Greg,

 This is in regard to the problem encountered when doing remote asynchronous receives and having the remote machine rebooted while a receive is outstanding. The problem resolution that you have found that requires restarting the MSMQ service and application on the machine doing the receive is directly related to timeouts set by MSMQ and RPC.

 Both the MSMQ and RPC product groups have discussed this extensively. The results of those discussions resulted in some recommendations for configuring machines when this type of communication is needed.

 RPC, by default, uses a timeout on idle connections of 2 hours. There is an API on Windows NT4 machines that allow an application to set a timer and independently cancel RPC activity so that two hour timeout is overriddern. MSMQ implements this use of RpcCancelThread thru the use of the MSMQ registry key RpcCancelTimeout. This registry key affects all RPC activity from MSMQ, including any calls from a client/routing server to its MQIS server. The value for the key is evaluated in minutes so the smallest time that can be set is one minute. This time is supplemental to any receivetimeout set on EnableNotification. For example, by setting the receivetimeout to 5 minutes and leaving the RPCCancelTimeout to default to 5 minutes, it will take roughly ten minutes before an application can reset EnableNotification from the time it is first enabled. This will require some application change to wait for the specified interval. The interval can be determined by looking for the registry value

HKLM\Software\Microsoft\MSMQ\Parameters\RpcCancelTimeout

If this registry value is absent then use the default of 5 minutes within your application, otherwise use the value indicated. Remember this registry entry is in minutes and receivetimeout is in seconds so be sure to convert it to seconds.

 MSMQ uses this value to set a timer that checks to see if any RPC activity has exceeded the interval. Because this is a set timer that is checking for idle RPC calls, the cancel of the call can happen anywhere from milliseconds after the specified interval, up to milliseconds short of twice that interval. With the default of 5 minutes that means up to a 10 minute wait before the RPC is cancelled.

 The receivetimeout in your application code will trigger the arrivederror routine with a return of MQ_ERROR_IO_TIMEOUT (0xC00E001B). This is a normal timeout from the receivetimeout value specified for EnableNotification, and should be handled by issuing the EnableNotification again. This same error is returned if you use receivetimeout with an MSMQ receive function.

 In the case where the RpcCancelTimeout has occurred, the arrivederror routine will be triggered in your code with a return of MQ_ERROR_QUEUE_NOT_AVAILABLE (0xC00E004B). When this error is returned because the MSMQ service on the target machine has gone away, we recommend issuing the EnableNotification again with an appropriate wait time.

 During the time that the remote machine is not available by its TCP address, and after the first MQ_ERROR_QUEUE_NOT_AVAILABLE returned from the RpcCancelTimeout action, the application can typically see this error at about 45 second intervals.

 When the remote machine is accessible by its TCP address but MSMQ is not initialized, the MQ_ERROR_QUEUE_NOT_AVAILABLE will be returned every couple of seconds. If the MSMQ on that machine has many messages it could take minutes for MSMQ to be available. A minimum of the value of the RpcCancelTimeout value is what we would recommend using as a wait time before issuing EnableNotification again. Using a longer timer, than the 1-2 second return during this time, keeps this useless polling activity to a minimum.

 When MSMQ is operational on the remote machine again and the EnableNotification is issued with the old handle, the remote machine will return an error of MQ_ERROR_INVALID_HANDLE (0xC00E0007). This will again drive the arrivederror routine. In this routine, the application needs to now close the queue and then open it again to get a good handle. It may then call EnableNotification to start the asynchronous receiving of messages. A VB arrivederror routine would look like the this.

'***

' Define the Arrived Error event handler.

'***

Private Sub msgEvent_ArrivedError(ByVal queue As Object, _

 ByVal ErrorCode As Long, _

 ByVal Cursor As Long)

 Dim strStartTime As String

 strStartTime = Str(Now)

 Select Case ErrorCode

Case Is = MQ_ERROR_ILLEGAL_CURSOR_ACTION

 MsgBox "Error event fired! An illegal cursor movement was requested." + _

 Chr(13) + Chr(13) + "Error: " + Hex(ErrorCode) + Chr(13) + strStartTime

Case Is = MQ_ERROR_IO_TIMEOUT

 MsgBox "Error event fired! Time-out error returned after waiting for new messages." + _

 Chr(13) + Chr(13) + "Error: " + Hex(ErrorCode) + Chr(13) + strStartTime

 q.EnableNotification Event:=msgEvent, Cursor:=MQMSG_CURRENT, ReceiveTimeout:=10000

Case Is = MQ_ERROR_QUEUE_NOT_AVAILABLE

 MsgBox "Error event fired! Queue not Available returned after waiting for new messages." + _

 Chr(13) + Chr(13) + "Error: " + Hex(ErrorCode) + Chr(13) + strStartTime

 q.EnableNotification Event:=msgEvent, Cursor:=MQMSG_CURRENT, ReceiveTimeout:=10000

Case Is = MQ_ERROR_INVALID_HANDLE

 MsgBox "Error event fired! Invalid queue handle returned. close queue, reopen, and re-enable notification." + _

 Chr(13) + Chr(13) + "Error: " + Hex(ErrorCode) + Chr(13) + strStartTime

 q.Close

 Set q = qinfo.Open(MQ_RECEIVE_ACCESS, MQ_DENY_NONE)

 q.EnableNotification Event:=msgEvent, Cursor:=MQMSG_CURRENT, ReceiveTimeout:=10000

Case Else

 MsgBox "Error event fired!" + Chr(13) + Chr(13) + _

 "Error: " + Hex(ErrorCode) + strStartTime

 End Select

End Sub

 I will give you a call this afternoon, in case you have any other questions about this.

