM

\CurrentControlSet

\Services

\MSExchangeMTA

\Parameters

Registry Value Name

Default Value
Allow fuzzy proxy search

1
By default, fuzzy proxy searches are enabled. They can be disabled by setting this value to 0.

APDU logging required

0

When set, this option logs all APDUs sent or received by the MTA to file.

Call-stack diagnostics required

1
Provide a call stack for each MTA thread at termination time. This option is a performance hit and is only available on the debug MTA

Concurrent connections to LAN-MTAs

40

Maximum number of concurrent connections to MTAs over the LAN. MTAs communicating over the LAN are known as LAN-MTAs. The local MTA may have multiple connections to a remote MTA depending on configuration and system load.

Concurrent connections to RAS LAN-MTAs

10

Maximum number of concurrent connections to remote MTAs over RAS.

Concurrent MDB/delivery queue clients

10

Maximum number of MDBs and XAPI MA Delivery Queue clients supported by the MTA. This should be set to at least 2 to support the Private and Public MDB entities. By default, this value is set to 10. However, if the Performance Optimizer is run with all default settings selected, the value will be set to 3.

Concurrent XAPI sessions

80

Maximum number of concurrent connections to:

- MDB/XAPI MA Delivery Queue clients

- XAPI MA Retrieval Queue clients

- XAPI MT Gateway clients

By default, this value is set to 80. However, if the Performance Optimizer is run with all default settings selected, the value will be set to 30.

DB data buffers per object

3

Number of DB Server buffers configured per DB object. More buffers require more memory but make it less likely for a DB object to be rolled out to disk due to lack of buffer space.

DB file count delete threshold

0

DB Server files with a file count greater than this will be deleted once they are finished with. Old unused files are reused, therefore a higher value improves performance by reducing the number of file delete and create calls.

DB file handles

192

Number of DB Server file handles configured. This determines the maximum number of DB files open concurrently. If more opens are required than the configured value, DB objects will be rolled out to disk.

DB file size delete threshold

0

DB Server files bigger than this size are to be deleted once they are finished with. A higher value improves performance by reducing the number of file delete and create calls.

Diskspace poll interval (secs)

Not Present By Default
This value sets the frequency for the MTA to poll the hard disk for available disk space. By default, the MTA will poll for available disk space every 15 seconds. This frequency can be adjusted by adding this registry value and setting the time to something other than 15.
Dispatch remote MTA messages

Not Present By Default

This registry setting allows messages that were originally present in another server’s MTADATA directory to be replayed remotely on a different server that has this registry value set to 1. By default, this feature is not enabled. In order to enable this feature, this registry value must be created and set to a value of 1.

Dispatcher threads

1

Number of MTA Dispatcher threads. This is multiplied by three for the three subtypes (Router, Fanout, Result) of Dispatcher thread. By default, this value is set to 1. However, if the Performance Optimizer is run with all default settings selected, the value will be set to 2.

Do not generate Bilateral Info

Not Present By Default
The MTA automatically treats this setting as being set to 0 when it is not present in the registry.

DR on Gateway Transmission

Not Present By Default
The MTA automatically treats this setting as being set to 0 when it is not present in the registry.

ds_read cache latency (secs)

60

Information read from the directory is saved in the ds_read cache. This field determines the cache latency. A higher latency means directory information is read less often, but directory changes may not be noticed until the cache latency time expires.

ds_search latency (mins) for transport stacks

60

Time interval between directory searches for transport stacks. New transport stacks added to the directory may not be processed until this time interval expires.

DSA Address

Constructed from setup parameters

Computer name the MTA is running on. This is used to build up a Presentation Address for the DSA.

EICON Null DTE on Accept

Not Present By Default
The MTA automatically treats this setting as being set to 0 when it is not present in the registry.

Eicon wait timeout (MS)

500

Timeout on x25done() call for asynchronous notification. This value is the maximum time before the first send/receive on a new connection will be noticed after the connection is established.

Eicon X.25 connections

20

Maximum number of concurrent EICON X.25 connections supported.

Eicon X.25 result threads

2

Number of MTA DMOD threads handling EICON X.25 connections.

Flush Results to Disk

0

Secure message transfer results to avoid duplicate messages being sent after outages. Performance will be improved if results are not secured, but there is a good chance that there will be duplicate messages received by recipients if the MTA terminates unexpectedly .

Handle Exceptions

Not Present By Default

Forces the MTA to handle unexpected exceptions in the code and dump out debug information.

Idle state timer (secs)

Not Present By Default

The MTA automatically treats this setting as being set to 30 seconds when it is not present in the registry.

Idle state working set size (Kbytes)

Not Present By Default

The MTA automatically treats this setting as being set to 1024 KB when it is not present in the registry.

Kernel threads

3

Number of PLATFORM threads handling the Presentation and Session level of the OSI stack.

LAN-MTA DMOD threads

5

Maximum number of MTA DMOD threads to handle connections to LAN-MTAs.

LAN-MTAs

Not Present By Default

The MTA automatically treats this setting as being set to 20 when it is not present in the registry.

Max Concurrent XAPI Applications

10

Maximum number of concurrent XAPI applications. This is summed together with the existing registry parameters for maximum number of LanMTA connections and Admin clients to give the total number of LTAB entries, i.e. the maximum number of (duplex) connections to/from other servers.

Max RPC Calls Outstanding

10

Maximum number of RPC threads. This limits the maximum number of RPC procedure calls that are guaranteed to be able to be processed at one time. Used by RpcServerUseAllProtSeqs() and RpcServerListen(). By default, this value is set to 10. However, if the Performance Optimizer is run with all default settings selected, the value will be set to 50.

Max. RPC delay on LAN (secs)

Not Present By Default
The MTA automatically treats this setting as being set to 120 seconds when it is not present in the registry.

Max. RPC delay on RAS (secs)

Not Present By Default
The MTA automatically treats this setting as being set to 300 seconds when it is not present in the registry.

MDB users

500

Maximum number of MDB users supported by the MTA. Users in Exchange are MDB users by default unless explicitly set otherwise. By default, this value is set to 500. However, if the Performance Optimizer is run with all default settings selected, the value will be set to 50.

Min RPC Threads

4

Minimum number of RPC threads. This identifies the minimum number of call threads. Used by RpcServerListen().

Min. free diskspace : restart work (MBytes)

Not Present By Default
The MTA automatically treats this setting as being set to 40 MB when it is not present in the registry.

Min. free diskspace : stop work (MBytes)

Not Present By Default
The MTA automatically treats this setting as being set to 30 MB when it is not present in the registry.

MMI connections

8

Maximum number of MMI connections to the MTA. Each Admin instance using the MTA Admin API uses one MMI connection and is treated as an MMI client.

MT gateway clients

10

Maximum number of XAPI MT Gateway clients supported by the MTA. By default, this value is set to 10. However, if the Performance Optimizer is run with all default settings selected, the value will be set to 8.

MTA database path

Constructed from setup parameters

This setting defines the location of the MTA database files. This is usually set to C:\EXCHSRVR.

MTA Run Directory

Constructed from setup parameters

Runtime directory for Exchange Server components, usually C:\EXCHSRVR.

NCC TP0 Conformance Tester

0

Bind the MTA TP0 code to the NCC conformance test tool rather than the MTA upper layers, for conformance testing.

Number of DLs Allowed

Not Present By Default

Maximum number of DLs supported by the MTA. When this value is not present in the registry, the MTA operates as if this value were set to 100.

Number of LAN-MTA entities

Not Present By Default

Maximum number of LAN-MTAs supported by the MTA.

Number of RAS LAN-MTAs

10

Maximum number of RAS LAN-MTAs supported by the MTA.
Number of Remote Sites Connected over LAN
25

Maximum number of remote sites connected over the LAN. This equates to the number of Virtual Domains/Site Connectors in this site.

Number of X.400 gateway entities

Not Present By Default

Maximum number of remote MTAs connecting via X.400 OSI Links (as opposed to connecting over LAN-MTA or RAS). OSI Links use X.25, RFC1006(TCP/IP) or TP4.

Poll timer for RPC cancel

Not Present By Default

When this value is not present in the registry, the MTA operates as if this value were set to 15.

Raise Exception on fatal error

Not Present By Default

This setting will allow a crash dump (USER.DMP) file to be generated whenever the MTA logs a fatal (severity 16) error. This setting provides Microsoft PSS Escalation Engineers with detailed information that may lead to solving a particular MTA problem. By default, the MTA operates as if this setting were set to a value of 0. To enable this feature, create the registry value and set it equal to 1.

RAM log severity (Configuration)

Not Present By Default

MTA Configuration events with a severity equal to or higher than this are logged to the RAM log.

RAM log severity (Directory Access)

Not Present By Default

MTA Directory Access events with a severity equal to or higher than this are logged to the RAM log.

RAM log severity (Field Engineering)

Not Present By Default

MTA Field Engineering events with a severity equal to or higher than this are logged to the RAM log.

RAM log severity (Interface)

Not Present By Default

MTA Interface events with a severity equal to or higher than this are logged to the RAM log.

RAM log severity (Internal Processing)

Not Present By Default

MTA Internal Processing events with a severity equal to or higher than this are logged to the RAM log.

RAM log severity (Operating System)

Not Present By Default

MTA Operating System events with a severity equal to or higher than this are logged to the RAM log.

RAM log severity (Operator event)

Not Present By Default

MTA Operator events with a severity equal to or higher than this are logged to the RAM log.

RAM log severity (Resource)

Not Present By Default

MTA Resource events with a severity equal to or higher than this are logged to the RAM log.

RAM log severity (Security)

Not Present By Default

MTA Security events with a severity equal to or higher than this are logged to the RAM log.

RAM log severity (X.400 Service)

Not Present By Default

MTA X.400 Service events with a severity equal to or higher than this are logged to the RAM log.

RAS LAN-MTA DMOD threads

2

Maximum number of MTA DMOD threads to handle RAS connections to remote MTAs.

Relay Private Extensions

Not Present By Default
Retrieval queue clients

10

Maximum number of XAPI MA Retrieval Queue clients supported by the MTA. By default, this value is set to 10. However, if the Performance Optimizer is run with all default settings selected, the value will be set to 2.

RPC Authentication Level

2

RPC authentication level. This identifies the level of authentication to use over outgoing RPC connections.

RTS threads

1

Number of PLATFORM threads handling the RTSE level of the OSI stack. By default, this value is set to 1. However, if the Performance Optimizer is run with all default settings selected, the value will be set to 3.

Submit/deliver threads

1

Number of MTA Submit/Deliver threads. By default, this value is set to 1. However, if the Performance Optimizer is run with all default settings selected, the value will be set to 2.

Supports 2K TPDU

0

When this value is set to 1, the MTA will support 2K TPDU.
TCP/IP async notify timeout (ms)

100

Timeout on select() call for asynchronous notification. This value is the maximum time before the first send/receive on a new connection will be noticed after the connection is established. By default, this value is set to 100. However, if the Performance Optimizer is run with all default settings selected, the value will be set to 50.

TCP/IP control blocks

20

Maximum number of concurrent RFC1006(TCP/IP) connections supported.

TCP/IP threads

2

Maximum number of MTA DMOD threads handling RFC1006 connections. This number is multiplied by two for the two subtypes (Driver, Async Notify) of RFC1006 thread.

Text Event Log

0

When this registry value is set to 1, it allows detailed event logging to be written to the EV0.LOG, EV1.LOG, and EV2.LOG files in the MTADATA directory.

TP4 async notify timeout (ms)

100

Timeout on select() call for asynchronous notification. This value is the maximum time before the first send/receive on a new connection will be noticed after the connection is established. By default, this value is set to 100. However, if the Performance Optimizer is run with all default settings selected, the value will be set to 50.

TP4 control blocks

20

Maximum number of concurrent TP4 connections supported.

TP4 threads

2

Maximum number of MTA DMOD threads handling TP4 connections. This is multiplied by two for the two subtypes, Driver and Async Notify, of TP4 threads.

Transfer threads

1

Number of MTA Transfer threads. This is multiplied by two for the two subtypes (Transfer In, Transfer Out) of Transfer thread. By default, this value is set to 1. However, if the Performance Optimizer is run with all default settings selected, the value will be set to 2.

Transport threads

1

Number of MTA Transport threads.
X.400 gateways

20

X.400 Service Event Log

Not Present By Default

The MTA automatically treats this setting as being set to 0 when it is not present in the registry.

X500 DN

Constructed from setup parameters

Full Directory name of the MTA.

XAPI MA queue threads

1

Number of threads handling interaction with the MTA on behalf of:

- MDB/XAPI MA Delivery Queue clients

- XAPI MA Retrieval Queue clients

By default, this value is set to 1. However, if the Performance Optimizer is run with all default settings selected, the value will be set to 2.

XAPI MA threads

1

Number of threads handling calls from:

- MDB/XAPI MA Delivery Queue clients

- XAPI MA Retrieval Queue clients

By default, this value is set to 1. However, if the Performance Optimizer is run with all default settings selected, the value will be set to 2.

XAPI MT queue threads

1

Number of threads handling interaction with the MTA on behalf of:

- XAPI MT Gateway clients

By default, this value is set to 1. However, if the Performance Optimizer is run with all default settings selected, the value will be set to 2.

XAPI MT threads

1

Number of threads handling calls from:

- XAPI MT Gateway clients

By default, this value is set to 1. However, if the Performance Optimizer is run with all default settings selected, the value will be set to 2.

XAPI/MMI client DMOD threads

10

Maximum number of MTA DMOD threads to handle connections to:

- MDB/XAPI MA Delivery Queue clients

- XAPI MA Retrieval Queue clients

- XAPI MT Gateway clients

- MMI clients

All MTA DMOD threads (of whatever type) can support multiple connections. Connections are load shared over threads of the same type.

Request for Comments (RFC’s)

RFC 1006 - TCP of course

RFC 1327 - This defines the mapping between X400 and RFC-822 (SMTP)

RFC 1565 - General overview on MIBS for SNMP monitoring of MTA's and DSA's

RFC 1566 - Detailed MIB definition for SNMP monitoring of MTA's

Perfmon Counters

The following counters and descriptions are for the MSExchangeMTA object in Perfmon:

Adjacent MTA Associations:

The number of open associations this MTA has to other MTAs.

Messages/Sec:

The rate that messages are processed.

Message Bytes/Sec:

The rate that message bytes are processed.

Free Elements:

The number of free buffer elements in the MTA pool.

Free Headers:

The number of free buffer headers in the MTA pool.

Admin Connections:
The number of Microsoft Exchange Administrator programs connected to the MTA.

Threads In Use:
The number of threads in use by the MTA. This number can be used to determine whether additional processors could be of benefit.

Work Queue Length:
The number of outstanding messages in the Work Queue, which indicates the number of messages not yet processed to completion by the MTA.

XAPI Gateways:
The number of gateways connected to the MTA using the XAPI MT/OM interface. A single gateway can have multiple XAPI gateway sessions.

XAdPI Clients:
The number of XAPI clients connected to the MTA using the XAPI MA/OM interface. A single client can have multiple XAPI client sessions.

Disk file deletes:

The number of disk file delete operations per second.

Disk file syncs:

The number of disk file sync operations per second.

Disk file opens:

The number of disk file open operations per second.

Disk file reads:

The number of disk file read operations per second.

Disk file writes:

The number of disk file write operations per second.

ExDS Read Calls/sec:

The rate of read calls to the Directory service.

XAPI Receive Bytes/sec:

The rate that bytes are received over a XAPI connection.

XAPI Transmit Bytes/sec:

The rate that bytes are transmitted over a XAPI connection.

Admin Interface Receive Bytes/sec:
The rate that bytes are received over an admin connection.

Admin Interface Transmit Bytes/sec:
The rate that bytes are transmitted over an admin connection.

LAN Transmit Bytes/sec:

The rate that bytes are transmitted over a LAN to MTAs.

LAN Receive Bytes/sec:

The rate that bytes are received over a LAN from MTAs.

RAS Receive Bytes/sec:

The rate that bytes are received over a RAS connection.

RAS Transmit Bytes/sec:

The rate that bytes are transmitted over a RAS connection.

TCP/IP Receive Bytes/sec:

The rate that bytes are received over a TCP/IP connection.

TCP/IP Transmit Bytes/sec:

The rate that bytes are transmitted over a TCP/IP connection.

TP4 Receive Bytes/sec:

The rate that bytes are received over a TP4 connection.

TP4 Transmit Bytes/sec:

The rate that bytes are transmitted over a TP4 connection.

X.25 Receive Bytes/sec:

The rate that bytes are received over an X.25 connection.

X.25 Transmit Bytes/sec:

The rate that bytes are transmitted over an X.25 connection.

The following counters and descriptions are for the MSExchangeMTA Connections object in the Performance Monitor.

MSExchangeMTA Connections:

Each instance describes a single known entity.

Associations:
The number of associations between the MTA and the connected entity. MTAs can open multiple associations if additional transfer throughput is necessary.

Receive Bytes/sec:

The rate that bytes are received from the connected entity.

Send Bytes/sec:

The rate that bytes are sent to the connected entity.

Receive Messages/sec:

The rate that messages are received from the connected entity.

Send Messages/sec:

The rate that messages are sent to the connected entity.

Queue Length:
The number of outstanding messages queued for transfer to the entity.

Tools

Admin Dumps (Admindmp.txt)

The Microsoft Exchange Administrator program has built-in functionality that allows the administrator to quickly dump to a text file the values of the Existing Raw Properties of an object. This can be very useful when troubleshooting objects, such as an X.400 connector, with many configuration options where there might be typo's, basic configuration errors, or just misunderstandings that are difficult to catch.

Admin Dumps are always written to a file named Admindmp.txt. If the file doesn't exist it is created. If it already exists, the current dump is appended to the existing file. It's usually much easier to work with distinct dump files for each object of interest so you will probably want to rename the Admindmp.txt file after each object is dumped. The format of the Dump file is not easily read by Notepad so you might want to rename your dumps with a WRI extension instead of TXT. For example, if you performed dumps on two objects and renamed the Admindmp.txt file after each dump you might end up with two files named Tcpstack.wri and X400conn.wri.

The Admindmp.txt file is created in the Microsoft Exchange Administrator program's working directory. Normally this is the \Exchsrvr\Bin directory but it might be different if it is launched from the command line in a different directory or if the Working Directory of the Microsoft Exchange Administrator icon has been modified.

The upcoming ExDump.exe tool can be used to assist in decoding selected object dumps such as Stack and Connector objects.

Steps to create an Admindmp.txt file:

1. Verify that there is not an existing Admindmp.txt file. If one exists, rename or delete it.

2. Start the Microsoft Exchange Administrator in Raw Mode. To do this, type "ADMIN /R" while in the \exchsrvr\bin directory.

3. Highlight the object that you wish to dump the Raw Properties from.

4. Press and hold down the CTRL key.

5. Click Raw Properties from the File menu.

6. Continue to hold the CTRL key down until the Raw Properties page is displayed. At that point, you can release it.

7. Click the Cancel button on the Raw Properties page.

8. Rename the newly created Admindmp.txt file to something meaningful.

9. Perform any more Dumps you need (Repeat steps 3 through 8 for each dump).

10. Exit the Microsoft Exchange Administrator program.

Aspirin (including command line version)

Aspirin is GUI application that decodes the ASN.1 information contained in Microsoft Exchange Application Protocol Data Unit APDU logs (Bf0.log).

Eicon Tools

Eicon card software includes several tools to help configure and test the functionality of the card. For complete and more detailed documentation of the available Eicon tools consult the Eicon documentation.

EcAdmin.exe

EcVer.exe

EcCard.exe

EcDialer.exe

EcModule.exe

Event Log Filter (ELF)

The Event Log Filter tool (Elf.exe) can be used to filter events from saved Windows NT Event Logs (*.EVT files) or to monitor events on multiple servers. ELF writes its results to a text file.

ELF is particularly useful when you want to remove specific events from a log where those events are occurring so often that they make it difficult to spot any patterns in the remaining events.

ELF is available in the Microsoft Exchange section of the BackOffice Resource Kit.

To monitor events:

1. Start Elf.exe.

2. Click Add and Remove to specify the servers to monitor or the *.EVT files to filter.

3. Specify the name of the output text file.

4. Specify how far back you want to check events.

5. Select the services you want to monitor.

6. Click Advanced to specify individual event IDs to ignore for a service.

7. Specify the entry types you want to monitor.

8. Select the Unattended box if you want to skip over errors and continue.

9. Click Go to start the filter.

The output text file created is in the same format as the Windows NT Server Event Viewer, except that it monitors more than one server and it adds the text description for events.

Event Viewer

Event Log Scanner (EVTSCAN)

You can use the Event Log Scan tool (Evtscan.exe) to monitor servers for specific events. When a specified event is detected, the Event Log Scan tool can be configured to:

· Send a message.

· Send a network pop-up to specific computers.

· Restart or stop the service.

To configure the Event Log Scan tool:

1. Create a configuration file with a .cfg extension specifying the events and actions required. The format is as follows:

EventID;Source;Action;Alert list;Mail list;Comment string

Configuration

Entry

Description

Event ID

The numerical event ID (see the Windows NT Server Event Viewer).

Source

The source name for the service to monitor.

Action

The action to take; can be Restart or Stop.

Alert list

A comma-separated list of computers to send network pop-ups to when the event is detected.

Mail list

A comma-separated list of e-mail aliases to notify when the event is detected.

Comment string
A comment that is included in the alert pop-up and e-mail message when the event occurs.

2. Run Evtscan.exe by using the following command-line format:

evtscan -f config_file -t delay_in_seconds server_list

where Config_file is the name of the configuration file created in step 1, delay_in_seconds is the time the tool waits between scans (for example, typing -t 15 means the tool scans for events every 15 seconds), and server_list is a comma-separated list of the servers to monitor for the events.

3. Leave Evtscan.exe running on the desktop. You might want to minimize the command prompt window.

ExDump

Hex2Str

Hex2Str.exe is a simple tool you can use to quickly convert from Hex to ASCII. This is often useful with the MTA as log files and Admindmp.txt files often contain information in Hex. For example, "53455256455231" in a log or dump will likely hold less meaning to you than the "SERVER1" that the Hex translates to will.

TIP: The Microsoft Exchange Administrator program can be used when no Hex to ASCII converter is handy. Bring up a temporary X.400 Connector and use the OSI T selector fields on the Stack page along with the two radio buttons, Display Fields as Hex and Display Fields as Text, to toggle between Hex and ASCII.

Kill

Log Conversion Utility (Logconv.exe)

The Log Convert utility converts a comma delimited Windows NT event log to a format more closely resembling a Text Event Log (Ev0.log). The resulting log is close enough to an Ev0.log to be used with the Log Filter (LogFilt.exe) utility, but not close enough to be used with the LogFlow utility.

Usage for the Log Convert utility at a command prompt is:

Logconv <NT-log-file>

where <NT-log file> is the name of the comma delimited event log. Normal output is to the console so if you want to create a new file as output you will need to redirect output as in the following example:

Logconv applog.cdf > newfile.txt

NOTE: If you have an *.EVT event file that you wish to convert for use with the Log Filter utility, you can first open the file in the Windows NT Event Viewer and then save it to comma delimited format prior to using the Log Converter utility against it.

Log Filter Utility (Logfilt.exe)

The Log Filter utility lets you selectively capture or throw away events from a Text Event Log (Ev0.log). This can be very useful when high levels of logging have been used. You can use Logfilt.exe to remove identified events that are making it difficult to spot patterns. You can also use it to select or discard events as desired by category or severity level.

Usage for the Log Filter utility at a command prompt is:

Logfilt [+/-]<string file> <log-file>

where <log file> is the name of the Text Event Log (Ev0.log) and <string file> is the name of a text file containing strings used to inclue/exclude an event. Normal output is to the console so if you want to create a new file as output you will need to redirect output as in the following examples:

Logfilt -exclude.txt Ev0.log > high-sev.txt

Logfilt +include.txt Ev0.log > intrface.txt

The Exclude.txt file might have looked like this:

severity 2

severity 4

severity 6

While the Include.txt might look like this:

Interface Event

Severity 16

NOTE: Only the first line of the event in the source text log is compared against the strings to determine what events are filtered out.

Message Flow Log Analisys Utility (Logflow.exe)

Link Monitor

MDBView

Message Tracking

Mtacheck

MTAWipe

Network Monitor

ISO Parser

NGDECO

TP4 Parser

Performance Monitor

Ping

PView

QSlice

RAMDEC

RPC Counter ?

RPC Ping

Server Monitor

TP4 Ping

Traced MTA

