Winsock Generic QOS Mapping
Draft
Version 3.0

Windows Networking Group

Winsock Generic QOS Mapping
(draft)
GQOS_SPEC.doc

Author:
Yoram Bernet, Jim Stewart, Raj Yavatkar, Dave Andersen, Charlie Tai, Bob Quinn, Kam Lee

Version 3.1

Last Saved: 21/9/98 0:0 AM
Status: UNDER DEVELOPMENT
Table of Contents
11
Change History

2
How to use This Document
4
2.1
Reader’s Guide
4
2.2
Roadmap
4
3
Introduction
5
3.1
Overview
5
3.2
Generic QOS vs. Annexes
5
4
The GQOS API and its Uses
7
4.1
RSVP Functionality
7
4.2
TC Functionality
7
4.3
Using Winsock2 APIs to Invoke RSVP & TC Functionality
7
4.3.1
GQOS and IP
8
4.3.2
Socket for QOS Connection
8
4.3.3
QOS-Related Data Structures and API Calls
8
4.3.4
Multiple Levels of Network QOS
12
4.3.5
Implicit Invocation of QOS
13
4.3.6
The ProviderSpecific Structure
16
4.3.7
Application Control of RSVP Parameters
17
4.3.8
Application Control of TC Parameters
18
4.3.9
QOS Event Notification
21
4.3.10
Bandwidth Query
22
4.3.11
Terminating QOS Service
23
4.4
Registry Control
24
5
An APPROACH TO Mapping GQOS TO RSVP
27
5.1
General Concepts
27
5.1.1
Binding
27
5.1.2
SIO_ROUTING_INTERFACE_QUERY and Change Notifications
28
5.1.3
Port Number Negotiation
29
5.2
Generation of PATH and RESV
29
5.2.1
Information Required to Generate PATH and RESV Messages
29
5.2.2
Triggering the Transmission of PATH and RESV Messages
30
5.2.3
Sending RESV Messages Based on Matching PATH State
30
5.3
Use of WSAConnect for Unicast Sessions
30
5.3.1
TCP Sessions
30
5.3.2
UDP Sessions
31
5.4
Use of WSAJoinLeaf and sendto for Multicast Sessions
31
5.5
Use of WSAIoctl(SIO_SET_QOS)
32
5.6
Disabling RSVP Signaling
32
6
Mapping of GQOS to RSVP: Call Sequences
33
6.1
Sending Applications
33
6.1.1
Unicast UDP Senders
34
6.1.2
Multicast UDP Senders
34
6.1.3
Unicast TCP Senders
34
6.2
Receiving Applications
35
6.2.1
Unicast UDP Receivers
35
6.2.2
Multicast UDP Receivers
36
6.2.3
Unicast TCP Receivers
37
7
Mapping of GQOS to RSVP: QOS Parameters
38
7.1
Tspec
38
7.1.1
SenderTspec
38
7.1.2
ReceiverTspec
39
7.2
Rspec
39
7.3
Adspec
40
8
MAPPING OF GQOS TO RSVP: Reservation Styles
41
8.1
Basic RSVP Filters
41
8.1.1
Fixed Filter - Unicast
41
8.1.2
Wildcard Filter - Multicast
41
8.1.3
Shared Explicit
41
8.2
Alternate Reservation Styles
41
8.2.1
Single Fixed Filter Reservations
42
8.2.2
Multiple Fixed Filter Reservations in a Single Reservation
42
8.2.3
Shared Explicit Reservations
42
8.2.4
WF Reservations
42
9
An APPROACH TO MAPPING GQOS to TC
44
9.1
The Intserv Model
44
9.2
The Flowspec Parameters
44
9.3
The Provider Specific Parameters
44
9.3.1
QOS_OBJECT_SD_MODE
45
9.3.2
QOS_OBJECT_PRIORITY
45
9.3.3
QOS_OBJECT_TRAFFIC_CLASS
47
10
Mapping GQOS to TC: MECHANICS
49
10.1
The Role of the QOSSP in Invoking TC
49
10.2
Timing of TC Invocation With and Without RSVP Signaling
50
10.3
Use of SIO_CHK_QOS
50
10.4
Configurable Options
50
10.4.1
Disabling TC
50
10.4.2
Priority Boost
51
10.4.3
The TrafficClass Object
51
10.5
Significance of the ServiceType and the TrafficClass
52
11
Status Indications from the QOSSP to Applications
54
11.1
Edge-Triggered Asynchronous Notification
54
11.1.1
Using WSAEventSelect or WSAAsyncSelect
54
11.1.2
Using Overlapped WSAIoctl(SIO_GET_QOS)
54
11.2
Returned RSVP Status
55
11.2.1
Status Codes
55
11.2.2
QOS State
55
11.2.3
RSVP_STATUS_INFO
56
11.2.4
The RSVP_ADSPEC Object
56
11.3
Returned TC Status
57
12
GETQOSBYNAME
58
12.1
Overview
58
12.2
The GetQosByName Function Suite
58
12.2.1
WSAGetQosByName()
58
12.2.2
WSAGetQosByName()
60
12.2.3
WSCInstallQOSTemplate()
61
12.2.4
WSCRemoveQOSTemplate()
62
12.2.5
WPUGetQOSTemplate()
63
13
Miscellaneous
65
13.1
Protocol Chaining
65
13.2
AcceptEx & TransmitFile
65
13.3
QOS For Socket Groups
65
14
Outstanding Issues
66
15
Bibliography
67
16
Appendix A – UsiNG GQOS
68
16.1
A List of GQOS-Related Data Structures
68
16.1.1
QOS Parameters
68
16.1.2
Input Provider-Specific Objects
68
16.1.3
Output Provider-Specific Objects
68
16.2
A Summary of GQOS-Related Function Calls
68
16.2.1
Connection management:
68
16.2.2
Ioctl
68
16.2.3
QOS Templates
68
16.3
General Guidelines
69
16.3.1
Sender
69
16.3.2
Receiver
69
16.3.3
Opening
69
16.3.4
Closing
69
16.4
Applied Examples
70
16.4.1
Internet Phone
71
16.4.2
Video-On-Demand
73
17
Appendix B – Sample Call Sequences
75
17.1
UDP Unicast Sender, Bound Using INADDR_ANY
75
17.2
UDP Unicast Sender Bound to a Specific Address
75
17.3
UDP Unicast Sender, QOS Parameters Modified
76
17.4
UDP Multicast Sender, QOS Parameters in WSAIoctl
76
17.5
TCP Unicast Sender, QOS Parameters Included With ConditionFunc
76
17.6
TCP Unicast Sender, WSAAccept Followed by WSAIoctl
77
17.7
TCP Unicast Sender, WSAIoctl Precedes WSAAccept
77
17.8
TCP Unicast Sender, Active Sender
78
17.9
UDP Receiver, Bound to INADDR_ANY, Followed by WSAConnect
78
17.10
UDP Receiver, Bound to Specific Address, Followed by WSAIoctl
79
17.11
UDP Receiver, WSAIoctl Followed by WSAConnect
79
17.12
Multicast UDP Receiver, WSAIoctl Followed by WSAJoinLeaf
80
17.13
Multicast UDP Receiver, QOS Parameters in WSAJoinLeaf
80
17.14
Unicast TCP Receiver, Active Receiver
80
17.15
Unicast TCP Receiver, Passive Receiver
81

1 Change History

Sept. 22, ’98

New features:

· Detection of End-to-End QOSability

· SIO_CHK_QOS(LOCAL_QOSABILITY)

· SIO_CHK_QOS(END_TO_END_QOSABILITY)

· Prorated Traffic Shaping

· QOS_OBJECT_SHAPING_RATE

· Custom Control of Traffic Shaping

· QOS_OBJECT_SHAPER_QUEUE_LIMIT

· QOS_OBJECT_SHAPER_DROP_MODE

· Traffic Shaping on Unconnected Sockets (with no Dest_Address association)

Defining fine-grained Error Codes/values

Clarifying TC-RSVP Interactions

Apr. 12, ‘98:

New features:

· SIO_CHK_QOS

now also allows RECEIVER to find out if its interface is rsvp-enabled or not

so SIO_CHK_QOS can take one of follwoing 3 arguments in INBUF:

· ALLOW_TO_SEND_DATA - used by a SENDER to check if it is allowed to send while waiting for RESV arrival

· ABLE_TO_RECV_RSVP - used by a RECEIVER to query if its interface is RSVP-enabled

· LINE_RATE - used by an app to query the bandwidth capacity of the interface

Note:

1. return WSAINVAL if sending QOS is not set on the socket when asking for ALLOW_TO_SEND_DATA and LINE RATE

2. return WSAINVAL if receiving QOS is not set on the socket when asking for ABLE_TO_RECV_RSVP

· WSAAccept

In contrary to what the Winsock manpage says about the use of the Condition Function in WSAAccept, no QOS spec is passed into the condition function when WSAAccept wakes up. The proper way of using the condition function to trigger QOS invovation within WSAAccept is simply to set the QOS struct to a valid Flowspec and return CF_ACCEPT.

· TOS Mapping

In the presence of Traffic Control in the kernel, the TOS byte on a packet flow can be set by the packet scheduler or the tcpip stack according to the Service Type associated with the flow. In the absence of Traffic Control in the system, the QOSSP will issue setsockopt(IP_TOS) to set the TOS byte for a QOS connection based on its SERVICE_TYPE.

While this kind of TOS-setting is enabled by default, it can be disabled on a per-interface basis by nullifying the EnableIPTOSMapping parameter in the registry.

In addition, the interface-specific SERVICE_TYPE-to-TOS map is also kept in the registry.

With TOS-setting enabled, the QOSSP will intercept any setsockopt(IP_TOS) made by the app, and inspects and, if necessary, modify the IP_TOS option before forwarding the setsockopt request to the base SP.

· Sizing the Provider-Specific Buffer

Before an app has no way of telling how big of a provider-specific buffer is needed to retrieve provider-sepcific information from RSVP. Now GQOS will indicate the required bufer size to the app if the provider-specific buffer it passes down is not large enough to hold all provider-specific data.

· Application-Specific Policy Elements

The GQOS API now facilitate the passing and retrieval of one of more policy elements to and from RSVP.

· Number of Participants in a Session

Upon receipt of SENDERS/RECEIVERS notifications, an app can find out how many participants are present by looking up ExtendedStates2 in RSVP_STATUS_INFO.

Others:

· Header Files

Before, all #defines and QOS-based data structures are contained in a single header files called “qos.h”, which is included in winsock2.h. Now, there are two QOS-related header files: qos.h and qossp. The former contains only thise data structs that are genric or related to traffic control; the latter contains all provider-specific RSVP data structs. Note that, since winsock2.h does not include qossp.h, an app that makes use of provider-specific RSVP features has to include qossp.h in their sources codes.

· Changed Data Structures

The follwing data structures have been modified: RSVP_OBJECT, RSVP_RESERVE_INFO

· RSVP_DEFAULT_STYLE

This flag is defined such that an app can specify other fields in RSVP_RESERVE_INFO without explicitly indicate to QOSSP a special RSVP filter style.

Dec. 25, ‘97

New features:

· enhanced and modified the GQOS API, which now includes a bitmap-based field in the SERVICETYPE parameter; this allows a sending app to specify an arbitrary combination of service types

· added two registry variables for GQOS configuration on a per-interface basis:

1. EnableRSVP: enable RSVP signaling

2. EnablePriorityBoost: enable TC flow prioritization in the absence of RSVP

· add a ServiceType flag to allow a receiving app to suppress automation generation of RESV

· add a ServiceType flay to allow a sending app to disable TC on a per-flow basis

· immediate traffic control is the default and DELAY_TC is no longer supported

· introduced a new ioctl called SIO_CHK_QOS, which can be used by a sending app

1. to discover the allowed sending rate prior to RESV arrival

2. to query the link capacity of an output interface

· use the TC to enforce the allowed sending rate indicated by SIO_CHK_QOS

· utilize the TCI to support the query of interface capacity via SIO_CHK_QOS

· utilize the TCI to help composing the ADSPEC on a sending host

Documentation:

· restructured and reorganized the document

· added a “Change History” section to document design modifications and documentation changes

· added a “How To Use This Document” section to guide the audience

· added an “Outstanding Issues” section which contains a list of issues for future consideration pertaining to the design and implementation of the QOSSP

· renamed RSVP SP to QOSSP

· expanded the GetQosByName section

· elaborate on the mapping of GQOS to TC parameters

· added a new appendix called “Using GQOS ”, which illustrates the use of the GQOS API

· mentioned how GQOS is used in NetMeeting 2.1

· explain the use of SIO_CHK_QOS

· explain how a receiving can request for RESV confirmation

· clarify the control of Priority Boost

2 How to use This Document

2.1 Reader’s Guide

Application programmers who want to use the GQOS API must read Section 4 which serves as a primer to GQOS-based network programming. Also helpful are Appendices A & B which illustrate the possible use of GQOS in different application scenarios. The how-to of GetQosByName is explained in Section 12.

Protocol developers and other advanced users who wants an in-depth understanding of the interplay among GQOS, RSVP, and TC should read Sections 5 – 11 as well.

2.2 Roadmap

· Section 3 presents an overview of the Generic QOS (GQOS) architecture.

· Section 4 describes the Winsock-based GQOS API and explains how to use it to invoke RSVP and TC functionality.

· Section 5 focuses on the invocation of RSVP signaling via GQOS.

· Section 6 elaborates on the call sequences underlying the interworking of GQOS and RSVP.

· Section 7 shows how RSVP QOS parameters are determined in GQOS.

· Section 8 explains the selection of reservation style for RSVP in GQOS.

· Section 9 overviews the invocation of kernel traffic control via GQOS.

· Section 10 elaborates on the GQOS-TC interworking mechanisms.

· Section 11 describes the feedback of QOS status indications to the apps.

· Section 12 explains the GETQOSBYNAME facility which allows an app to discover and retrieve pre-defined Flowspec templates.

· Section 13 addresses such issues as protocol chaining, AcceptEx/TransmitFile, and QOS for socket groups.

· Section 14 mentions all outstanding issues on the design and implementation of QOSSP.

· Section 15 contains a list of useful references.

· Appendix A summarizes the GQOS API and contains several applied examples.

· Appendix B details the GQOS-RSVP call sequences in several typical application scenarios.

3 Introduction

3.1 Overview

This document discusses the support of the existing Winsock2 QOS-related APIs by a Microsoft QOS-enabled service provider called QOSSP, which simply stands for QOS Service Provider.

 The QOSSP is a layer service provider functioning on top of the base service provider.
 It invokes the Resource ReSerVation Protocol (RSVP) which signals a network to do resource allocation so as to satisfy QOS requests made by applications. The QOSSP also configures kernel traffic control (TC) components in compliance with the QOS negotiated with the network.

The QOSSP is part of the operating system. QOS-aware applications can invoke its services on their own behalf via the Winsock2 GQOS API. For non-RSVP-enabled networks, the QOSSP can be used in a pass-through mode, in which it will invoke local traffic control functionality without RSVP signaling. The QOSSP invokes local traffic control via the same TCI used by third party traffic management applications.

Depicted below is the architecture of Generic QOS (GQOS):

The QOSSP intercepts and handles all QOS-related Winsock2 API calls. The RSVP service process implements the RSVP protocol for network signaling. The QOSSP interacts with RSVP service via the RAPI interface. Kernel traffic control is activated indirectly by QOSSP via the RSVP service process which uses the TC interface (TCI). This document describes in details the interplay among the QOSSP, RSVP, and TC.

3.2 Generic QOS vs. Annexes

This document addresses the GQOS interface to the QOSSP (formerly know as QOSSP). These are standard Winsock2 API calls which carry QOS related parameters in a general form. There is also a specific API defined for the QOSSP (not yet supported). From here on, we distinguish the standard Winsock2 QOS API from the specific API set by referring to the former as the Generic QOS API (GQOS), and the latter as the annexes.

It is expected that the majority of applications requiring QOS support will be modified to use GQOS. Designing applications to this interface has the benefit of enabling the application to invoke QOS from any QOS service provider transparently.

In contrast, the annexes are specific to particular QOS service providers. The annexes provide an interface by which applications can exercise tighter control over specific features of a particular QOS service provider. (The annexes might also enable third party applications, which have the capability of requesting QOS on behalf of another application which is not QOS-aware.)

A QOS service provider supports both the GQOS interfaces and the annex interfaces specific to the provider. However, any single application is expected to invoke the service provider’s functionality through one set of interface or the other.

4 The GQOS API and its Uses

We first review the required RSVP and TC functionality, and then show how Winsock2 QOS-related calls can be used to invoke these functions.

4.1 RSVP Functionality

RSVP, an IETF standard, is by and large a layer-3 end-to-end signaling protocol for unicast and multicast communications in IP networks. RSVP conveys an application’s requirements to the network nodes on the path between a sender and its receiver(s). This facilitates the allocation of network resources to the application. RSVP is receiver-driven, meaning that resource reservation is made by the receivers instead of the senders. Specifically, a sender emits RSVP PATH messages toward its receivers, and the receivers respond by issuing RSVP RESV messages along the reverse path to request for resource reservation

RSVP functionality is implemented in the RSVP server process accessible to the QOSSP. Via the Winsock-based GQOS interface, an app can use QOSSP to invoke RSVP-based support on its own behalf.

In simple terms, relevant RSVP support on a host amounts to the control and exchange of PATH and RESV messages with the network based on the Winsock GQOS API calls exercised by the apps. An application intending to transmit traffic with a certain QOS must indicate so to the QOSSP. In turn, the QOSSP should respond by beginning the periodic transmission of PATH messages on the network. PATH messages describe the QOS parameters of the traffic to be sent (Tspec), the sender’s address (SenderTemplate) and the destination of the traffic (session). On the other hand, an application wishing to receive traffic with a certain QOS must indicate so to the QOSSP. In turn, the QOSSP would respond by beginning the periodic transmission of RESV messages on the network, provided that the corresponding PATH state exists. RESV messages describe the QOS parameters of the traffic to be received (flowspec), the source(s) from which QOS traffic is to be received (filterspec) and the destination of the traffic (session).

4.2 TC Functionality

Kernel traffic control provides several levels of local bandwidth allocation and protection to application traffic flows departing from a host. This includes such functions as: admission control, packet scheduling, traffic shaping and flow prioritization.

Via the Traffic Control Interface (TCI), a dll, called traffic.dll, makes the kernel traffic control components available to the QOSSP. At its lower edge, the traffic.dll calls the functions in different kernel traffic control components.

In simple term, relevant TC support on a host amounts to the invocation of flow installation/removal and filter setup/deletion based on Winsock GQOS calls exercised by the apps.

4.3 Using Winsock2 APIs to Invoke RSVP & TC Functionality

The key to mapping Winsock2 calls to RSVP is to determine when to trigger the transmission of PATH and/or RESV messages and when to stop their transmission. In general, the transmission of these messages should begin at the time that the QOSSP has determined that the application intends to invoke QOS in a specific direction (sending or receiving), and all information required for the generation of the message is available.

The key to mapping Winsock2 calls to TC is to determine when to trigger the installation of flows and the passing of flowspec information to the kernel traffic controller. In general, TC flow setup can takes place as soon as the QOSSP recognize a well-defined flow, and an installed flow can be subsequently modified in reaction to RSVP events.

4.3.1 GQOS and IP

Although GQOS, RSVP, and TC are supposed to be protocol independent, the reality is that they assume the IP protocol. Nonetheless, efforts were made to assure that the GQOS specification is as independent of a specific protocol as practically realizable.

4.3.2 Socket for QOS Connection

To open a socket supporting QOS follow these steps:

· Enumerate the available protocols using WSAEnumProtocols().

· Loop through the returned list of protocols looking for a protocol that supports QOS. Do this by checking if the XP1_QOS_SUPPORTED flag is set in dwServiceFlags1 in each WSAPROTOCOL_INFO structure.

· When a protocol is found that supports QOS, call WSASocket() passing a pointer to that WSAPROTOCOL_INFO structure. Also be sure to set the WSA_FLAG_OVERLAPPED flag so that the socket is created in overlapped mode. The RSVP service provider requires an overlapped socket
.

4.3.3 QOS-Related Data Structures and API Calls

In Winsock2, a QOS-aware application can specify the QOS parameters of its sent and received traffic in the SendingFlowspec and ReceivingFlowspec structures within the QualityOfService (QOS) structure:

typedef struct _QualityOfService

{

 FLOWSPEC SendingFlowspec; /* flow spec for data sending */

 FLOWSPEC ReceivingFlowspec; /* flow spec for data receiving */

 WSABUF ProviderSpecific; /* provider specific stuff */

} QOS;

where WSABUF contains a pointer to a provider specific buffer which may be used by the app to supply additional QOS control objects to QOSSP. The Flowspec, which contains a set of token bucket parameters and a service type specification, is defined as:

typedef struct _flowspec

{

 int32 TokenRate; /* In Bytes/sec */

 int32 TokenBucketSize; /* In Bytes */

 int32 PeakBandwidth; /* In Bytes/sec */

 int32 Latency; /* In microseconds */

 int32 DelayVariation; /* In microseconds */

 SERVICETYPE ServiceType; /* Service Type */

 int32
 MaxSduSize; /* In Bytes */

 int32 MinimumPolicedSize; /* In Bytes */

} FLOWSPEC;

TokenRate

A token bucket model is used to specify the rate at which permission to send traffic (or credits) accrues. In the model, the token bucket has a maximum volume, TokenBucketSize, and continuously fills at a certain rate TokenRate. If the bucket contains sufficient credit, the application can send data and reduce the available credit by that amount. If sufficient credits are not available, the application must wait or discard the extra traffic.

A value of -1 in the members TokenRate and TokenBucketSize indicates that no rate-limiting is in force. The TokenRate is expressed in bytes per second.

If an application has been sending at a low rate for a period of time, it can send a large burst of data all at once until it runs out of credit. Having done so, it must limit itself to sending at TokenRate until its data burst is exhausted.

In video applications, the TokenRate is typically the average bit rate peak to peak. In constant rate applications, the TokenRate is equal to the PeakBandwidth.

TokenBucketSize

The TokenBucketSize is expressed in bytes.

The TokenBucketSize is the largest typical frame size in video applications. In constant rate applications, the TokenBucketSize is chosen to accommodate small variations.

PeakBandwidth

This member, expressed in bytes/second, limits how fast packets may be sent back to back from the application. Some intermediate systems can take advantage of this information resulting in a more efficient resource allocation.

(Note: PeakBandwidth MUST be greater than or equal to TokenRate.)

Latency

Latency is the maximum acceptable delay between transmission of a bit by the sender and its receipt by the intended receiver(s), expressed in microseconds. The precise interpretation of this number depends on the level of guarantee specified in the QOS request.

DelayVariation

This the difference, in microseconds, between the maximum and minimum possible delay that a packet will experience. This value is used by applications to determine the amount of buffer space needed at the receiving side in order to restore the original data transmission pattern.

ServiceType

See Section 4.3.4.

MaxSduSize

Maximum Packet Size

MinimumPolicedSize

Minimum Size of Policed Packets

Notes:

QOS_NOT_SPECIFIED: this value can be used in the FLOWSPEC to instruct the QOSSP to derive the appropriate default value for the parameter. Note that not all values in the FLOWSPEC can be defaulted. Some of the defaults are:

Latency = 0 ms

DelayVariation = 0 ms

MaxSduSize = 1500 bytes

MinimumPolicedSize = 128 bytes

POSITIVE_INFINITY_RATE: this defines a value that can be used for the PeakBandwidth, which will map into positive infinity when the Flowspec is converted into IntServ floating point format. (We can’t use (-1) because that value was previously defined to mean “select the default” – as just mentioned.)

In Winsock2, the flowspec may be included with WSAConnect, WSAJoinLeaf, WSAAccept, and WSAIoctl(SIO_SET_QOS). Each of these QOS-related calls specifies a particular socket to which the call applies. Thus, QOS is invoked relative to a particular socket. A socket on which QOS has been invoked, is said to be a QOS Socket. Annotated below are the prototypes of these function calls. (Please refer to the WinSock2 API doc for completion description and specification.)

· WSAConnect()
int WSAConnect (

SOCKET s,

const struct sockaddr FAR * name,

int namelen,

LPWSABUF lpCallerData,

LPWSABUF lpCalleeData,

LPQOS lpSQOS,

LPQOS lpGQOS

);

· WSAJoinLeaf()
SOCKET WSAJoinLeaf (

SOCKET s,

const struct sockaddr FAR * name,

int namelen,

LPWSABUF lpCallerData,

LPWSABUF lpCalleeData,

LPQOS lpSQOS,

LPQOS lpGQOS,

DWORD dwFlags

);

· WSAAccept(lpfnCondition)
SOCKET WSAAccept (

SOCKET s,

struct sockaddr FAR * addr,

LPINT addrlen,

LPCONDITIONPROC lpfnCondition,

DWORD dwCallbackData

);

A prototype of the condition function is as follows:

int CALLBACK ConditionFunc(

IN LPWSABUF lpCallerId,

IN LPWSABUF lpCallerData,

IN OUT LPQOS lpSQOS,

IN OUT LPQOS lpGQOS,

IN LPWSABUF lpCalleeId,

OUT LPWSABUF lpCalleeData,

OUT GROUP FAR * g,

IN DWORD dwCallbackData

);

The ConditionFunc is a placeholder for the application-supplied callback function. In 16-bit Windows environments, it is invoked in the same thread as WSAAccept, thus no other Windows Sockets functions can be called except WSAIsBlocking and WSACancelBlockingCall. The actual condition function must reside in a DLL or application module. It is exported in the module definition file. Use MakeProcInstance to get a procedure-instance address for the callback function.

· WSAIoctl(SIO_SET_QOS)

int WSAIoctl (

SOCKET s,

DWORD dwIoControlCode,

LPVOID lpvInBuffer,

DWORD cbInBuffer,

LPVOID lpvOUTBuffer,

DWORD cbOUTBuffer,

LPDWORD lpcbBytesReturned,

LPWSAOVERLAPPED lpOverlapped,

LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionROUTINE

);

SIO_SET_QOS

Associate the supplied QUALITYOFSERVICE structure with the socket. No output buffer is required, the QUALITYOFSERVICE structure will be obtained from the input buffer. The WSAENOPROTOOPT error code is indicated for service providers that do not support quality of service.

When called with an overlapped socket, the lpOverlapped parameter must be valid for the duration of the overlapped operation. The lpOverlapped parameter contains the address of a WSAOVERLAPPED structure.

If the lpCompletionRoutine parameter is NULL, the hEvent field of lpOverlapped is signaled when the overlapped operation completes if it contains a valid event object handle. An application can use WSAWaitForMultipleEvents or WSAGetOverlappedResult to wait or poll on the event object.

If lpCompletionRoutine is not NULL, the hEvent field is ignored and can be used by the application to pass context information to the completion routine.

The prototype of the completion routine is as follows:

void CALLBACK CompletionRoutine(

IN DWORD dwError,

IN DWORD cbTransferred,

IN LPWSAOVERLAPPED lpOverlapped,

IN DWORD dwFlags

);

This CompletionRoutine is a placeholder for an application-defined or library-defined function. The dwError parameter specifies the completion status for the overlapped operation as indicated by lpOverlapped. The cbTransferred parameter specifies the number of bytes returned. Currently, there are no flag values defined and dwFlags will be zero. The CompletionRoutine function does not return a value.

Returning from this function allows invocation of another pending completion routine for this socket. The completion routines can be called in any order, not necessarily in the same order the overlapped operations are completed.

This call can be invoked by an application, at any time to change (or initialize) the QOS parameters on a socket. The QOSSP will respond differently depending on the state of the socket. Use of WSAIoctl(SIO_SET_QOS) will be discussed in further detail, in subsequent sections.

Suppose an app (such as NetMeeting V2.1) does not want to issue a connect for a sending socket. Then, in order to activate GQOS, the app has to do a SIO_SET_QOS ioctl indicating not only FlowSpec info but also the destination address using QOS_Object_Dest_Addr object in the provider-specific buffer. The destination address is required so that the QOSSP can generate the session information for RSVP signaling. The QOS_Object_Dest_Addr has the following structure:

Struct {

QOS_OBJECT_HDR ObjectHdr; /* Object Header */

Const struct sockaddr *SocketAddress; /* Dest Socket Addr */

ULONG SocketAddressLength; /* Length of the addr struct */

} QOS_Destaddr

(The definition of the QOS_OBJECT_HDR structure is given in Section 4.3.8.)

Notes:

1. In the case of a bidirectional socket, the use of WSAConnect() to invoke QOS has the following side effect: the socket can only receive to packets sent by the same remote destination (addr/port) that the socket is connected to.

2. There are two approaches to QOS invocation on a TCP connection opened with WSAAccept():

· First, one can invoke QOS by explicitly issuing a SIO_SET_QOS ioctl following the return of WSAAccept.

· Second, one can invoke QOS within WSAAccept by a) issuing a SIO_SET_QOS ioctll prior to calling WSAAccept, b) including a condition function, in which a valid QOS struct is specified and CF_ACCEPT is returned.

4.3.4 Multiple Levels of Network QOS

Based on the Intserv Model, there are three levels of network service quality. They are:

BEST EFFORT

A service provider supporting best effort service, at minimum, takes the flow spec as a guideline and makes reasonable efforts to maintain the level of service requested, however without making any guarantees whatsoever.

CONTROLLED LOAD

With this service, end-to-end behavior provided to an application by a series of network elements tightly approximates the behavior visible to applications receiving best-effort service "under unloaded conditions" from the same series of network elements. Thus, applications using this service can assume that: a very high percentage of transmitted packets will be successfully delivered by the network to the receiving end-nodes, and packet loss rate will closely approximate the basic packet error rate of the transmission medium. Transit delay experienced by a very high percentage of the delivered packets will not greatly exceed the minimum transit delay experienced by any successfully delivered packet at the speed of light. (Note: This definition comes from the Internet Engineering Task Force (IETF).)

GUARANTEED

A service provider supporting guaranteed service implements a queuing algorithm which isolates the flow from the effects of other flows as much as possible, and guarantees the flow the ability to propagate data at the TokenRate for the duration of the connection. If the sender sends faster than that rate, the network may delay or discard the excess traffic. If the sender does not exceed TokenRate over time, then latency is also guaranteed. This service is designed for applications which require a precisely known quality of service but would not benefit from better service, such as real-time control systems.

For QOS-aware applications, it is the application developer’s responsibility to decide what level of network quality to use based on a priori knowledge of application traffic characteristics, performance requirements, and user preference. Note also that some smart apps might operate under different levels of network QOS.

Implicit Invocation of QOS

The QOSSP assumes that an application which includes a non-NULL pointer to a QOS structure, with any of the calls above, is implicitly invoking QOS functionality involving both RSVP and TC.

As described in previously, the QOS structure includes a SendingFlowspec and a ReceivingFlowspec. Within each Flowspec there is a 32-bit ServiceType field:

 SERVICE_BestEffort

 SERVICE_ControlledLoad

 SERVICE_Guaranteed (followed by SERVICE_CUSTOMi)

 SERVICE_NO_TRAFFIC_CONROL

 SERVICE_NO_QOS_SIGNALING

As shown, this 32-bit field is divided into two halves. The lower half is allocated for valued-based specification of a single “service-type”.

Value-based Specification

The set of valid service-type values and their meanings are tabulated below:

SERVICETYPE_
In SendingFlowspec
In ReceivingFlowspec

BESTEFFORT
Indicates that only best-effort service is supported for this traffic flow.
Requests best-effort service (no QOS treatment)

NOTRAFFIC
Indicates that there will be no traffic in this direction. On duplex capable media, this signals underlying software to setup unidirectional connections only.
Indicates that there will be no traffic in this direction. On duplex capable media, this signals underlying software to setup unidirectional connections only.

CONTROLLEDLOAD
Indicates that only controlled load service is supported for this traffic flow.
Per the Intserv specification.

GUARANTEED
Indicates that only guaranteed service is supported for this traffic flow.
Per the Intserv specification.

NETWORK_UNAVAILABLE
May be used by certain service providers to indicate a loss of network service in the corresponding direction.
May be used by certain service providers to indicate a loss of network service in the corresponding direction.

GENERAL_INFORMATION
Indicates that all service types are supported or this traffic flow.
N/A

NO_CHANGE
Allows an application to modify QOS in one direction, while leaving the other unchanged, or to provide ProviderSpecific parameters without altering values previously specified in the FLOWSPECs.
Allows an application to modify QOS in one direction, while leaving the other unchanged, or to provide ProviderSpecific parameters without altering values previously specified in the FLOWSPECs.

Note that a sending application can specify a ServiceType parameter in the SendingFlowspec set to CONTROLLED_LOAD or GUARANTEED if it wants to limit the service type options presented to the receiver to just one service type. If the SendingFlowspec contains a service type of GENERAL_INFORMATION then both service types will be advertised as available from the sender (although intervening routers may indicate that they do not support one or both service types).

The Use of SERVICETYPE_NOTRAFFIC & SERVICETYPE_NOCHANGE

When invoking QOS, the service type in the SendingFlowSpec & ReceivingFlowSpec of the QOS struct MUST be specified.

On a unidirectional socket, SERVICETYPE_NOTRAFFIC can be used to disable QOS signalling in the other direction.

To make QOS modification on only one direction of a bidirectional socket, the FlowSpec of the other direction should have SERVICETYPE_NOCHANGE.

SERVICETYPE_NOTRAFFIC can be used to turn off or release QOS on one direction of a socket.

Other Service Types

In addition to the ones mentioned above, defined in qos.h are the following service types:

SERVICETYPE_NONCONFORMING

SERVICETYPE_CUSTOM1

SERVICETYPE_CUSTOM2

SERVICETYPE_CUSTOM3

SERVICETYPE_CUSTOM4

NUM_SERVICETYPES

SERVICETYPE_NONCONFORMING is currently not used directly by QOSSP.

SERVICETYPE_CUSTOMi is defined for future considerations.

NUM_SERVICETYPES indicates the total number of defined Service Types.

Bitmap-based Specification

The upper half contains several “service” flags:

SERVICE_BESTEFFORT

SERVICE_CONTROLLEDLOAD

SERVICE_GUARANTEED

SERVICE_CUSTOM1

SERVICE_CUSTOM2

SERVICE_CUSTOM3

SERVICE_CUSTOM4

These service flags, corresponding to best-effort, controlled-load, and guaranteed services, can be set independently of one another. So, unlike the valued-based service type selection, this bitmap allows an app to choose multiple service types. This would be useful in the future for adaptive apps that could cope with different levels of network guarantees, and for sending applications that would like to give their clients a choice of more than one basic service types.

Usage

So, on general, an app can specify the SERVICETYPE in one of the following ways:

1. equating ServiceType to one of the service-type values

2. equating ServiceType to a service-type bitmap which is an ORing (|) of one or more service flags.

When the QOSSP is presented with a SERVICETYPE that is a combination of a non-null service-type value and a non-null service bitmap, the latter will be given precedence.

QOS functionality will be invoked if the ServiceType field in the corresponding direction specifies a value other than SERVICETYPE_BESTEFFORT or SERVICETYPE_NOTRAFFIC. The specification of either of these values in one of the Flowspecs will suppress QOS functionality in the corresponding direction.

Additional Control Flags

Also included in the upper-half bitmap are two special flags for per-flow configuration:

SERVICE_NO_TRAFFIC_CONTROL

By setting this flag, an app instructs the QOSSP not to invoke kernel traffic control.

SERVICE_NO_QOS_SIGNALING

This flag can only be set by a receiving application. When it is set, the QOSSP will not invoke RSVP. This flag can be used by a receiving app to suppress the automatic generation of a RESV message.

These two flags can be set by ORing them with a service-type value and/or a combination of service flags.

Examples
A sending app requiring GUARANTEED SERVICE but NO TRAFFIC CONTROL should set the ServiceType in its SendingFlowspec to be:

SERVICETYPE_GUARANTEED | SERVICE_NO_TRAFFIC_CONTROL

or

SERVICE_GUARANTEED | SERVICE_NO_TRAFFIC_CONTROL

For a sending app requiring either best-effort or guaranteed service support but no traffic control. The ServiceType should be equated to:

SERVICE_BESTEFFORT | SERVICE_GUARANTEED | SERVICE_NO_TRAFFIC_CONTROL

4.3.5 The ProviderSpecific Structure

The GQOS interface supports the QOS requirements of a majority of applications without using the ProviderSpecific buffer. In certain cases, the application will be required to provide information which cannot be provided via the standard GQOS parameters. In these cases, the application will provide additional parameters, for RSVP and/or TC purpose, in the ProviderSpecific buffer which is a member of the QOS structure.

The ProviderSpecific buffer is of type WSABUF. This structure includes a length field and a pointer to a buffer. The buffer may include a number of objects. Each object includes a type field (which identifies the object), followed by a length field (which contains the length of the object, excluding the header), followed by the object data itself.

Note: All the objects referenced in the Provider-Specific Buffer must be contained within the same piece of contiguous buffer memory, i.e.

QOS struct

USES OF THE PROVIDER-SPECIFIC BUFFER:

By Receivers:

· Specification of a non-default RSVP filter style and flowdescriptors

· Request for RESERVE CONFIRMATION

· Specification of one or more policy elements to RSVP

· Retrieval of QOS and RESV_CONFIRM events

By Senders:

· Specifications of Shape-Discard & Internal-Priority objects (for Traffic Control purpose.)

· Retrieval of QOS events

· Retrieval of policy elements

4.3.6 Application Control of RSVP Parameters

4.3.6.1 Mapping of GQOS to RSVP

RSVP signaling will be invoked if the ServiceType field in the corresponding direction specifies a value other than SERVICETYPE_BESTEFFORT or SERVICETYPE_NOTRAFFIC. Specifically, on a sender, the QOSSP will trigger the emission of PATH messages toward the receiver(s); on a receiver, a RESV message will be issued as soon as a matching PATH message has arrived. The QOS parameters on these RSVP PATH or RESV messages are determined by the token-bucket parameters and ServiceType selection specified in the Flowspec. (See Section 7 for details.)

4.3.6.2 The RSVP_RESERVE_INFO Object

When invoking GQOS using Winsock2, an app may specify in the provider specific buffer (within the QOS structure) a so-called RSVP_RESERVE_INFO object, which is defined as:

typedef struct _RSVP_RESERVE_INFO {

 QOS_OBJECT_HDR ObjectHdr; /* type and length of this object */

 ULONG Style; /* RSVP Style (FF,WF,SE) */

 ULONG ConfirmRequest; /* Non Zero for Confirm Request */

 LPRSVP_POLICY Policy; /* Optional policy data */

 ULONG NumFlowDesc; /* Number of FlowDesc */

 LPFLOWDESCRIPTOR FlowDescList; /* FlowDesc list */

} RSVP_RESERVE_INFO;

This structure is used for storing RSVP-specific information for fine tuning interaction via the Winsock2 GQOS API.

FILTER STYLE:

First, the RSVP_RESERVE_INFO object may be used by applications to override the default reservation styles. It includes a Style parameter, which specifies the reservation style to be used, and allows for the specification of a list of flowdescriptors. The following reservation styles may be specified:

· RSVP_DEFAULT_STYLE – selected the default styles: unicast -> Fixed Filter, multicast -> WildCard Filter

· RSVP_WILDCARD_SYLE - Used to request RSVP to make reservations using the WF style. Note that this is the default for multicast receivers and unconnected UDP unicast receivers, while FF is the default for connected unicast receivers. This command type can be used to override the default FF style for connected unicast receivers.

· RSVP_FIXED_FILTER_STYLE - This style object may be used to override the default WF style for multicast receivers (or unconnected UDP unicast receivers). It may also be used to generate multiple FF style reservations where only a single FF style reservation would have been generated by default (connected unicast receivers). Note: must specify flowdescriptors.
· RSVP_SHARED_EXPLICIT_STYLE - Used to request RSVP to make reservations for a number of explicitly specified sources (filterpsecs). Note: must specify flowdescriptors.
The flowdescriptor list is specified using the FLOWDESCRIPTOR structure, which is a member of the RSVP_RESERVE_INFO object. This list must be defined when the STYLE = {RSVP_FIXED_FILTER_STYLE, RSVP_SHARED_EXPLICIT_STYLE}

RESERVATION CONFIRMATION:

Second, the RSVP_RESERVE_INFO object may be used by a receiving application to request for RESV CONFIRMATION, i.e. to be notified of the outcome of its reservation request. This is done by setting the ConfirmRequest field to a non-zero value. (Note: per the RSVP Specification, a RSVP network node is not required to automatically generate RESV CONFIRMATION messages.)

Note: At most ONE confirmation notification will be received for each QOS invocation API call that is made on a receiving socket, be it unicast or multicast. Please refer to the RSVP Specifications on the meaning of RESV CONFIRMATION.

4.3.6.3 QOS for Transmitted Data Contingent on RESV

On a sending host, the QOSSP typically will activate traffic control per the parameters in the SendingFlowspec on behalf of a sending application’s flow at the same time RSVP signaling is invoked (the emission of PATH messages). Until the establishment of RESV state (the arrival of RSEV), sent traffic will be treated by the local network components and by the network at large as best-effort traffic. Senders should register for notification that RESV state has been established immediately following a WSAConnect, WSAJoinLeaf, or SIO_SET_QOS. Before the arrival of RESV, senders are encouraged not to exceed the allowed sending rate, which can be discovered by doing a query via the SIO_CHK_QOS ioctl (see Section 4.3.10).
 Any non-conforming traffic at this time will be discarded. But as soon as the RESV arrives, the QOSSP will modify the traffic control service so as to match the RESV state of the flow.

4.3.6.4 Traffic-Shaping on an Unconnected Socket with No Fixed Destination Address

An app can obtain traffic-control (but no RSVP) support for an unconnected socket by invoking GQOS in the following manner:

Service Type:

 SERVICE_CONTROLLEDLOADED | SERVICE_NO_QOS_SIGNALING

or

 SERVICE_GUARANTEED | SERVICE_NO_QOS_SIGNALING

Provider-Specific Object:

 QOS_OBJECT_DEST_ADDR: SocketAddress = ANY_DEST_ADDR

This feature enables NetShow to use a single socket to shape and transmit aggregated retransmission traffic.

4.3.7 Application Control of TC Parameters

4.3.7.1 Mapping of GQOS to TC

The invocation of GQOS by a sending app will trigger the use of kernel traffic control. This requires the passing of the Sending Flowspec to the TC. Based on this information, the TC can determines the per-flow QOS parameters, as well as priority and shaping mode settings of the flow. The mapping of the SendingFlowspec into these TC parameters are explained in Section 10.

4.3.7.2 TC-Related QOS Objects

In addition to the SendingFlowspec, a sending app can also make use of the provider-specific buffer to pass so-called QOS Objects to the TC via the QOSSP. These QOS_Objects have a header of the following form:

Struct {

ULONG ObjectType;

ULONG ObjectLength;

} QOS_OBJECT_HDR;

Two types of TC-related QOS Objects may be supplied by a QOS-aware app. They are:

1. QOS_OBJECT_PRIORITY: This object defines the absolute priority of the flow. Priorities in the range of 0-7 are currently defined. The ReceivePriority is not currently used but might at some point in the future.

struct {

QOS_OBJECT_HDR ObjectHdr;

UCHAR SendPriority; /* sending priority */

UCHAR SendFlags; /* currently not defined */

UCHAR ReceivePriority; /* currently not used */

}

2. QOS_OBJECT_SD_MODE: This object is used to define the behavior that the traffic control packet shaper will apply to the flow.

Struct {

QOS_OBJECT_HDR ObjectHdr;

ULONG ShapeDiscardMode;

} QOS_SD_MODE

The ShapeDiscardMode could be:

TC_NONCONF_BORROW --- the flow will receive resources remaining after all higher priority flows have been serviced. If a TokenRate is specified, packets may be non-conforming and will be demoted to less than best-effort priority.

TC_NONCONF_SHAPE --- TokenRate must be specified. Non-conforming packets will be retained in the packet shaper until they become conforming.

TC_NONCONF_DISCARD --- TokenRate must be specified. Non-conforming packets will be discarded.

3. QOS_OBJECT_SHAPING_RATE: This object is used to set the shaping rate to some value less than or equal to the token rate specified in the flowspec. By default, the shaping rate equals the token rate. But an app can use this object to achieve prorated shaping.

 Struct {

QOS_OBJECT_HDR ObjectHdr;

ULONG ShapingRate;

 } QOS_SHAPING_RATE

This structure allows an app to specify a prorated "average token rate" using by the traffic shaper under SHAPE mode. It is expressed in bytes per sec.

4. QOS_OBJECT_SHAPER_QUEUE_LIMIT: This object is used to set the maximum queue size of the shaping buffer (default = as large as allowed by the system). Whenever this size is excceeded, packets will be dropped from the queue. The drop can either occur at the queue head or queue tail, as determined by the QOS_OBJECT_SHAPER_QUEUE_DROP_MODE (note: the default is to drop from head).

Struct {

QOS_OBJECT_HDR ObjectHdr;

ULONG QueueSizeLimit;

} QOS_SHAPER_QUEUE_LIMIT

This structure allows the default per-flow limit on the shaper queue size to be overridden. “QueueSizeLimit” - Limit, in bytes, of the size of the shaper queue

5. QOS_OBJECT_SHAPER_QUEUE_DROP_MODE: This object is used to configure the packet dropping behaviour of the traffic shaper upon the arrival of an incoming packet when the buffer queue reacheds its SHAPER_QUEUE_LIMIT.

Struct {

 QOS_OBJECT_HDR ObjectHdr;

 ULONG DropMode;

} QOS_SHAPER_QUEUE_LIMIT_DROP_MODE,

The Drop Mode can be:

QOS_SHAPER_DROP_INCOMING: drop from queue tail

QOS_SHAPER_DROP_FROM_HEAD: drop from queue head

This structure allows overriding of the default schema used to drop packets when a flow's shaper queue limit is reached. “DropMethod”: 1) Drop packets from the head of the queue until the new packet can be accepted into the shaper under the current limit. This behavior is the default. 2) Drop the incoming, limit-offending packet.

See Section 10 for s more detailed discussion of the priority and shaping mode functionality.

Note: A so called TRAFFIC_CLASS object type is also defined in qos.h, but the application is forbidden to pass down any object with this object type.

4.3.7.3 Timing of TC update and RSVP signaling

Call Setup:

Invocation time: shaping + best-effort queuing

RESV arrival: service-dependent TC reconfiguration + guaranteed queuing

In-call modifications:

 Bandwidth upgrade: shaper rate immediately reduced (without waiting for RESV completion)

 Bandwidth downgrade: shaper rate won't be increased until RESV completion

4.3.8 Application-Supplied Policy Elements

The GQOS API now facilitate the passing and retrieval of one of more policy elements to and from RSVP. An app submits a set of policy elements to RSVP by including a RSVP_RESERVE_INFO object in the provider-specific buffer with indicationof the number of policy elements in the NumPolicyElement field and a pointer to PolicyElementList which describes the list policy elements (type RSVP_POLICY).

4.3.9 QOS Event Notification

GQOS status information and error codes are conveyed to the app in the form of FD_QOS events. A sending or receiving app using the GQOS API should listen for these events. This can be done in two ways:

· First, an app can register for these events via WSAAsyncSelect or WSAEventSelect in accordance with the WIN32 asynchronous event notification mechanism; upon event notification, an app can look up the status code via an appropriate Win32 method, and do a SIO_GET_QOS ioctl to retrieve the QOS structure associated with the event.

· Second, the app can do an overlapped WSAIoctl(SIO_GET_QOS); then the occurrence of a FD_QOS event will invoke the completion function the app specified in the ioctl, and the updated QOS structure is available in the output buffer included in the ioctl. (Note that the output buffer must be sized large enough to be able to contain the full QUALITYOFSERVICE structure.)

In either case, upon the occurrence of a FD_QOS event, the app has access to a status/error code and the updated QOS data. Listed below are some of the QOS-related Winsock2 status/error codes (also see winsock2.h):

· WSA_QOS_RECEIVERS - at least one RESV has arrived

· WSA_QOS_SENDERS - at least one PATH has arrived

· WSA_QOS_NO_SENDERS - there are no senders

· WSA_QOS_NO_RECEIVERS - there are no receivers

· WSA_QOS_REQUEST_CONFIRMED - reserve has been confirmed

· WSA_QOS_ADMISSION_FAILURE - error due to lack of resources

· WSA_QOS_POLICY_FAILURE - rejected for administrative reasons

· WSA_QOS_BAD_STYLE - unknown or conflicting style

· WSA_QOS_BAD_OBJECT - problem with some part of the flowspec
· WSA_QOS_TRAFFIC_CTRL_ERROR - problem with some part of the filterspec
· WSA_QOS_GENERIC_ERROR - general error

In addition, if a non-null (and large enough) provider specific buffer is included in the QOS structure associated with the SIO_GET_QOS ioctl call, the QOSSP will pass back in the buffer a RSVP_STATUS_INFO object:

typedef struct _RSVP_STATUS_INFO {

 QOS_OBJECT_HDR ObjectHdr; /* Object Hdr */

 ULONG StatusCode; /* Error or Status Information see

 * Winsock2.h */

 ULONG ExtendedStatus1;/* Provider specific status extension */

 ULONG ExtendedStatus2;/* Provider specific status extension */

} RSVP_STATUS_INFO, *LPRSVP_STATUS_INFO;

As indicated, this structure stores not only the winsock2 status code but also two DWORDs of extended QOS-specific status information, which are defined in Appendix C.

In the case of a FD_QOS event triggered by the arrival of a PATH message in a receiving host, the QOSSP will also return Adspec information to the app making the SIO_GET_QOS ioctl in response to the event. This requires the app to attach a provider specific buffer to the ioctl, and the size of this buffer should be large enough to hold the RSVP_ADSPEC_OBJECT:

typedef struct _RSVP_ADSPEC {

 QOS_OBJECT_HDR ObjectHdr;

 AD_GENERAL_PARAMS GeneralParams; /* contains the general

 * characterization parameters */

 ULONG NumberOfServices; /* count of the number of services */

 CONTROL_SERVICE Services[1]; /* a list of the services

 * supported/requested */

} RSVP_ADSPEC, *LPRSVP_ADSPEC;

This object typically indicates which service types are available (Controlled Load and/or Guaranteed Service), the presence/absence of any non-RSVP hop in the path, and the minimum MTU along the path.

Note: When the application issues a WSAIoctl(SIO_GET_QOS) request, that request will complete with QOS information set in just one direction (either the SendingFlowspec or the ReceivingFlowspec will be valid). The flowspec that is not valid will contain a ServiceType value set to SERVICETYPE_NOCHANGE.

4.3.10 Sizing the Provider-Specific Buffer

An app usually has no way of telling how big of a provider-specific buffer is needed to retrieve provider-sepcific information from RSVP via SIO_GET_QOS. GQOS will indicate the required bufer size (in the len field of the buffer) to the app if the provider-specific buffer it passes down is not large enough to hold all provider-specific data. The app should therefore check this lenL if the len returned is greater than the len it originally specified, the app should enlarge the provider-specific buffer and reissue the SIO_GET_QOS immediately.

If the app is not interested in any provider-sepcific info associated with FD_QOS event, the provider-specific buffer (i.e. WSABuf.buf) should be NULL with len (i.e. WSABuf.len) = 0.

An app can query the required providerspecific buffer size by setting WSABuf.len = 1, and WSABuf.buf = NULL in the WSABuf field of the QOS struct it passes down. The required buffer size will be indicated on WSABuf.len, upon the return of the SIO_GET_QOS ioctl.

4.3.11 QOS-Driven Query

A sending app using GQOS may use the synchronous SIO_CHK_QOS ioctl to query the following parameters:

1. ALLOWED_TO_SEND_DATA: When TRUE, the app is allowed to commence data transfer prior to the arrival of RESV, as determined by the system.

2. ABLE_TO_RECV_RSVP: When TRUE, it indicates that the host is able to receive and process RSVP messages on the interface of interest.

3. LINE_RATE: The full link capacity of the output interface associated with a socket. This information may help an app to figure out what kind of first-mile network connection is available.

When making this ioctl call, the app must supply an input buffer (type DWORD) and an output buffer (type DWORD). The input buffer should contain one of the above two symbols identifying the query. The output buffer will contain the result of the query at call completion.

Note: a sending app MUST do SIO_CHK_QOS(ALLOWED_TO_SEND) to see if it gets the green light to start data transmission prior to the indication of RECEIVERS arrial.

4.3.12 Terminating QOS Service

We have so far discussed the method by which applications invoke RSVP/TC processing. Several events may cause the termination of RSVP/TC processing associated with a socket. Specific examples include:

· Closing a socket by a call to CloseSocket.

· Shutting down a socket by calling Shutdown.

· Calls to WSAConnect with a NULL peer address.

· Calls to WSAIoctl (SIO_SET_QOS) with SERVICETYPE_ NOTRAFFIC or SERVICETYPE_BESTEFFORT.
Note that in the first three cases, all QOS processing on the socket will be terminated. However, in the fourth case, it is possible to terminate only sending or only receiving QOS processing by selectively specifying SERVICETYPE_NOTRAFFIC or SERVICETYPE_BESTEFORT in the SendingFlowspec or ReceivingFlowspec, respectively.

In general, any event that closes a socket will also terminate RSVP/TC processing on the socket. For details, please refer to the MS document titled “The Detection of End-to-End QOSability”.

4.3.13 Detection of End-to-End QOSability

During connection setup and prior to QOS signaling, a sender and/or receiver can query the QOSability of the host machine and the local hop, by issuing the following ioctl:

Function:

 WSAIoctl()

Input Parameters:

 DwIoControlCode
= SIO_CHK_QOS

 CbInBuffer

= LOCAL_QOSABILITY

Output Parameters:

 CbOutBuffer

= 1 if locally QOS-enabled

 0 otherwise

During QOS signaling, a receiver can query the QOSability of the network path between the sender and itself, by issuing the following ioctl:

Function:

 WSAIoctl()

Input Parameters:

 DwIoControlCode
= SIO_CHK_QOS

 CbInBuffer

= END_TO_END_QOSABILITY

Output Parameters:

 CbOutBuffer

= 1 if end-to-end QOS-enabled

 0 if not end-to-end QOS-enabled

 -1 if not known

For example, the NetShow server app and client app can make use of these two ioctl calls to discover if the end-to-end unicast route is QOS-enabled or not during the connection and reservation establishment phase. This feature enables NetShow to intelligently and automatically select its "adapt" or "no-adapt" mode of operation.

4.4 Registry Control

The behavior of QOSSP on a per interface basis may be controlled by two variables in the system registry under:

HKEY_LOCAL_MACHINE \ SYSTEM \ CurrentControlSet \ Services \ Tcpip \ Parameters \ Interfaces \ [Interface Name]

They are:

EnableRSVP: Asserted to enable two-way RSVP signaling on the interface. If this bit is not defined in the registry, the QOSSP will use a default value of 1.

Key: HKEY_LOCAL_MACHINE: System\CurrentControlSet\Services\Tcpip\Parameters\Interfaces\<interface>

Value Type: REG_DWORD - Number

Valid Range: 0-1

Default: 1

Description: This parameter allows one to disable/enable RSVP signalling (two-way) on a per-interface basis. If it is "0", no RSVP signalling is performed for all QOS connections terminating on the inteface. If it is "1", RSVP signalling is enabled is on the interface. By default, RSVP signalling is enabled on each interface.

EnablePriorityBoost: Asserted to enable priority boost in the kernel traffic control when traffic control is in use without RSVP signaling. If this bit is not found in the registry, the QOSSP will use a default value of 1.

Key: HKEY_LOCAL_MACHINE: System\CurrentControlSet\Services\Tcpip\Parameters\Interfaces\<interface>

Value Type: REG_DWORD - Number

Valid Range: 0-1

Default: 1

Description: This parameter allows one to disable/enable priority-boosting on a per-interface basis when kernel traffic control is in use without RSVP signalling. If this parameter is "0", application-supplied QOS_OBJECT_PRIORITY objects will has no effect on the internal prioritization on the inteface. If it is "1", the internal priority is set in the kernel based service-type as well as the QOS_OBJECT_PRIORITY object (if any). By default, priority-boosting is enabled on each interface that has traffic control support.
MapGeneralInfo: specify whether SERVICETYPE_GENRALINFO should be mapped into SERVICETYPE_CONTROLLEDLOAD or SERVICETYPE_GUARANTEED (5) in the case where RSVP is disabled. The rule is: if MapGeneralInfo <= 3, map into SERVICETYPE_CONTROLLED; if MapGeneralInfo > 3, map into SERVICE_GUARANTEED.

Key: HKEY_LOCAL_MACHINE: System\CurrentControlSet\Services\Tcpip\Parameters\Interfaces\<interface>

Value Type: REG_DWORD - Number

Valid Range: 0-7

Default: 3

Description: This parameter specifies, on a per-interface basis, whether SERVICETYPE_GENRALINFO should be mapped into SERVICETYPE_CONTROLLEDLOAD or SERVICETYPE_GUARANTEED in the case where RSVP signalling is disabled on a interface. The rule is: if MapGeneralInfo <= 3, map into SERVICETYPE_CONTROLLED; if MapGeneralInfo > 3, map into SERVICE_GUARANTEED. By default, MapGeneralInfo is set to 3.

EnableSPSetTOS: if true, the QOS service provider is enabled to set the TOS byte.

Key: HKEY_LOCAL_MACHINE: System\CurrentControlSet\Services\Tcpip\Parameters\Interfaces\<interface>

Value Type: REG_DWORD - Number

Valid Range: 0-1

Default: 0

Description: This parameter can be set, on a per-interface basis, to "1" to enable the QOS Service Provider to set the TOS bytes of a packet flow based on its service-type. By default, this parameter assumes a value of "0", and no TOS setting is performed by the QOS Service Provider.
IPTOSMapping:

Key: HKEY_LOCAL_MACHINE: System\CurrentControlSet\Services\Tcpip\Parameters\Interfaces\<interface>

Value Type: REG_MULTI_SZ - multi-string

Valid Range: mutiple pairs of {service-type, tos-byte}

Default: null mapping

Description: This parameter specifies a table of servicetype-to-TOS mapping, in the form of {ST1 TOS1 ST2 TOS2 ST3 TOS3 ST8 TOS8}, where STi is a SERVICETYPE value defined in qos.h, and TOSi is the corresponding TOS-byte (UCHAR).
4.5 TOS Mapping

In the presence of Traffic Control in the kernel, the TOS byte on a packet flow can be set by the packet scheduler or the tcpip stack according to the Service Type associated with the flow. In the absence of Traffic Control in the system, the QOSSP will issue setsockopt(IP_TOS) to set the TOS byte for a QOS connection based on its SERVICE_TYPE.

While this kind of TOS-setting is enabled by default, it can be disabled on a per-interface basis by nullifying the EnableSPSetTOS parameter in the registry.

In addition, the interface-specific IPTOSMapping table is also kept in the registry:

HKEY_LOCAL_MACHINE \ SYSTEM \ CurrentControlSet \ Services \ Tcpip \ Parameters \ Interfaces \ [Interface Name].

IPTOSMapping is a REG_MULTI_SZ value, e.g.

SERVICETYPE_NONCONFORMING 0

SERVICETYPE_BESTEFFORT 1

SERVICETYPE_CONTROLLEDLOAD 4

SERVICETYPE_GUARANTEED 6

SERVICETYPE_CUSTOM1 0

SERVICETYPE_CUSTOM2 0

SERVICETYPE_CUSTOM3 0

With TOS-setting enabled, the QOSSP will intercept any setsockopt(IP_TOS) made by the app, and inspects and, if necessary, modify the IP_TOS option before forwarding the setsockopt request to the base SP.

5 An APPROACH TO Mapping GQOS TO RSVP

5.1 General Concepts

Before delving into the detailed mapping of GQOS to RSVP, it is helpful to introduce some general concepts.

5.1.1 Binding

In general, RSVP identifies packets associated with a particular traffic flow by the source and destination IP addresses and ports included in the packets. Consequently, it is necessary for RSVP to learn the local and remote addresses and port numbers associated with each QOS socket. The local address and port number associated with a socket are defined by either implicit or explicit binding of the socket. These are used by RSVP to compose the SenderTemplate (and session ID) on a sender, and the session ID on a receiver
.

Applications typically invoke the Winsock bind call to explicitly associate a local address and port number with a socket. In general, an application may call bind without explicitly specifying an IP address or port or, in certain cases, may not call bind at all. When a socket is not explicitly bound by an application, the underlying transport service provider will automatically bind the socket to a specific port. The QOSSP (and applications using QOSSP), can readily determine the port bound by issuing a getsockname call to the underlying transport service provider.

For TCP sockets, the local address to which the socket is bound can also be unambiguously determined using getsockname. However, in the case of UDP sockets, certain implementations of the transport service provider reserve the right to change the sending interface (and the address included in the source address field of sent packet headers), based on routing information. Because of this, calls to getsockname on UDP sockets are not guaranteed to return a bound address.

This presents a problem, primarily in the case of sending sockets, for which QOSSP is required to compose a SenderTemplate object which matches the source address and interface on which the socket’s QOS data is transmitted. To address this problem, applications using the GQOS interfaces to the QOSSP may use one of the approaches described below. Note that these approaches apply both in the case of unicast and multicast RSVP sessions. Also note that these are used for UDP sockets only. For TCP sockets, the QOSSP can call getsockname to determine the local bound address.

5.1.1.1 Binding Using INADDR_ANY

The application may bind using INADDR_ANY. In this case, the QOSSP will use the interface query ioctl, WSAIoctl(SIO_ROUTING_INTERFACE_QUERY), to determine which source address to use when composing the SenderTemplate. To do so, the QOSSP waits until the application calls WSAConnect or WSAJoinLeaf. At that time, the QOSSP issues the interface query ioctl, providing the peer address specified in the connection oriented call. The QOSSP composes the SenderTemplate based on the address returned in response, from the underlying transport service provider. The QOSSP registers for routing change notifications via the FD_ROUTING_CHANGE event, or by calling WSAIoctl(SIO_ROUTING_INTERFACE_CHANGE). This assures that it will be notified in the case of routing changes and is able to modify the SenderTemplate accordingly.

In this mode, the application remains unaware of the sending interface used and of routing changes. Calls to getsockname are not guaranteed to return a valid address. In addition, the address included in the source address field of transmitted packets, is subject to change as a result of routing changes. Although the QOSSP will respond by correcting the SenderTemplate in transmitted PATH messages, the application will receive no indication of the change.

5.1.1.2 Binding a Specific Address Based on an Interface Query

For details regarding the usage of the interface query Ioctl and the associated change notification mechanisms, see the relevant section in this document and/or the references in the Windows Sockets 2 Application Programming Interface (revision 2.2.1).

In this case, the application assumes full responsibility for binding to a specific address. The application may use the interface query Ioctl to determine the address to which it should bind, based on the destination address to which it will be sending. Once it has determined the correct address to bind, it issues a bind call, specifying the address. The QOSSP will either monitor bind calls issued by the application, or issue getsockname calls to the underlying transport service provider, in order to determine the address to be used in the SenderTemplate.

For resilience in the unlikely event of a routing change, applications using this method on multi-homed hosts, may register for routing change notifications via the FD_ROUTING_INTERFACE_CHANGE event or by calling WSAIoctl(SIO_ROUTING_INTERFACE_CHANGE). Note that when an application binds explicitly, route changes will result in data being sent from a new interface, but will not cause a change in the source address used in datagram headers. Since the source address will not change, the SenderTemplate is not required to change. Therefore, strictly speaking, applications are not required to react to routing changes. There may be an intermittent disruption in RSVP service, however, due to the soft state maintained by RSVP, the network will eventually respond to the routing change, transparently. By binding to specific addresses and tracking routing changes, the application can be fully aware of the sending interface used at any time.

5.1.1.3 No Bind by Application

It is allowable for an application not to bind a socket at all. This case is handled by the QOSSP, as a variation on the case of a bind using INADDR_ANY. From the perspective of PATH message generation, the cases are identical; The QOSSP issues the interface query ioctl (following one of the connection oriented calls) and monitors routing changes in order to maintain the correct SenderTemplate. . From the perspective of RESV message generation, unbound sockets provide no criteria by which the QOSSP can search for matching PATH state. Consequently, no RESV messages will be sent on behalf of these sockets until they are bound, either explicitly, by the application, or implicitly, by the transport provider, following one of the connection oriented calls mentioned earlier. (Note that per standard Winsock protocol, applications calling WSAAccept must call bind first.)

5.1.2 SIO_ROUTING_INTERFACE_QUERY and Change Notifications

The interface query ioctl SIO_ROUTING_INTERFACE_QUERY takes a unicast or multicast destination address as input. It returns the address of the interface which will be used by the transport provider to send packets to the receiving peer.

The ioctl is guaranteed to return the correct interface for both unicast and multicast addresses. The interface returned in response to unicast queries is based on routing information. Routing information is not necessarily available for multicast addresses. Therefore, while the interface returned in response to multicast queries is the interface that will be used, this interface may have been chosen arbitrarily. Applications which require control over the choice of multicast interface used, should explicitly set the multicast interface by calling setsockopt(IP_MULTICAST_IF).

Note that, on hosts acting as multicast gateways, an interface query on a multicast address may return a list of interfaces. QOS-aware applications of the type described here are not expected to run directly on multicast gateways.

5.1.3 Port Number Negotiation

It is assumed that there is some application-specific mechanism to allow peers to negotiate port numbers (or that they are implied by the application (i.e. pre-assigned, such as in the case of FTP). Methods for negotiation of port numbers are beyond the scope of this document.

5.2 Generation of PATH and RESV

5.2.1 Information Required to Generate PATH and RESV Messages

The following information is required to begin the transmission of PATH messages:

RSVP Parameter
Derived from the following Winsock parameter

Sender Tspec (QOS parameters of sent traffic)
SendingFlowspec

SenderTemplate (sender’s address)
source IP address and port that sending socket is bound to

Session (destination of sent traffic)
destination IP address, port and protocol ID that socket is sending to (sockaddr_in)

The following information is required to begin the transmission of RESV messages:

RSVP Parameter
Derived from the following Winsock parameter

flowspec (QOS parameters of traffic to be received)
ReceivingFlowspec

filterspec (source(s) from which QOS traffic will be received)

address(es) of peer(s) from which the socket is receiving

Session (destination of sent traffic)
local IP address and port to which the receiving socket is bound (unicast), or multicast session address on which the socket is a leaf (multicast)

5.2.2 Triggering the Transmission of PATH and RESV Messages

We see that, upon being called through any of the QOS-related calls listed above (with a SendingFlowspec and/or a ReceivingFlowspec), the QOSSP can assume that the application is invoking QOS and obtains at least the QOS parameters describing the traffic to be sent and/or received. Depending on the state of the relevant QOS socket at the time the call is invoked, the QOSSP may or may not have the additional parameters describing the source(s) and destination(s) of the QOS traffic.

In general, the address of the local host (the source address in the case that the application resides on the sending host, or the destination address in the case that the application resides on the receiving host) is available only after the socket has been bound by use of the Winsock2 bind call. Alternatively, the socket may be bound implicitly as a result of a call to WSAConnect or WSAJoinLeaf.

In general, the address of the peer (the source address in the case that the application resides on the receiving host, or the destination address in the case that the application resides on the sending host) is available following one of the connection oriented calls (WSAConnect, WSAJoinLeaf, WSAAccept), but not necessarily following the WSAIoctl call.

Consequently, the QOSSP typically begins sending PATH and/or RESV messages only after an application has called one of the connection-oriented calls, and the socket is unambiguously bound to a local address. However there are cases in which the QOSSP can begin sending PATH and/or RESV messages, even in the absence of one of the connection-oriented calls described. In subsequent sections we will discuss this sequence of events as it occurs in different cases, and the requirements imposed on applications.

Note: Transmit-QOS invocation on a socket via WSAConnect has the side effect of not allowing the socket to receive packets coming from receivers other than the one the socket is connected to. For applications that want to avoid this side effect and that simply do not “connect”, they can invoke transmit-QOS by issuing the SIP_CHK_QOS ioctl with the inclusion of a QOS_Dest_Address object in a providerspecific buffer/ This object should indicate the destination address and port of the QOS connection.

5.2.3 Sending RESV Messages Based on Matching PATH State

When a PATH message is received, the QOSSP creates an RSVP session and associates PATH state with it. The QOSSP will also create a session (in the absence of PATH messages) when QOS is indicated on any receive socket. (However, in this case, PATH state is not associated with the session until a corresponding PATH message is received.)

The QOSSP will generally send RESV messages when it determines that PATH state exists for a session which matches a socket for which receive QOS is indicated. As a result, the transmission of RESV messages may be triggered either by the receipt of a PATH message (which matches the session associated with a pre-existing socket), or by the creation of a socket (which matches the session associated with pre-existing PATH state).

5.3 Use of WSAConnect for Unicast Sessions

5.3.1 TCP Sessions

In this case, matches are readily determined. TCP sockets, once they are connected, are associated with specific source and destination addresses and ports.

TCP Sockets:
Will match:

Not bound, or bound and not connected (WSAConnect not issued)
Never

Bound and connected
If port and address specified in any session matches the socket’s bound port and address and SenderTemplate (specified in PATH state associated with the session) matches connected peer’s port and address

5.3.2 UDP Sessions

UDP sessions are subject to less stringent matching rules, since it is not always possible to determine unique addresses associated with a UDP socket. The rules are tabulated separately for unicast vs. multicast.

Unicast UDP Sockets:
Will match:

Not bound and not connected
Never

Bound using INADDR_ANY, and not connected (WSAConnect not issued)
If port specified in any session matches the socket’s bound port.

Bound using a specific address and not connected
If port and address specified in any session matches the socket’s bound port and address.

Bound using INADDR_ANY, and connected
If port specified in any session matches the socket’s bound port and SenderTemplate (specified in PATH state associated with the session) matches the connected peer’s port and address.

Bound using a specific address and connected
If port and address specified in any session matches the socket’s bound port and address and SenderTemplate (specified in PATH state associated with the session) matches the connected peer’s port and address.

5.4 Use of WSAJoinLeaf and sendto for Multicast Sessions

In the case of multicast sockets, the application is expected to create the socket using WSASocket, setting the appropriate flags to indicate that it is a multicast sender (or receiver). Otherwise, the QOSSP may be unable to determine that the socket is multicast and may send undesired RESV messages based on the unicast matching rules described above.

Multicast UDP Sockets:
Will match:

Not joined to a specific multicast group (WSAJoinLeaf not issued).
Never

Joined to a specific multicast group (using WSAJoinLeaf)
If multicast port and address specified in any session matches the multicast port and address specified in the WSAJoinLeaf call.

To invoke QOS service, applications are required to use the WSAJoinLeaf call both to send and receive multicast traffic. Alternate multicast semantics, such as simply calling sendto with a multicast address (for transmit) or using IP_ADD_MEMBERSHIP (for receive), will not invoke QOS service.
Applications are required to set the dwFlags parameter to JL_SENDER_ONLY, JL_RECEIVER_ONLY or JL_BOTH, to indicate the direction in which QOS service is requested.

Note that senders that have joined multicast sessions using WSAJoinLeaf are required to call sendto or WSASendTo with the correct multicast session address in order to send data to the multicast session (even though the multicast session address was already provided with the call to WSAJoinLeaf). The QOSSP on a sender, generates the SenderTemplate based on the multicast session address specified in the call to WSAJoinLeaf. Therefore, if the sending application calls sendto or WSASendTo specifying a multicast session address other than the one specified with the WSAJoinLeaf, it will not receive QOS service for the data sent.

Also, note that the only case in which a QOS-aware application should call sendto or WSASendTo, is the case of a multicast sender. For unicast UDP or TCP senders, the destination address must be specified using WSAConnect and it is sufficient for the application to call send or WSASend, rather than sendto or WSASendTo.

5.5 Use of WSAIoctl(SIO_SET_QOS)

In Section 4.3.5, we introduced the use of WSAIoctl(SIO_SET_QOS) in conjunction with the various QOS connection-oriented calls. Typically, the connection-oriented calls will be used both to indicate the QOS parameters and address parameters to the QOSSP so that the call to WSAIoctl(SIO_SET_QOS) is not required. One exception is a UDP receive application that receives from multiple senders. In this case, the application must use WSAIoctl(SIO_SET_QOS), in order to specify QOS parameters without calling WSAConnect (which would otherwise limit the socket to receive traffic from a single sender).

Another exception is a UDP transmit application that uses sendto() to transmit data to one or more receiver over an un-connected socket. NetMeeting V.2.1 is an example of such an application. In this case, in order to invoke QOS, the sending app has to issue one or more SIO_SET_QOS ioctls supplying to the QOSSP not only the SendingFlowspec (in the QOS structure) but also the destination addresses in a QOS_DEST_ADDR Object (in a provider specific buffer).

In other cases, applications may use WSAIoctl(SIO_SET_QOS) to specify QOS parameters, even if one of the connection-oriented calls is used. This usage allows an application to modify QOS parameters at any time after they were originally indicated in one of the connection-oriented calls. It also allows the application to separate the specification of the QOS parameters from the determination of local and peer addresses implicit in the connection-oriented call..

5.6 Disabling RSVP Signaling

Via the GQOS API, a receiving app may disable RSVP signaling on a per-flow basis. This is done by ORing (|) the SERVICE_NO_QOS_SIGNALING flag with a service-type in the ServiceType filed of the ReceivingFlowspec. This feature enables a receiver to suppress the automatic generation of a RESV message. (Note that an error would be returned when this flag is set in the SendingFlowspec of a sending app.)

The registry variable EnableRSVP may be used to enable/disable RSVP activity on a per-interface basis. Zeroing this parameter will disable RSVP signaling for all flows passing through the interface.

6 Mapping of GQOS to RSVP: Call Sequences

Applications must issue a sequence of QOS related calls to invoke QOS functionality from the QOSSP. The sequence may vary depending on the type of communication (UDP vs. TCP, unicast vs. multicast, etc.) and on the specific application. In this section, we discuss these call sequences. For a list of sample call sequences, see Appendix A – Sample Call Sequences.

In the following discussion, we discuss sending applications separately from receiving applications, for the sake of simplicity. For the purpose of this discussion, applications are classified as sending or receiving, based on their QOS requirements. Most applications do not exclusively send or receive, however – many applications may be interested in QOS service only for traffic sent or only for traffic received. This is the case for playback applications such as video and audio servers, in which the server sends QOS traffic and the receiver receives QOS traffic. For other types of applications, such as conferencing, the application may be interested in QOS service both for traffic sent and for traffic received. In this case, the sequences described below can be combined.

6.1 Sending Applications

Sending applications must provide the QOSSP with the following information in order to invoke RSVP processing:

· Peer (destination) address, for the composition of RSVP session objects.

· Local (source) address, for the composition of the RSVP SenderTemplate objects.

· QOS parameters, in a SendingFlowspec, for the generation of Tspec objects.

Once this information is available to the QOSSP, it begins to transmit RSVP PATH messages on behalf of the application.

The following table summarizes how the QOSSP obtains the information for session and SenderTemplate, for various cases of sending applications.

Case
Session
SenderTemplate

UDP unicast sender
Destination address and port specified in WSAConnect name field
· Local port determined by QOSSP call to getsockname

· For sockets bound explicitly by the application, to a specific address, the QOSSP calls getsockname to get the local address.
· For sockets bound by the application to INADDR_ANY, the QOSSP gets the local address by issuing an interface query on the destination address (as obtained from the application’s call to WSAConnect or WSAJoinLeaf).

UDP multicast sender
Multicast IP address and port as specified in WSAJoinLeaf name field

TCP unicast sender
Peer (destination) address and port as determined by call to getpeername following connection establishment.
Local address and local port determined by call to getsockname following connection establishment.

The QOSSP obtains QOS parameters from a SendingFlowspec which is included either in the application’s call to WSAConnect or WSAJoinLeaf, or provided separately in a call to WSAIoctl(SIO_SET_QOS).

6.1.1 Unicast UDP Senders

Unicast UDP senders will typically call WSAConnect to invoke RSVP functionality. This call provides the peer address to the QOSSP and may also provide QOS parameters. The QOSSP uses the address passed, to directly generate the Session object included in PATH messages. For sockets that have been bound using INADDR_ANY, the QOSSP uses the peer address to determine the local address to be used in the SenderTemplate object. It does so by issuing an interface query, to the underlying transport service provider. This returns the address of the local interface, which should be used to reach the peer specified.

Typically, the call to WSAConnect will include sending QOS parameters. However, the sending application may use the WSAIoctl(SIO_SET_QOS) to provide the sending QOS parameters to the QOSSP before or after the call to WSAConnect. In all cases, RSVP processing will begin at the earliest time at which the QOSSP knows the peer address (from which it may also determine the local bound address) and the sending QOS parameters.

6.1.2 Multicast UDP Senders

The previous discussion on unicast UDP senders applies to multicast UDP senders as well. The only difference between the two cases is that multicast UDP senders use the WSAJoinLeaf call, instead of the WSAConnect call used in the unicast case. The WSAJoinLeaf call provides the destination multicast session address and may also be used to provide QOS parameters. If QOS parameters are not provided with the call to WSAJoinLeaf, they must be provided separately, with a call to WSAIoctl(SIO_SET_QOS). The multicast session address is used to compose the RSVP session object to be included in RSVP PATH messages.

Note that in the case that a sending multicast UDP socket is bound using INADDR_ANY, the QOSSP will use the multicast session address to perform an interface query, just as it would in the unicast case. The QOSSP will use the interface address returned from the interface query to compose the RSVP SenderTemplate to be included in PATH messages.

6.1.3 Unicast TCP Senders

For TCP sessions, the active peer issues a WSAConnect and the passive peer issues a WSAAccept. Typically, the passive peer is the sender, and the active peer is the receiver, although this is not necessarily the case. In this section, we describe the passive peer, assuming that it is also the sender. For the case in which the active peer is the sender, the subsequent section on unicast receivers can be applied.

As the passive peer, the sending application calls WSAAccept. This call does return the connecting peer’s address but does not carry QOS parameters. Instead, the application defines a call back function (ConditionFunc), which is called by the transport service provider when the active peer initiates a connection. The definition of ConditionFunc allows for QOS parameters to be passed to the application or for the application to pass QOS parameters back to the service provider. Alternatively, the application could set the QOS on the listening socket prior to the call to WSAAccept. When WSAAccept is called, the QOS associated with that listening socket will be copied to the newly accepted socket. Note however that QOS set via the ConditionFunction will take precedence over any QOS associated with the listening socket.

Therefore, passive TCP peers may provide QOS parameters to the QOSSP with the completion of the ConditionFunc or by setting it on the listening socket or, alternatively, using WSAIoctl(SIO_SET_QOS) The application may call WSAIoctl(SIO_SET_QOS) to associate QOS parameters with a socket, at any time following the creation of the socket.
 RSVP sender processing will begin at the earliest time at which the QOSSP knows the peer address, the address to which the socket is bound locally and the QOS parameters.

Note that in order to provide QOS parameters via the ConditionFunc, the application is required to complete the ConditionFunc with status CF_ACCEPT. In addition, if the application has previously associated QOS parameters with the socket by calling WSAIoctl(SIO_SET_QOS), then completion of the ConditionFunc may cause modification of the QOS parameters unless the ServiceType parameters in the corresponding FLOWSPECs are set to SERVICETYPE_NOCHANGE.

The QOSSP can readily determine the connected peer’s address by monitoring the application’s call to WSAConnect or by calling getpeername, after the socket is connected.

Recall that, for TCP sockets, the QOSSP can unambiguously determine the local address bound to the socket, by calling getsockname at any time following the establishment of the connection. This address is used to compose the SenderTemplate for inclusion in RSVP PATH messages. As a result, no interface query is required in the case of TCP connections, even if the application binds using INADDR_ANY.

6.2 Receiving Applications

Receiving applications must provide the QOSSP with at least, the QOS parameters, in a ReceivingFlowspec in order to invoke RSVP processing. The application includes the ReceivingFlowspec in a call to WSAConnect or WSAJoinLeaf, or separately, in a call to WSAIoctl(SIO_SET_QOS).

The QOSSP must compose a session object, and in certain cases, a filterspec (defining the senders from which QOS traffic is to be received) for inclusion in RESV messages. Generally, these are obtained from all matching PATH state. However, receiving applications may provide the following information to the QOSSP in order to limit the PATH state matched:

· Peer (source) address(es), to compose the RSVP filterspec, thereby limiting the RSVP senders for which RESV messages are sent.

· Local (destination) address, to limit the RSVP sessions for which RESV messages are sent.

See the previous section titled Sending RESV Messages Based on Matching PATH State, for further details.

Once sufficient information is available to the QOSSP, it begins to transmit RSVP RESV messages on behalf of the application.

6.2.1 Unicast UDP Receivers

UDP receiving applications may use either the WSAConnect call or the WSAIoctl(SIO_SET_QOS) call, to provide QOS parameters to the QOSSP, indicating that they are interested in receiving QOS traffic. The WSAConnect call can be used to provide a peer address, in so selecting a specific sender.

If the application calls WSAIoctl(SIO_SET_QOS) to indicate receiving QOS parameters, the QOSSP will begin transmitting RESV messages for any matching PATH state (see the previous section titled Sending RESV Messages Based on Matching PATH State). Since the WSAIoctl(SIO_SET_QOS) call does not associate a peer address with the socket
, the socket will match PATH state regardless of sender. The QOSSP will transmit WF style RESV messages.

The WSAConnect call should be used if and only if the application is interested in receiving traffic from a single sender only
. In this case, the QOSSP will send RESV messages only when PATH state exists for the sender specified. It will use the peer address included, to compose FF style RESV messages, selecting the specified sender.

Receiving applications may call both WSAIoctl(SIO_SET_QOS) and WSAConnect, and may do so in any order. The QOSSP will send RESV messages at the earliest indication of QOS parameters and the existence of matching PATH state. If WSAIoctl(SIO_SET_QOS) is called prior to WSAConnect, the QOSSP will send WF style RESV messages (provided there is matching PATH state) initially and will send a RESVTEAR followed by FF style RESV messages as soon as a peer is specified by WSAConnect (provided that matching PATH state exists for the particular sender specified).

Note that calling WSAIoctl(SIO_SET_QOS) after WSAConnect does not negate the selection of a specific sender. Thus, although WSAIoctl(SIO_SET_QOS) may be called after WSAConnect to alter the QOS parameters indicated in the RESV messages (or to terminate the transmission of RESV messages
), it will not cause the QOSSP to send WF style RESV messages.

Also note that calling WSAConnect may actually cause the QOSSP to cease sending RESV messages triggered by a previous call to WSAIoctl(SIO_SET_QOS), since PATH state may have existed for some sender, but not for the particular sender specified.

6.2.2 Multicast UDP Receivers

Multicast receive applications are expected to create UDP sockets using WSASocket and to indicate in the accompanying flags that they are multicast receivers. Such applications are required to call WSAJoinLeaf to indicate the multicast session which they are interested in joining. QOS parameters may be indicated either with the call to WSAJoinLeaf or separately, using WSAIoctl(SIO_SET_QOS).

Unlike the unicast case, the QOSSP will not send RESV messages for multicast sessions until a multicast session address is unambiguously specified in a call to WSAJoinLeaf. The QOSSP makes no use of the parameters with which the multicast socket is bound. Also, since no peer is specified, the QOSSP makes no assumptions about specific senders. Consequently, RESV messages sent on behalf of multicast receivers, are by default WF style
.

Receiving applications may call both WSAIoctl(SIO_SET_QOS) and WSAJoinLeaf, and may do so in any order. The QOSSP will send RESV messages at the earliest indication of QOS parameters and the existence of matching PATH state. However, note that in the multicast case, matching PATH state will only be found if a multicast socket has been created with a matching multicast session address.

The QOSSP does not preclude a receiving application from joining multiple multicast groups on a single socket. In this case, the QOSSP will send RESV messages for all groups for which there is matching PATH state. Unless WSAIoctl(SIO_SET_QOS) is called, QOS parameters will be obtained separately, from the ReceivingFlowspecs included with the WSAJoinLeaf calls for each multicast group. If WSAIoctl(SIO_SET_QOS) is called, the QOS parameters included will be applied to all multicast groups joined.

6.2.3 Unicast TCP Receivers

Typically, the TCP receiver is the active peer in a TCP connection. As such, receiving TCP applications are expected to use WSAConnect to initiate a connection to the sender. Rules for invoking RSVP processing from the QOSSP are similar to those, which apply in the unicast UDP sender case. Specifically, the receiving application must use WSAConnect to specify the peer sender’s address. The QOSSP uses this address directly to compose the filterspec for FF style RESV messages.

Typically, the call to WSAConnect will include receiving QOS parameters. However, the receiving application may use the WSAIoctl(SIO_SET_QOS) to provide the receiving QOS parameters to the QOSSP before or after the call to WSAConnect. In all cases, the QOSSP will begin RSVP processing at the earliest time at which it knows the receiving QOS parameters and there is matching PATH state. In the case of TCP receivers, PATH state will match only if the session address and the SenderTemplate match the bound address and the peer address, respectively, which are associated with the socket.

In case the receiving socket is bound using INADDR_ANY, the bound address cannot be determined until WSAConnect is called. If the receiving socket is bound with a specific address, the bound address can be determined earlier. However, the peer address remains unknown such that it is impossible to match PATH state and the transmission of RESV messages will still be delayed. Following connection establishment, the QOSSP calls getpeername to determine the peer address. At that time sufficient information is available to generate RESV messages.

7 Mapping of GQOS to RSVP: QOS Parameters

In this section, we discuss the mapping of QOS parameters from GQOS to RSVP.

Winsock2 QOS calls include two FLOWSPEC structures, a SendingFlowspec and a ReceivingFlowspec. The SendingFlowspec is used to invoke RSVP sender processing and the ReceivingFlowspec is used to invoke receiver processing. RSVP sender processing requires the inclusion of a Tspec with PATH messages. The Tspec describes the traffic flow offered by the sender and is readily derived from the SendingFlowspec. RSVP receiver processing varies depending on the service type requested. Receiver processing for controlled load service requires inclusion of a Tspec with RESV messages. Receiver processing for guaranteed service requires inclusion of a Tspec and a Rspec. The Rspec defines the QOS desired by the receiver.

The following table shows the general mapping of parameters from the Winsock2 QOS flowspecs to RSVP Tspecs and Rspecs.

Winsock2 FLOWSPEC
Tspec
Rspec

TokenRate
TokenBucketRate
Rate

TokenBucketSize
TokenBucketSize

PeakBandwidth
PeakRate

MinimumPolicedSize
MinimumPolicedUnit

MaxSduSize
MaximumPacketSize

DelayVariation

DelaySlackTerm

Latency

By specifying the value ‘-1’ (QOS_NOT_SPECIFIED) as a FLOWSPEC parameter, applications can indicate that a default parameter should be inferred by the QOSSP. Additionally, applications may specify SERVICETYPE_NOCHANGE in one or both FLOWSPECs, to indicate that the QOS parameters in the corresponding direction(s) should remain unchanged. This is especially useful, for example, to allow an application to change sending parameters without affecting receiving parameters (or vice versa).

7.1 Tspec

7.1.1 SenderTspec

On senders, RSVP uses the mapping tabulated above to derive a SenderTspec from the SendingFlowspec, for inclusion in PATH messages (with the possible exceptions noted below).

If the sending application does not specify the parameter MaxSduSize, the QOSSP will use a default value of 1500 bytes.

If the application does not specify the parameter MinimumPolicedSize, the QOSSP will use a default value of 128 bytes.

7.1.2 ReceiverTspec

· Controlled Load Service

On receivers, for ControlledLoadService, the application may decide to specify only the ServiceType parameter in the ReceivingFlowspec
. In this case, the QOSSP copies the SenderTspec from matching PATH messages
, to the ReceiverTspec sent with the RESV messages (with the possible exceptions noted below). Alternatively, the receiving application may specify, in the ReceivingFlowspec, any of the Tspec parameters tabulated above. This will cause the QOSSP to use the specified parameters in the ReceiverTspec sent with the RESV messages (instead of the corresponding parameter from received PATH messages). Parameters which are not specified by the application, should be set to ‘-1’, in the ReceivingFlowspec and will be copied from the matching PATH messages.

· Guaranteed Service

On receivers, for GuaranteedService, the QOSSP will copy the SenderTspec from matching PATH messages to the ReceiverTspec sent with the RESV messages (with the possible exceptions noted below). The application cannot override Tspec parameters in this case.

· Exceptions

In the case of Wildcard Filter reservation styles (see Section 8), multiple PATH messages may be received, corresponding to the same session, but with different SenderTspecs (representing different senders). In this case, the QOSSP will copy the greater (as determined by the RSVP least upper bound calculation) of the SenderTspecs to the ReceiverTspec included with RESV messages.

The QOSSP will populate the MaximumPacketSize in the ReceiverTspec with the PATH_MTU value from the Adspec in the corresponding inbound PATH message. If there are multiple PATH messages, the lowest PATH_MTU value from all corresponding Adspecs, will be used.

7.2 Rspec

The Rspec is included by the QOSSP in RESV messages sent on behalf of a receiving application, only when GuaranteedService is specified by the receiving application. The application is expected to specify two of the three parameters; TokenRate, DelayVariation and Latency, as shown in the following table:

Application specifies:
QOSSP constructs Rspec:

TokenRate and DelayVariation
· Rate is copied from TokenRate
· DelaySlackTerm is copied from DelayVariation
· Latency parameter ignored.

DelayVariation and Latency
· Rate parameter of Rspec calculated based on DelayVariation and Latency and other parameters obtained from Adspec

If the application does not specify two of the three parameters (all parameters set to ‘-1’), then the QOSSP will infer appropriate default values based on corresponding received PATH messages.

7.3 Adspec

Also included on each PATH message is the so-called Adspec. The Adspec provides a way of allowing the network elements along a RSVP route to advertise their resource availability and transmission characteristics. This information may help a receiving app to decide what level of reservation to request. Contained on the Adspec are a set of general parameters and a set of parameters specific for CONTROLLED LOAD or GUARANTEED service. The rules for the generation of Adspec and the processing of its parameters are documented in an Internet Draft (see Section 15).

Basically, a sending host emitting PATH messages is responsible for the creation and initialization of the Adspec. This function is performed by the RSVP service process. In order to do so, it has to query the kernel traffic controller for the following parameters:

· Link Capacity

· Available Bandwidth

· Latency

· MTU

8 MAPPING OF GQOS TO RSVP: Reservation Styles

8.1 Basic RSVP Filters

Three reservation styles are recognized by RSVP. These are Fixed Filter (FF), Shared Explicit (SE) and Wildcard Filter (WF). Not all reservation styles can be accommodated using the GQOS interface (unless the ProviderSpecific structure is also used). The QOSSP will infer the reservation style desired by a receiving application per the following rules.

(For details on invocation of alternate reservation styles, see the section titled Use of the Provider Specific Structure).

8.1.1 Fixed Filter - Unicast

Receiving applications requesting QOS for a unicast session will be assumed to require the FF reservation style. TCP receivers are always assumed to be unicast receivers.

Note that UDP unicast receivers will be handled using FF style reservations, only if they call WSAConnect. UDP unicast receivers which do not call WSAConnect will be handled using WF style reservations.

8.1.2 Wildcard Filter - Multicast

Receiving applications requesting QOS for a multicast address and UDP applications which do not call WSAConnect, will be assumed to require the WF reservation style. This is necessary because there is no means for the receiving application to specify selected senders for the multicast session.

8.1.3 Shared Explicit

The use of Shared Explicit (SE) style allows a receiving app to limit its reservation to be shared by flows generated by selected senders. SE reservations require the app to explicitly indicate RSVP_SHARED_EXPLICIT_STYLE in the Style field of the RSVP_RESERVE_INFO object to specifiy multiple senders in flowdescriptors. The standard structures included with the Winsock2 GQOS interface do not provide for this. Therefore, in general, the SE reservation style will require use of the ProviderSpecific structure.

8.2 Alternate Reservation Styles

As explained above, reservation style are provided by default:

· Unicast - single FF reservation.

· Multicast - WF reservation.

In the absence of an RSVP_RESERVE_INFO object in the ProviderSpecific structure, these reservation styles will be provided. To override the default reservation styles, the RSVP_RESERVE_INFO object (see Section 4.3.7) is used to specify a reservation style, and one or more FLOWDESCRIPTOR structures may follow, as described below. For reference the RSVP_RESERVE_INFO struct is:

typedef struct _RSVP_RESERVE_INFO {

 QOS_OBJECT_HDR ObjectHdr; /* type and length of this object */

 ULONG Style; /* RSVP Style (FF,WF,SE) */

 ULONG ConfirmRequest; /* Non Zero for Confirm Request (receive only) */

 ULONG NumPolicyElement; /* Number of policy elements */

 LPRSVP_POLICY PolicyElementList; /* Points to the set of policy elements */

 ULONG NumFlowDesc; /* Number of FlowDesc */

 LPFLOWDESCRIPTOR FlowDescList; /* Points to the FlowDesc list */

} RSVP_RESERVE_INFO, *LPRSVP_RESERVE_INFO;

8.2.1 RSVP_DEFAULT_STYLE

This flag is defined in qossp.h such that an app can specify other fields in RSVP_RESERVE_INFO without explicitly indicate to QOSSP a special RSVP filter style.

8.2.2 Single Fixed Filter Reservations

This is the default reservation style invoked for connected unicast receivers. In order to invoke this reservation style for multicast receivers, it is necessary to override the default WF reservation style by specifying the FF style object in RSVP_RESERVE_INFO, followed by a single FLOWDESCRIPTOR (NumFlowDesc = 1 and FlowDescList = sender address/port).

8.2.3 Multiple Fixed Filter Reservations in a Single Reservation

This style allows a receiver to reserve mutually exclusive flows from multiple, explicitly identified sources. It is invoked by specifying the FF style followed by a list of multiple FLOWDESCRIPTORs (NumFlowDesc = N, and FlowDescList = N sender addresses/portd). Note that this style cannot be applied to TCP receivers since they are assumed to be connected to a single peer sender. Also, this style should not be applied to UDP receivers which have been connected (by calling WSAConnect), since the transport will discard data from all senders other than the one specified in the call to WSAConnect.

8.2.4 Shared Explicit Reservations

This style allows a receiver to specify multiple sources. The flow resources requested will be shared between all sources. It is invoked by specifying the corresponding style, followed by a single FLOWDESCRIPTOR (NumFlowDesc = 1, FlowDescList = concatenation of senders’ addresses/ports). As is the case with multiple FF reservations, this style cannot be applied to TCP receivers or to connected UDP receivers.

8.2.5 WF Reservations

This is the default reservation style for multicast receivers and unconnected UDP receivers. In order to invoke this reservation style for TCP unicast receivers or for connected UDP unicast receivers, it is necessary to override the default FF reservation style by specifying the WF style, followed by no flowdescriptor with NumFlowDesc = 0, and FlowDescLost = NULL.
9 An APPROACH TO MAPPING GQOS to TC

QOS-aware applications that are invoking TC on their own behalf are expected to use the GQOS API to describe the QOS that they require for transmitted traffic. They do so by providing an Intserv Flowspec and, optionally, a ProviderSpecific buffer to the QOSSP. Typically, these parameters are passed with the Winsock2 WSAConnect, WSAJoinLeaf, and SIO_SET_QOS calls and affect all traffic on the associated socket.

9.1 The Intserv Model

Applications use the Intserv model to specify their traffic control requirements to the TC components. Since the Intserv model is central to our discussion of TC, we will digress briefly to describe it.

The IETF has defined a model by which applications can describe to the network
, the type of traffic that they will be submitting to the network and the type of service (or QOS) that they would like the network to provide for the submitted traffic. This model is referred to as the Integrated Services (Intserv) model. It is centered on a structure known as a Flowspec.
We use the Flowspec because it provides a useful abstraction of QOS parameters. Applications are expected to specify a Flowspec to invoke the desired TC effect from underlying TC components
. Typically, all TC parameters required by these components are inferred from the Flowspec that is provided at the top of the QOS stack and which propagates down to the TC components. Parameters that are not readily inferred from the Flowspec are defaulted by lower level TC components, but may be overridden by applications that desire finer grain control over the TC components (via the ProviderSpecific buffer).

9.2 The Flowspec Parameters

For a detailed description of the Flowspec, see Section 4. Briefly, the Flowspec includes the commonly known token-bucket parameters (which describe the expected profile of a traffic flow) and a ServiceType. The ServiceType describes the quality of service which applications expect the network to provide for their traffic.

9.3 The Provider Specific Parameters

In typical usage, the Flowspec is sufficient for an application to express all its requirements to the TC components. In certain cases, some applications will require closer control over TC components. These applications may use a ProviderSpecific buffer to specify additional parameters.

TC parameters that may be specified in the ProviderSpecific buffer include: QOS_OBJECT_SD_MODE, QOS_OBJECT_PRIORITY, and QOS_OBJECT_TRAFFIC_CLASS. The first two objects can be specified by an application via GQOS. The third object is not accessible through GQOS
, but can be added by lower level components (such as the QOSSP itself) through the TCI. TC-related parameters specified in the ProviderSpecific buffer are made available by the QOSSP to all TC components as the TC request propagates down the stack.

9.3.1 QOS_OBJECT_SD_MODE

This object may be included in the ProviderSpecific buffer which is passed through the TCI. This determines the ShapingMode associated with a flow. The ShapingMode supplements the token bucket parameters from the Flowspec to effect traffic shaping behavior for the corresponding flow. It is used to determine the ShapingMode which should be applied to the flow. The following modes are defined:

1. BorrowMode – Flows of this type will not be subjected to packet discard in the Conformer, nor to shaping in the Shaper. Packets submitted on flows of this mode will be passed immediately to the Sequencer. As a result, these flows will be sent at the maximum rate possible once all higher priority flows have been serviced.

2. ShapeMode – Flows of this type will be shaped in the Shaper. Packets submitted on these flows will be delayed in the Shaper until their conformance time is reached.

3. DiscardMode – Flows of this type will be subject to packet discard. Packets submitted on these flows before their conformance time will be discarded by the Conformer.

It is not necessary to specify a QOS_OBJECT_SD_MODE in the ProviderSpecific buffer. However, if the object is specified, it must indicate a legitimate value. Legitimate values include BorrowMode, ShapeMode and DiscardMode. Attempts to create a flow with an illegitimate value for the QOS_OBJECT_SD_MODE will be rejected.

9.3.2 QOS_OBJECT_PRIORITY

This object may be included in the ProviderSpecific buffer which is passed through the TCI. This supplements the ServiceType parameter from the Flowspec to determine the local priority (internal to the sending host computer) of the corresponding flow’s traffic relative to traffic from other flows. It is used in combination with the ServiceType parameter, to determine the priority which should be applied to the flow, internal to the Sequencer component of the PS.

It is not necessary to specify a QOS_OBJECT_PRIORITY in the ProviderSpecific buffer. However, if the object is specified, it must indicate a legitimate value. Legitimate values are in the range 0 – 7. Attempts to create a flow with an illegitimate value for QOS_OBJECT_PRIORITY will be rejected.

The optional priority object contains two parameters. One indicates the send priority of a requested flow, the other represents the receive priority of the requested flow. It should be used to supplement the standard FLOWSPEC. Note that the transmit priority object will be used by the kernel to determine relative priorities for multiple flows of the same Intserv service type. Priorities between Intserv service types are defined by the Intserv service type definitions.

Despite the appearance of QOS_OBJECT_TRAFFIC_CLASS in qos.h, an application is NOT allowed to pass any such objects to QOSSP. Doing so will result in the return of WASInval in the QOS invocation API calls.
9.3.2.1 Packet Sequencing

The transmit priority object will be interpreted by packet sequencing components in the network stack (typically in the kernel), and will determine which flow’s packets get access to the wire under congested conditions. The typical packet sequencer will group flows according to the value specified in the priority object. Under congested conditions, a packet sequencer will send packets from each flow, in the highest priority group for which packets are pending. Flows within the group will be serviced in a round-robin fashion.

Note that flow priority is machine-wide, not within an application. Thus, flows from two different applications, given the same priority, will be serviced as part of the same priority group.

9.3.2.2 Avoiding Starvation

Although this priority mechanism has the potential to starve low priority flows this is unlikely to happen in a correctly configured system. Traffic control components will limit the admission of high priority flows such that the sustained capacity of the media is not exceeded. In this case, priority will determine the latencies perceived by packets on particular flows, under transient congestion conditions, while maintaining the sustained rates specified in the token bucket parameters of the FLOWSPEC.

9.3.2.3 Usage

The priority object can be used to specify a range of priorities between 0 and 7 (with 0 being the lowest priority and 7 being the highest). This value will be used by the kernel, together with the service type specified in the FLOWSPEC, to control the prioritization in the kernel. The absence of a priority object with a FLOWSPEC will be interpreted as default priority (equivalent to a priority object of 3).

The kernel is not required to implement multiple priority levels for each Intserv service class. Applications should specify relative priority by use of the Intserv service class whenever possible. Where it is absolutely necessary to specify prioritization within an Intserv service class, applications should restrict the priority levels to the minimum possible. For example – use 7 to specify higher than default for the class, and 0 to specify lower than default for the class.

Consider a video-conferencing/whiteboard application. Such an application should specify service as follows:

Flow Type
ServiceType in FLOWSPEC
QOS_PRIORITY Object

Whiteboard data
SERVICETYPE_BESTEFFORT
No priority object

Video data
SERVICETYPE_CONTROLLEDLOAD
No priority object

Audio data
SERVICETYPE_CONTROLLEDLOAD
Priority object = 7

9.3.2.4 Relation to Socket Group Priority

The socket group priority mechanism has been eliminated. It was intended to specify relative priorities of sockets within a group, without defining the interpretation of priorities across groups. The priority object defined here, specifies the relative priority across all flows on the host.

9.3.2.5 Relation to 802.1p

The priority object is unrelated to 802.1p traffic classes (which are indicated in tags attached to transmitted packets). The kernel traffic control components will determine the 802.1p traffic classes based on standardized Intserv FLOWSPEC to 802.1p traffic class mappings.

9.3.3 QOS_OBJECT_TRAFFIC_CLASS

This object may be included in the ProviderSpecific buffer which is passed through the TCI. This may be used to determine the 802.1 User Priority tag included in the MAC header of packets sent on the corresponding flow. It is used to determine the external 802.1p priority which should be marked in the MAC header of packets transmitted on the flow.

It is not necessary to specify a QOS_OBJECT_TRAFFIC_CLASS in the ProviderSpecific buffer. If such an object is specified, the PS wrapper will pass it, unmodified and unchecked, to the Scheduler.

9.3.4 PRORATED TRAFFIC SHAPING

An app can configure the traffic shaper to operate at a fraction of the token-bucket rate specified in the original Sending FlowSpec, by including the following provider-specific object in the QOS structure during QOS invocation (e.g. via WSAConnect or WSAIoctl(SIO_SET_QOS)):

Name:

QOS_OBJECT_SHAPING_FACTOR

Parameter:

ShapingFactor: 0 < x <= 100

Default:

100

This feature enables NetShow to

· adjust the shaper without changing RSVP reservation

· oversubscribe network bandwidth

(Note: It makes more sense to specify the shaping rate as a percentage than in absolute bandwidth units.)

9.3.5 PER-FLOW CONFIGURATION OF SHAPING BUFFER

An app can use the following two provider-specific objects to control:

· the size of a shaping buffer

· the method of packet discard upon buffer oveflow

Name:

 QOS_OBJECT_SHAPER_QUEUE_DROP_MODE

Parameter:

 DropMode = {QOS_SHAPER_DROP_INCOMING, QOS_SHAPER_DROP_FROM_HEAD}

Default:

 QOS_SHAPER_DROP_FROM_HEAD

Name:

 QOS_OBJECT_SHAPER_QUEUE_LIMIT

Parameter:

 QueueSizeLimit (in bytes)

Default:

 "Infinite" (i.e. as much as the system can make available)

10 Mapping GQOS to TC: MECHANICS

10.1 The Role of the QOSSP in Invoking TC

The QOSSP interprets the provision of a sending Flowspec from the application (via the GQOS interface) as an indication that it is interested in obtaining the described QOS for its traffic. Typically, the QOSSP responds to both by signaling to the network (using RSVP) and by invoking kernel traffic control from the local TC components (via the Traffic Control Interface). In other words, traffic control is invoked automatically when RSVP sends out the first PATH message for a QOS-aware flow (i.e. when the Sending QOS is being set up). In this transitional period, traffic control is setup to shape the sent traffic as a best-effort flow in discard mode with reference to the allowed sending rate value determined by the system. (Note that: the sending app can find out what this value is by querying the Allowed_Rate via a SIO_CHK_QOS ioctl (see Section 4.3.10).) When PATH messages arrive at the receiving host(s), the host(s) may request the network to provide the QOS required to deliver the data traffic described. To do so, they send an RSVP RESV message back towards the sender. When the QOSSP on the sender receives a RESV message, it will call the TC components to update and modify the best-effort flow which was previously setup, according to the reservation state indicated on the arrived RESV message.

In fact, the QOSSP invokes traffic control regardless of whether RSVP signaling is enabled or not. For example, it is possible to suppress RSVP messages entirely on a per-interface basis (by resetting the registry variable EnableRSVP) and just turn on local traffic control. This might be done by a host that wants to only shape it's traffic but not to make reservations in the network (perhaps because the network is not RSVP enabled). In this case, the QOSSP will not generate RSVP signaling messages (for any flow sourced from the disabled interface), but will pass the Flowspec (via the RSVP service process) to the underlying traffic control components to immediately setup flows for the transmitted traffic. And the traffic controller will boost the priority of these flows (based on their Flowspec and Priority Objects, if any) as long as the registry variable “EnablePriorityBoost” is set.

10.2 Timing of TC Invocation With and Without RSVP Signaling

The following timing diagrams illustrate TC invocation with and without RSVP signaling:

10.3 Use of SIO_CHK_QOS

Prior to the arrival of RESV, any traffic transmitted by a sending app is treated as best-effort limited to the allowed sending rate determined by the system. The traffic is also shaped in DISCARD??? mode. In other words, any excess traffic above the allowed sending rate is considered non-conforming and is discarded by traffic control. So, to avoid unnecessary packet discards, a sending app should do a SIO_CHK_QOS ioctl immediately following QOS invocation to query the value of the ALLOWED_RTO_SEND_DATA (see Section 4.3.10) and might be required to defer data transmission till the arrival of RESV. Alternatively, a sending app might choose not to send any data before the RESV appears.

10.4 Configurable Options

10.4.1 Disabling TC

By default, the QOSSP will invoke TC immediately upon receipt of a sending Flowspec. TC will initially be invoked with ServiceType of BestEffort regardless of the ServiceType requested by the application in the sending Flowspec. (But the flow may still receive Priority Boost provided that the registry variable EnablePriorityBoost is set.) The QOSSP will start RSVP signaling by sending RSVP PATH messages, if RSVP is enabled. Then, upon receipt of a corresponding RSVP RESV message, the QOS SP will re-invoke TC, modifying the ServiceType to that requested by the application. The benefit of invoking TC immediately is that the controlled best-effort traffic can be immediately shaped by the TC components.

However, the GQOS API provides the sending app with the option to disable TC on a per-flow basis. This is done by setting the SERVICETYPE_NO_TRAFFIC_CONTROL flag in the Flowspec. When this flag is set, TC will not be invoked at all regardless of any RSVP activity.

10.4.2 Priority Boost

The TC may boost the transmit priority of a flow based on its ServiceType and its Priority Object. For instance, a flow requiring Guaranteed service will be assigned a higher priority than a flow requiring Best-Effort service. Details of the priority computation is given in Section 10.5. The mechanism of internal flow prioritization is known as “Priority Boost”. Whether this mechanism is activated or not depends on:

· whether RSVP signaling is enabled or not

· the state of the registry variable EnablePriorityBoost

· the reservation state

Depicted below is the decision tree for the control of priority boost:

 Y

 N

 N N

 Y Y

 Y

 N

(Note that: If the EnablePriorityBoost flag is missing in the registry, a default value of 1 (i.e. enabled) will be used.)

10.4.3 The TrafficClass Object

When using RSVP signaling, received RESV messages may include a TrafficClass object provided by layer 2 devices in the RSVP signaling path. If such an object is present, the QOSSP will pass it to traffic control in the ProviderSpecific buffer previously described. The TrafficClass object cannot be set via GQOS. The QOSSP (or other components using the Traffic Control Interface) may generate this object and include it in the ProviderSpecific buffer as it is passed down via the Traffic Control Interface.

Note that in the case of QOS service providers which implement signaling protocols other than RSVP, the trigger for modifying or for invoking TC will not be the RSVP RESV message. Rather, it will be the protocol’s analogous message which indicates that a receiver is prepared to receive QOS traffic.

An app is NOT allowed to specify any TrafficClass object in the provider-specific buffer it passes to QOSSP.

10.5 Significance of the ServiceType and the TrafficClass

The ServiceType parameter of the Flowspec is used by the QOS SP to determine the type of service it will request from the network using QOS signaling. The QOS SP passes a ServiceType to lower level TC components and may also provide a QOS_OBJECT_TRAFFIC_CLASS (in the ProviderSpecific buffer). Within the TC components, the ServiceType specified determines the local priority that packets on the flow will receive within the packet sequencer, and, in the absence of a QOS_OBJECT_TRAFFIC_CLASS, also determines the 802.1 User Priority associated with the packets. If present, the QOS_OBJECT_TRAFFIC_CLASS, instead of the ServiceType, determines the 802.1 User Priority associated with the packets. The behavior of lower level traffic control components in response to combinations of ServiceType and QOS_OBJECT_TRAFFIC_CLASS parameters, will be described further in the subsequent section on the PS.

The scheduler derives per-flow parameters, from the supplied parameters described above. Defaults are used in the case that certain parameters are not specified. Parameters are derived as shown in the following table:

Table 1 - Derivation of Per-Flow Parameters

Derived Parameters
Derived From
Default
Notes

ServiceType’
ServiceType in Flowspec
None

TokenRate’
TokenRate in Flowspec
None

TokenBucketSize’
TokenBucketSize in Flowspec
PipeMtuSize
1

PeakBandwidth’
PeakBandwidth in Flowspec
infinity

ShapingMode
· QOS_OBJECT_SD_MODE (in ProviderSpecific buffer)

· SDControlledLoad (in registry)

· SDGuaranteed (in registry)
BorrowMode (ServiceType == SERVICETYPE_CONTROLLEDLOAD

or SERVICETYPE_BESTEFFORT
ShapeMode (ServiceType ==

SERVICETYPE_GUARANTEED
2

802.1 UserPriority
· QOS_OBJECT_TRAFFIC_CLASS (in ProviderSpecific buffer)
· ServiceType (in Flowspec)
· Per packet conformance status
See note
3

InternalPriority
· ServiceType (in Flowspec)
· QOS_OBJECT_PRIORITY (in ProviderSpecific buffer)
· Per packet conformance status
See note
4

Notes:

1. If TokenBucketSize is not specified, the Scheduler will use PipeMtuSize. If a TokenBucketSize is specified which is less than PipeMtuSize then the derived TokenBucketSize’ will be set to PipeMtuSize.

2. If a QOS_OBJECT_SD_MODE is included in the ProviderSpecific buffer, it will be used as the ShapingMode for the flow. If no QOS_OBJECT_SD_MODE is specified then the per-interface ShapingMode for the corresponding interface and ServiceType, will be applied to the flow. See the following section for a discussion of the per-interface ShapingMode derivation.

3. If QOS_OBJECT_TRAFFIC_CLASS is specified in the ProviderSpecific buffer, it will be used as the 802.1 User Priority for all conforming
 packets on the flow. Non-conforming packets will be assigned an 802.1UserPriority of 0:

Conformance Status
TrafficClass
802.1 User Priority

Non-conforming
Don’t care
0

Conforming
Specified
Specified TrafficClass

Unspecified
MappedServiceType

If a QOS_OBJECT_TRAFFIC_CLASS is not specified, the MappedServiceType will be used as the 802.1 User Priority. The MappedServiceType is derived for each packet of the flow, according to the following table, based on the ServiceType in the corresponding Flowspec and the conformance status of the individual packet:

Conformance Status
ServiceType
MappedServiceType

Non-conforming
don’t care
0

Conforming
SERVICETYPE_BESTEFFORT
1

10.5.1.1.1.1.1
SERVICETYPE_CONTROLLEDLOAD
4

10.5.1.1.1.1.2
SERVICETYPE_GUARANTEED
6

4. InternalPriority is derived according to the following rule:

if (MappedServiceType > 1){

InternalPriority = (MappedServiceType * 8) + PriorityOffset ;

}

else{

InternalPriority = MappedServiceType;

}

Where, PriorityOffset is taken from QOS_OBJECT_PRIORITY (which may be included in the ProviderSpecific buffer passed through the TCI). QOS_OBJECT_PRIORITY can thus be used to promote or demote the internal priority of a flow, relative to other flows of the same ServiceType
. If this object is not included, the Sequencer uses a default PriorityOffset of 3. Consequently, the TCI can be used to elevate the priority of flows relative to other flows of the same ServiceType, by specifying a QOS_OBJECT_PRIORITY with a value of 4 or greater. To demote the priority of a flow relative to other flows of the same ServiceType, QOS_OBJECT_PRIORITY should have a value of 2 or less. Specifying a QOS_OBJECT_PRIORITY of 3 is equivalent to specifying no QOS_OBJECT_PRIORITY in the ProviderSpeific buffer.

Note that, MappedServiceTypes of 2, 3, 5 and 7 are not used. Therefore, InternalPriority values of 2-31 (inclusive) and 41-47 (inclusive), are never derived.

(For further details, pleases refer to “QOS Traffic Control Components – Requirements and Functional Specification”.)

11 Status Indications from the QOSSP to Applications

11.1 Edge-Triggered Asynchronous Notification

RSVP will provide the following indications to applications using the GQOS interface:

· Information regarding the acceptance or rejection of the application’s QOS requests by the RSVP module or by the network. Note that rejection of a QOS request may indicate a transient failure, which will be corrected at a later time.

· Significant changes in the QOS provided by the network (as compared to a previously negotiated QOS).

· Status regarding the preparedness of a QOS peer to send or receive a particular QOS traffic flow.

These indications are mediated via status returned to Winsock2 calls, or via FD_QOS asynchronous event notifications or via the overlapped completion mechanisms of WSAIoctl(SIO_GET_QOS) calls. So GQOS-based applications are expected to register interest in QOS changes either through the FD_QOS event (WSAEventSelect or WSAAsyncSelect) or through issuing an Overlapped WSAIoctl(SIO_GET_QOS) request.

11.1.1 Using WSAEventSelect or WSAAsyncSelect

The FD_QOS event allows an application to receive asynchronous notifications of status from the QOSSP when the QOS changes. When a significant QOS event occurs on the specified socket, the QOSSP posts a message or signals the event, as appropriate. The appropriate WSA_QOS status codes may be retrieved by calling WSAEnumNetworkEvents or other appropriate Win32 calls. In addition, the application should issue a WSAIoctl (SIO_GET_QOS) in order to retrieve a QOS structure. The returned QOS structure will indicate the current QOS parameters. The application should inspect these parameters to determine the extent of the QOS change. Note that, regardless of the status code indicated, the application must issue the WSAIoctl (SIO_GET_QOS) in order to re-enable the FD_QOS event. Also note that there may be more than one QOS status indication waiting to be retrieved for a single Event notification. The application should always call WSAIoctl(SIO_GET_QOS) in a loop until SOCKET_ERROR is returned (WSAGetLastError() returns WSAEWOULDBLOCK).

11.1.2 Using Overlapped WSAIoctl(SIO_GET_QOS)

Instead of waiting for FD_QOS events, an application may choose to issue an Overlapped WSAIoctl(SIO_GET_QOS) request to obtain QOS change notifications. This requires the app to specify a completion routine, which will be called when QOS changes are detected. When this callback occurs, the WSA_QOS status code and the corresponding QOS structure are available in the OutputBuffer that was passed to the WSAIoctl(SIO_GET_QOS) request. Thus, the completion routine could act on the OutputBuffer to perform status monitoring and error handling functions.

Note: When the application issues a WSAIoctl(SIO_GET_QOS) request, that request will complete with QOS information set in just one direction (either the SendingFlowspec or the ReceivingFlowspec will be valid). The flowspec that is not valid will contain a ServiceType value set to SERVICETYPE_NOCHANGE.

11.2 Returned RSVP Status

11.2.1 Status Codes

Upon the occurrence of a FD_QOS event triggered by RSVP activity, the app has access to a status/error code. Listed below are some of the QOS-related Winsock2 status/error codes (which may be found in the “winsock2.h” header file):

· WSA_QOS_RECEIVERS - at least one RESV has arrived

· WSA_QOS_SENDERS - at least one PATH has arrived

· WSA_QOS_NO_SENDERS - there are no senders

· WSA_QOS_NO_RECEIVERS - there are no receivers

· WSA_QOS_REQUEST_CONFIRMED - reserve has been confirmed

· WSA_QOS_ADMISSION_FAILURE - error due to lack of resources

· WSA_QOS_POLICY_FAILURE - rejected for administrative reasons

· WSA_QOS_BAD_STYLE - unknown or conflicting style

· WSA_QOS_BAD_OBJECT - problem with some part of the flowspec
· WSA_QOS_TRAFFIC_CTRL_ERROR - problem with some part of the filterspec
· WSA_QOS_GENERIC_ERROR - general error

11.2.2 QOS State

By listening to FS_QOS events and retrieving the corresponding QOS structures:

· a receiver may retrieve Sender Tspec and Adspec carried on an arriving Path message

· a sender may discover the reservation state of the connection based on flow spec carried on an arriving RESV message

11.2.3 SENDERS/NO_SENDERS and RECEIVERS/NO_RECEIVERS

In a unicast case, after sender startup, the arrival of the first RESV, which indicates the presence of a matched receiver, will trigger a RECEIVERS upcall to the sending app. The receipt of a subsequent RESV_TEAR will turn into a NO_RECEIVERS upcall.

Similarly, after receiver startup, the arrival of the first PATH, which indicates the presence of a matched sender, will trigget a SNEDERS upcall to the receiving app. The receipt of a subsequent PATH_TEAR will turn into a NO_SENDERS upcall.

In the multicast case, after sender startup, the sending app will receive a RECEIVERS notification whenever the number of receivers decrements or increments and is non-zero. The app can find out the number of receivers by looking up ExtendedStatus2 in RSVP_STATUS_INFO. When the number of receivers reaches zero, a NO_RECEIVERS upcall will be made.

In the multicast case, after receiver startup, the sending app will receive a SENDERS notification whenever the number of senders decrements or increments and is non-zero. The app can find out the number of senders by looking up ExtendedStatus2 in RSVP_STATUS_INFO. When the number of senders reaches zero, a NO_SENDERS upcall will be made.

Note also that no SENDERS upcall will be made if SERVICE_TYPE_NO_SIGNALLING has been set in the QOS invocation process.

11.2.4 RSVP_STATUS_INFO

The normal status indication mechanisms described so far provide for the indication of a single status code, and the availability of updated QOS parameters. Additional information can be indicated from the QOSSP to applications, by use of the ProviderSpecific member of the QOS structure which is indicated in response to WSAIoctl (SIO_GET_QOS).

In either of the two methods described earlier (Select or Overlapped), if the input QOS buffer has a (large enough) ProviderSpecific structure associated with it, then the QOSSP will pass back in the buffer a RSVP_STATUS_INFO object:

typedef struct _RSVP_STATUS_INFO {

 QOS_OBJECT_HDR ObjectHdr; /* Object Hdr */

 ULONG StatusCode; /* Error or Status Information see

 * Winsock2.h */

 ULONG ExtendedStatus1;/* Provider specific status extension */

 ULONG ExtendedStatus2;/* Provider specific status extension */

} RSVP_STATUS_INFO, *LPRSVP_STATUS_INFO;

The StatusCode value in the structure is the same as the status value (winsock2 QOS-related code) returned in response to WSAEnumNetworkEvents or other similar WIN32 calls. The two DWORDs of extended status provide the specific RSVP error code and error value from the standard RSVP ErrorSpec object (if available).

11.2.5 The RSVP_ADSPEC Object

In the case of a FD_QOS event triggered by the arrival of a PATH message in a receiving host, the QOSSP will also return Adspec information to the app making the SIO_GET_QOS ioctl in response to the event. This requires the app to attach a provider specific buffer to the ioctl, and the size of this buffer should be large enough to hold the RSVP_ADSPEC_OBJECT:

typedef struct _RSVP_ADSPEC {

 QOS_OBJECT_HDR ObjectHdr;

 AD_GENERAL_PARAMS GeneralParamse; /* contains the general

 * characterization parameters */

 ULONG NumberOfServices; /* count of the number of services */

 CONTROL_SERVICE Services[1]; /* a list of the services

 * supported/requested */

} RSVP_ADSPEC, *LPRSVP_ADSPEC;

This object is returned to an application in the ProviderSpecific buffer as a result of the successful completion of a call to WSAIoctl(SIO_GET_QOS). The RSVP_STATUS_INFO structure contained in the ProviderSpecific structure will have a status equal to WSA_QOS_SENDERS . The RSVP_ADSPEC structure also will be contained in the ProviderSpecific structure if the ProviderSpecific structure is long enough to hold both this structure and the RSVP_STATUS_INFO structure.

The RSVP_ADSPEC structure contains "general characterization data" for the path taken by the PATH messages from the sender to the receiver. It indicates which service types are available (Controlled Load and/or Guaranteed Service), the presence/absence of any non-RSVP hop in the path, and the minimum MTU along the path. It can also contain information specific particular to a service. Since this structure closely parallels the ADSPEC message used by RSVP itself, the reader should refer to the relevant IntServ documents: draft-ietf-intserv-rsvp-use-01.txt and draft-ietf-intserv-charac-02.txt for a description of the values in the structure.

11.3 Returned TC Status

(to be determined)

12 GETQOSBYNAME

12.1 Overview

Applications call WSAGetQOSByName() to:

· retrieve a list of available QOS templates

· obtain the FLOWSPEC structure associated with a named template.

These QOS templates might be stored in the system registry:

HKEY_LOCAL_MACHINE \ SYSTEM \ CurrentControlSet \ Services \ WinSock2 \ QOS \ GlobalQosTemplates
Related API calls (WSCInstallQosTemplate, WSCRemoveQosTemplate) are provided to enable a installation application to install or remove custom templates.

Besides, the Microsoft QOSSP is equipped with a set of built-in templates, including:

· | | |G711

· | | |G723.1

· | | |G729

· | | |H263QCIF

· | | |H263CIF

· | | |H261QCIF

· | | |H261CIF

The WSAGetQOSByName facility is particularly useful to applications which are aware of the codec which they are using, since these tend to have well defined FLOWSPEC parameters.

General usage of the WSAGetQosByName call is as follows;

1. Applications call WSAGetQosByName with a NULL lpQOS parameter and a pointer to a WSABUF structure, in the lpQOSName parameter.

2. Winsock returns a list of QOS template names.

3. The application selects a template name, based on the type of QOS flow it will be generating. It passes the selected template name to Winsock, in the lpQOSName parameter. It passes a pointer to the FLOWSPEC structure to be used, in the lpQOS parameter.

4. Winsock fills in the FLOWSPEC structure with the parameters from the selected template.

(The application sets the ServiceType fields in the SendingFlowspec and in the ReceivingFlowspec appropriate values depending on the type of QOS service it wants in each direction.)

12.2 The GetQosByName Function Suite

12.2.1 WSAGetQosByName()

Description
Initializes a QOS structure based on a named template, or retrieves an enumeration of the available template names.

#include <winsock2.h>

BOOL WSAAPI
WSAGetQosByName(

IN

SOCKET

s,

IN OUT

LPWSABUF

lpQOSName,

OUT

LPQOS

lpQOS
);

s
A descriptor identifying a socket.

lpQOSName
Specifies the QOS template name, or supplies a buffer to retrieve an enumeration of the available template names.

lpQOS
A pointer to the QOS structure to be filled.

Remarks
Applications may use this function to initialize a QOS structure to a set of known values appropriate for a particular service class or media type. These values are stored in a template which is referenced by a well-known name. The client may retrieve these values by setting the buf member of the WSABUF indicated by lpQOSName to point to a string of non-zero length specifying a template name. In this case the usage of lpQOSName is IN only, and results are returned through lpQOS.

Alternatively, the client may use this function to retrieve an enumeration of available template names. The client may do this by setting the buf member of the WSABUF indicated by lpQOSName to a zero-length null-terminated string. In this case the buffer indicated by buf is over-written with a sequence of as many null-terminated template names are available up to the number of bytes available in buf as indicated by the len member of the WSABUF indicated by lpQOSName. The list of names itself is terminated by a zero-length name. When WSAGetQosByName() is used to retrieve template names, the lpQOS parameter is ignored.

Return Value
If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE. To get extended error information, call WSAGetLastError().

Comments
The algorithm that WSAGetQosByName() applies in its search for a name match is:
1) Socket’s service provider (SP) checks with WS2_32.DLL for a provider-specific template with a matching name (i.e. a name that was installed for that provider specifically - see WSCInstallQOSTemplate())..
2) If this fails, then SP checks its internal table of QOS templates (if it has such a table)
3) If this fails, then SP checks with WS2_32.DLL again, for its global list of QOS names (i.e. names that are not installed against a particular service provider).
4) If one of the above succeeds, SP has the option of doing any "service specific" modifications to the QOS template before returning it to winsock.
5) Else WSAGetQosByName() returns FALSE, and WSAGetLastError() returns WSAEINVAL to indicate an invalid name.

Error Codes
WSANOTINITIALISED
A successful WSAStartup() must occur before using this API.

WSAENETDOWN
The network subsystem has failed.

WSAENOTSOCK
The descriptor is not a socket.

WSAEFAULT
The lpQOSName or lpQOS arguments are not a valid part of the user address space

WSAENOBUFS
The buffer length for lpQOS is too small.

WSA_NODATA
The specified QOS template name is invalid.

See Also
WSAConnect(), WSAAccept(), WSAIoctl()

12.2.2 WSPGetQosByName()

Description
Initializes a QOS structure based on a named template, or retrieves an enumeration of the available template names.

#include <ws2spi.h>

BOOL WSPAPI
WSAGetQosByName(

IN

SOCKET

s,

IN OUT

LPWSABUF

lpQOSName,

OUT

LPQOS

lpQOS,

OUT

LPINT

lpErrno
);

s
A descriptor identifying a socket.

lpQOSName
Specifies the QOS template name, or supplies a buffer to retrieve an enumeration of the available template names.

lpQOS
A pointer to the QOS structure to be filled.

lpErrno
A pointer to the error code.

Remarks
Clients may use this function to initialize a QOS structure to a set of known values appropriate for a particular service class or media type. These values are stored in a template which is referenced by a well-known name. The client may retrieve these values by setting the buf member of the WSABUF indicated by lpQOSName to point to a Unicode string of non-zero length specifying a template name. In this case the usage of lpQOSName is IN only, and results are returned through lpQOS.

Alternatively, the client may use this function to retrieve an enumeration of available template names. The client may do this by setting the buf member of the WSABUF indicated by lpQOSName to a zero-length null-terminated Unicode string. In this case the buffer indicated by buf is over-written with a sequence of as many null-terminated Unicode template name strings are available up to the number of bytes available in buf as indicated by the len member of the WSABUF indicated by lpQOSName. The list of names itself is terminated by a zero-length Unicode name string. When WSAGetQosByName() is used to retrieve template names, the lpQOS parameter is ignored.

In the event that there are two templates with the same name, where one is specific to the provider and the other is global, the name will only appear in the list once.

Return Value
If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE, and a specific error code is available in lpErrno.

Comments
A Service Provider installation program can call WSCInstallQOSTemplate() to install a new QOS template, or modify an existing one. . Note that the caller of this API must be running with administrative privileges on that machine. WSCInstallQOSTemplate() updates/stores the QOS template, along with the name and SP GUID as qualifier, in non-volatile (persistent) memory, so it exists even when the SP isn’t currently in use. An SP installation program can call WSCRemoveQOSTemplate() to uninstall a template, and applications use WSAGetQosByName() to search all templates available.

The algorithm that WSAGetQosByName() applies in its search for a name match is:
1) SP checks with WS2_32.DLL for a provider-specific template by calling WPUGetQOSTemplate(), and using the SP GUID and QOS name as search criteria
2) If this fails, then SP checks its internal table of QOS templates (if it has such a table)
3) If this fails, then SP checks with WS2_32.DLL by calling WPUGetQOSTemplate() again, using the same name, but NULL for the SP GUID in order to query the global list of QOS names.
4) If any of the above succeeds, SP has the option of doing any "service specific" modifications to the QOS template before returning the result.
5) Else WSAGetQosByName() returns FALSE and lpErrno is set to WSA_NODATA

Error Codes
WSAENETDOWN
The network subsystem has failed.

WSAENOTSOCK
The descriptor is not a socket.

WSAEFAULT
The lpQOS argument is not a valid part of the user address space

WSAENOBUFS
The buffer length for lpQOS is too small.

WSA_NODATA
The specified QOS template name is invalid.

See Also
WPUGetQOSTemplate().WSCInstallQOSTemplate(), WSCRemoveQOSTemplate()

12.2.3 WSCInstallQOSTemplate()

Description
Sets a QOS template based on a QOS name. This QOS structure can be retrieved by calling WSAGetQosByName() passing in the same QOS name. The caller of this API must be running with administrative privilege on the machine.

#include <ws2spi.h>

BOOL
WSCInstallQOSTemplate(

IN

const LPGUID
lpProviderId,

IN

LPWSABUF
lpQOSName,

IN

LPQOS
lpQOS
);

lpProviderId
 Points to a provider-selected, globally unique identifier (GUID).
lpQOSName
 Specifies the QOS template name.

lpQOS
 A pointer to a QOS structure.

Remarks
This routine creates a QOS name template containing the associated QOS structure. These values are stored in non-volatile storage so that subsequent calls to WSAGetQosByName(), passing the same lpQOSName, return the QOS structure. If the lpProviderId is set to NULL, then this QOS name template applies across all service providers, otherwise the QOS name template applies just to the provider indicated by the ProviderId. Note that winsock2 includes a base set of QOS templates. It is possible to override one of these QOS templates by simply installing a new template with the same name. It is possible to change a QOS template by simply installing a new template (without first deleting the old one).

The lpQOS structure can include a ProviderSpecific buffer that will be stored along with the basic QOS structure and returned in subsequent WSAGetQosByName() calls.

It is allowable to include the ProviderSpecific buffer even if the lpProviderId is set to NULL. This API can be used to install global name templates including provider specific information. Note that this may lead to the particular SP ignoring the ProviderSpecific buffer if it does not understand the contents of it. The recommended use of this API is to only include ProviderSpecific buffer if the name template is being installed against a particular SP (i.e. lpProviderId is not NULL).

Return Value
If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE. To get extended error information, call WSAGetLastError().

Error Codes

WSAEINVAL
The specified QOS template name is invalid

See Also
WPUGetQOSTemplate(). WSCRemoveQOSTemplate(), WSAGetQosByName()

12.2.4 WSCRemoveQOSTemplate()

Description
Removes a QOS template based on a search for a match of a QOS name. The caller of this API must be running with administrative privilege on the machine.

#include <ws2spi.h>

BOOL
WSCRemoveQOSTemplate(

IN

const LPGUID
lpProviderId,

IN

LPWSABUF
lpQOSName,
);

lpProviderId
 Points to a provider-selected, globally unique identifier (GUID).
lpQOSName
 Specifies the QOS template name.

Remarks
This routine deletes a QOS template that was previously added with WSCInstallQOSTemplate(). If the lpProviderId is set to NULL, then this API attempts to find and delete a QOS template from the "global" list of QOS names, otherwise this function attempts to find and delete a QOS template specific to the provider indicated by the ProviderId. Note that winsock2 includes a base set of QOS name templates that cannot be deleted. WSAEINVAL will be returned if such an attempt is made.

Return Value
If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE. To get extended error information, call WSAGetLastError().

Error Codes

WSAEINVAL
The specified QOS template name is invalid

WSA_NODATA
The specified QOS template could not be found.

See Also
WPUGetQOSTemplate(). WSCInstallQOSTemplate(), WSAGetQosByName()

12.2.5 WPUGetQOSTemplate()

Description
The WPUGetQOSTemplate() function retrieves a QOS template for a particular service provider

#include <ws2spi.h>

INT
WPUGetQOSTemplate(

IN

const LPGUID
lpProviderId,

IN

LPWSABUF
lpQOSName,

OUT

LPQOS
lpQOS
);

lpProviderId
 Points to a provider-selected, globally unique identifier (GUID).
lpQOSName
 Specifies the QOS template name.

lpQOS
 A pointer to a QOS structure

Remarks
This routine retrieves a QOS name template containing the associated QOS structure. If the lpProviderId is set to NULL, then this function attempts to find the QOS name template in the "global" list of QOS names, otherwise this function looks for the QOS name template in the list specific to the provider indicated by the ProviderId.

The lpQOS structure can include ProviderSpecific buffer that will be retrieved along with the basic QOS structure. The ProviderSpecific buffer must be large enough to hold the provider specific information stored in the name template, otherwise this API will return WSAENOBUFS

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is SOCKET_ERROR. To get extended error information, call WSAGetLastError().

Error Codes

WSAEFAULT
The lpQOS or lpQOSName argument is not a valid part of the user address space.

WSAEINVAL
The specified lpProviderId is invalid or lpQOS template is invalid.

WSA_NODATA
The specified QOS name could not be found.

WSAENOBUFS
The provider specific buffer is too small.

See Also
WSCInstallQOSTemplate(), WSCRemoveQOSTemplate(). WSAGetQosByName()

13 Miscellaneous

13.1 Protocol Chaining

QOS aware applications are expected to call WSAEnumProtocols to get a list of WSAPROTOCOL_INFO structures, which describe the various protocols available as service providers. The application should inspect the XP1_QOS_SUPPORTED flag in the dwServiceFlags1 field of each structure, to determine whether QOS is supported by the protocol. It may then scan additional fields of the WSAPROTOCOL_INFO, in particular, the szProtocol text field, to select a specific QOS service provider

13.2 AcceptEx & TransmitFile

Applications that call the AcceptEx Microsoft specific extension to Winsock also need to issue the SO_UPDATE_ACCEPT_CONTEXT socket option if the application wants to establish QOS on the newly accepted socket. This socket option copies any QOS associated with the listening socket to the newly accepted socket and sets the state correctly in the newly accepted socket. Failure to issue this setsockopt() request will result in any QOS related calls (such as SIO_SET_QOS) being silently ignored.

The TransmitFile Microsoft specific extension to Winsock allows two flags to be set that will return the socket to a "disconnected, reusable " state after the file has been transmitted. (TF_DISCONNECT, TF_REUSE_SOCKET). These flags should not be used on a socket where QOS has been requested, since the service provider may immediately delete any QOS associated with the socket, before the file transfer has completed. The best approach for a QOS enabled socket is to simply call closesocket() when the file transfer has completed, and not rely on these flags.
13.3 QOS For Socket Groups

The socket group mechanism for specifying QOS priority has been eliminated. Instead, priorities are specified by the ServiceType parameter of the FLOWSPEC structure. Applications may use the QOS_PRIORITY object in the ProviderSpecific buffer that accompanies flowspecs, to specify some degree of prioritization within the service class specified by ServiceType.

14 Outstanding Issues

· Measurement-based support

· Use and specification fine-grained error reporting

· Illustrate the use of GQOS in RTP-based apps

· Use of Policy Objects

· TC-specific status/error reporting

15 Bibliography

· Windows Sockets 2 Protocol-Specific Annex, rev. 2.0.2, January22, 1996
· Windows Sockets 2 Application Programming Interface, rev. 2.2.0, May, 1996
· Windows Sockets 2 Service Provider Interface, rev. 2.2.0, May, 1996
· IETF Draft of RSVP Protocol, version 14, November 5, 1996
· The Use of RSVP With Integrated Services (from the INTSERV WG of the IETF)
· QOS Traffic Control Components – Requirements and Functional Specification, March 11, 1997
· RSVP (V.1) Message Processing Rules, Internet Draft
· Specification of Guaranteed Quality of Service, Internet Draft
· Specification of the Controlled-Load Network Element Service, Internet Draft
· General Characterization Parameters for Integrated Service Network Element, Internet Draft
· The Detection of End-to-End QOSability, Sept. 1998.
16 Appendix A – UsiNG GQOS

16.1 A List of GQOS-Related Data Structures

16.1.1 QOS Parameters

QOS

Flowspec

ServiceType

16.1.2 Input Provider-Specific Objects

QOS_OBJECT_DST_ADR

QOS_OBJECT_PRIORITY

QOS_OBJECT_SD_MODE

RSVP_RESERVE_INFO

RSVP_POLICY (Policy Elements)

Request for RESERVATION CONFIRMATION (receiver-only)

16.1.3 Output Provider-Specific Objects

RSVP_STATUS_INFO

RSVP_ADSPEC_OBJECT

RSVP_POLICY (Policy Elements)

16.2 A Summary of GQOS-Related Function Calls

16.2.1 Connection management:

WSAConnect

WSAJoinLeaf

WSAAccept

16.2.2 Ioctl

SIO_SET_QOS

SIO_GET_QOS

SIO_CHK_QOS

16.2.3 QOS Templates

WSAGetQosByName

WSCInstallQOSTemplate

WSCRemoveQOSTemplate

16.3 General Guidelines

16.3.1 Sender

· Must provide SendingFlowspec via WSAConnect, WSAAccept,, WSAJoinLeaf, or SIO_SET_QOS.

· May use GetQosByName to enumerate and retrieve pre-installed QOS Templates.

· May pass in QOS_OBJECT_PRIORITY and/or QOS_OBJECT_SD_MODE to configure TC.

· May monitor FD_QOS events for RESV arrival and other status information.

· May use SIO_GET_QOS to look up QOS data associated with an arrived RESV.

· May use SIO_CHK_QOS to query allowed sending rate and/or line rate.

· May choose to suspend transmission when WSA_QOS_NO_RECEIVER arises.

Note:

· The SendingFlowspec may be based on a prior knowledge of application traffic characteristics/requirements, or pre-defined QOS template.

· Owing to the receiver-oriented nature of RSVP, a sender would not receive RESV confirmation.

· A sender would get be notified of RESV failure unless the failure is caused by local traffic control.

16.3.2 Receiver

· Must provide ReceivingFlowSpec via WSAConnect, WSAAccept,, WSAJoinLeaf, or SIO_SET_QOS.

· May use GetQosByName to enumerate and retrieve pre-installed QOS Templates.

· May a RSVP_RESEVE_INFO object to request for RESV confirmation.

· May monitor FD_QOS events for PATH arrival, RESV_CONFIRM, and other RESV errors.

· Upon the PATH arrival, the receiver may do a SIO_GET_QOS to retrieve and examine the sender Tspec and path Adspec.

Note:

· The ReceivingFlowspec may initially be based on a priori knowledge of application traffic characteristics/requirements, or pre-defined QOS template, and subsequently be modified according to the sender Tspec and path Adspec information available on incoming PATH messages.

16.3.3 Opening

To open a socket supporting QOS follow these steps:

· Enumerate the available protocols using WSAEnumProtocols().

· Loop through the returned list of protocols looking for a protocol that supports QOS. Do this by checking if the XP1_QOS_SUPPORTED flag is set in dwServiceFlags1 in each WSAPROTOCOL_INFO structure.

· When a protocol is found that supports QOS, call WSASocket() passing a pointer to that WSAPROTOCOL_INFO structure. Also be sure to set the WSA_FLAG_OVERLAPPED flag so that the socket is created in overlapped mode. The QOSSP requires an overlapped socket
.

16.3.4 Closing

Several events may cause the termination of RSVP/TC processing associated with a socket. Specific examples include:

· Closing a socket by a call to Closesocket.()

· Shutting down a socket by calling Shutdown.

· Calls to WSAConnect with a NULL peer address.

· Calls to WSAIoctl (SIO_SET_QOS) with SERVICETYPE_ NOTRAFFIC or SERVICETYPE_BESTEFFORT.
Note that in the first three cases, all QOS processing on the socket will be terminated. However, in the fourth case, it is possible to terminate only sending or only receiving QOS processing by selectively specifying SERVICETYPE_NOTRAFFIC or SERVICETYPE_BESTEFORT in the SendingFlowspec or ReceivingFlowspec, respectively.

In general, any event that closes a socket will also terminate RSVP processing on the socket.

16.4 Applied Examples

Presented in this section are two examples illustrating the use of GQOS in two sample network applications. The first one, an Internet Phone application, invokes GQOS in its most simplest way, while the second one, a video-on-demand application, exploits GQOS in a more sophisticated manner.

Internet Phone

Legacy:

Caller

Network

Callee

START

START

1.
Socket(control)

Socket(control)

2.
Socket(data)

Socket(data)

3.Dial a no.
RING

RING

ANSWER

ANSWER

4.
CONFIRM

CONFIRM

Bind()

5.
Connect()

Bind()

6.

Connect()
ringing

7.”hello”
Recv()

Send()
“hello”

“hi”
Send()

Recv()
“hi”

8.”bye”
Recv()

Send()
“bye”

“adios”

CloseSocket()
Hang up

Hang up
CloseSocket()

1. The caller and callee systems open a socket for the control channel.

2. The caller and callee systems open a socket for the data channel.

3. The caller makes the phone call.

4. The caller system receives and acknowledges the answer issued by the callee system.

5. The caller system binds and connects to the data socket.

6. In response to the confirmation from the caller system, the callee system binds and connects to the data socket, and then start ringing.

7. The callee picks up the phone and start the conversation.

8. The conversation ends, resulting in the closing of the data sockets.

GQOS-enabled:

Caller

Network

Callee

START

START

1.
Socket(control)

Socket(control)

2.
WSAEnumProtocols()

WSAEnumProtocols()

WSASocket(data)

WSASocket(data)

3.
WSAGetQosByName(E)

WSAGetQosByName(E)

WSAGetQosByName(R)

WSAGetQosByName(R)

4. Dial a no.
RING

RING

ANSWER

ANSWER

5.
CONFIRM

CONFIRM

Bind()

6.
WSAConnect(SFs, RFs)
PATH1
Bind()

7.

PATH2
WSAConnect(SFs, RFs)
ringing

RSEV2

RSEV1

8. “hello”
Recv()

Send()
“hello”

“hi”
Send()

Recv()
“hi”

9. “bye”
Recv()

Send()
“bye”

“adios”

CloseSocket()
Hang up

Hang up
CloseSocket()

1. The caller and callee systems open a socket for the control channel.

2. The caller and callee systems select the QOSSP and open a QOS socket for the data channel.

3. The caller and caller systems look up and retrieve a pre-defined QOS Template

4. The caller makes the phone call.

5. The caller system receives and acknowledges the answer issued by the callee system.

6. The caller system binds and connects to the data socket invoking QOS signaling

7. In response to the confirmation from the caller system, the callee system binds and connects to the data socket invoking QOS signaling. It then starts ringing.

8. The callee picks up the phone and start the conversation.

9. The conversation ends, resulting in the closing of the data sockets.

Video-On-Demand

Legacy:

Viewer

Network

Server

START

START

1.
Socket(control)

Socket(control)

2.
Socket(data)

Socket(data)

3. Turn On
REQUEST

REQUEST

4.
RESPONSE

RESPONSE

AGREE

AGREE

Bind()

5.
Connect()

Bind()

6.

Connect()
OK

“watch”
Recv()

Send()
“play”

“end”
Recv()

Send()
“end”

“stop”
CloseSocket()

CloseSocket()

1. The receiver and server open a socket for the control channel.

2. The receiver and server open a socket for the data channel.

3. The viewer activates the receiver, resulting in the submission of a request to the server.

4. In response to the server’s reply, the receiver confirms his request, and binds and connects to the data socket.

5. In response to the confirmation from the receiver, the server binds and connects to the data socket.

6. The server starts the video transmission.

GQOS-Enabled:

Viewer

Network

Server

START

START

1.
Socket(control)

Socket(control)

2.
WSAEnumProtocols()

WSAEnumProtocols()

WSASocket(data)

WSASocket(data)

3.

WSAGetQosByName(E)

WSAGetQosByName(R)

4. Turn On
REQUEST

REQUEST

RESPONSE

RESPONSE

5.
AGREE

AGREE

Bind()

6.
WSAConnect(No_QOS_Signaling)

Bind()

7.
WSAEventSelect(FD_QOS)

8.
(path received)
PATH2
WSAConnect(SFs, Priority_Object)

10.
SIO_GET_QOS

WSAEventSelect(FD_QOS)
9.

11.
SIO_SET_QOS(RFs, Resv_Confirm)
RSEV1
(resv received)
12.

13.
(resv_confirm received)
R_CFIRM

“OK”
SIO_GET_QOS

SIO_GET_QOS
“OK”

14. “watch”
Recv()

Send()
“play”

“end”
Recv()

Send()
“end”

“stop”
CloseSocket()

CloseSocket()

1. The receiver and server open a socket for the control channel.

2. The receiver and server select the QOSSP and open a QOS socket for the data channel.

3. The server looks up and retrieve a pre-defined QOS Template.

4. The viewer activates the receiver, resulting in the submission of a request to the server.

5. In response to the server’s reply, the receiver confirms his request, and binds.

6. The receiver connects to the QOS socket with the SERVICE_NO_QOS_SIGNALING flag set to suppress automatic generation of RSEV.

7. Following the WSAConnect, the receiver immediately starts listening for FD_QOS events.

8. In response to the confirmation from the receiver, the server binds and connects to the data socket. The WSAConnect call includes a SendingFlowspec and a Priority Object. This call triggers the release of a PATH message toward the receiver.

9. The server starts listening for FD_QOS events.

10. Upon the receipt of the PATH message from the server, the receiver issues a SIO_GET_QOS to look up the QOS data on the PATH message.

11. The receiver then issues a SIO_SET_QOS which specifies the desired QOS spec. and includes a RESV_RESERVE_INFO object requesting for RESV confirmation. This triggers the emission of a RESV matching the PATH which arrived previously.

12. The server is notified of the arrival of the RESV from the receiver, and inspects the reservation state via a SIO_GET_QOS.

13. The receiver receives RSEV confirmation, and retrieves it via a SIO_GET_QOS.

14. The server starts transmitting to the receiver over the RSVP-enabled data channel.

17 Appendix B – Sample Call Sequences

In the following paragraphs we illustrate examples of legitimate call sequences which may be invoked by QOS aware applications. Note that each sequence is shown to begin with a call to bind. Strictly speaking, this call is not required (except in the case of the passive TCP application calling WSAAccept) so long as the application calls one of the connection oriented calls (WSAConnect or WSAJoinLeaf). The transport provider will bind on its behalf at that time.

17.1 UDP Unicast Sender, Bound Using INADDR_ANY

In this example, the sending application binds using INADDR_ANY. As a result, the QOSSP calls WSAIoctl(SIO_ROUTING_INTERFACE_QUERY) as soon as the peer address is available from the application’s call to WSAConnect.

Sending Application
QOSSP

bind (INADDR_ANY)

WSAConnect (Sending Flowspec)

WSAIoctl(SIO_ROUTING_INTERFACE_QUERY)

WSAIoctl(SIO_ROUTING_INTERFACE_QUERY) returns

Begin sending PATH messages

RESV messages received

Indicate presence of RESV state to app

Begin sending QOS traffic

17.2 UDP Unicast Sender Bound to a Specific Address

In this example, the application binds using a specific address. The QOSSP is not required to call WSAIoctl(SIO_ROUTING_INTERFACE_QUERY), and will not be responsible for directly handling routing changes. The application must handle routing changes if it wishes to maintain QOS following a routing change. It does so by closing the existing socket and creating a new one, bound to the new address.

Sending Application
QOSSP

WSAIoctl(SIO_ROUTING_INTERFACE_CHANGE)

WSAIoctl(SIO_ROUTING_INTERFACE_QUERY)

WSAIoctl(SIO_ROUTING_INTERFACE_QUERY) returns

bind (specific address)

WSAConnect (Sending Flowspec)

Begin sending PATH messages

RESV messages received

Indicate presence of RESV state to app

Begin sending QOS traffic

FD_ROUTING_CHANGE indicated to app

Close and recreate socket

17.3 UDP Unicast Sender, QOS Parameters Modified

In this example, a QOS session is initiated according to the QOS parameters supplied by the sender (with the WSAConnect call). The application later modifies the sending QOS by calling WSAIoctl(SIO_SET_QOS) with modified QOS parameters.

Sending Application
QOSSP

bind (INADDR_ANY)

WSAConnect (Sending Flowspec)

WSAIoctl(SIO_ROUTING_INTERFACE_QUERY)

WSAIoctl(SIO_ROUTING_INTERFACE_QUERY) returns

Begin sending PATH messages

RESV messages received

Indicate presence of RESV state to app

Begin sending QOS traffic

WSAIoctl(SIO_SET_QOS)

Send modified PATH messages

17.4 UDP Multicast Sender, QOS Parameters in WSAIoctl

In the following example, a sending UDP application binds a socket using INADDR_ANY . Later it calls WSAJoinLeaf, indicating the destination session address. However, since no QOS parameters are included with the call to WSAJoinLeaf, it does not begin RSVP processing. The application supplies QOS parameters later, with a call to WSAIoctl. At that time, the QOSSP performs an interface query on the multicast session address to determine which address to use in the SenderTemplate. The QOSSP is then able to begin sending PATH messages.

Sending Application
QOSSP

bind (INADDR_ANY)

WSAJoinLeaf (no flowspec)

WSAIoctl(SIO_SET_QOS)

WSAIoctl(SIO_ROUTING_INTERFACE_QUERY)

WSAIoctl(SIO_ROUTING_INTERFACE_QUERY) returns

Begin sending PATH messages

RESV messages received

Indicate presence of RESV state to app

Begin sending QOS traffic

17.5 TCP Unicast Sender, QOS Parameters Included With ConditionFunc

In the following example, a unicast TCP sender accepts a connection from a receiving peer. The sender is the passive peer, indicating its preparedness to receive a connection, using WSAAccept. In this example, the ConditionFunc is used by the application to provide QOS parameters to the QOSSP. The QOSSP learns of the application’s intent to invoke QOS at this time. Since this is a TCP socket, the QOSSP can call getsockname to unambiguously obtain the address of the sending interface. This address is used to compose the SenderTemplate and to begin sending PATH messages. The QOSSP calls getpeername following connection establishment, to obtain the remote peer’s address. This address is used to generate the RSVP session address.

Sending Application
QOSSP

bind (INADDR_ANY)

Application calls WSAAccept

QOSSP calls ConditionFunc

Application completes ConditionFunc

Transport completes WSAAccept

QOSSP calls getsockname

getsockname returns

QOSSP calls getpeername

getpeername returns

Begin sending PATH messages

RESV messages received

Indicate presence of RESV state to app

Begin sending QOS traffic

17.6 TCP Unicast Sender, WSAAccept Followed by WSAIoctl

In the following example, a unicast TCP sender accepts a connection from a receiving peer. The sender is the passive peer, indicating its preparedness to receive a connection, using WSAAccept. In this example, the ConditionFunc is not used to provide QOS parameters. Instead, the application follows the acceptance of the connection, with a call to WSAIoctl(SIO_SET_QOS). The QOSSP learns of the application’s intent to invoke QOS at this time. Since this is a TCP socket, the QOSSP can call getsockname to unambiguously obtain the address of the sending interface. This address is used to compose the SenderTemplate and to begin sending PATH messages. The QOSSP calls getpeername following connection establishment, to obtain the remote peer’s address. This address is used to generate the RSVP session address.

Sending Application
QOSSP

bind (INADDR_ANY)

Application calls WSAAccept

Transport completes WSAAccept

WSAIoctl(SIO_SET_QOS)

QOSSP calls getsockname

getsockname returns

QOSSP calls getpeername

getpeername returns

Begin sending PATH messages

RESV messages received

Indicate presence of RESV state to app

Begin sending QOS traffic

17.7 TCP Unicast Sender, WSAIoctl Precedes WSAAccept

This example is similar to the previous example, except that the sending application indicates its interest in sending QOS traffic by calling WSAIoctl(SIO_SET_QOS) prior to connection establishment. In this case, the QOSSP has all the information required to begin transmitting PATH messages upon completion of WSAAccept (which includes the receiving peer’s address). As in the previous example, the QOSSP generates the SenderTemplate based on the address returned from getsockname and generates the session based on the address returned from getpeername.

Sending Application
QOSSP

bind (INADDR_ANY)

WSAIoctl(SIO_SET_QOS)

Application calls WSAAccept

Transport completes WSAAccept
Peer address extracted by QOSSP

QOSSP calls getsockname

getsockname returns

QOSSP calls getpeername

getpeername returns

Begin sending PATH messages

RESV messages received

Indicate presence of RESV state to app

Begin sending QOS traffic

17.8 TCP Unicast Sender, Active Sender

In this example, the TCP sender is the active TCP peer. Consequently, the sender calls WSAConnect. This is similar to the UDP sender case (with the exception that the local address and the peer address can be unambiguously determined by calling getsockname and getpeername following connection establishment).

Sending Application
QOSSP

bind (INADDR_ANY)

WSAConnect (Sending Flowspec)

QOSSP calls getsockname

getsockname returns

QOSSP calls getpeername

getpeername returns

Begin sending PATH messages

RESV messages received

Indicate presence of RESV state to app

Begin sending QOS traffic

17.9 UDP Receiver, Bound to INADDR_ANY, Followed by WSAConnect

In this example, a receiving application binds using INADDR_ANY. As a result, the QOSSP will match any PATH messages for which the session port matches the bound socket’s port, and for which the SenderTemplate matches the peer address specified in the connect, regardless of the session address.

Note that, if PATH messages were received, prior to the WSAConnect, then if they are determined to match, the QOSSP will begin to send RESV messages immediately following the WSAConnect. This is depicted in the following sequence.

Also in this example, the receiving application issues a WSAConnect. As a result, traffic originating from peers other than the one specified, will be discarded by the transport provider.

Receiving Application
QOSSP

bind (INADDR_ANY)

WSAConnect (Receiving Flowspec) from app

Matching PATH messages received

RSVP begins sending RESV messages

QOS traffic begins to arrive at application

17.10 UDP Receiver, Bound to Specific Address, Followed by WSAIoctl

In this example, the receiving application binds using a specific address. As a result, the QOSSP will be more discriminating in searching for matching PATH state. It will match only PATH messages for which both the session address and port, match the bound socket’s address and port. However, since no sender was specified (no WSAConnect), SenderTemplate will not be considered when searching for matching PATH state.

Receiving Application
QOSSP

PATH messages received

bind (specific address)

WSAIoctl(SIO_SET_QOS) with ReceivingFlowspec

Match found in received PATH state

RSVP begins sending RESV messages

QOS traffic begins to arrive at application

17.11 UDP Receiver, WSAIoctl Followed by WSAConnect

In the following example, the receiving application calls WSAIoctl(SIO_SET_QOS) to associate QOS parameters with the socket. PATH state is matched at this time, initiating the transmission of WF style RESV messages. Subsequently, the application calls WSAConnect, specifying a peer sender and causing the QOSSP to send FF style RESV messages, selectively, for the specified sender.

Receiving Application
QOSSP

PATH messages received

bind (INADDR_ANY)

WSAIoctl (Receiving Flowspec)

Match found in received PATH state

RSVP begins sending WF RESV messages

QOS traffic begins to arrive from all senders

WSAConnect (no flowspec)

Match found in received PATH state

RESV-TEAR sent to cancel current WF reservation.

RSVP begins sending new FF RESV messages

QOS traffic arrives only from sender specified

17.12 Multicast UDP Receiver, WSAIoctl Followed by WSAJoinLeaf

In the following example, a UDP receiving application calls WSAIoctl(SIO_SET_QOS) to associate QOS parameters with a multicast socket. Since the socket is multicast and has not yet been joined to a multicast group, no RESV messages will be sent on its behalf. Subsequently, the application calls WSAJoinLeaf to join a multicast group. At this time, PATH state for the multicast group is matched, and the QOSSP begins sending RESV messages.

Receiving Application
QOSSP

PATH messages received

bind (specific address)

WSAIoctl(SIO_SET_QOS) with ReceivingFlowspec

No match found in received PATH state

Application calls WSAJoinLeaf

Match found in received PATH state

RSVP begins sending RESV messages

QOS traffic begins to arrive at application

17.13 Multicast UDP Receiver, QOS Parameters in WSAJoinLeaf

In this example, QOS parameters are provided at the time the multicast group is joined.

Receiving Application
QOSSP

PATH messages received

bind (specific address)

Application calls WSAJoinLeaf

Match found in received PATH state

RSVP begins sending RESV messages

QOS traffic begins to arrive at application

17.14 Unicast TCP Receiver, Active Receiver

This example illustrates the typical case of active receiver. Recall that, for TCP receivers, PATH state will not be matched until the specific sending peer’s address is known. The QOSSP determines the sending peer’s address by calling getpeername following connection establishment.

Receiving Application
QOSSP

PATH messages received

bind (specific address)

Application calls WSAConnect

QOSSP calls getpeername

Getpeername returns

Match found in received PATH state

RSVP begins sending RESV messages

QOS traffic begins to arrive at application

17.15 Unicast TCP Receiver, Passive Receiver

This example illustrates the atypical case of a passive receiver. As a passive receiver, the application calls WSAAccept to indicate readiness to accept a connection. In this case, the QOSSP obtains the peer address by calling getpeername following connection establishment. The peer address returned is used to find matching PATH state for a specific sending peer.

Note that, in this example, the application does not indicate its interest in receiving QOS traffic using the ConditionFunc. Instead, it does so by providing a ReceivingFlowspec, with a call to WSAIoctl(SIO_SET_QOS). In this case, the application calls WSAIoctl(SIO_SET_QOS) after the connection is established, delaying the transmission of RESV messages until that time. Alternatively, it may call WSAIoctl(SIO_SET_QOS) before a connection is established on the listening socket and that QOS will be copied to the newly accepted socket.

Receiving Application
QOSSP

PATH messages received

bind (specific address)

Application calls WSAAccept

Transport completes WSAAccept

Application calls WSAIoctl(SIO_SET_QOS)

QOSSP calls getpeername

getpeername returns

Match found in received PATH state

RSVP begins sending RESV messages

QOS traffic begins to arrive at application

18 A Guide TO THE SELECTION OF FLOWSPECS

To be determined.

19 GQOS CONFIGURATION PARAMETERS

19.1 Registry-based (per-interface)

– set by network administrators

· EnableRSVP

· EnablePriorityBoost

· MapGeneralInfo

· EnableSPSetTOS

· IPTOSMapping

19.2 API-based (per-flow)

- set by the applications

· SERVICE_NO_TRAFFIC_CONTROL

· SERVICE_NO_QOS_SIGNALING

20 QOS HEADER FILES

20.1 QOS.H

20.2 QOSSP.H

21 Appendix C: FINE-GRAINED PROTOCOL STATUS/ERROR CODES

These are protocol errors.

Returned via the provider-specific buffer (RSVP_STATUS_INFO, see qossp.h)

ErrorCode = ExtendedStatus1

ErrorValue = ExtendedStatus2

21.1 ERROR CODE = GQOS_NO_ERRORCODE

Description: No error or error code unavailable.

Application Response: NULL

Error Value = GQOS_NO_ERRORVALUE

- No error or error value unavailable.

21.2 ERROR CODE = GQOS_ERRORCODE_UNKNOWN

Description: Error but specific error code unavailable.

Application Respinse: NULL

Error Value = GQOS_ERRORVALUE_UNKNOWN
- Error but specific error value unavailable.

21.3 ERROR CODE = GQOS_RSVP

Description: Error occurs in the local RSVP engine

Application Response: Check the GQOS call sequence and QoS parameters

ERROR VALUE
DESCRIPTION
APPLICATION RESPONSE

GQOS_NO_ERRORVALUE
No Error or error value unavailable

GQOS_ERRORVALUE_UNKNOWN
Error but specific error value unavailable

GQOS_UNKN_OBJ_CLASS
Unknown RSVP objects

GQOS_UNKNOWN_CTYPE
Wrong or invalid object class type

GQOS_PREEMPTED
Service preempted duo to local bandwidth resources
May try to re-invoke QOS at a later time

GQOS_NO_SENDER
No sender info for Reservation
Check the GQOS call sequence

GQOS_NO_PATH
No Path State for Reservation
Check the GQOS call sequence

GQOS_BAD_STYLE
Mismatch in filter style
Check the RESV filter specifications

GQOS_UNKNOWN_STYLE
Filter style is unknown
Check the RESV filter specificiatoons

GQOS_BAD_DSTPORT
Conflicting or invalid destination port
Check the GQOS call sequence

GQOS_BAD_SNDPORT
Conflicting or invalid source port
Check the GQOS call sequence

GQOS_AMBIG_FILTER
Ambiguous filter spec in RESV
Check the RESV filter specificaitons

GQOS_INVALID
Invalid operation or parameters

21.4 ERROR CODE = GQOS_RSVP_SYS

Description: System rrror occurs in the local RSVP engine

Application Response: Check the GQOS call sequence and QoS parameters

ERROR VALUE
DESCRIPTION
APPLICATION RESPONSE

GQOS_NO_ERRORVALUE
No Error or error value unavailable

GQOS_ERRORVALUE_UNKNOWN
Error but specific error value unavailable

GQOS_OTHER_SYS
Unspecified system error

GQOS_MEMORY_SYS
Out-of-Memory

GQOS_API_SYS
System failure.

21.5 Error Code = GQOS_KERNEL_TC_SYS

Description: System rrror occurs in local traffic control.

Application Response: Depending on the specific error value, may retry with reduced QOS requirements

ERROR VALUE
DESCRIPTION
APPLICATION RESPONSE

GQOS_NO_ERRORVALUE
No Error or error value unavailable

GQOS_ERRORVALUE_UNKNOWN
Error but specific error value unavailable

GQOS_WOULDBLOCK
RSVP/TC operation would block
Retry at a later time

GQOS_NO_MEMEORY
Not enough memory for RSVP/TC operation
Abort or retry at a later time

GQOS_TC_GENERIC
Unknown TC error

GQOS_TC_INVALID
Invalid TC operation

GQOS_CONFLICT
Conflicting parameters

GQOS_NOTREADY
TC is not ready

GQOS_BAD_TRAFFICCLASS
Bad traffic class object

GQOS_BAD_DUPLICATE

GQOS_BAD_QOSPRIORITY
TC error: invalid internal priority
Check the TC Priority object

GQOS_BAD_ADDRESSTYPE
TC error: invalid address type
Check the address type

GQOS_NO_SYS_RESOURCES
TC error: out of system resources
Abort or retry at a later time

GQOS_INCOMPATIBLE
TC error: incompatible QOS requirements
Check the QOS requirements

21.6 Error Code = GQOS_KERNEL_TC

Description: Error occurs in local traffic control.

Application Response: Depending on the specific error value, may retry with reduced QOS requirements

ERROR VALUE
DESCRIPTION
APPLICATION RESPONSE

GQOS_NO_ERRORVALUE
No Error or error value unavailable

GQOS_ERRORVALUE_UNKNOWN
Error but specific error value unavailable

GQOS_CONFLICT_SERV

GQOS_NO_SERV
Service type not supported

GQOS_TC_GENERIC
Unknown TC error

GQOS_BAD_FLOWSPEC
Bad Flowspec

GQOS_BAD_TSPEC
Bad Tspec

GQOS_BAD_ADSPEC
Bad Adspec

21.7 Error Code = GQOS_NET_ADMISSION

Description: Admisison failure due to the Subnet-Bandwidth Manager

Application Response: Stop or retry with reduced QOS requirements

ERROR VALUE
DESCRIPTION
APPLICATION RESPONSE

GQOS_NO_ERRORVALUE
No Error or error value unavailable

GQOS_ERRORVALUE_UNKNOWN
Error but specific error value unavailable

GQOS_OTHER
Unspecified error

GQOS_DELAYBND
Local TC cannot meet delay bound requirement
May retry with a more relaxed delay bound requirement

GQOS_BANDWIDTH
Local TC cannot meet bandwidth requirement
May retry with a more relaxed bandwidth requirement

GQOS_MTU
MTU in flowspec is too large
Adjust the packet size and retry

21.8 Error Code = GQOS_NET_POLICY

Description: Policy-related error

Application Response: Stop or, depending on the specific error value, may retry with reduced QOS requirements

ERROR VALUE
DESCRIPTION
APPLICATION RESPONSE

GQOS_NO_ERRORVALUE
No Error or error value unavailable

GQOS_ERRORVALUE_UNKNOWN
Error but specific error value unavailable

GQOS_POLICY_ERROR_UNKNOWN
Policy error for unknown reason

GQOS_POLICY_GLOBAL_DEF_FLOW_COUNT
Policy error: exceeding the global default-policy flow count
Abort or retry at a later time

GQOS_POLICY_GLOBAL_GRP_FLOW_COUNT
Policy error: exceeding the global group-policy flow count
Abort or retry at a later time

GQOS_POLICY_GLOBAL_USER_FLOW_COUNT
Policy error: exceeding the global user-policy flow count
Abort or retry at a later time

GQOS_POLICY_SUBNET_DEF_FLOW_COUNT
Policy error: exceeding the subnet default-policy flow count
Abort or retry at a later time

GQOS_POLICY_SUBNET_GRP_FLOW_COUNT
Policy error: exceeding the subnet default-policy flow count
Abort or retry at a later time

GQOS_POLICY_SUBNET_USER_FLOW_COUNT
Policy error: exceeding the subnet default-policy flow count
Abort or retry at a later time

GQOS_POLICY_GLOBAL_DEF_FLOW_DURATION
Policy error: exceeding the global default-policy flow duration
Abort

GQOS_POLICY_GLOBAL_GRP_FLOW_DURATION
Policy error: exceeding the global group-policy flow duration
Abort

GQOS_POLICY_GLOBAL_USER_FLOW_DURATION
Policy error: exceeding the global user-policy flow duration
Abort

GQOS_POLICY_SUBNET_DEF_FLOW_DURATION
Policy error: exceeding the subnet default-policy flow duration
Abort

GQOS_POLICY_SUBNET_GRP_FLOW_DURATION
Policy error: exceeding the subnet group-policy flow duration
Abort

GQOS_POLICY_SUBNET_USER_FLOW_DURATION
Policy error: exceeding the subnet user-policy flow duration
Abort

GQOS_POLICY_GLOBAL_DEF_FLOW_RATE
Policy error: exceeding the global default-policy flow rate
Abort or retry with reduced QOS requirements

GQOS_POLICY_GLOBAL_GRP_FLOW_RATE
Policy error: exceeding the global group-policy flow rate
Abort or retry with reduced QOS requirements

GQOS_POLICY_GLOBAL_USER_FLOW_RATE
Policy error: exceeding the global user-policy flow rate
Abort or retry with reduced QOS requirements

GQOS_POLICY_SUBNET_DEF_FLOW_RATE
Policy error: exceeding the subnet default-policy flow rate
Abort or retry with reduced QOS requirements

GQOS_POLICY_SUBNET_GRP_FLOW_RATE
Policy error: exceeding the subnet group-policy flow rate
Abort or retry with reduced QOS requirements

GQOS_POLICY_SUBNET_USER_FLOW_RATE
Policy error: exceeding the subnet user-policy flow rate
Abort or retry with reduced QOS requirements

GQOS_POLICY_GLOBAL_DEF_PEAK_RATE
Policy error: exceeding the global default-policy peak rate
Abort or retry with reduced QOS requirements

GQOS_POLICY_GLOBAL_GRP_PEAK_RATE
Policy error: exceeding the global group-policy peak rate
Abort or retry with reduced QOS requirements

GQOS_POLICY_GLOBAL_USER_PEAK_RATE
Policy error: exceeding the global user-policy peak rate
Abort or retry with reduced QOS requirements

GQOS_POLICY_SUBNET_DEF_PEAK_RATE
Policy error: exceeding the subnet default-policy peak rate
Abort or retry with reduced QOS requirements

GQOS_POLICY_SUBNET_GRP_PEAK_RATE
Policy error: exceeding the subnet default-policy peak rate
Abort or retry with reduced QOS requirements

GQOS_POLICY_SUBNET_USER_PEAK_RATE
Policy error: exceeding the subnet default-policy peak rate
Abort or retry with reduced QOS requirements

GQOS_POLICY_GLOBAL_DEF_SUM_FLOW_RATE
Policy error: exceeding the global default-policy total flow rate
Abort or retry with reduced QOS requirements

GQOS_POLICY_GLOBAL_GRP_SUM_FLOW_RATE
Policy error: exceeding the global group-policy total flow rate
Abort or retry with reduced QOS requirements

GQOS_POLICY_GLOBAL_USER_SUM_FLOW_RATE
Policy error: exceeding the global user-policy total flow rate
Abort or retry with reduced QOS requirements

GQOS_POLICY_SUBNET_DEF_SUM_FLOW_RATE
Policy error: exceeding the subnet default-policy total flow rate
Abort or retry with reduced QOS requirements

GQOS_POLICY_SUBNET_GRP_SUM_FLOW_RATE
Policy error: exceeding the subnet group-policy total flow rate
Abort or retry with reduced QOS requirements

GQOS_POLICY_SUBNET_USER_SUM_FLOW_RATE
Policy error: exceeding the subnet user-policy total flow rate
Abort or retry with reduced QOS requirements

GQOS_POLICY_GLOBAL_DEF_SUM_PEAK_RATE
Policy error: exceeding the global default-policy total peak rate
Abort or retry with reduced QOS requirements

GQOS_POLICY_GLOBAL_GRP_SUM_PEAK_RATE
Policy error: exceeding the global default-policy total peak rate
Abort or retry with reduced QOS requirements

GQOS_POLICY_GLOBAL_USER_SUM_PEAK_RATE
Policy error: exceeding the global default-policy total peak rate
Abort or retry with reduced QOS requirements

GQOS_POLICY_SUBNET_DEF_SUM_PEAK_RATE
Policy error: exceeding the subnet default-policy total peak rate
Abort or retry with reduced QOS requirements

GQOS_POLICY_SUBNET_GRP_SUM_PEAK_RATE
Policy error: exceeding the subnet default-policy total peak rate
Abort or retry with reduced QOS requirements

GQOS_POLICY_SUBNET_USER_SUM_PEAK_RATE
Policy error: exceeding the subnet default-policy total peak rate
Abort or retry with reduced QOS requirements

GQOS_POLICY_UNKNOWN_USER
Policy error: the user is unknown
Check the user’s id and security attributes

GQOS_POLICY_NO_PRIVILEGES
Policy error: the user has no privilege
Check the user’s id and security attributes

GQOS_POLICY_EXPIRED_USER_TOKEN
Policy error: the userid token has expired
Abort or retry

GQOS_POLICY_NO_RESOURCES
Policy error: out of resources
Abort or retry at a later time

GQOS_POLICY_PRE_EMPTED
Policy error: pre-empted
Abort or retry at a later time

GQOS_POLICY_USER_CHANGED
Policy error: userid has changed
Abort

GQOS_POLICY_NO_ACCEPTS
Policy error: rejected by all policy modules
Abort

GQOS_POLICY_NO_MEMORY
Policy error: out of memory
Abort or retry at a later time

GQOS_POLICY_CRAZY_FLOWSPEC
Policy error: invalid flowspec
Check the flowspec

21.9 ERROR CODE = GQOS_API

Description: Error occurs in the internal RSVP API

Application Response: ????

ERROR VALUE
DESCRIPTION
APPLICATION RESPONSE

GQOS_NO_ERRORVALUE
No Error or error value unavailable

GQOS_ERRORVALUE_UNKNOWN
Error but specific error value unavailable

GQOS_API_BADSEND
Bad sending address

GQOS_API_BADRECV
Bad receiving address

GQOS_API_BADSPORT
Bad sending port

22 Appendix D: FINE-GRAINED GQOS API STATUS/ERROR CODES

These are API Invocation errors.

Returned via the provider-specific buffer (RSVP_STATUS_INFO, see qossp.h)

Winsock Error Code = ExtenededStatus1

GQOS API ErrorValue = ExtendedStatus2

22.1 GQOS API Invocation Error Value

Error Code = Winsock Error Code

ERROR VALUE
DESCRIPTION
APPLICATION RESPONSE

GQOS_IOCTL_SYSTEMFAILURE
System error

GQOS_IOCTL_NOBYTESRETURNED
&BytesReturned != Non-NULL

GQOS_IOCTL_INVALIDSOCKET
Invalid socket

GQOS_SETQOS_BADINBUFFER
Bad input buffer

GQOS_SETQOS_BADFLOWSPEC
Bad flowspec

GQOS_SETQOS_COLLISION

GQOS_SETQOS_ILLEGALOP
Illegal operation

GQOS_SETQOS_INVALIDADDRESS
Invalid address

GQOS_SETQOS_OUTOFMEMORY
Out-of-Memory

GQOS_SETQOS_EXCEPTION
Encountered an exception
Check the data structures and parameters of provider-specific buffer

GQOS_SETQOS_BADADDRLEN
Bad address length

GQOS_SETQOS_NOSOCKNAME
Socket name is not available

GQOS_SETQOS_IPTOSFAIL
WSAIoctl(IPTOS) failure

GQOS_SETQOS_OPENSESSIONFAIL
Failed to open an RSVP session

GQOS_SETQOS_RAPISENDFAIL
Failed to set a send RSVP session

GQOS_SETQOS_RAPIRECVFAIL
Failed to set a receive RSVP session

GQOS_GETQOS_BADOUTBUFFER
Bad output buffer

GQOS_GETQOS_SYSTEMFAILURE
System failure

GQOS_GETQOS_EXCEPTION
Encountered an exception

GQOS_GETQOS_INTERNALFAILURE
Internal failure

GQOS_CHKQOS_BADINBUFFER
Bad input buffer

GQOS_CHKQOS_BADOUTBUFFER
Bad output buffer

GQOS_CHKQOS_SYSTEMFAILURE
System failure

GQOS_CHKQOS_INTERNALFAILURE
Internal failure

GQOS_CHKQOS_BADPARAMETER
Bad input parameter

GQOS_CHKQOS_EXCEPTION
Encountered an exception

----- THE END ------

RSEV arrived?

RSVP on?

Set Priority based on

Priority Object and assuming BestEffort type

WSABuf.len

WSABuf.buf

IP

TCP/UDP

Base SP

RSVP

service

(exe)

QOSSP (dll)

Winsock2 (dll)

GQOS APP (exe)

KERNEL

TRAFFIC

CONTROL

begin

QOS SP

TC

components

Receiving host

Add flow to TC

Signal RSVP PATH

RSVP RESV received

App

Sending FLOWSPEC

Figure � SEQ Figure * ARABIC �1� - Invoking TC With RSVP

Modify/Add flow to TC (with priority boost)

Sending FLOWSPEC

App

QOS SP

TC

components

Receiving host

Add flow to TC

Figure � SEQ Figure * ARABIC �2� - Invoking TC Without RSVP

Do Not Boost Priority

Add flow to TC (with priority boost)

Set Priority based on

ServiceType & Priority Object

Value-based SERVICETYPE

Bitmap

(see table below)

TCI

RAPI

ServiceType

RESERVED

EnablePriorityBoost?

(priority boost if EnablePriorityBoost = 1)

Provider-Specific

Buffer

object

object

object…..

� In the future, the QOSSP might be integrated into the base service provider. .

� The socket() API creates an overlapped socket by default, and in order to get the same behavior using the WSASocket() API, the WSA_FLAG_OVERLAPPED must be set.

� Currently, this feature cannot be fully exploited because BESTEFFORT service information is not included in the Adspec.

� This allowed rate is usually set by the system based on information from local traffic control and/or other bandwidth regulation components. An example of the latter is the Subnet Bandwidth Manager (SBM) that resides on a host attached to a shared-media LAN.

� Note that shutting down a socket for reception or transmission only will not terminate QOS processing for transmission or reception, respectively.

� Actually, for receiving sockets, the session indicated in RESV messages is determined by matching PATH state with local address and port parameters. See section titled Sending RESV Messages Based on Matching PATH State.

� Note that the RSVP session includes specification of the protocol ID (e.g. UDP, TCP, etc). The protocol ID is determined by the type of socket for which QOS is being invoked. In the remainder of this document, we do not discuss the protocol ID.

� Strictly speaking, RESV messages can be generated without knowledge of the sender’s address. These type of RESV messages are said to be WF style, meaning that they apply to all senders in the session.

� The QOSSP will call the ConditionFunc with no ProviderSpecific buffer. Therefore, if the passive TCP application wishes to convey ProviderSpecific QOS parameters, it must call WSAIoctl(SIO_SET_QOS) to do so.

� Except in the case that the ProviderSpecific structure is used to specify a particular sender. Use of the ProviderSpecific structure is addressed later in the document

� WSAConnect will cause traffic received from senders other than the one specified, to be discarded. To receive traffic from multiple senders, using WSAConnect, requires that a separate socket be created for each sender.

� By specifying BestEffort service.

� Applications may use the ProviderSpecific fields of the QOS structure to specify particular senders, thereby causing the QOSSP to send FF or SE style RESV messages.

� Note that the receiving application must specify at least the ServiceType in the ReceivingFlowspec. It can however default all of the other parameters in the flowspec (to -1 (QOS_UNSPECIFIED))

� See section titled Sending RESV Messages Based on Matching PATH State.

� For the purpose of this discussion, the network can be considered to consist of the host’s operating system and its TC components, as well as the actual network.

� While the FLOWSPEC is a reasonably simple abstraction in itself, applications using GQOS do not necessarily have to understand the FLOWSPEC. They can use the WSAGetQosByName call to obtain a FLOWSPEC based on an even simpler abstraction (see Section 12).

� GQOS will reject calls which include a TrafficClass object in the ProviderSpecific buffer.

� Conformance status will be defined later in this section.

� If the MappedServiceType of the flow (or packet) is greater than 1 (‘better’ than SERVICETYPE_BESTEFFORT).

� The installation apps have to run with admin privilege to use these calls.

� The socket() API creates an overlapped socket by default, and in order to get the same behavior using the WSASocket() API, the WSA_FLAG_OVERLAPPED must be set.

� Note that shutting down a socket for reception or transmission only, will not terminate QOS processing for transmission or reception, respectively.

PAGE
80

