SuperSink v4.0

Purpose of utility:

SuperSink is a sink for SMTP messages. It uses little memory (~932K on NT5) and no disk at all (however, see Future Plans). It does not make any outbound connections, it just waits for a client server to connect and send mail.

SuperSink started out as a replacement for the command-line utility sink.exe, which had a tendency to crash when it received a “QUIT” command. Since then it has grown quite a bit and has gone through several revisions, and is currently at v4.0.

The primary purpose of SuperSink is twofold: (1) be a sink for SMTP, and (2) be a test tool that can simulate errors, either network or server related, back to the client server. The goal is to force the client server to handle those odd little failures that are darn difficult to reproduce or even create in the first place.

Benefits of SuperSink

SuperSink uses very little memory. It uses no disk, as messages are simply discarded after reception. It uses I/O Completion ports so it is very fast. It is totally written in MFC and runs under NT4 and NT5 (but not Windows95, which does not support I/O Completion ports).

SuperSink can listen on 4 separate, user-configurable IP ports. By default it attempts to open the SMTP port (#25) upon startup, but the user can change this if desired. The default startup information for each instance is stored in the registry, and additional configuration information is stored in a configuration file with the extension of .SNK. Each instance is totally separate and can have its own configuration settings.

By using WinSock2 instead of WinSock1 (the default in MFC 4.2), SuperSink is able to have up to 100 simultaneous pending accepts at one time instead of just 5. SuperSink is not restricted in the number of clients that can connect at one time, other than what NT can support. It is easy to have over 100 active connections to SuperSink; in fact, the combination of InetLoad and SuperSink can overwhelm the TCP/IP stack in NT!

SuperSink can be configured to randomly send error codes back to the client server or it can timeout its responses to the client server. The tests are repeatable if the user configures the seed number prior to the test, so any failures of the client server can be reproduced in exactly the same order as before. SuperSink can be configured to disable any protocol so that, for example, issuing HELO will return an error.

Current SMTP verbs

SuperSink supports the following SMTP verbs (e.g. commands)

· HELO

· EHLO

· MAIL FROM (with verification of a valid address), and the RET, ENVID, and SIZE options

· RCPT TO (with verification of a valid address), and the NOTIFY and ORCPT options

· DATA

· HELP

· VRFY (always returns a success)

· SIZE

· NOOP

· RSET

· QUIT

· TURN (always returns nothing to send)

· ETRN (always returns Ok)

In addition, SuperSink supports the following EHLO extensions:

· AUTH LOGIN

· DSN (but does not actually DO any confirmation of delivery)

· 8BITMIME

Installation

SuperSink consists of the supersink.exe and the smtpmachine.dll. The exe controls the listening sockets, maintains the list of client sockets (current connections), and the user interface. The smtpmachine.dll is where the actual parsing of the incoming commands is done, and where the responses are generated.

SuperSink comes in both Intel (x86) and Alpha versions, and in retail and debug builds. The files are located on file:\\quadra\tools\supersink, in the appropriate version & build directory.

To install the retail build of SuperSink, copy the two files to a location on the hard disk. SuperSink required the MFC DLLs to be installed, which 99.9% of the time are already in the SYSTEM32 directory.

To install the debug build of SuperSink, copy the two files, plus the MFC42D.DLL, MFCN42D.DLL, and MSVCRTD.DLL to the hard disk.

Interface

The SuperSink interface consists of two panes, a status pane at the top of the screen, and a text pane at the bottom. The status pane shows the current running time of SuperSink (determined by taking the very first incoming connection as the start time and the last command processed as the end time); the number of current connections; the total number of connections; the total number of messages and recipients; and the total byte count received. This is a sum across all instances; for per-instance data the menu option “Per-Server Info” must be used.

The text pane is where SuperSink informs you of significant events such as instance creation and deletion, client timeout, per-server data, etc. This is a simple text box and can be cleared by selecting the text and hitting the delete key.

Starting and Stopping an Instance.

To start an instance within SuperSink (an instance being an active listening connection on an IP port), go to Control: Start Instance. Specify a port number and click Ok. If the port is not currently in use, a listening socket will be bound to that port; otherwise a message will inform you that the port is in use. By default SuperSink attempts to start an instance on port 25, so you don’t have to do this manually.

To stop an instance, go to Control: Delete Instance. All current client connections will be closed, and the listen socket will be closed as well. All configuration settings for that instance will be lost, unless you elect to save them via File: Save Config File.

To automatically configure an instance to start, go to Control: Options (see below).

Controlling SuperSink

All control of SuperSink is done via the Control menu. The various submenus are described below.

New Instance

This prompts you for the IP port number of the instance and attempts to start the instance. Success or failure is reported in the text box.

Delete Instance

Closes any client connections, closes the listening socket, and deletes the instance.

Parameters

Select the instance you want to configure, and a dialog box will appear with 4 tabs.

General Settings

Under General Settings you can set the seed number (for reproducible “random” errors on the various protocols), the connection timeout (default is 30 seconds of inactivity, zero (0) turns the timeout feature off), the maximum message size and the maximum number of recipients per message.

A word on the connection timeout: I’ve implemented this as a Windows timer that fires every 10 seconds and checks each instance for any client sockets that have not changed state in the timeout period (default: 30 seconds). To keep from hogging the CPU, I only check 10 client connections per instance. These are not guaranteed to be the first 10 connections made to that instance, as I’m using a CMap to keep track of the connections, and maps are not searched in order.

If the examined client socket has no activity for longer than the timeout value, it is closed. It is possible that a client can go inactive for much longer than the Connection Timeout value before being closed, depending on when it is finally checked. Unfortunately, without changing the method I use to track connections, this behavior is not changeable.

Protocol Settings (3 of ‘em)

The next three tabs are identical in functionality. The first controls the initial client connection and the HELO/EHLO protocol verbs, the next the MAIL/RCPT verbs, and the last the DATA verb. The incoming connection can be rejected with a probability, the welcome banner (standard in SMTP) can return an error or timeout with a probability as well.

For each verb, the settings are similar. The verb can be disabled totally, so that SuperSink will return an error “500 <verb> not enabled”. The verb can return an error “451 Deliberate error”, or can timeout the response back to the client. A timeout inbound means SuperSink will not change state, whereas an outbound timeout will change state (so that a MAIL FROM can either stay at MAIL FROM or go to RCPT TO, but in either case the client will not get a response from SuperSink).

Kill Connections

This allows you to close any open client connections on the instance.

Display Per-Server Info

This dumps to the text window each instance’s client connection information, including who the client is (name and/or IP address), the number of connections, the number of messages, the number of recipients, and the bytes received from that client.

Options

Allows you to save to the Registry each instance’s port number and whether the instance is started automatically. It also allows you to start a Telnet server for remote data collection via the telnet port. This option is only valid during startup, if you change it then you must shut down and restart SuperSink.

Lastly, under Edit is a menu item for Clear Stats that will reset all the counters for all instances to zero. There is one restriction on this that I need to work around in the next rev: if the focus is not on the status pane, the menu is disabled. This seems to be an MFC issue. I might move this menu item to the Control menu; it made sense at the time to put it under Edit…
Telnet

SuperSink opens the Telnet port for remote gathering of statistics (both global and per-instance), and for resetting the statistics. This feature allows you to monitor a number of sinks from your local machine, resetting the counters after a test run is completed. You can also find out information about the SuperSink machine, and the current time on the sink – useful when checking on active connections, since I track the last time that connection had any activity.

Future Plans

I am currently planning on converting the SMTPMachine into an ATL COM object, which should increase expandability if I do it right. The UI will not undergo any changes, but will use the COM object instead of the DLL.

I am planning on implementing logging (probably the #1 feature request so far), and am considering additional protocols such as PIPELINING and BDAT. I will also consider any feature requests that I understand (hey, the RFC’s aren’t exactly the model of clarity, ya know).

I am going to add a dialog for the EHLO advertisements (such as DSN, 8BITMIME, etc.) so you can selectively turn these off when the client sends the EHLO verb.

I will also increase the control that is exposed via Telnet, so that you can remotely configure all parameters of SuperSink.

Acknowledgements

I wish to thank:

· Doug Strauss for telling me to write SuperSink in the first place,

· Milan Shaw for explaining the concept of I/O Completion ports,

· Alan Erickson and Rodney Bryan for helping me with various MFC issues, and

· Aaron Szafer, Scott Roberts, Carol Bodaczewski, and Ken Dacey for beta testing SuperSink. Thanks! and I’m sorry for all the buddy drops…

