Microsoft Transaction Server
Guidelines for Development Tool Integration
April 21, 1997

Introduction
The following requirements and suggestions are designed to help you integrate your application development tools with Microsoft Transaction Server.

If you have suggestions for improving these guidelines please forward them to me philga@microsoft.com

Requirements for Generating Microsoft Transaction Server Components

Any development tools producing components that will run in Microsoft Transaction Server must meet the following requirements:
1. Generate COM DLL and Type Library
You must generate a COM component packaged as a DLL. Microsoft Transaction Server provides the run time environment, in the form of an EXE, in which the DLL you generate will run.

You must generate a type library that describes the component.

The DLL must support self-registration by exporting the functions DllRegisterServer() and DllUnregisterServer(). The call to DllRegisterServer() must register the:
a.
CLSID for the component
b.
ProgID for the component
c.
Type library for the class
d.
Interfaces for the component
e.
Type library for the interfaces
f.
Custom proxy/stub (if any)
g.
InprocServer32 and/or LocalServer32

 For more information about COM and self-registration see Inside COM and Inside OLE in the “Sources of Information” section below.

2. Marshalling
Microsoft Transaction Server components can implement custom interfaces provided these interfaces use standard marshalling. Components may marshal parameters and return values via either a custom proxy/stub DLL or a type library used in conjunction with OLEAUT32.

Type Library
A type library used in conjunction with OLEAUT32 is sufficient if the component uses standard OLE automation data types for its parameters and return values. For more information regarding OLE automation data types see the OLE Automation Programmer’s Reference in the “Sources of Information” section below.

We recommend that you package the component DLL and type library in separate files. This makes remote client administration more efficient because only the type library need be distributed to remote client systems.

Custom Proxy/Stub
A custom proxy/stub is required if the component uses data types not supported by OLE automation such as structs, unions, sized arrays, and the like.

For MTS to properly handle a custom interface, it must be generated from IDL using the flags /Oicf on the midl command line. These flags produce "fully interpreted" proxystubs.

Custom proxy/stub DLLs must support self-registration by exporting the functions DllRegisterServer() and DllUnregisterServer(). The call to DllRegisterServer() must register the:
a.
CLSID for the component
b.
ProgID for the component
c.
Type library for the class
d.
Interfaces for the component
e.
Type library for the interfaces
f.
Custom proxy/stub (if any)
g.
InprocServer32 and/or LocalServer32

We recommend that you package the component DLL in one file and the custom proxy/stub DLL and type library in another file. This makes remote client administration easier and more efficient because the combined proxy/stub DLL and type library can be distributed to remote client systems.

The custom proxy/stub DLL must be linked with the Microsoft Transaction Server Interface Helper Library (mtxih.lib). The mtxih.lib is installed when Microsoft Transaction Server is installed and can be found at \Mtx\Lib\mtxih.lib

Other Notes on Marshalling
For more information regarding custom interfaces see Microsoft MIDL in the “Sources of Information” section below.

Microsoft Transaction Server components cannot implement custom marshalling; that is, they cannot expose the IMarshall interface.

Microsoft Transaction Server components can pass COM objects as parameters. These COM objects can themselves be custom marshaled. For example, a row-set object can be passed as a parameter to or from a Microsoft Transaction Server component. The row-set is passed using custom marshalling.

1. Object Context
You must provide a means for the component developer to invoke the methods contained in the IObjectContext interface.

2. Threading
Do not generate main-threaded components. At a minimum, generate apartment-threaded components. For optimum performance, generate apartment-threaded components that do not require thread affinity. This permits Microsoft Transaction Server to make optimum use of threads by dispatching an object instance on any available thread

Store all object state in instance variables that are local to the object instance. Do not keep state in global variables or in Thread Local Storage.

Free-threaded components can also execute in Microsoft Transaction Server. Free-threaded components that run in Microsoft Transaction Server need not be thread safe. Microsoft Transaction Server ensures that no object instance is ever called re-entrantly. Because of this, it is best not to employ mutexes, critical sections, or semaphores to protect object instance variables. Doing so does nothing but increase overhead and reduce performance.

3. No MFC Extension DLLs
Transaction Server components must not be MFC Extension DLLs. Such DLLs can only be loaded by an MFC application. Transaction Server components must be capable of being loaded into any process, regardless of the type of application that started the process. For more information on MFC Extension DLLs, see the Microsoft Visual C++ Programmer’s Guide.

Suggestions for Generating Microsoft Transaction Server Components

The following suggestions will make your development tools more effective at generating Microsoft Transaction Server components. You may choose which, if any, of these features you support in your development tool.

1. Type Library Extensions
Include the transaction property in the type library you generate. This property indicates whether a component: Requires a Transaction, Requires a New Transaction, Supports Transactions, or Does Not Support Transactions. By doing this you make it unnecessary for the programmer or system administrator to configure the transaction attribute manually through the administrative interface.

2. IObjectControl
Provide a way for components to implement the IObjectControl interface. This interface contains the Activate, Deactivate, and CanBePooled methods. For a complete description of the IObjectControl interface, see Microsoft Transaction Server, Online Help in the “Sources of Information” section below. By supporting this interface, you permit the component developer to implement object initialization, cleanup, and reuse.

3. Automate Reference Counting
Automate the generation of AddRef and Release. By doing this, you relieve the component developer from having to implement these two methods.

4. Automate Query Interface
Automate the generation of QueryInterface. By doing this, you relieve the component developer from having to implement this method.

5. Automate Class Factory
Automate the generation of the component’s class factory. By doing this, you relieve the component developer from having to implement their own class factory.

6. SafeRef
Ensure that any reference that an object obtains to its self is always a SafeRef. Ideally, this should be done automatically and hidden from the component. For a complete description of the SafeRef function see Microsoft Transaction Server, Online Help in the “Sources of Information” section below.

7. Preserve CLSID and ProgID
Provide a way to preserve a component’s existing CLSID and ProgID when the component is recompiled. By doing this you make it unnecessary for the component developer to re-register the component each time they recompile it.

Alternatively, you may want to implement a scheme for automatically re-registering recompiled component using the Administration interfaces provided in the Microsoft Transaction Server SDK release. If you choose to generate and register a new CLSID each time the component is recompiled, ensure that you delete the old registry entries. If you fail to do this, the registry may be left with many obsolete entries.

Note that the Transaction Server Explorer is capable of repairing inconsistencies in registry entries for registered components. This may be done using either the Transaction Server Explorer’s Refresh button or its Refresh All Components command on the Tools menu. Using either option will cause Microsoft Transaction Server to repair all inconsistencies in registry entries of components currently displayed in the right pane of the Explorer. This Transaction Server Explorer feature depends upon the ProgID of the component remaining constant when the component is recompiled.

Changing CLSIDs or ProgIDs is undesirable for two reasons. First, Proxies and registry configurations that were distributed to remote machines will no longer refer to the component and must all be updated. Second, any packages containing the component must be re-exported because the package definition file GUID will be out of sync.

8. Preserve Interface IID
Provide a way to preserve a component’s Interface Ids (IIDs) when the component is recompiled and the interface signature is unchanged. By doing this you make it unnecessary for the component developer to re-register the component interfaces each time the component is recompiled.

Changing IIDs is undesirable because Roles that the system administrator assigned to the interface using the Microsoft Transaction Server Explorer are lost, since the interface IID is obsolete.

9. Debugging
Make it possible for the developer to debug their component while it is executing in the Microsoft Transaction Server runtime environment. Your debugger should not insist that it be the EXE environment in which the component is debugged.

10. SPY Integration
Support the Event architecture provided in the Microsoft Transaction Server SDK release. This will enable the component developer to send TRACE() events to MtsSpy. To obtain the Microsoft Transaction Server SDK release, see Microsoft Transaction Server, Software Developers Kit in the “Source of Information” section below.

11. Generate Server Package Files
Make it possible for the developer to generate server package files through your development tool. Use the Export Package command in the MTS Explorer to generate a pre-built package that preserves all package, component, and role settings.

12. Generate Client Package Files
Make it possible for the developer to generate client package files through your development tool. Use the Export Package command in the MTS Explorer to generate a self-installing EXE that installs and configures all needed information on client machines. This feature was added in the Microsoft Transaction Server SP2 release. You can obtain this service pack through the Microsoft Transaction Server Support web site listed in the “Source of Information” section below.

13. Automate Installation and Configuration
Use the Administration interfaces provided in the Microsoft Transaction Server SDK release to automate installation and configuration of the generated application. To obtain the Microsoft Transaction Server, Software Developers Kit, see the “Source of Information” section below.

Limitations

The following limitations exist in the current version of Microsoft Transaction Server Version. These limitations may be eliminated in a future release of the product.

1. OLE Automation Exceptions
OLE Automation exceptions are not supported in this release of Microsoft Transaction Server.

Implementation Notes

The following implementation notes are meant to help you integrate your application development tools with Microsoft Transaction Server.

1. Custom Interfaces with Parameters of Type Float or Double
If you generate a custom proxy/stub DLL with data values of type 'float' or 'double' you must use MIDL compiler version 3.01.75 or later.

Earlier versions of the MIDL compiler did not support ‘float’ and ‘double’. When encountering such interfaces, the Transaction Server would shutdown the server process that hosted the component and log the following message in the Windows NT event log:

“Unable to obtain extended information about this interface. The interface may not have been generated using the -Oicf options in MIDL or the interface has methods with types (float or double) that are not currently supported for custom interfaces.”

Sources of Information

3. Automation Programmer’s Reference
Microsoft Press
ISBN 1-57231-584-9

4. Inside COM: Microsoft’s Component Object Model
Dale Rogerson
Microsoft Press
ISBN 1-57231-349-8

5. Inside OLE: Second Edition
Kraig Brockschmidt
Microsoft Press
ISBN 1-55615-843-2

6. Microsoft MIDL
Win32 SDK on the Microsoft Developer Network.

7. Microsoft Transaction Server, Evaluation Kit, Version 2
The Evaluation Kit includes a 120 day evaluation version of the Microsoft Transaction Server product. White papers and NetShow presentations by the Microsoft Transaction Server architects. Sample Microsoft Transaction Server applications including both a Visual Basic application and a comprehensive web-based application. The Evaluation Kit is orderable through the Microsoft Transaction Server web page at www.microsoft.com/transaction
8. Microsoft Transaction Server, Online Help
Online Help is installed by Microsoft Transaction Server Setup. To view the help files after installing Microsoft Transaction Server, select Start, Programs, Microsoft Transaction Server, Help
9. Microsoft Transaction Server, Readme
Online Readme is installed by Microsoft Transaction Server Setup. After installing Microsoft Transaction Server select Start, Programs, Microsoft Transaction Server, Readme.

10. Microsoft Transaction Server, Software Developers Kit
Available from the Microsoft Transaction Server web page at www.microsoft.com/transaction
11. OLE Automation Programmer’s Reference
Microsoft Press
ISBN 1-55615-851-3

12. Web Sites, ftp sites, Public Newsgroups, and FAQs
The Microsoft Transaction Server web page can be found at:
www.microsoft.com/transaction

The Microsoft Transaction Server Support web page can be found at:
www.microsoft.com/support/transaction

The Microsoft Transaction Server public ftp site can be found at:
ftp.microsoft.com
You can use anonymous ftp to access the site by entering “anonymous” as your user name, and your mail id as your password. After you have logged in, enter “CD bussys/viper” to gain access to the Microsoft Transaction Server and Microsoft Distributed Transaction Coordinator files.

The Microsoft Transaction Server public newsgroups and FAQs can be found through the Microsoft Transaction Server Support web page at:
www.microsoft.com/support/transaction
4

