�
Microsoft Distributed Transaction Coordinator�Resource Manager Implementation Guide
Version 6.5
January 07, 1996

�Abstract
This document describes how to implement an OLE Transaction-compliant resource manager. Resource managers that support the OLE Transaction interfaces are capable of participating in transactions coordinated by the Microsoft Distributed Transaction Coordinator (MS DTC). MS DTC is a transaction manager that coordinates distributed transactions across a network of Windows NT and Windows ’95 systems. This document is intended for system software developers who implement transaction-protected resource managers, including relational database systems, object-oriented database systems, file systems, document storage systems, and message queuing systems.
�Table Of Contents
� TOC \o "1-3" �1. Introduction	� GOTOBUTTON _Toc352904150 � PAGEREF _Toc352904150 �1��
1.1 Transactions	� GOTOBUTTON _Toc352904153 � PAGEREF _Toc352904153 �1��
1.2 Microsoft Distributed Transaction Coordinator	� GOTOBUTTON _Toc352904154 � PAGEREF _Toc352904154 �1��
1.3 Objective of This Document	� GOTOBUTTON _Toc352904155 � PAGEREF _Toc352904155 �2��
1.4 Audience of This Document	� GOTOBUTTON _Toc352904156 � PAGEREF _Toc352904156 �2��
1.5 Content of This Document	� GOTOBUTTON _Toc352904157 � PAGEREF _Toc352904157 �2��
1.6 Related Documents	� GOTOBUTTON _Toc352904158 � PAGEREF _Toc352904158 �3��
2. MS DTC Overview by Jim Gray	� GOTOBUTTON _Toc352904159 � PAGEREF _Toc352904159 �4��
2.1 The ACID Properties	� GOTOBUTTON _Toc352904160 � PAGEREF _Toc352904160 �5��
2.2 Execution Scenarios	� GOTOBUTTON _Toc352904161 � PAGEREF _Toc352904161 �6��
2.2.1 The Application Programmer’s View of Transactions	� GOTOBUTTON _Toc352904162 � PAGEREF _Toc352904162 �6��
2.2.2 The Resource Manager’s View of Transactions	� GOTOBUTTON _Toc352904163 � PAGEREF _Toc352904163 �6��
2.2.3 The Transaction Manager’s View of Transactions	� GOTOBUTTON _Toc352904164 � PAGEREF _Toc352904164 �7��
2.3 Distributed Transactions	� GOTOBUTTON _Toc352904165 � PAGEREF _Toc352904165 �7��
2.4 Concept Summary	� GOTOBUTTON _Toc352904166 � PAGEREF _Toc352904166 �8��
3. When to Use MS DTC	� GOTOBUTTON _Toc352904167 � PAGEREF _Toc352904167 �10��
3.1 What MS DTC Provides	� GOTOBUTTON _Toc352904168 � PAGEREF _Toc352904168 �10��
3.2 Appropriate Uses of MS DTC	� GOTOBUTTON _Toc352904169 � PAGEREF _Toc352904169 �10��
3.2.1 Updating Two Databases from a Single Application	� GOTOBUTTON _Toc352904170 � PAGEREF _Toc352904170 �10��
3.2.2 Updating a Database and a File from a Single Application	� GOTOBUTTON _Toc352904171 � PAGEREF _Toc352904171 �12��
3.2.3 Updating a Geographically Distributed Database	� GOTOBUTTON _Toc352904172 � PAGEREF _Toc352904172 �13��
3.2.4 Updating a Database Partitioned for Scalability	� GOTOBUTTON _Toc352904173 � PAGEREF _Toc352904173 �14��
3.2.5 Using an OLE Transaction-compliant Resource Manager with an X/Open-compliant Transaction Processing Monitor	� GOTOBUTTON _Toc352904174 � PAGEREF _Toc352904174 �15��
3.3 Inappropriate Uses of MS DTC	� GOTOBUTTON _Toc352904175 � PAGEREF _Toc352904175 �16��
3.3.1 Data Replication for Decision Support	� GOTOBUTTON _Toc352904176 � PAGEREF _Toc352904176 �16��
3.3.2 Data Replication for High Availability	� GOTOBUTTON _Toc352904177 � PAGEREF _Toc352904177 �16��
3.3.3 Applications Which Tolerate Data Inconsistency	� GOTOBUTTON _Toc352904178 � PAGEREF _Toc352904178 �16��
4. Application Programming Using MS DTC	� GOTOBUTTON _Toc352904179 � PAGEREF _Toc352904179 �17��
4.1 Transaction Initiation	� GOTOBUTTON _Toc352904180 � PAGEREF _Toc352904180 �17��
4.1.1 Application Program-initiated Transactions	� GOTOBUTTON _Toc352904181 � PAGEREF _Toc352904181 �17��
4.1.2 Resource Manager Explicitly Initiated Transactions	� GOTOBUTTON _Toc352904182 � PAGEREF _Toc352904182 �24��
4.1.3 Resource Manager Implicitly Initiated Transactions	� GOTOBUTTON _Toc352904183 � PAGEREF _Toc352904183 �26��
4.1.4 X/Open Transaction Processing Monitor-initiated Transactions	� GOTOBUTTON _Toc352904184 � PAGEREF _Toc352904184 �28��
4.2 Transaction Propagation	� GOTOBUTTON _Toc352904185 � PAGEREF _Toc352904185 �29��
4.2.1 Application Program-to-Resource Manager Transaction Propagation	� GOTOBUTTON _Toc352904186 � PAGEREF _Toc352904186 �29��
4.2.2 Resource Manager-to-Resource Manager Transaction Propagation	� GOTOBUTTON _Toc352904187 � PAGEREF _Toc352904187 �30��
4.2.3 Resource Manager-to-Application Program Transaction Propagation	� GOTOBUTTON _Toc352904188 � PAGEREF _Toc352904188 �31��
4.2.4 Application Program-to-Application Program Transaction Propagation	� GOTOBUTTON _Toc352904189 � PAGEREF _Toc352904189 �31��
4.3 Transaction Commit and Abort	� GOTOBUTTON _Toc352904190 � PAGEREF _Toc352904190 �32��
4.3.1 Transaction Commit	� GOTOBUTTON _Toc352904191 � PAGEREF _Toc352904191 �32��
4.3.2 Transaction Abort	� GOTOBUTTON _Toc352904192 � PAGEREF _Toc352904192 �33��
5. OLE Transactions	� GOTOBUTTON _Toc352904193 � PAGEREF _Toc352904193 �34��
5.1 Introduction to OLE Transactions	� GOTOBUTTON _Toc352904194 � PAGEREF _Toc352904194 �34��
5.1.1 OLE Transactions	� GOTOBUTTON _Toc352904195 � PAGEREF _Toc352904195 �34��
5.1.2 Relationship to Other Transaction Standards	� GOTOBUTTON _Toc352904196 � PAGEREF _Toc352904196 �34��
5.2 OLE Transaction Model	� GOTOBUTTON _Toc352904197 � PAGEREF _Toc352904197 �37��
5.2.1 Transaction Model	� GOTOBUTTON _Toc352904198 � PAGEREF _Toc352904198 �37��
5.2.2 Commit Coordination	� GOTOBUTTON _Toc352904199 � PAGEREF _Toc352904199 �37��
5.3 Overview of the OLE Transaction Interfaces	� GOTOBUTTON _Toc352904200 � PAGEREF _Toc352904200 �39��
5.3.1 OLE Transactions Interfaces	� GOTOBUTTON _Toc352904201 � PAGEREF _Toc352904201 �39��
5.3.2 OLE Transactions Objects	� GOTOBUTTON _Toc352904202 � PAGEREF _Toc352904202 �46��
5.4 Life of an OLE Transaction	� GOTOBUTTON _Toc352904203 � PAGEREF _Toc352904203 �53��
5.4.1 Participants in an OLE Transaction	� GOTOBUTTON _Toc352904204 � PAGEREF _Toc352904204 �53��
5.4.2 Life of a Transaction: Installation	� GOTOBUTTON _Toc352904205 � PAGEREF _Toc352904205 �57��
5.4.3 Life of a Transaction: Resource Manager Startup	� GOTOBUTTON _Toc352904206 � PAGEREF _Toc352904206 �58��
5.4.4 Life of a Transaction: Client Application Startup	� GOTOBUTTON _Toc352904207 � PAGEREF _Toc352904207 �60��
5.4.5 Life of a Transaction: Transaction Initiation	� GOTOBUTTON _Toc352904208 � PAGEREF _Toc352904208 �61��
5.4.6 Life of a Transaction: Resource Manager Enlistment	� GOTOBUTTON _Toc352904209 � PAGEREF _Toc352904209 �62��
5.4.7 Life of a Transaction: Creating an Export Object	� GOTOBUTTON _Toc352904210 � PAGEREF _Toc352904210 �63��
5.4.8 Life of a Transaction: Exporting a Transaction	� GOTOBUTTON _Toc352904211 � PAGEREF _Toc352904211 �65��
5.4.9 Life of a Transaction: Enlistment on a Transaction	� GOTOBUTTON _Toc352904212 � PAGEREF _Toc352904212 �68��
5.4.10 Life of a Transaction: Transaction Commit Phase One - Prepare	� GOTOBUTTON _Toc352904213 � PAGEREF _Toc352904213 �70��
5.4.11 Life of a Transaction: Transaction Commit Phase Two - Commit	� GOTOBUTTON _Toc352904214 � PAGEREF _Toc352904214 �74��
5.4.12 Life of a Transaction: Transaction Recovery	� GOTOBUTTON _Toc352904215 � PAGEREF _Toc352904215 �77��
6. Implementing a Resource Manager	� GOTOBUTTON _Toc352904216 � PAGEREF _Toc352904216 �79��
6.1 Introduction	� GOTOBUTTON _Toc352904217 � PAGEREF _Toc352904217 �79��
6.2 Development Environment	� GOTOBUTTON _Toc352904218 � PAGEREF _Toc352904218 �79��
6.3 Interfaces to implement	� GOTOBUTTON _Toc352904219 � PAGEREF _Toc352904219 �79��
6.3.1 Obtaining the Transaction to Enlist On	� GOTOBUTTON _Toc352904220 � PAGEREF _Toc352904220 �81��
6.3.2 Participation in the two phase commit protocol	� GOTOBUTTON _Toc352904221 � PAGEREF _Toc352904221 �83��
6.4 Supporting Application Program-initiated Transactions	� GOTOBUTTON _Toc352904222 � PAGEREF _Toc352904222 �85��
6.4.1 Work Required in the RM Proxy	� GOTOBUTTON _Toc352904223 � PAGEREF _Toc352904223 �85��
6.4.2 Work Required in the Resource Manager	� GOTOBUTTON _Toc352904224 � PAGEREF _Toc352904224 �85��
6.5 Supporting Resource Manager-initiated Transactions	� GOTOBUTTON _Toc352904225 � PAGEREF _Toc352904225 �85��
6.5.1 Supporting Explicitly Initiated Transactions	� GOTOBUTTON _Toc352904226 � PAGEREF _Toc352904226 �85��
6.5.2 Supporting Implicitly Initiated Transactions	� GOTOBUTTON _Toc352904227 � PAGEREF _Toc352904227 �85��
6.6 Supporting Transactions Propagation from One Resource Manager to Another	� GOTOBUTTON _Toc352904228 � PAGEREF _Toc352904228 �85��
6.7 Supporting Transactions Recovery	� GOTOBUTTON _Toc352904229 � PAGEREF _Toc352904229 �85��
7. OLE Transaction Interfaces	� GOTOBUTTON _Toc352904230 � PAGEREF _Toc352904230 �86��
7.1 Utility Interfaces and APIs	� GOTOBUTTON _Toc352904231 � PAGEREF _Toc352904231 �86��
7.1.1 DtcGetTransactionManager API	� GOTOBUTTON _Toc352904232 � PAGEREF _Toc352904232 �86��
7.1.2 IGetDispenser Interface	� GOTOBUTTON _Toc352904233 � PAGEREF _Toc352904233 �88��
7.2 Transaction Initiation and Control Interfaces	� GOTOBUTTON _Toc352904234 � PAGEREF _Toc352904234 �89��
7.2.1 ITransactionDispenser Interface	� GOTOBUTTON _Toc352904235 � PAGEREF _Toc352904235 �89��
7.2.2 ITransactionOptions Interface	� GOTOBUTTON _Toc352904236 � PAGEREF _Toc352904236 �92��
7.2.3 ITransaction Interface	� GOTOBUTTON _Toc352904237 � PAGEREF _Toc352904237 �95��
7.2.4 ITransactionOutcomeEvents Interface	� GOTOBUTTON _Toc352904238 � PAGEREF _Toc352904238 �102��
7.3 Transaction Propagation Interfaces	� GOTOBUTTON _Toc352904239 � PAGEREF _Toc352904239 �108��
7.3.1 ITransactionImportWhereabouts Interface	� GOTOBUTTON _Toc352904240 � PAGEREF _Toc352904240 �108��
7.3.2 ITransactionExportFactory Interface	� GOTOBUTTON _Toc352904241 � PAGEREF _Toc352904241 �111��
7.3.3 ITransactionExport Interface	� GOTOBUTTON _Toc352904242 � PAGEREF _Toc352904242 �114��
7.3.4 ITransactionImport Interface	� GOTOBUTTON _Toc352904243 � PAGEREF _Toc352904243 �117��
7.4 Resource Manager Interfaces	� GOTOBUTTON _Toc352904244 � PAGEREF _Toc352904244 �119��
7.4.1 IResourceManagerFactory Interface	� GOTOBUTTON _Toc352904245 � PAGEREF _Toc352904245 �120��
7.4.2 IResourceManager Interface	� GOTOBUTTON _Toc352904246 � PAGEREF _Toc352904246 �123��
7.4.3 IResourceManagerSink Interface	� GOTOBUTTON _Toc352904247 � PAGEREF _Toc352904247 �130��
7.5 Transaction Coordination (Two-phase Commit) Interfaces	� GOTOBUTTON _Toc352904248 � PAGEREF _Toc352904248 �131��
7.5.1 ITransactionResourceAsync Interface	� GOTOBUTTON _Toc352904249 � PAGEREF _Toc352904249 �132��
7.5.2 IPrepareInfo Interface	� GOTOBUTTON _Toc352904250 � PAGEREF _Toc352904250 �137��
7.5.3 ITransactionEnlistmentAsync Interface	� GOTOBUTTON _Toc352904251 � PAGEREF _Toc352904251 �140��
7.6 Connection Point Interfaces	� GOTOBUTTON _Toc352904252 � PAGEREF _Toc352904252 �144��
7.6.1 IConnectionPoint Interface	� GOTOBUTTON _Toc352904253 � PAGEREF _Toc352904253 �145��
7.6.2 IConnectionPointContainer Interface	� GOTOBUTTON _Toc352904254 � PAGEREF _Toc352904254 �149��
7.6.3 IEnumConnectionPoints Interface	� GOTOBUTTON _Toc352904255 � PAGEREF _Toc352904255 �151��
7.6.4 IEnumConnections Interface	� GOTOBUTTON _Toc352904256 � PAGEREF _Toc352904256 �155��
8. Glossary of Terms	� GOTOBUTTON _Toc352904257 � PAGEREF _Toc352904257 �159��
�
�TABLE OF FIGURES
�Introduction
This chapter introduces the Microsoft Distributed Transaction Coordinator (MS DTC) and describes why Microsoft developed MS DTC. It identifies the objectives and audience of this document. It explains how the document is organized. Finally, it provides a list of related documents.
Transactions
Transactions are an essential tool for building robust applications because they permit applications to update data while providing simple failure recovery semantics. Distributed transactions are transactions that update data on two or more network-connected computer systems. Distributed transactions are essential because they provide the virtues of transactions to applications that must update distributed data. It is difficult to implement robust distributed applications. Distributed applications are vulnerable to many failures, including failure of the client, failure of the server, and failure of the network connection between the client and server. In the absence of distributed transactions, the application program is responsible for detecting and recovering from these failures. Distributed transactions eliminate this burden from the application program.
Microsoft Distributed Transaction Coordinator
The Microsoft Distributed Transaction Coordinator (MS DTC) is a distributed transaction manager. It provides a robust, high-performance, scaleable, easy-to-use distributed transaction facility for Windows NT and Windows ’95. MS DTC meets the following design objectives:
Lower the Cost of Enterprise Computing �MS DTC lowers the cost of enterprise computing for customers. Customers will increasingly use networks of powerful commodity-priced PCs and servers running Windows NT and Windows ’95 for their enterprise computing. MS DTC enables this by providing a sophisticated, low cost, easy-to-manage distributed transaction facility. By enabling enterprise computing on commodity-priced hardware and software, we aim to foster a large market for shrink-wrapped, commodity-priced business applications.
Simplify Application Development �MS DTC makes application development easier. Transactions greatly simplify what the application programmer must do to preserve consistency despite failures that occur while updating application data.
Provide a Consistent Transaction Model Which Supports a Wide Variety of Resource Managers �Application programs must often deal with a variety of data resources, including relational databases, object-oriented databases, file systems, document storage systems, and message queues. MS DTC provides a consistent transaction model for all of these resources.
Enable Software Development Using Distributed, Object-oriented, Commodity Software Components�The Microsoft Distributed Transaction Coordinator is an essential first step in enabling software development using distributed, object-oriented, commodity software components. MS DTC is based upon the OLE Transaction interface standard. OLE Transaction provides a simple, object-oriented application programming interface for initiating and controlling transactions. We need distributed transactions to build the transaction processing and distributed object software that will follow.
Robust �MS DTC uses proven transaction processing technology. It is robust despite system failures, process failures, and communication failures.
High Performance�MS DTC provides good performance.
Scaleable�MS DTC exploits loosely coupled systems to provide scaleable performance.
Easy to Administer�MS DTC is easy to install, configure, and manage.
Objective of This Document
This document describes how to implement an OLE Transaction-compliant resource manager. Resource managers that support the OLE Transaction interfaces are capable of participating in transactions coordinated by the Microsoft Distributed Transaction Coordinator (MS DTC).
Audience of This Document
This document is for system software developers who implement transaction-protected resource managers, including relational database systems, object-oriented database systems, file systems, document storage systems, and message queuing systems.
We assume that the reader is an experienced resource manager developer.
We assume that the reader is familiar with transaction processing concepts. For those not familiar with these concepts, we recommend the book TRANSACTION PROCESSING: Concepts and Techniques, by Jim Gray and Andreas Reuter.
We assume that the reader knows C or C++.
We assume that the reader is familiar with the Component Object Model (COM). For those not familiar with COM, we recommend the book Inside OLE, second edition, by Kraig Brockschmidt.
Content of This Document
This document contains six chapters.
Chapter 1.	Introduction.�This chapter introduces the Microsoft Distributed Transaction Coordinator (MS DTC) and describes why Microsoft developed MS DTC. It identifies the objectives and audience of this document. It explains how the document is organized. Finally, it provides a list of related documents.
Chapter 2.	Overview of MS DTC by Jim Gray.�This chapter provides an overview of the Microsoft Distributed Transaction Coordinator.
Chapter 3.	When To Use MS DTC.�This chapter describes what MS DTC provides to application developers. It describes when you should use MS DTC and when you should not use MS DTC.
Chapter 4.	Application Programming Using MS DTC.�This chapter describes how to write applications which use MS DTC. It describes how application programs can initiate transactions, pass these transactions to resource managers, and commit or abort transactions. It describes how resource managers can initiate, participate in, and commit or abort transactions. It includes sample applications that use MS DTC transactions.
Chapter 5.	OLE Transactions.�This chapter introduces OLE Transactions. It explains what OLE Transactions is and why Microsoft developed OLE Transactions. It describes the transaction model which OLE Transactions supports. It introduces the OLE Transactions interfaces. Finally, it traces the life of an OLE Transaction and describes how transactions are initiated, propagated from application program to resource manager, and committed.
Chapter 6.	Implementing a Resource Manager.�This chapter describes how resource manager can incorporate OLE Transaction support.
Chapter 7.	OLE Transactions Interfaces.�This chapter provides a detailed description of the OLE Transaction interfaces. This is reference material for resource manager developers who wish to use the OLE Transaction interfaces.
Chapter 8.	Glossary of Terms.�This chapter provides a summary of the terms used in this document.
Related Documents
The following documents cover related topics.
Microsoft Distributed Transaction Coordinator (MS DTC)�Administrator’s Guide and Programmer’s Reference�This document describes how to install, configure, and administer MS DTC. It also describes how to write programs that use MS DTC transactions.
TRANSACTION PROCESSING: Concepts and Techniques�Jim Gray and Andreas Reuter�Morgan Kaufmann Publishers�ISBN 1-55860-190-2
This is the definitive work on transaction processing.
Inside OLE, second edition�Kraig Brockschmidt�Microsoft Press�ISBN 1-55615-843-2
This book provides an introduction to OLE. You need not understand all of OLE to implement a OLE transaction-compliant resource manager; however, you must understand the Component Object Model (COM). Chapters 1 and 2 of this book describe the essentials of COM.

MS DTC Overview by Jim Gray
It is difficult to write applications. With time, we are discovering concepts and techniques that allow us to build large applications. Modularity: Structuring the application as independent modules is the way to build complex systems from simpler parts and to get software reuse. Object-oriented concepts and the Microsoft® Component Object Model (COM) provide a modularity technique that allows you to write modular applications.
When an application is structured as components, the individual parts may all reside together in a single computer, or they may interact via remote-procedure calls across a network. So, componentization gives both modularity and natural distribution.
Structuring an application as independent components can create problems in managing the components. Monolithic programs fail and restart as a unit. With a modularized system, it is important that the failure of one component not corrupt the others. There must be some way to isolate faults, and to limit fault propagation. Transactions provide modular execution and thus simplify and automate fault handling. They provide a simple conceptual execution framework for both implementers and users.
The user thinks of a transaction as a change to the system that either happens or has no effect -- it is all-or-nothing. Implementers think of transactions as a programming style that lets them write modules that can participate in distributed computations. Suppose we want to transfer money from one bank account to another. The implementers and the users want to make sure that either both accounts change or neither changes. It is hard to make this work in a distributed system when computers can fail and messages can be lost. Transactions provide a way to bundle a set of operations into an atomic execution unit.
The atomic all-or-nothing property is not new: it appears throughout life. If you execute a contract, there is typically an escrow officer who coordinates the transaction: the escrow officer collects the signatures of each party to the contract. The contract is final when the escrow officer announces that everyone has signed. A minister conducting a marriage ceremony first asks the bride and groom, "Do you take this person to be your spouse?" If they both respond "I do," the minister pronounces them married. A director on a movie set first asks, "Ready on the set?" If all respond yes, the director then calls, "Action!" A helmsman on a sailboat preparing to tack first asks the crew, "Ready about?" If they all respond yes, then the helmsman shouts, "Helm's a'lee!" and turns the boat.
All these scenarios show the basic idea of a transaction: several independent entities need to agree. If any disagrees, the deal is off. Once you agree, you must follow the decision of the escrow officer, minister, director, or helmsman. The Microsoft Distributed Transaction Coordinator (MS DTC) performs this transaction coordination role for the other components of the COM architecture.
In MS DTC terminology, the director is called the Transaction Manager (TM). The participants in the transaction who implement transaction-protected resources, such as relational databases, are called resource managers (RMs). An application begins a transaction by calling the transaction manager's BeginTransaction method. This creates a transaction object that represents the transaction. The application then makes calls to the resource managers to do the work of the transaction. The application's first call to each resource manager identifies the application's current transaction. For example, if the application is using a relational database, it calls the ODBC interface, which associates the transaction object with the ODBC connection. Thereafter, all database calls made using that connection are performed on behalf of the transaction. When a resource manager first does work on behalf of a transaction, it enlists in the transaction by calling the transaction manager. As the transaction progresses, the transaction manager keeps track of each of the resource managers enlisted in the transaction. Typically, the application is successful, but if the application is unable to complete the transaction, it can call the Abort method that undoes the transaction's actions. If the application fails, MS DTC will abort the transaction. When the application successfully completes the transaction's work, it calls the MS DTC to commit the transaction. MS DTC then goes through a two-phase commit protocol to get all the enlisted resource managers to commit. In the first phase the MS DTC asks each resource manager if it is prepared to commit. If all say yes, then in the second phase MS DTC broadcasts the commit message to them all. If any part of the transaction fails, or if an RM fails to respond to the prepare request, or if the RM responds no, then MS DTC notifies all of the resource managers that the transaction aborted.
The two-phase commit protocol ensures that all the resource managers commit the transaction or all abort it. It is that simple. This is not a new idea. Transaction Managers are a key part of most database systems. Transaction Managers are also an optional part of some operating systems. Microsoft believes that transactions are essential for distributed applications -- they provide modular execution to complement COM's modular programming. So, Microsoft implemented transaction management for both Microsoft® Windows® 95 and Microsoft® Windows NT™ operating systems.
In its first release, MS DTC works with only one resource manager: Microsoft® SQL Server™. It also inter-operates with several transaction processing monitors, including Encina, TopEnd, and Tuxedo®. MS DTC implements the OLE Transaction interfaces. All OLE Transaction interfaces are public so that any database system can become an OLE Transaction resource manager. In the future, Microsoft and other software companies will add other transactional resource managers, such as distributed object systems, transactional file systems, transaction queuing systems, and workflow management systems.
 The ACID Properties
Transactions are said to provide the ACID properties.
Atomicity
A transaction either commits or aborts. If a transaction commits, all of its effects remain. If it aborts, all of its effects are undone. Example: In renaming an object, the new name is created and the old name deleted (commit), or nothing changes (abort).
Consistency
A transaction is a correct transformation of the system state. It preserves the state invariants. Example: In adding an element to a doubly linked list, all four forward and backward pointers are updated.
Isolation
Concurrent transactions are isolated from the updates of other incomplete transactions. These updates do not constitute a consistent state. This property is often called serializability. Example: A second transaction traversing the doubly linked list mentioned in the consistency example will see the list before or after the insert, but will only see complete changes.
Durability
Once a transaction commits, its effects will persist even if there are system failures. Example: After the rename in the atomicity example, the object will have the new name even if the system fails and reboots right after the commit completes.
It is up to the application to decide what consistency is and to bracket its computation with Begin and Commit method calls to delimit these consistent transformations. Transactional resource managers provide Consistent, Isolated, and Durable transformations of the objects they manage. MS DTC manages transactions involving multiple resource mangers, perhaps distributed among multiple computers. MS DTC creates transaction objects, tracks migration of transactions among resource managers, and implements the two-phase commit protocol to make these transactions atomic and durable.
 Execution Scenarios
We have already discussed the end user's view of transactions: they are ACID execution units that either commit or abort. If a transaction commits, it effects are durable. If a transaction aborts, its effects are undone. Application programmers, resource managers, and transaction managers cooperate to provide this simple model. To be workable, the tasks of each of these participants must be simple. Let's look at the role of each of them.
The Application Programmer’s View of Transactions
 The application programmer's model of transactions is quite simple: programs either succeed or fail. The program begins a transaction, getting a transaction object. All subsequent work is associated with that transaction object. When the program reaches a consistent state, it calls the Commit method. If the Commit succeeds, the transaction is durably committed. If the Commit fails, the transaction is aborted. If the program finds that it cannot successfully finish the transaction, it may call the Abort method to undo the transaction's effects. This is a simple way to clean up complex failure cases.
If the program fails before it commits the transaction, the transaction manager will abort the transaction and tell each enlisted resource manager to undo the transaction's effects. If a computer or resource manager fails, the transaction will also be aborted. On the other hand, once the transaction has successfully committed, the resource managers and transaction manager will ensure that the transaction's effects are durable, even if there are subsequent failures.
The Resource Manager’s View of Transactions
 When a resource manager first comes on the scene, it contacts its local transaction manager to declare the resource manager's presence. Then the resource manager waits for execution requests from applications. When a request arrives tagged with a new transaction object, the resource manager enlists in the transaction by invoking the enlist method on the transaction object. By enlisting, the resource manager ensures that it will get callbacks from the transaction manager when the transaction commits or aborts. The resource manager then performs the transaction's requests. For example, the transaction might insert, delete, or update records in a relational database. The resource manager is careful to keep enough information so that it can either undo or redo the transaction. There are many ways to do this: keeping versions of data or keeping a log (journal) of the changes are two common techniques.
When the application commits the transaction, the transaction manager initiates the two-phase commit protocol. The transaction manager first asks each enlisted resource manager if it is prepared to commit the transaction. The resource manager must now prepare to commit -- it must make itself ready to either commit or abort the transaction. Typically, the resource manager records the old and new data in stable storage so that the resource manager will be able to recover even if the systems were to fail. If the resource manager cannot prepare successfully, it informs the transaction manager that it cannot prepare and the transaction manager aborts the transaction. If the resource manager can prepare, it does so, tells the transaction manager that it is prepared, and awaits the transaction manager's decision on whether to commit or abort the transaction.
Once prepared, a resource manager must wait until it gets a commit request or abort request from the transaction manager. Most transactions commit; a few transactions abort. Typically, the entire prepare and commit protocol completes in a fraction of a second. If there is a system or communication failure, the commit or abort notification may not arrive for minutes or hours. During this period, the resource manager is in-doubt about the outcome of the transaction. It does not know whether the transaction committed or aborted. While the resource manager is in-doubt about the transaction, it keeps the data modified by the transaction locked -- isolating these changes from any other transactions.
The discussion so far shows how distributed transactions are made atomic in a fault-free environment. Now we consider how MS DTC helps resource managers make transactions atomic and durable when a resource manager fails. If a resource manager fails, then when it restarts, the resource manager must reconstruct the committed state of the resources it manages. The reconstructed state must reflect all of the effects of committed transactions and none of the effects of aborted transactions. When a resource manager fails, all of its enlisted transactions are aborted except for those which prepared or committed prior to the failure. When the resource manager restarts, it asks the transaction manager about the outcome of the in-doubt transactions in which it enlisted. The transaction manager tells the resource manager the outcome of each in-doubt transaction and the resource manager commits or aborts these transactions accordingly.
In summary, the two-phase commit protocol combined with the resource managers' prepare and recovery routines make transactions atomic and durable.
The Transaction Manager’s View of Transactions
The Transaction Manager is the manager of transaction objects. It creates transaction objects and manages their atomicity and durability. Applications ask the transaction manager to create a transaction object by calling the transaction manager's BeginTransaction method. When a resource manager first participates in a transaction, it calls the transaction manager enlist method to enlist in the transaction. The transaction manager tracks the resource managers who enlist in the transaction. Later the application commits or aborts the transactions, or the transaction is aborted by a resource manager or a failure. Commit and Abort are additional methods on transaction objects. When asked to commit a transaction, the transaction manager initiates a two-phase commit protocol. During phase one, it asks all enlisted resource managers to prepare. Then, during phase two, the transaction manger tells the resource managers whether the transaction committed or aborted. The two-phase commit protocol has many optimizations. These include the read-only optimization and the transfer of commit optimization. MS DTC implements some of these optimizations, but the functionality remains the same: atomicity and durability.
The transaction manager keeps a log in safe storage on disk. The log is a sequential file that records transaction events. The transaction manager records transaction starts, enlistments, and commit decisions in the log. During normal processing, the transaction manager only writes the log. However, if the transaction manager fails, at restart it reads the log to reconstruct its most recent state. So, the transaction manager uses the log to make its state durable.
The transaction manager also provides an operator interface to manage transactions. It maintains performance counters that can be displayed using the system performance monitor. It records important operational events in the system log. These events can be displayed using the system event viewer. It has a graphical management interface that is integrated with the SQL Enterprise Manager. The graphical management interface lets the operator configure the system, view transactions, and abort or commit in-doubt transactions.
Distributed Transactions
The discussion so far has assumed that all the applications and resource managers were on a single computer (a single Windows system). MS DTC also supports transactions distributed across two or more Windows systems. Each system has a local transaction manager. All applications and resource managers talk to their local transaction managers. The transaction managers cooperate to manage transactions that span systems.
When a transaction first visits a new system (when the first request tagged with the transaction arrives at that system), the two systems involved in the request establish a relationship. The system making the request informs its local transaction manager that the transaction has an outgoing relationship to the transaction manager on the second system. Similarly, the system receiving the request informs its local transaction manager that the transaction has an incoming relationship with the transaction manager on the first system.
These outgoing-incoming relationships form a tree of transaction manager relationships called the transaction's commit tree. The enlisted resource managers are also members of this commit tree: they have an outgoing-incoming relationship to their local transaction manager.
When a distributed transaction commits or aborts, the prepare, commit and abort messages flow outward on the commit tree. Any node of the tree can unilaterally abort a transaction anytime before it agrees to the prepare request sent at phase one. Once a node has prepared, it remains prepared and in-doubt until the commit coordinator tells it to commit or abort the transaction. The root transaction manager of the commit tree is the global commit coordinator. It makes the decision to commit or abort the transaction and is never in doubt.
If a computer fails, then when it restarts, the transaction manager at that computer tries to determine the outcome of all in-doubt transactions in which it participated. The TM reads its log file to determine the outcomes of transactions for which it was the commit coordinator. For incoming transactions from other systems, the TM reads the log file to determine if it was previously notified of the transaction's outcome. For incoming transaction that remain in-doubt, the TM queries the incoming transaction manager to learn the transaction's outcome. The transaction manager also responds to queries from other transaction managers regarding in-doubt outgoing transactions sent to them. This is very similar to the protocol that transaction managers and resource managers follow at restart. The transaction manager determines the outcome of each in-doubt transaction and tells the resource managers the transaction's outcome when asked.
In-doubt transactions are especially troublesome for distributed transactions. System or communication failures can leave transactions in-doubt for a long time. While the transaction is in-doubt, the resources modified by the transaction remain locked and unavailable to others. MS DTC provides a way for the system operator to resolve transactions that remain in-doubt for too long. The operator can use a graphical management interface at the commit coordinator system to determine the transaction's outcome. The operator also can use the graphical management interface at the in-doubt system to force the in-doubt transaction to commit or abort. When the systems reconnect, MS DTC will detect these operator actions and flag inconsistent actions.
Concept Summary
Transactions are ACID (atomic, consistent, isolated, durable) modules of execution. They complement the COM program module structure. The Microsoft Distributed Transaction Coordinator (MS DTC) provides a transaction manager per computer that manages transactions at that computer. Applications call the transaction manager to begin a transaction. BeginTransaction returns a transaction object. The application includes the transaction object with requests to resource managers. When a resource manager first starts working on a transaction, it enlists in the transaction. When the application has made a consistent transformation of the state, it asks the transaction manager to commit the transaction.
MS DTC uses a two-phase commit algorithm in which (1) the transaction manager requests each enlisted resource manager to prepare to commit, and (2) if all successfully prepare, then the transaction manager broadcasts the commit decision. If any resource manager cannot prepare, the transaction manager broadcasts an abort decision to everyone involved in the transaction. While a resource manager is prepared, it is in-doubt about whether the transaction committed or aborted. The transaction manager keeps a sequential log so that its commit or abort decisions will be durable. If a resource manager or transaction manager fails, they reconcile in-doubt transactions when they reconnect.
For distributed transactions, each computer has a local transaction manager. When a transaction does work at multiple computers, the transaction managers track incoming and outgoing transactions. Each transaction manager performs all the enlistment, prepare, commit, and abort calls for local resource managers (ones on that computer). When committing a transaction distributed among several computers, the transaction manager sends prepare, commit, and abort messages to all its outgoing transaction managers. When a transaction manager is in-doubt about a distributed transaction, the transaction manager queries the incoming transaction manager. The root transaction manager is never in-doubt. If an in-doubt transaction persists for too long, the system operator can force the transaction to commit or abort.

When to Use MS DTC
This chapter describes what MS DTC provides to application developers. It describes when you should use MS DTC and when you should not use MS DTC.
What MS DTC Provides
The initial release of MS DTC allows:
applications to update data residing on two or more OLE Transaction-compliant resource managers easily and reliably. The client application may reside on a Windows ’95 or Windows NT system. The resource managers may reside on one or more Windows NT systems.
OLE Transaction-compliant resource managers to participate in transactions controlled by X/Open DTP XA-compliant transaction processing monitors such as Encina, TopEnd, and Tuxedo.
Appropriate Uses of MS DTC
It is appropriate to use MS DTC in the following ways.
Updating Two Databases from a Single Application
�
Figure 3.1	Updating Two Databases from a Single Application
MS DTC is useful when an application must update two or more independent but related databases that are controlled by different resource managers. Consider an order entry application that registers an order and generates a bill for the customer. Order information is kept in the Order Item database. Billing information is kept in the Billing database. Taking an order involves updating both the Order Item database and the Billing database. It is unacceptable to bill the customer and not register the order, or vice versa. The application developer can use MS DTC to ensure that these databases remain consistent by:
Starting an MS DTC transaction.
Enlisting the Order Item database and the Billing database on the transaction.
Updating each of the databases by invoking the appropriate SQL statements or database stored procedures.
Committing the MS DTC transaction
When the transaction commits, MS DTC ensures that the updates done to both databases are committed. In the event of a client application failure, a network connection failure, an Order Item database server failure, a Billing database server failure, or any combination of failures, MS DTC aborts the transaction and instructs the resource managers to undo the effects of the transaction from both databases.
�Updating a Database and a File from a Single Application
�
Figure 3.2	Updating a Database and a File from a Single Application
MS DTC is useful when an application must update different types of transaction-protected resources. Consider an order entry application that registers an order in an Order Item database and records a freight bill in a Freight Bill Image file. The application can use MS DTC to ensure that the database and image file remain consistent by:
Starting an MS DTC transaction.
Enlisting the Order Item database on the transaction.
Enlisting the Freight Bill Image file on the transaction.
Updating the order item databases by invoking the appropriate SQL statements or database stored procedures.
Inserting the freight bill image in the image file.
Committing the MS DTC transaction
When the transaction commits, MS DTC ensures that the updates done to the database and the image file are committed. In the event of a client application failure, a network connection failure, an Order Item database server failure, a Freight Bill Image file server failure, or any combination of failures, MS DTC aborts the transaction and instructs the resource managers to undo the effects of the transaction from both the database and the image file.
Updating a Geographically Distributed Database
�
Figure 3.3	Updating a Geographically Distributed Database
MS DTC is useful when an application must update a geographically distributed database. Consider an inventory database that has been partitioned into an Eastern Warehouse database and a Western Warehouse database. When an item is moved from one warehouse to the other, the item count in the source warehouse must be decreased and the item count in the destination warehouse must be increased. This can be done reliably using MS DTC.
�Updating a Database Partitioned for Scalability
�
Figure 3.4	Updating a Database Partitioned for Scaleability
MS DTC is useful when an application must update a database that has been partitioned for scaleability Consider a customer database that has been partitioned into a Northern Customers database and a Southern Customers database. Most business transactions only update a single database. However, if a customer from the northern region does business in the southern region, then both databases may need to be updated. The application can use MS DTC to keep the databases consistent.

�Using an OLE Transaction-compliant Resource Manager with an X/Open-compliant Transaction Processing Monitor
�
Figure 3.5	Using OLE Transaction Resource Managers with an X/Open DTP-compliant Transaction Processing Monitor
MS DTC permits OLE Transaction-compliant resource managers to participate in transactions controlled by X/Open DTP XA-compliant transaction processing monitors such as Encina, TopEnd, and Tuxedo. The XA Mapper makes an OLE Transaction-compliant resource manager look like an XA-compliant resource manager.
This facility can be used to perform distributed transactions that update OLE Transaction-compliant resource managers on Windows NT and other resource managers on other platforms. For example, an application can update an OLE Transaction-compliant resource manager on Windows NT and an XA-compliant database on UNIX.
�Inappropriate Uses of MS DTC
It is inappropriate to use MS DTC in the following circumstances.
Data Replication for Decision Support
Many customers are establishing data warehouses for their decision support applications. These customers need a way to replicate data from their operational database to their decision support database. MS DTC is not intended for replicating decision support data. Instead, use the data replication services provided with your relational database. Typically, these database replication services asynchronously propagate changes from the operational database to the decision support database. This is more efficient than updating both databases synchronously using MS DTC. Using the database replication service may also improve system availability. Database replication services permit the operational database to be updated when the decision support database is unavailable. Changes to the operational database are queued and applied to the decision support database when it becomes available. When MS DTC is used for replication, both databases must be available whenever the operational database is updated. Alternatively, applications that update the operational database, must tolerate decision support database failures. There must also be some way to re-synchronize the two databases following the failure.
MS DTC is appropriate for building a reliable queue for sending information from one system to another. An application could implement its own replication scheme using such a reliable queue. Whenever the application updated the operation database, it would queue an update request for the decision support database. A corresponding application on the data warehouses system would remove the update requests from the queue and update the decision support database. The applications would use MS DTC transactions to keep the distributed queue consistent.
Data Replication for High Availability
MS DTC is not appropriate for replicating a database for high availability. The issues described for data replication for decision support also apply for data replication for high availability. In both cases you should use the data replication services provided with your relational database.
Applications Which Tolerate Data Inconsistency
Some applications can tolerate inconsistent data. Other applications rely upon manual- or application-provided data reconciliation. These applications do not need MS DTC and need not pay the cost of coordinating a distributed transaction.
Application Programming Using MS DTC
This chapter describes how to write applications that use MS DTC. It describes how application programs can initiate transactions, pass these transactions to resource managers, and commit or abort the transactions. It describes how resource managers can initiate, participate in, and commit or abort transactions. It includes sample applications that use MS DTC transactions in these ways.
Transaction Initiation
MS DTC transactions may be initiated in four ways:
They can be initiated by an application program written in C or C++.
They can be initiated by a resource manager at the explicit request of the application. For example, a relational database that supports stored procedures might include a call in its stored procedure programming language that initiates an MS DTC transaction.
They can be initiated by a resource manager implicitly. For example, a database that supports stored procedures might implicitly initiate an MS DTC transaction when a stored procedure updates transaction-protected resources or when it invokes a remote stored procedure in another database.
They may be initiated in response to an X/Open transaction begun by an X/Open-compliant transaction processing monitor.
As the developer of a resource manager, you decide which forms of transaction initiation your resource manager will support.
We next consider each of these forms of MS DTC transaction initiation in more detail. Each form is illustrated with a sample application. All of the examples use the Microsoft SQL Server "pubs" database. They assume that identical copies of the pubs database are maintained on two systems. The programs update the address of an author on both databases under the control of an MS DTC distributed transaction.
Application Program-initiated Transactions
Most resource managers can participate in application program-initiated transactions. Application program-initiated transactions are attractive for three reasons:
The application program can invoke any OLE Transaction-compliant resource manager it wishes.
The application program can explicitly control the scope and duration of the transaction.
The application program can be coded in any programming language that supports the OLE Transaction interfaces for initiating and controlling MS DTC transactions. For the initial release of MS DTC, only C and C++ support these interfaces. The next release of Visual BASIC will also support these interfaces.
An application program-initiated transaction works as follows:
The application program connects to MS DTC and obtains a transaction dispenser interface that it uses to initiate transactions.
The application program opens the resource managers it wishes to use. For example, it might connect to relational databases using ODBC.
The application program initiates an MS DTC transaction by calling BeginTransaction and obtains a transaction object representing the transaction.
The application program propagates the transaction to each resource manager by invoking the resource manager’s transaction enlistment interface. For example, the application program would use the ODBC SetSQLConnectOption to propagate the MS DTC transaction object to resource managers that support ODBC. All subsequent work done on the ODBC connection is done under the auspices of the transaction. When the resource manager first sees the MS DTC transaction, it enlists in the transaction with its local MS DTC transaction manager. This permits the resource manager to participate in the two-phase commit protocol and to receive transaction commit or abort notifications from MS DTC.
The application program invokes the normal resource manager functions that update transaction-protected resource manager data. For example, the application might insert, delete, or update records in a relational database, or it might invoke a database stored procedure that modifies the relational database.
When the work of the transaction is complete, the application program calls Commit. In response to the Commit call, MS DTC uses the two-phase commit protocol to coordinate commitment of the transaction with all of the resource managers enlisted in the transaction. Alternatively, the application program could call Abort to undo the effects of the transaction. The application may then go on to perform more MS DTC transactions.
When the application program is done, it releases the transaction dispenser object and closes the ODBC connections.
Application programs that initiate MS DTC transactions must reside on a system on which either the Complete MS DTC Service or the MS DTC Client Utilities has been installed. The resource manager must reside on a system on which the Complete MS DTC Service has been installed. For information on installation and configuration of MS DTC, refer to chapter 2, "Setting Up an MS DTC System” in the MS DTC Administrator’s Guide and Programmer’s Reference.
The following example demonstrates how an application program can update two SQL Server databases under the control of an MS DTC transaction. The example introduces the OLE Transaction calls for initiating and committing MS DTC transactions and the ODBC call for propagating an MS DTC transaction from an application program to a relational database..
The client application connects to MS DTC by calling DtcGetTransactionManager. DtcGetTransactionManager returns an interface pointer to a transaction dispenser object. The transaction dispenser object is used to initiate subsequent transactions.

ITransactionDispenser *pTransactionDispenser;
ITransaction *pTransaction;
HRESULT	hr = S_OK ;

// Obtain an interface pointer from MS DTC proxy.
hr = DtcGetTransactionManager(0, 									// LPTSTR pszHost
									0, 									// LPTSTR pszTmName
		 							IID_ITransactionDispenser,			// REFIID rid
								 	0,									// DWORD	dwReserved1
								 	0, 									// WORD	 wcbReserved2
									0,									// void FAR * pvReserved2
									(void **)&pTransactionDispenser 	// void** ppvObject
) ;
if (FAILED (hr))
{
	printf("DtcGetTransactionManager failed: %x\n", hr);
 	exit (1);
}

It is not necessary for application programs to call either CoInitialize or OleInitialize. DtcGetTransactionManager does not depend upon these calls.
The transaction dispenser object can be used to create multiple transactions.
The application program connects to two databases using ODBC. These standard ODBC calls are not affected by using MS DTC.

// Establish connection to database on server#1
LogonToDB(&gSrv1);

// Establish connection to database on server#2
LogonToDB(&gSrv2);

void LogonToDB(DBCONN *ptr)
{
	RETCODE rc = 0;

	rc = SQLAllocConnect(gHenv, &(ptr->hdbc));

	if (ProcessRC("SQLAllocConnect",ptr,rc))
	{
		rc = SQLConnect(ptr->hdbc,
						(unsigned char *)(ptr->pszDSN),
						SQL_NTS,
						(unsigned char *)(ptr->pszUser),
						SQL_NTS,
						(unsigned char *)(ptr->pszPasswd),
						SQL_NTS
);

		ProcessRC("SQLConnect",ptr,rc);
	}
}

The application program begins an MS DTC transaction by invoking the ITransactionDispenser::BeginTransaction method on the transaction dispenser object obtained in step one. BeginTransaction returns a transaction object that represents the transaction.

// Initiate an MS DTC transaction

hr = pTransactionDispenser->BeginTransaction(
 NULL,					 		 	// [in] IUnknown __RPC_FAR *punkOuter,
 ISOLATIONLEVEL_ISOLATED, 		// [in] ISOLEVEL isoLevel,
 ISOFLAG_RETAIN_DONTCARE, 	// [in] ULONG isoFlags,
 NULL,						 	 	// [in] ITransactionOptions *pOptions,
 &pTransaction 				 		// [out] ITransaction__RPC_FAR
	 									 // 	 *__RPC_FAR *ppTransaction
) ;
		
if (FAILED (hr))
{	
	printf("BeginTransaction failed: %x\n",hr);
	exit(1);
}

The application program associates the transaction object with the ODBC database connections. This is done with the new ODBC enlistment interface that indicates that further work done on the ODBC connections is to be done under the auspices of the MS DTC transaction.

// Enlist each of the data sources in the transaction
Enlist(&gSrv1,pTransaction);
Enlist(&gSrv2,pTransaction);

//---	
void Enlist(DBCONN *ptr, ITransaction *pTransaction)
{
	RETCODE rc = 0;

	// Enlist database in the transaction
 rc = SQLSetConnectOption (ptr->hdbc, SQL_COPT_SS_ENLIST_IN_DTC,
									(UDWORD)pTransaction);

	ProcessRC("SQLSetConnectOption",ptr,rc);

}

The application program associates a statement handle with each ODBC database connection. These standard ODBC calls are not affected by using MS DTC. The application program uses the ODBC database connections to do work on behalf of the transaction.

// Generate the SQL statement to execute on each of the
// databases.
sprintf(SqlStatement,
		 "update authors set address = '%s' where au_id = '%s'",
		 gNewAddress,gAuthorID
);
	
// Perform updates on both of the DBs participating in
// the transaction
ExecuteStatement(&gSrv1,SqlStatement);
ExecuteStatement(&gSrv2,SqlStatement);

// --
void ExecuteStatement(DBCONN *ptr, char *pszBuf)
{
	RETCODE rc = 0;

	// Allocate an ODBC statement handle

	rc = SQLAllocStmt(ptr->hdbc,&(ptr->hstmt));
	ProcessRC("SQLAllocStmt",ptr,rc);
	
	// Execute the passed string as a SQL statement
 rc = SQLExecDirect(ptr->hstmt,
			(unsigned char *)pszBuf,SQL_NTS);
	
	ProcessRC("SQLExecDirect",ptr,rc);

	// Free the statement handle
	rc = SQLFreeStmt(ptr->hstmt, SQL_DROP);
	ptr->hstmt = SQL_NULL_HSTMT;

	ProcessRC("SQLFreeStmt",ptr,rc);
	
}

The application program calls the Commit method on the transaction object. MS DTC performs the two-phase commit protocol to commit the transaction. If any SQL Server database is unable to commit the transaction, the transaction is aborted and the transaction's effects are undone from all databases that were modified.��The ODBC database connections cannot be used until Commit completes and another SQLSetConnectOption call is made to enlist the ODBC connection in a new MS DTC transaction or in the NULL transaction. Do not reuse the ODBC connection before this is done. When the application completes the transaction, it releases the transaction object.

// Commit the transaction
hr = pTransaction->Commit(0,0,0);
if (FAILED(hr))
{
	printf("pTransaction->Commit() failed: %x\n",hr);
	exit(1);
}

// Release Transaction
pTransaction->Release();
if (FAILED(hr))
{
	printf("pTransaction->Commit() failed: %x\n",hr);
	exit(1);
}

When no more transactions are needed, the program releases the transaction dispenser object and closes the ODBC connections.

// release transaction dispenser
pTransactionDispenser->Release();

// Free ODBC handles
FreeODBCHandles(&gSrv1);
FreeODBCHandles(&gSrv2);

// Free the global ODBC environment handle.
SQLFreeEnv(gHenv);

// ---
void FreeODBCHandles(DBCONN *ptr)
{
	SQLDisconnect(ptr->hdbc);
	SQLFreeConnect(ptr->hdbc);
	
	ptr->hdbc = SQL_NULL_HDBC;
	ptr->hstmt = SQL_NULL_HSTMT;
}

�Resource Manager Explicitly Initiated Transactions
Some OLE Transaction-compliant resource managers provide facilities for initiating and committing MS DTC transactions from within the resource manager. For example, a relational database system might provide stored procedure programming language calls for beginning, committing, and aborting MS DTC transactions. A relational database might also provide dynamic SQL calls for beginning, committing, and aborting MS DTC transactions.
Resource manager explicitly initiated transactions are attractive for three reasons:
Application programming is easy because the resource manager can provide very simple interfaces for beginning, committing, and aborting distributed transactions.
The cost of committing a transaction may be lower when the resource manager begins and commits the transaction. When the resource manager initiates the MS DTC transaction, the transaction manager on the resource manager’s system always acts as the transaction coordinator. This can reduce the cost of committing the transaction because the transaction manager on the client application's system need not participate in the two-phase commit protocol.
Setup and administration are easy because there is no need to install MS DTC on client machines.
Microsoft SQL Server is an example of a resource manager that supports explicit initiation of MS DTC transactions. We use it to illustrate how other resource managers might exploit MS DTC transactions.
SQL Server’s Transact-SQL programming language has been extended to include the BEGIN DISTRIBUTED TRANSACTION statement. A SQL Server explicitly initiated transaction works as follows:
When a stored procedure invokes the Transact-SQL BEGIN DISTRIBUTED TRANSACTION statement, SQL Server invokes the MS DTC BeginTransaction method and obtains a transaction object representing the transaction. After obtaining the transaction object, SQL Server enlists in the transaction with its local MS DTC transaction manager. This permits SQL Server to participate in the two-phase commit protocol and to receive transaction commit or abort notifications from MS DTC.
All database updates, inserts, and deletes performed by the stored procedure are done under the auspices of the MS DTC transaction. If the stored procedure invokes a remote stored procedure in another database, SQL Server propagates the MS DTC transaction with the call to the remote stored procedure. All updates to both databases are protected by the MS DTC transaction.
When the work of the transaction is complete, the stored procedure that initiated the transaction calls the Transact-SQL COMMIT TRANSACTION statement. In response to the COMMIT TRANSACTION call, SQL Server invokes the MS DTC Commit method. MS DTC uses the two-phase commit protocol to coordinate commitment of the transaction. Alternatively, the stored procedure could call the Transact-SQL ROLLBACK TRANSACTION statement. In this case, SQL Server calls the MS DTC Abort method to undo the effects of the transaction.
The stored procedure may then go on to perform more transactions.
A resource manager that initiates and participates in MS DTC transactions must reside on a system on which the Complete MS DTC Service has been installed. For information on installation and configuration of MS DTC, refer to chapter 2, "Setting Up an MS DTC System” in the MS DTC Administrator’s Guide and Programmer’s Reference.
The following example illustrates how a distributed MS DTC transaction can be used within a stored procedure to ensure that two SQL Server databases are updated consistently. The stored procedure explicitly initiates the distributed transaction using the Transact-SQL BEGIN DISTRIBUTED TRANSACTION statement.

/***/
/* Using BEGIN DISTRIBUTED TRANSACTION for explicit */
/* server initiated transactions. */
/***/
CREATE PROCEDURE change_addr(@au_id varchar(11),
 @addr varchar(40),
 @toserver varchar(12)) AS
declare @execstr varchar(200)

-- 1. Start a Transaction
BEGIN DISTRIBUTED TRANSACTION

-- 2. Change local author information
update authors set address = @addr where au_id = @au_id

-- 3. Make a string with the server name, procedure to
-- execute and parameters
select @execstr = @toserver '.pubs..update_addr '

-- 4. Update remote server
-- (Note that these servers must be added to each
-- other via sp_addserver and sp_addremotelogin)
exec @execstr @au_id, @addr

-- 5. Commit the MS DTC transaction
COMMIT TRANSACTION

/***/
/* Stored procedure to update an author's address on */
/* the remote server.											*/
/***/
CREATE PROCEDURE update_addr(@au_id varchar(11),
								@addr varchar(40)) AS
	update authors set address = @addr
	where au_id = @au_id

�Resource Manager Implicitly Initiated Transactions
Some OLE Transaction resource managers may wish to implicitly initiate MS DTC transactions on behalf of applications.
For example, Microsoft wanted to provide a way for an existing Microsoft SQL Server stored procedure to use an MS DTC transaction without requiring changes to the existing stored procedure. We did this by having SQL Server implicitly initiate MS DTC transactions when needed.
There may be other uses for implicitly initiated MS DTC transactions. For example, a database system might automatically initiate an MS DTC transaction when no distributed transaction is in force and a stored procedure in one database system invokes a remote stored procedure in another database system. By doing this, the database system protects the work done in both databases using a single distributed transaction.
Resource manager implicitly initiated transactions are attractive for four reasons:
Application programming is extremely simple. Resource managers automatically initiate distributed transactions when they are needed.
A resource manager could permit existing stored procedures to exploit MS DTC transactions. For example, Microsoft SQL Server starts an MS DTC transaction when a stored procedure calls the existing Transact-SQL BEGIN TRANSACTION statement and the database administrator has enabled the “Remote Procedure Transactions” option.��The “Remote Procedure Transactions” option controls whether SQL Server initiates an MS DTC distributed transaction or an existing SQL Server local transaction. The option is present for compatibility. When the option is reset, which it is by default, the old behavior is preserved and no MS DTC transaction is initiated. When the option is set, SQL Server starts an MS DTC transaction.
The cost of committing a transaction may be lower when the resource manager begins and commits the transaction. When the resource manager initiates the MS DTC transaction, the transaction manager on the resource manager’s system always acts as the transaction coordinator. This can reduce the cost of committing the transaction because the transaction manager on the client application's system need not participate in the two-phase commit protocol.
Setup and administration are easy because there is no need to install MS DTC on client machines.
Microsoft SQL Server is an example of a resource manager that supports implicit initiation of MS DTC transactions. A SQL Server implicitly initiated transaction works as follows:
When a stored procedure invokes the Transact-SQL BEGIN TRANSACTION statement, SQL Server determines whether the “Remote Procedure Transactions” option has been enabled by the database administrator. If the option has been enabled, SQL Server invokes the MS DTC BeginTransaction method and obtains a transaction object representing the transaction. After obtaining the transaction object, SQL Server enlists in the transaction with its local MS DTC transaction manager. This permits SQL Server to participate in the two-phase commit protocol and to receive transaction commit or abort notifications from MS DTC.
All database updates, inserts, and deletes performed by the stored procedure are done under the auspices of the MS DTC transaction. If the stored procedure invokes a remote stored procedure in another database, SQL Server propagates the MS DTC transaction with the call to the remote stored procedure. All updates to both databases are protected by the MS DTC transaction.
When the work of the transaction is complete, the stored procedure calls the Transact-SQL COMMIT TRANSACTION statement. In response to the COMMIT TRANSACTION call, SQL Server calls the MS DTC Commit method. MS DTC uses the two-phase commit protocol to coordinate commitment of the transaction. Alternatively, the stored procedure could call the Transact-SQL ROLLBACK TRANSACTION statement. In this case, SQL Server calls the MS DTC Abort method to undo the effects of the transaction.
The stored procedure may then go on to perform more transactions.
A resource manager that initiates and participates in MS DTC transactions must reside on a system on which the Complete MS DTC Service has been installed. For information on installation and configuration of MS DTC, refer to chapter 2, "Setting Up an MS DTC System,” in the MS DTC Administrator’s Guide and Programmer’s Reference.

The following example illustrates how Microsoft SQL Server can be used to implicitly begin an MS DTC transaction. First sp_configure is used to enable the “Remote Procedure Transactions” option.

SP_CONFIGURE “REMOTE PROC TRANS” 1
RECONFIGURE WITH OVERRIDE
Other resource managers may wish to provide a similar means for existing applications to exploit MS DTC compatible.

/***/
/* Using the server configuration parameter for */ implicit server-initiated transactions. */
/***/

CREATE PROCEDURE change_addr(@au_id varchar(11),
 @addr varchar(40),
 @toserver varchar(12)) AS

declare @execstr varchar(200)

-- 1. Start a Transaction. This transaction will become
-- an MS DTC distributed transaction when the remote
-- stored procedure is called because the server
-- configuration parameter is set.

BEGIN TRANSACTION

-- 2. Change local author information

update authors set address = @addr where au_id = @au_id

-- 4. Make a string with the server name and procedure
-- to execute

select @execstr = @toserver '.pubs..update_addr '

-- 5. Update remote server.
-- (Note that these servers must be added to each other
-- via sp_addserver and sp_addremotelogin)

exec @execstr @au_id, @addr

-- 6. Commit the MS DTC transaction

COMMIT TRANSACTION

X/Open Transaction Processing Monitor-initiated Transactions
�Transaction Propagation
This section discusses how application programs and resource managers propagate transactions. It focuses on how transaction propagation affects the application. In chapter 5 we discuss how resource managers implement transaction propagation using the OLE Transaction interfaces.
Application Program-to-Resource Manager Transaction Propagation
Transaction propagation between an application program and a resource manager is very common. It occurs when an application program initiates a transaction, tells the resource manager to enlist in the transaction, and directs the resource manager to do work under the protection of the transaction.
�
Figure 4.1	Application Program-to-Resource Manager Transaction Propagation
Many resource managers are implemented like the one shown above. The resource manager is composed of two parts. It includes a resource manager server process (RM) that manages the resource. It includes a resource manager proxy (RM Proxy) that implements the application programming interfaces through which application programs invoke resource manager functions.. The RM Proxy is commonly implemented as a DLL. When the application program invokes a resource manager function, the RM Proxy validates the input parameters, marshals the parameters into a request message, and sends the request message to the RM. When the RM receives the request message, it unmarshals the input parameters and performs the requested operation. When the operation is complete, the RM marshals the output parameters into a response message, and sends the response message to the RM Proxy. The RM Proxy unmarshals the response message and returns the output parameters to the application program.
As the resource manager developer, you are responsible for propagating the transaction from the application program to the resource manager. You choose the syntax of the RM Proxy API that the application uses to pass the transaction to your RM Proxy. You implement the code to propagate the transaction from the RM Proxy to the RM. MS DTC provides an OLE Transaction export interface which RM Proxy uses to marshal a transaction object. Your RM Proxy sends the marshaled form of the transaction object to the RM. MS DTC provides an OLE Transaction import interface that your RM uses to unmarshal the transaction object. After unmarshaling the transaction object, your RM enlists in the transaction. A database resource manager that used the standard ODBC syntax for passing a transaction between the application program and the RM Proxy would work as follows:
The application initiates the transaction by calling the OLE Transactions BeginTransaction method. In response, the application receives a transaction object that represents the transaction.
The application passes the transaction to the RM Proxy by calling the ODBC SQLSetConnectOption statement. The parameters to the SQLSetConnectOption statement include the ODBC connection handle and the transaction object.
The RM Proxy marshals the transaction object by calling the OLE Transaction export interface. The RM Proxy places the marshaled transaction object into a request message and sends the request message to the RM.
The RM takes the marshaled transaction object from the request message and unmarshals it by calling the OLE Transaction import interface. The import interface returns a transaction object to the RM. The OLE Transaction export and import mechanisms are described in detail in chapter 5.
The RM enlists in the imported transaction object. By enlisting on the transaction, the RM enrolls itself in the two-phase commit protocol.
The application program performs normal resource manager operations such as inserting, updating, or deleting records in a relational database. These operations are performed under the protection of the transaction.
When the application program calls Commit, MS DTC uses the two-phase commit protocol to coordinate commitment of the transaction. MS DTC will invoke the RM at phase one to prepare the transaction and at phase two to commit the transaction.
You may choose whatever application program interface you wish for propagating transactions from the application program to your resource manager. For Microsoft SQL Server, we have chosen to associate the transaction with the ODBC or DB-Library database connection. The SQLSetConnectOption API is used with ODBC connections The dbenlisttrans API is used with DB-Library connections. Once a transaction is associated with a connection, it remains associate with the connection until the next SQLSetConnectOption or dbenlisttrans call.
Other alternatives are possible. For example, rather than associating a transaction with a connection, you could insist that the transaction be passed as a parameter to every resource manager call. If you do this, you should ensure that you only export each transaction once, when it is first used.
Resource Manager-to-Resource Manager Transaction Propagation
Some resource managers may wish to propagate MS DTC transactions from one OLE Transaction-compliant resource manager to another.
�
Figure 4.3	Resource Manager-to-Resource Manager Transaction Propagation
Transaction propagation from resource manager to resource manager is useful when a stored procedure in one database invokes a remote stored procedure in another database. It is also useful when a distributed update, insert, or delete alters data controlled by two or more resource managers. Finally, it is useful if a resource manager permits forwarding of updates to another type of resource manager. For example, a relational database might update a database table and then forward an insert to a transaction-protected queuing system.
Microsoft SQL Server is an example of a resource manager that propagates transactions from resource manager to resource manager. When a SQL Server stored procedure calls a remote stored procedure, SQL Server automatically propagates the MS DTC transaction from the calling SQL Server to the called SQL Server. If the called stored procedure invokes yet another remote stored procedure, the transaction is propagated to it also. This ensures that all databases remain consistent.
If a resource manager encounters an error while propagating a transaction, it normally aborts the entire transaction. In the example above, if resource manager RM #1 cannot propagate the transaction to resource manager RM #2, it will abort the transaction. This might occur if the network connection between the two systems fails. When the transaction is aborted, all work done on behalf of the transaction is undone.
Resource Manager-to-Application Program Transaction Propagation
Some resource managers are capable of calling application code from within the resource manager. This permits the application programmer to perform operations that the resource manager and its stored procedure programming language do not directly support. If your resource manager supports this capability, you may wish to provide a way to propagate transactions from your resource manager to the application.
�
Figure 4.4	Resource Manager-to-Application Program Transaction Propagation
For example, your resource manager could provide a callback that returns the current transaction to the application program. The callback might have an interface such as this:

int rm_getdtcxact (SRVPROC *srvproc, void **ppv);
This interface returns a pointer to the current transaction object through ppv. If no transaction is active, ppv is NULL. The interface returns SUCCEED if successful, or FAIL if the server callback was not registered in the server. (This would only happen due to a DLL mismatch.)
Application Program-to-Application Program Transaction Propagation
For the initial release of MS DTC, we chose not to document how an application programmer can propagate a transaction from one application program to another.
�
Figure 4.2	Application Program-to-Application Program Transaction Propagation
We took this approach because we believe that transaction propagation between application components should be handled by the system. The database system, transaction processing monitor, object request broker, or queuing system should do transaction propagation on behalf of the application.
Although we did not document how an application programmer can propagate a transaction from one application program to another, all of the facilities are present in MS DTC today to do this. An application programmer could use the transaction propagation mechanisms described in this document to propagate transactions between application programs. The application program which initiated the transaction would export the transaction using the OLE Transactions export mechanisms. The application program which received the transaction would import the transaction using the OLE Transactions import mechanisms. An application program that imports a transaction could export it to yet another application program. Any application program which imports a transaction could enlist in the transaction as if it were a resource manager. Like a resource manager, the application program would participate in the two-phase commit protocol. It would receive a prepare notification at phase one and a commit notification at phase two of the two-phase commit protocol. Any enlisted application program could abort the transaction by calling Abort on the transaction object or by responding with an E_FAIL when asked to prepare at phase one.
Future Microsoft products will incorporate transaction propagation between application components . When we do this, we will permit any application component participating in the transaction to abort the transaction. This will enable an application component to abort a transaction when it cannot complete its part of the transaction correctly. We will permit an application component to prevent a transaction from committing prematurely. An application component may use this facility when it performs a multi-step operation to ensure that the transaction does not commit before the entire operation is complete.
Transaction Commit and Abort
The rules for committing and aborting MS DTC transactions are simple.
Transaction Commit
The party who called BeginTransaction is the only party who can call Commit. No other participant in the transaction can commit the transaction.
An application program should not call Commit while a resource manager operation is outstanding for the transaction. An application program which invokes asynchronous operations must wait for all asynchronous operations to complete before committing the transaction. An application program which violates this rule runs the risk of committing the transaction prematurely. MS DTC does nothing to prevent transactions from committing prematurely. Resource managers must be capable of handling premature commit requests. If a resource manager receives a commit request while doing work on behalf of a transaction, it can either abort the transaction or complete the request before committing the transaction.
Transaction Abort
Any participant in the transaction can abort the transaction. The transaction initiator may abort the transaction at any time by calling Abort so long as it has not called Commit. Any resource manager enlisted in the transaction may abort the transaction by calling Abort any time before responding “prepared” at phase one of the two-phase commit protocol. A resource manager may also abort the transaction at phase one of the two-phase commit protocol by responding E_FAIL to the prepare request from the transaction manager.
OLE Transactions
This chapter introduces OLE Transactions. It explains what OLE Transactions is and why Microsoft developed OLE Transactions. It describes the transaction model which OLE Transactions supports. It introduces the OLE Transactions interfaces. It traces the life of an OLE Transaction and describes how transactions are initiated, propagated from program to program, and committed. Finally, it describes how transactions are recovered following a failure.
Introduction to OLE Transactions
OLE Transactions
OLE Transactions is Microsoft’s interface standard for transaction management. OLE Transactions defines the interfaces that applications, resource managers, and transaction managers use to perform transactions. Applications use OLE Transaction interfaces to initiate, commit, abort, and inquire about transactions. Resource managers use OLE Transaction interfaces to enlist in transactions, to propagate transactions from process to process or from system to system, and to participate in the two-phase commit protocol.
�
Figure 5.1	OLE Transactions

Relationship to Other Transaction Standards
X/Open DTP
The X/Open Distributed Transaction Processing (X/Open DTP) group has defined a number of transaction processing standards. The two most relevant to OLE Transactions are the TX and XA standards.
�
Figure 5.2	X/Open DTP
The X/Open DTP TX standard defines the application programming interfaces which an application program uses to communicate with the transaction manager. Application programs use these calls to begin, commit, and rollback transactions.
The X/Open DTP XA standard defines the application programming interfaces which a resource manager uses to communicate with a transaction manager. The XA interfaces enable resource managers to join transactions, to perform two-phase commit, and to recover in-doubt transactions following a failure.
We considered adopting the X/Open DTP standards but decided that OLE Transactions was required for the following reasons:
Microsoft’s computing model employs distributed, transaction-protected, object-based components that communicate using OLE interfaces. Our transaction interfaces needed to be object based to fit this model. The OLE Transaction standard is object based, while the X/Open standard is not.
We intend to extend the transaction model to support a wide variety of transaction-protected resources. This includes documents, images, voice, queued messages, workflow and other non-database resources. To do this, we must extend the transaction model to provide richer transaction capabilities. OLE Transactions permits us to make these extensions.
OLE Transactions supports multi-threaded programs. A program and its threads can create and manage as many concurrent transactions as they wish. XA is oriented toward a single thread of control.
The existing X/Open standard has known shortcomings. The standard is loosely written. Products that purport to conform to the standard differ among themselves. There is no mechanism in the standard for supporting heuristic transaction outcomes. The standard does not support recovery that is initiated by the resource manager; therefore, all recovery must be initiated by the transaction manager. OLE Transactions permits us to remedy these shortcomings.

MS DTC provides a measure of interoperability with products that comply with the X/Open DTP XA standard. The MS DTC XA Mapper permits an OLE Transaction-compliant resource manager to participate in a transaction coordinated by an XA-compliant transaction manager.
�
Figure 5.2	MS DTC XA Mapper Support for X/Open XA
OSI Transaction Processing Format and Protocol
The International Standards Organization (ISO) has defined a standard that permits transaction managers from different vendors to interoperate. This standard is the Open Systems Interconnect-Transaction Processing Format and Protocol (OSI-TP FAP). The OSI-TP FAP defines the message formats and protocols for doing two-phase commit coordination between one transaction manager and another. Although some transaction managers support OSI-TP, all successful transaction managers rely upon their own proprietary two-phase commit protocols. As a result, the OSI-TP standard has relatively little support in the industry. MS DTC does not support OSI-TP.
�OLE Transaction Model
Transaction Model
OLE Transactions supports conventional flat transactions.
A transaction may be initiated by a client on a Windows ’95 or a Windows NT system. The transaction initiator is the only one who may commit the transaction. The transaction initiator may abort the transaction at any time by calling Abort, provided it has not called Commit.
The client who initiates a transaction may propagate the transaction to one or more resource managers. These resource managers may reside on a single Windows NT system or they may be distributed across a network of Windows NT systems. A resource manager may propagate the transaction to other resource managers. Any resource manager that participates in the transaction may abort the transaction.
In future releases we intend to extend the OLE Transaction model:
We plan to support transactions that can retain locks and cursors across transaction boundaries.
We plan to extend the transaction model so that an application component invoked as part of a larger transaction can abort and undo its work without causing the entire transaction to abort. This is related to the notion of sub-transactions.
We plan to support distributed two-phase commit with non-Microsoft platforms.
We plan to support heuristic commit or abort of in-doubt transactions. Currently, the system administrator must resolve in-doubt transactions using the MS DTC administrative interface.
Commit Coordination
MS DTC uses the Presumed Abort two-phase commit protocol. This protocol is described in the book TRANSACTION PROCESSING: Concepts and Techniques. Please refer to it to learn more about the two-phase commit protocol.
MS DTC supports the following two-phase commit optimizations.
Read-Only Commit Optimization
MS DTC permits resource managers that have read but not updated transaction-protected data to reply “read-only” at phase one. In this case, the transaction manager will not deliver the second phase notification to the resource manager. This optimization reduces the expense of committing the transaction, but it also reduces the degree of isolation from degree three to degree one. If a resource manager wishes to provide degree three isolation, it must hold its locks until phase two of commit. A resource manager that releases its locks and replies “read only” at phase one is reduced to providing degree one isolation.
The “read-only” optimization is also used between transaction managers to optimize the commitment of whole sub-trees of the transaction tree. A transaction manager replies “read-only” if all of the resource managers and transaction managers subordinate to it reply “read-only.” This signifies that this transaction manager and the entire sub-tree it controls need not receive notification at phase two of commit.
Delegated Commit Optimization
MS DTC permits commit coordinator responsibility to be delegated from the coordinating transaction manager to one of its subordinate transaction managers or resource managers. Commit coordinator delegation occurs when the coordinating transaction manager detects that only one subordinate resource manager or transaction manager is enlisted in the transaction.
The coordinating transaction manager delegates commit coordinator responsibility to the resource manager when both of the following conditions are true:
No subordinate transaction manager is enlisted in the transaction.
Only one resource manager is enlisted in the transaction.
In this case, the coordinating transaction manager sets fSinglePhase when invoking the ITransactionResourceAsync::PrepareRequest method at phase one. This instructs the resource manager that it should act as the transaction coordinator.
MS DTC delegates commit coordinator responsibility to the subordinate transaction manager when both of the following conditions are true:
No resource manager is enlisted in the transaction with the current coordinating transaction manager.
Only one subordinate transaction manager is enlisted in the transaction.
In this case, the coordinating transaction manager sends a “delegated commit” message in place of the phase one message. The “delegated commit” message transfers commit coordinator responsibility from the current coordinating transaction manager to its subordinate transaction manager. This optimization is applied recursively. A transaction manager that receives commit coordinator responsibility may delegate commit coordinator responsibility to its subordinate transaction manager or resource manager..
�Overview of the OLE Transaction Interfaces
OLE Transactions is based upon the Component Object Model (COM). If you are not familiar with COM you may wish to review the book Inside OLE, second edition, before proceeding.
OLE Transaction consists of a handful of OLE Transaction object classes. Each OLE Transaction object class contains one or more OLE Transaction interfaces. Unlike some other object systems, a COM object class may contain two or more interfaces. OLE Transactions makes use of this COM feature.
Each OLE Transaction interface contains one or more OLE Transaction method. OLE Transaction “methods” are sometimes referred to as “functions” or “member functions." OLE Transactions also consists of helper functions that are implemented as conventional application programming interfaces.
All OLE Transaction objects and interfaces are implemented by the MS DTC Proxy DLL.
This section provides an overview of the OLE Transactions object classes and their interfaces. Chapter 7 provides a detailed description of the interfaces.
OLE Transactions Interfaces
The OLE Transaction interfaces and APIs can be divided into five groups based upon the functions they provide:
Utility Interfaces and APIs�The utility interfaces and APIs include the API for establishing the initial connection to MS DTC and the interface for locating the MS DTC Proxy core object given a transaction object.
Transaction Initiation and Control Interfaces�These are the interfaces that application programs and resource managers use to begin, commit, and abort transactions and to determine the status of transactions.
Transaction Propagation Interfaces�These are the interfaces that RM Proxies and resource managers use to propagate transactions between processes and between systems.
Resource Manager Interfaces�These are the interfaces that transaction managers and resource managers use to communicate. The resource manager uses these interfaces to enlist in transactions and to recover transactions following a failure. The resource manager implements one of these interfaces as a callback interface. The resource manager is called on this interface if the transaction manager fails.
Transaction Coordination (Two-phase Commit) Interfaces�These are the interfaces that transaction managers and resource managers use to perform the two-phase commit protocol.
�Utility Interfaces and APIs
The utility interfaces and APIs include the API for establishing the initial connection to MS DTC and the interface for locating the MS DTC Proxy core object given a transaction object
DtcGetTransactionManager API
Implemented by:�MS DTC Proxy��Object�N/A��Called by:�Application programs and resource managers.��Description:�This is typically the first MS DTC call that application programs and resource managers make when using MS DTC. This helper API establishes the initial connection to MS DTC. It returns an interface pointer to the MS DTC Proxy core object. This is the root or central MS DTC object.��IGetDispenser Interface
Implemented by:�MS DTC Proxy��Object�Transaction object��Called by:�RM Proxy��Description:�This interface contains a single method IGetDispenser::GetDispenser. The GetDispenser method is used by procedures that are passed a transaction object as a parameter and that need to obtain an interface on the MS DTC Proxy core object.
For example, the RM Proxy uses this method to implement its transaction enlistment interface. Application programs call the transaction enlistment interface and pass a transaction object. The RM Proxy uses the GetDispenser method on the transaction object to locate the interfaces on the MS DTC Proxy core object.���Transaction Initiation and Control Interfaces
These are the interfaces that application programs and resource managers use to begin, commit, and abort transaction, and to determine the status of transactions.
ITransactionDispenser Interface
Implemented by:�MS DTC Proxy��Object�MS DTC Proxy core object��Called by:�Application programs and resource managers that initiate transactions.��Description:�This interface contains two methods. The BeginTransaction method creates new transaction objects. The GetOptionsObject method creates new transaction options objects.��ITransactionOptions Interface
Implemented by:�MS DTC Proxy��Object�Transaction options object��Called by:�Application programs and resource managers that initiate transactions.��Description:�This interface contains methods that control the attributes of new transactions such as their time-out periods and descriptions.��ITransaction Interface
Implemented by:�MS DTC Proxy��Object�Transaction object��Called by:�Application programs and resource managers that commit and abort transactions.��Description:�This interface contains the Commit and Abort methods. It also contains a method that returns status information about a transaction.��TransactionOutcomeEvents Interface
Implemented by:�Application program��Object�N/A��Called by:�MS DTC Proxy��Description:�This is a callback interface implemented by the application program. It is used by application programs that require asynchronous notification about transaction outcomes. The application registers this interface with the connection point mechanism. ���Transaction Propagation Interfaces
These are the interfaces that the RM Proxy and resource manager use to propagate transactions between processes and between systems.
ITransactionImportWhereabouts Interface
Implemented by:�MS DTC Proxy��Object�MS DTC Proxy core object��Called by:�Resource manager��Description:�The resource manager uses this interface to retrieve an opaque address called the Whereabouts from its transaction manager. The Whereabouts describes the location of the transaction manager. The resource manager sends the Whereabouts to the RM Proxy. The RM Proxy sends the Whereabouts to its transaction manager. The Whereabouts allows the transaction manager on the RM Proxy’s system to locate the transaction manager on the resource manager’s system.
The Whereabouts is an essential part of the transaction propagation mechanism. However, if you found this description confusing, do not be alarmed. The transaction propagation mechanism is fully described in the “Life of an OLE Transaction” section that follows.��ITransactionExportFactory Interface
Implemented by:�MS DTC Proxy��Object�MS DTC Proxy core object��Called by:�RM Proxy��Description:�The RM Proxy uses this interface to create a new export object. The export object represents the connection between an RM Proxy and a resource manager. The export object is used to propagate transactions between the RM Proxy’s system and the resource manager’s system. The transaction propagation mechanism is fully described in the “Life of an OLE Transaction” section that follows..��ITransactionExport Interface
Implemented by:�MS DTC Proxy��Object�Export object��Called by:�RM Proxy��Description:�The RM Proxy uses this interface to marshal a transaction object. The RM Proxy calls this interface and passes a transaction object. The RM Proxy is returned an opaque marshaled form of the transaction object called a transaction cookie. The RM Proxy sends the transaction cookie to the resource manager. This is referred to as “exporting” the transaction.��ITransactionImport Interface
Implemented by:�MS DTC Proxy��Object�MS DTC Proxy core object��Called by:�Resource manager��Description:�The resource manager uses this interface to transform an imported transaction cookie into a transaction object. The resource manager calls this interface and passes an opaque marshaled form of the transaction object called a transaction cookie. The resource manager is returned a transaction object. This is referred to as “importing” the transaction. After importing the transaction, the resource manager uses the IResourceManager::Enlist method to enlist in the transaction.���Resource Manager Interfaces
Transaction managers and resource managers use these interfaces to communicate. The resource manager uses these interfaces to enlist in transactions and to recover transactions following a failure. The resource manager implements one of these interfaces as a callback interface. The resource manager is called on this interface if the transaction manager fails. This informs the resource manager that it must perform recovery.
IResourceManagerFactory Interface
Implemented by:�MS DTC Proxy��Object�MS DTC Proxy core object��Called by:�Resource manager��Description:�This interface contains a single method that is used to create a new resource manager object. The resource manager object represents the active connection between the resource manager and the transaction manager. Resource managers use this interface to register themselves with the transaction manager.��IResourceManager Interface
Implemented by:�MS DTC Proxy��Object�Resource manager object��Called by:�Resource manager��Description:�The resource manager uses this interface to enlist in transactions. Following a failure, the resource manager uses this interface to determine the outcome of in-doubt transactions.��IResourceManagerSink Interface
Implemented by:�Resource manager��Object�N/A��Called by:�MS DTC Proxy��Description:�This is a callback interface implemented by the resource manager. The interface is passed as a parameter to IResourceManagerFactory::Create and registered in the resource manager object. The MS DTC Proxy calls the resource manager’s IResourceManagerSink callback interface if the transaction manager fails. This informs the resource manager that it must perform recovery.���Transaction Coordination (Two-phase Commit) Interfaces
These are the interfaces that the transaction manager and resource manager use to perform the two-phase commit protocol.
ITransactionResourceAsync Interface
Implemented by:�Resource manager��Object�N/A��Called by:�MS DTC Proxy��Description:�This is a callback interface implemented by the resource manager. The transaction manager invokes this callback interface to deliver phase one and phase two notifications to the resource manager. The communication protocol is asynchronous. The resource manager should immediately reply to the callback to acknowledge its receipt. Only then should the resource manager do the work to prepare, commit, or abort the transaction ��IPrepareInfo Interface
Implemented by:�MS DTC Proxy��Object�Enlistment object��Called by:�Resource manager��Description:�The resource manager uses this interface to retrieve prepare information from the transaction manager. The resource manager writes this prepare information to its log file when preparing at phase one. The prepare information is only needed if failure recovery is necessary. During recovery, the resource manager identifies the transactions that were “prepared” but not yet “committed” or “aborted” at the time of the failure. The resource manager is “in-doubt” about the outcome of these transactions. The resource manager provides the prepare information for these in-doubt transactions to the transaction manager. The transaction manager uses the prepare information to locate the in-doubt transactions, determine their outcomes, and return the their outcomes to the resource manager. This permits the resource manager to resolve its in-doubt transactions.��ITransactionEnlistmentAsync Interface
Implemented by:�MS DTC Proxy��Object�Enlistment object��Called by:�Resource manager��Description:�The resource manager uses this interface to notify the transaction manager that it has prepared the transaction at phase one, and committed or aborted the transaction at phase two.���OLE Transactions Objects
There are six OLE Transaction objects.
MS DTC Proxy Core Object�This is the root or central MS DTC object. It provides many essential MS DTC Proxy interfaces. For example, it provides the interfaces for creating transaction objects, transaction options objects, export objects, and resource manager objects.
Transaction Object�This object represents the MS DTC transaction.
Transaction Options Object�This object contains transaction attribute information such as the time-out for the transaction and the name of the transaction. The transaction options object is passed as a parameter to the ITransactionDispenser::BeginTransaction method when creating a new transaction. The transaction attributes contained in the transaction options object are inherited by the newly created transaction object.
Export Object�This object represents a connection between an RM Proxy and a resource manager. The export object is used to propagate transactions between processes or systems. The export object contains the name and location of the resource manager’s transaction manager. When the RM Proxy exports a transaction to a resource manager, the RM Proxy’s transaction manager uses the export object to locate the resource manager’s transaction manager.
Enlistment Object�This object represents the relationship between a resource manager and a transaction object on which the resource manager has enlisted. An enlistment object is created each time a resource manager enlists in a transaction. MS DTC uses the enlistment object to determine which resource managers to involve in the two-phase commit process.
Resource Manager Object�This object represents the connection between a resource manager and a transaction manager. A resource manager object is created when a resource manager initially connects to a transaction manager.
�MS DTC Proxy Core Object
This is the root or central MS DTC object. It provides many essential MS DTC Proxy interfaces. For example, it provides the interfaces for creating transaction objects, transaction options objects, export objects, and resource manager objects.

Origin :�The MS DTC Proxy core object is created by the application program or resource manager when it calls the DtcGetTransactionManager API. This call is typically made during program initialization.��Occurrences:�There is one occurrence of the MS DTC Proxy core object per call to DtcGetTransactionManager. Application programs and resource managers typically maintain a connection to only one transaction manager. However, they may connect to as many transaction managers as they wish.��Duration:�The MS DTC Proxy core object normally exists for the life of the application program or resource manager. It should be released at the completion of the program. ��Interfaces:�IUnknown�IResourceManagerFactory�ITransactionDispenser�ITransactionImportWhereabouts�ITransactionImport�ITransactionExportFactory ���Transaction Object
This object represents the MS DTC transaction.

Origin :�An application program or resource manager creates a transaction object by calling the ITransactionDispenser::BeginTransaction method. This is done each time a new transaction is required.
A resource manager creates a transaction object by calling the ItransactionImport::Import method. This is done each time a transaction is imported by the resource manager.��Occurrences:�One instance of the transaction object is present for each transaction the application program or resource manager initiates. A process may begin as many transactions as it wishes.
One instance of the transaction object is present for each transaction that the resource manager imports. A resource manager may import on as many transactions as it wishes.��Duration:�The transaction object exists for the life of the transaction. It should be released when the transaction completes.��Interfaces:�IUnknown�ITransaction�IGetDispenser ���Transaction Options Object
This object contains transaction attribute information such as the time-out for the transaction and the name of the transactions. The transaction options object is passed as a parameter to the ITransactionDispenser::BeginTransaction method when creating a new transaction. The transaction attributes contained in the transaction options object are inherited by the newly created transaction object.

Origin :�An application program or resource manager creates a transaction options object by calling the ITransactionDispenser::GetOptionsObject method. This is typically done during program initialization.��Occurrences:�One instance of the transaction options object is present for each call to the ITransactionDispenser::GetOptionsObject method.
Typically an application program or resource manager will create one or two transaction options objects. However, a program may create as many transaction options objects as it wishes.��Duration:�The transaction options object normally exists for the life of the program. It should be released at the completion of the program.��Interfaces:�IUnknown�ITransactionOptions ���Export Object
This object represents a connection between an RM Proxy and a resource manager. The export object is used to propagate transactions between processes or systems. The export object contains the name and location of the resource manager’s transaction manager. When the RM Proxy exports a transaction to a resource manager, the RM Proxy’s transaction manager uses the export object to locate the resource manager’s transaction manager.

Origin :�An RM Proxy creates an export object by calling the ITransactionExportFactory::Create method. The RM Proxy should create the export object when it first connects to a resource manager or, at latest, when it first attempts to export a transaction to the resource manager.��Occurrences:�One instance of the export object is present for each call to ITransactionExportFactory::Create. Typically, an RM Proxy creates one export object for each resource manager connection that it establishes.��Duration:�The export object normally exists for the life of the RM Proxy-to-resource manager connection. It should be released when the connection is closed.��Interfaces:�IUnknown�ITransactionExport ���Enlistment Object
This object represents the relationship between a resource manager and a transaction object on which the resource manager has enlisted. An enlistment object is created each time a resource manager enlists in a transaction. MS DTC uses the enlistment object to determine which resource managers to involve in the two-phase commit process.

Origin :�A resource manager creates an enlistment object by calling the IResourceManager::Enlist method. The resource manager typically does this as part of importing a transaction.��Occurrences:�One instance of the enlistment object is present for each call to the IResourceManager::Enlist method. Typically, a resource manager enlists in each transaction only once. However, MS DTC permits a resource manager to enlist in a transaction as many times as it wishes. Multiple enlistments could occur, for example, if the same transaction is imported to the resource manager from more than one RM Proxy.��Duration:�The enlistment object exists for the life of the transactions. It should be released when the transaction completes.��Interfaces:�IUnknown�ITransactionEnlistmentAsync�IPrepareInfo ���Resource Manager Object
This object represents the connection between a resource manager and a transaction manager. A resource manager object is created when a resource manager initially connects to a transaction manager.

Origin :�A resource manager creates a resource manager object by calling the IResourceManagerFactory::Create method. This call is typically made during resource manager initialization.��Occurrences:�One instance of the resource manager object is present for each resource manager to transaction manager connection. The resource manager passes its RMGUID when calling IResourceManagerFactory::Create. The transaction manager uses the RMGUID to ensure that a resource manager connects to the transaction manager only one time.
Typically, a resource manager only connects to one transaction manager, namely its local MS DTC transaction manager.��Duration:�The resource manager object exists for the life of the resource manager-to-transaction manager connection. Typically, this connection exists for the life of the resource manager. The resource manager object should be released before the resource manager terminates.��Interfaces:�IUnknown�IResourceManager ���Life of an OLE Transaction

Participants in an OLE Transaction
�
Figure 5.1	Participants in a Application Program Initiated OLE Transaction
�
�
Figure 5.2	Participants in a Resource Manager Initiated OLE Transaction

�
Figure 5.3	Participants in a Application Program Initiated OLE Transaction�		involving two resource managers and a remote transaction coordinator.
�
The following parties participate in an OLE transaction:
Client Application (Client Appl)�The client application program.
Resource Manager Proxy (RM Proxy) �Most resource managers include application programming interfaces that application programs may invoke to perform resource manage functions. The application programming interfaces are customarily packaged as dynamic link library routines. We refer to this collection of interfaces as the resource manager proxy.
Resource Manager (RM) �A subsystem that implements a transaction-protected resource. The resource manager typically provides services to application programs or other resource managers. Examples of such resource managers include: relational databases, object-oriented databases, file systems, document storage systems, and message queues.
Microsoft Distributed Transaction Coordinator Proxy (MS DTC Proxy)�The MS DTC proxy contains the methods that application programs and resource managers invoke to participate in MS DTC transactions. The MS DTC Proxy is a set of dynamic link libraries provided as a part of MS DTC. The MS DTC Proxy library is present on each Windows NT system containing a resource manager and each Windows NT or Windows '95 system containing an application program that initiates an MS DTC transaction.
Microsoft Distributed Transaction Coordinator Transaction Manager (MS DTC TM) �The MS DTC transaction manager is the process responsible for coordinating MS DTC transactions. One MS DTC transaction manager process is present on each Windows NT system containing a resource manager. Each MS DTC transaction manager maintains an MS DTC log file on its local system. The log file records the outcome of all transactions in which the MS DTC transaction manager participates.
�Life of a Transaction: Installation

�
a1	When MS DTC is installed, the Setup program generates a GUID that uniquely identifies this instance of the MS DTC transaction manager. Setup permanently records this GUID (guidTM) in the system registry. This is done on every system on which an MS DTC transaction manager is installed. As a result, each MS DTC transaction manager on each system has a guidTM that uniquely identifies it.
b1	When the resource manager setup program is run, it generates a GUID that uniquely identifies the resource manager. Setup permanently records this GUID (guidRM) in a place where the resource manager can easily retrieve it. Alternatively, the resource manager can generate and record a guidRM when it is first executed. In either case, each resource manager on each system has a guidRM that uniquely identifies it.
�Life of a Transaction: Resource Manager Startup

�

c1	The resource manager calls the DtcGetTransactionManager procedure in the MS DTC Proxy to establish a connection to the transaction manager. The resource manager may either specify the name and location of the transaction manager it wishes to use or it may specify NULL values for these parameters. Normally, the resource manager specifies NULL values for these parameters. This causes the MS DTC Proxy to establish a connection with the default MS DTC transaction manager. The name of the default transaction manager is contained in the system registry.
c2	The DtcGetTransactionManager system call is implemented by the MS DTC Proxy. The MS DTC Proxy returns a pointer to the IUnknown interface of the MS DTC Proxy core object.
c3.1	The resource manager invokes the IUnknown::QueryInterface method on the MS DTC Proxy core object to obtain the IResourceManagerFactory interface.
c3.2	The resource manager invokes the IResourceManagerFactory::Create method. The resource manager passes its own GUID (guidRM) and string name. The transaction manager will use the resource manager’s string name to label the resource manager. This simplifies system administration by associating a symbolic name with the resource manager.
c4	When the IResourceManagerFactory::Create method is called, the MS DTC proxy calls the Connection Manager to establish a connection to the transaction manager.
c5	The transaction manager creates a internal object that represents the connection between the resource manager and the transaction manager. The transaction manager then returns to the MS DTC Proxy.
c6	The MS DTC Proxy creates a resource manager object and returns a pointer to the IResourceManager interface of that object to the resource manager. The IResourceManager interface is used by the resource manager to enlist in transactions and to perform transaction recovery.
�Life of a Transaction: Client Application Startup

�
d1	The client calls the DtcGetTransactionManager procedure in the MS DTC Proxy. The client may either specify the name and location of the transaction manager it wishes to use or it may specify NULL values for these parameters. Normally, the client specifies NULL values for these parameters. This causes the MS DTC Proxy to establish a connection with the default MS DTC transaction manager. The name of the default transaction manager is contained in the system registry. The client also specifies which MS DTC Proxy core object interface pointer it wishes to be returned. Normally, the client requests the ITransactionDispenser interface pointer.
d2	The MS DTC Proxy creates a MS DTC Proxy core object and returns the requested interface pointer to the client. Typically, this is the ITransactionDispenser interface pointer.
d3	The client calls the RM Proxy to establish a connection with the resource manager. The syntax of this call is the responsibility of the resource manager developer. The client does this once for each connection it wishes to establish with the resource manager.
d4	The RM Proxy establishes a connection to the resource manager. This may involve communication between the RM Proxy and the RM that is not depicted here. The RM Proxy typically returns a resource manager connection handle to the client. The client uses this handle to communicate with the resource manager.
�Life of a Transaction: Transaction Initiation
�
e1	The client invokes the ITransactionDispenser::BeginTransaction method in the MS DTC Proxy.
e2	The MS DTC Proxy uses the Connection Manager to establish a connection to the transaction manager. It uses this connection to send a begin transaction message to the transaction manager.
e3	The transaction manager creates an internal transaction object that represents the transaction. The transaction manager generates a GUID that uniquely identifies the transaction and stores the transaction identifier GUID in the internal transaction object. The transaction manager then returns the transaction identifier GUID to the MS DTC Proxy.
e4	The MS DTC Proxy creates a transaction object and stores the transaction identifier GUID in the transaction object. The MS DTC Proxy returns the ITransaction interface pointer of the transaction object to the client.
�Life of a Transaction: Resource Manager Enlistment
�
f1	The client calls the RM Proxy to ask the resource manager to enlist in the transaction. The syntax of this call is the responsibility of the resource manager developer. Typically, the call includes at least two parameters. One parameter identifies the resource manager connection handle that the client wishes to use. The other parameter is a pointer to the transaction object. For example, if your RM Proxy is based upon ODBC, you might use the SQLSetConnectionOption call.
f2	If this is the RM Proxy’s first enlistment with this resource manager, then the RM Proxy must create an export object for the resource manager. The RM Proxy creates the export object as described immediately below. If the RM Proxy already has an export object for this resource manager, then the RM Proxy uses the existing export object and proceeds directly to “Exporting a Transaction” as described further below.
�Life of a Transaction: Creating an Export Object
�
g1	The RM Proxy sends a “Get Whereabouts” message to its resource manager asking for the Whereabouts of the resource manager’s transaction manager. The form of the “Get Whereabouts” message is proprietary to the RM Proxy and the resource manager.
g2.1	The resource manager responds to the “Get Whereabouts” message by invoking the IUnknown::QueryInterface method on the MS DTC Proxy core object to obtain the ITransactionImportWhereabouts interface.
 g2.2	The resource manager invokes the ITransactionImportWhereabouts::GetWhereaboutsSize method to determine the size of the whereabouts.
g3	The MS DTC Proxy returns the byte length of the whereabouts to the resource manager.
g4	The resource manager invokes the ITransactionImportWhereabouts::GetWhereabouts method to obtain the whereabouts.
g5	The MS DTC Proxy returns the Whereabouts that it obtains from its cache. The Whereabouts is an opaque data structure that represents the address of the resource manager’s transaction manager. Other transaction managers can use the information in the Whereabouts to locate and communicate with the resource manager’s transaction manager.
g6	The resource manager inserts the Whereabouts in a “Return Whereabouts” message and returns this message to the RM Proxy on the client’s system. The form of the “Return Whereabouts” message is proprietary to the RM Proxy and the resource manager.
��
g7.1	The RM Proxy invokes the ITransaction::QueryInterface method on the transaction object to obtain the IGetDispenser interface.
g7.2	The RM Proxy invokes the IGetDispenser::GetDispenser method to obtain the ITransactionExportFactory interface.
g7.3	The RM Proxy invokes the ITransactionExportFactory::Create method to create the export object. The RM Proxy passes the Whereabouts it received from its resource manager in the “Return Whereabouts” message.
g8	The MS DTC proxy sends the Whereabouts to the client’s transaction manager.
g9	The client’s transaction manager stores the Whereabouts in the transaction manager’s internal export object. The client’s transaction manager then replies to the client’s MS DTC Proxy.
g10	The MS DTC Proxy creates an export object and returns a pointer to the ITransactionExport interface of the export object to the RM Proxy.
�Life of a Transaction: Exporting a Transaction
�
h1	The RM Proxy invokes the ITransactionExport::Export method on the export object, passing the pointer to the transaction object that the client specified when it asked the resource manager to enlist in the transaction at step “f1”.
h2	The MS DTC Proxy sends the transaction identifier GUID of the exported transaction to the client’s transaction manager.
h3.1	The client’s transaction manager checks its internal export object to see whether a Connection Manager connection has been established with the resource manager’s transaction manager. If not, the client’s transaction manager obtains the Whereabouts from the internal export object and passes the Whereabouts to the Connection Manager. The Connection Manager establishes a connection to the resource manager’s transaction manager.
h3.2	The client’s transaction manager sends the transaction identifier GUID of the exported transaction to the resource manager’s transaction manager.
h4	The resource manager’s transaction manager creates a internal transaction object for the exported transaction. It then stores the transaction identifier GUID in the transaction object. It marks the transaction object to indicate that it was received from the client’s transaction manager. The resource manager’s transaction manager then replies to the client’s transaction manager.
h5	The client’s transaction manager returns the transaction identifier GUID to the MS DTC Proxy,
h6	The MS DTC Proxy constructs a transaction cookie that represents the transaction. The transaction cookie is an opaque marshaled form of the transaction object. The MS DTC Proxy responds to the ITransactionExport::Export method invocation by returning the byte length of the transaction cookie to the RM Proxy.
h7	The RM Proxy invokes the ITransactionExport::GetTransactionCookie method on the export object, passing three input parameters. The first is the pointer to the transaction object to be exported. The second is the length of the buffer into which the transaction cookie is to be placed. The third is a pointer to the buffer where the transaction cookie will be returned.
h8	The MS DTC Proxy returns the transaction cookie and its actual length to the RM Proxy.
��
h9	The RM Proxy passes the transaction cookie to the resource manager by means of an “Export Request” message. The format of the “Export Request” message is proprietary to the RM Proxy and the resource manager.
h10.1	The resource manager responds to the “Export Request” message by invoking the IUnknown::QueryInterface method on the MS DTC Proxy core object to obtain the ITransactionImport interface.
h10.2	The resource manager invokes the ITransactionImport::Import method, passing the transaction cookie it received from the RM Proxy.
h11	The MS DTC Proxy converts the transaction cookie into the appropriate transaction identifier GUID and passes the transaction identifier to the resource manager’s transaction manager.
h12	The transaction manager uses the transaction identifier to locate the internal transaction object for the imported transaction. It updates the internal transaction object to indicate that this resource manager is participating in this transaction. It then returns to the MS DTC proxy.
h13	The MS DTC Proxy creates a transaction object for the imported transaction and returns a pointer to the ITransaction interface of the transaction object to the resource manager.
h14	The resource manager associates the transaction object with the RM Proxy-to-resource manager session on which the transaction was exported. The resource manager then replies to the RM Proxy, indicating that the transaction has been exported.
h15	The RM Proxy responds to the resource manager enlistment call that the client made at step “f1”. The response indicates that a successful enlistment has occurred.
�Life of a Transaction: Enlistment on a Transaction
�
i1	The client invokes the RM Proxy, asking it to perform a resource manager operation. For a relational database this might involve inserting, deleting, or updating a record, or invoking a stored procedure that updates the database.
i2	The RM Proxy sends a message to the resource manager asking it to perform the appropriate operation.	
i3	The resource manager determines which transaction, if any, is associated with this RM Proxy-to-resource manager session. If a transaction is associated with the session, the resource manager determines if it has already enlisted in this transaction. If not, it invokes the IResourceManager::Enlist method. The first Enlist parameter is a pointer to the transaction object. The second Enlist parameter is a pointer to the ITransactionResourceAsync interface. The resource manager is responsible for implementing the ITransactionResourceAsync interface. This interface includes the PrepareRequest, CommitRequest, AbortRequest and TMDown callback methods. The transaction manager will invoke these resource manager callback methods to deliver phase one and phase two notifications to the resource manager.
i4	The MS DTC proxy communicates with the transaction manager, informing it that the resource manager wishes to enlist in the transaction.
��
i5	The transaction manager creates an internal enlistment object to record the fact that the resource manager is participating in the transaction. It then returns to the MS DTC Proxy.
i6	The MS DTC Proxy creates an enlistment object and returns the ITransactionEnlistmentAsync interface pointer of the enlistment object to the resource manager. The ITransactionEnlistmentAsync interface contains the PrepareRequestDone, CommitRequestDone, and AbortRequestDone methods. These are the transaction manager-implemented methods that the resource manager invokes after successfully processing an asynchronous PrepareRequest, CommitRequest, or AbortRequest. The MS DTC Proxy also returns a GUID identifying the transaction. The resource manager can use this transaction identifier GUID to ensure that the client is sending a request on the same transaction that the resource manager expects. Finally, the MS DTC Proxy returns the isolation level specified by the client when it called ITransactionDispenser::BeginTransaction.
i7	The resource manager performs the resource manager operation which the client requested. For example, it might insert, update, or delete a database record. The resource manager responds to the RM Proxy, informing it that the requested resource manager operation has been performed.
i8	The RM Proxy responds to the client, informing it that the requested resource manager operation has been performed.
�Life of a Transaction: Transaction Commit Phase One - Prepare
�
j1	The client invokes the ITransaction::Commit method in the MS DTC Proxy.
j2	The MS DTC Proxy communicates with the client’s transaction manager.
j3.1	The client’s transaction manager initiates phase one of the two-phase commit process. All of the work of preparing the transaction is done in parallel. The client’s transaction manager determines if any resource managers on the client’s system have enlisted in the transaction. If so, the client’s transaction manager asks each of these resource managers to prepare. In our example, no resource managers on the client’s system participated in the transaction.
j3.2	The client’s transaction manager determines which subordinate transaction managers have participated in the transaction and sends each of them a Prepare message. These Prepare messages are sent to the subordinate transaction managers in parallel.
j4.1	The resource manager’s transaction manager determines whether any transaction managers are subordinate to it. In our example, the resource manager’s transaction manager has no subordinates. If the resource manager’s transaction manager has subordinates, it sends each of them a Prepare message. These Prepare messages are sent to the subordinate transaction managers in parallel.
j4.2	The resource manager’s transaction manager uses its internal enlistment objects to determine which resource managers have enlisted in the transactions. It sends a Prepare message to the MS DTC Proxy of each enlisted resource manager. These Prepare messages are sent to the MS DTC Proxies in parallel.
j4.3	The resource manager’s transaction manager awaits notification from all of the resource managers involved in the transaction that they have completed their prepare work.
j5	Each MS DTC Proxy invokes the resource manager’s ITransactionResourceAsync::PrepareRequest method. This method invocation informs the resource manager that it should perform phase one of the two-phase commit protocol.
j6	Each resource manager immediately responds to the PrepareRequest, thereby acknowledging that the PrepareRequest has been received. After responding to the PrepareRequest method invocation, the resource manager begins the work necessary to prepare the transaction.
��
j8.1	The resource manager invokes the ITransactionEnlistmentAsync::QueryInterface method on the enlistment object to obtain the IPrepareInfo interface.
j8.2	The resource manager invokes the IPrepareInfo::GetPrepareInfoSize method to determine the length of the prepare information. The prepare information is an opaque data item that identifies the transaction. The prepare information is used during failure recovery. At failure recovery time, the resource manager sends the prepare information to the transaction manager to learn the outcome of the transactions.
j9	The MS DTC Proxy returns the byte length of the prepare information. The MS DTC Proxy cached the prepare information when the resource manager enlisted in the transaction.
j10	The resource manager invokes the IPrepareInfo::GetPrepareInfo method to retrieve the prepare information.
j11	The MS DTC Proxy returns the prepare information to the resource manager.
j12.1	The resource manager does the work necessary to prepare the transaction. This includes writing all changes made on behalf of the transaction to the resource manager’s log file. The resource manager then writes a Prepare record for the transaction to the log. The Prepare record must contain the prepare information obtained from MS DTC.
j12.2	The resource manager invokes the ITransactionEnlistmentAsync::PrepareRequestDone method to inform the MS DTC Proxy that it has completed the prepare phase of the two-phase commit protocol.
j13	The MS DTC Proxy informs the resource manager’s transaction manager that the resource manager has completed phase one.
j14	When all of the resource managers on the system complete phase one, the resource manager’s transaction manager writes a Prepared record to its log file. The resource manager’s transaction manager then informs the client’s transaction manager that phase one is complete.
�Life of a Transaction: Transaction Commit Phase Two - Commit
�
k1.1	The client’s transaction manager writes the transaction Commit record to the transaction manager log file.
k1.2	If the client requested transaction outcome notification, then the client’s transaction manager notifies the client’s MS DTC Proxy that the transaction has completed phase one.
k1.3	The client’s transaction manager initiates the second phase of the two-phase commit process. All of the work of committing the transaction is done in parallel. The client’s transaction manager determines if any resource managers on the client’s system have enlisted in the transaction. If so, the client’s transaction manager asks each of these resource managers to commit. In our example, no resource managers on the client’s system participated in the transaction.
k1.4	The client’s transaction manager determines which subordinate transaction managers have participated in the transaction and sends each of them a Commit message. These Commit messages are sent to the subordinate transaction managers in parallel. The Commit message informs the subordinate transaction managers to perform phase two processing.
k2	The MS DTC Proxy returns from the ITransaction::Commit method invocation. This indicates to the client that phase one has completed.
k4.1	The resource manager’s transaction manager writes a Commit record to its local transaction manager log file.
k4.2	The resource manager’s transaction manager determines whether any transaction managers are subordinate to it. In our example, the resource manager’s transaction manager has no subordinates. If the resource manager’s transaction manager has subordinates, it sends each of them a Commit message. These Commit messages are sent to the subordinate transaction managers in parallel.
k4.3	The resource manager’s transaction manager uses its internal enlistment objects to determine which resource managers have enlisted in the transactions. It sends a Commit message to the MS DTC Proxy of each enlisted resource manager. These Commit messages are sent to the MS DTC Proxies in parallel.
k4.4	The resource manager’s transaction manager awaits notification from all of the resource managers involved in the transaction that they have completed their commit work.
k5	Each MS DTC Proxy invokes the resource manager’s ITransactionResourceAsync::CommitRequest method. This method invocation informs the resource manager that it should perform the second phase of the two-phase commit protocol.
k6	Each resource manager replies to the CommitRequest call from the MS DTC Proxy to acknowledge that the CommitRequest has been received. After responding to the CommitRequest method invocation, the resource manager begins the work necessary to commit the transaction.
��
k8.1	The resource manager does the work necessary to commit the transaction. This includes releasing all locks held on behalf of the transaction. The resource manager then writes a Commit record for the transaction to the resource manager’s log file. If it wishes, the resource manager can do a lazy log file write to economize on log I/Os. When the write to the log finishes, the resource manager proceeds to the next step.
k8.2	The resource manager invokes the ITransactionEnlistmentAsync::CommitRequestDone method to inform the MS DTC Proxy that it has completed the commit phase of the two-phase commit protocol.
k9	The MS DTC Proxy informs the resource manager’s transaction manager that the resource manager has completed phase two processing.
k10.1	When all of the resource managers on the system have completed their phase two processing, the resource manager’s transaction manager writes a Forget record to its local transaction manager log file. If it wishes, the transaction manager can do a lazy log file write to economize on log I/Os. After the log write completes, the transaction manager forgets the transaction and proceeds to the next step.
k10.2	The resource manager’s transaction manager informs the client’s transaction manager that phase two is complete.
k11	The client’s transaction manager waits until all of its subordinate transaction managers have responded. It then writes a Forget record to the transaction manager log file. If it wishes, the transaction manager can do a lazy log file write to economize on log I/Os. The transaction manager then forgets the transaction.
�Life of a Transaction: Transaction Recovery
�
m1.1	During recovery, the resource manager first does the Resource Manager Start Up procedure described above. As a result of these start-up steps, the resource manager obtains a pointer to the IResourceManager interface.
m1.2	The resource manager reads its log file and determines which transactions are in-doubt. For each of these transactions it calls the IResourceManager::Reenlist method. The resource manager passes in both the prepare information it was originally given by the transaction manager and a time-out value which indicates how long the resource manager is willing to wait to learn the outcome of the transaction.
m2	The MS DTC Proxy communicates this information to the transaction manager.
m3	The transaction manager determines the outcome of the transaction, if possible, and returns the transaction outcome to the MS DTC Proxy.
m4	The MS DTC Proxy responds to the resource manager indicating whether the in-doubt transaction was committed or aborted. If the transaction’s outcome cannot be determined before the time-out expires, then a reenlistment time-out error is returned to the resource manager.
m5.1	The resource manager records each transaction’s outcome by writing a commit or abort record in the resource manager log file.	
m5.2	When the resource manager has determined the outcome of all in-doubt transactions, it invokes the IResourceManager::ReenlistmentComplete method. The resource manager uses this method to inform the transaction manager that the resource manager knows the outcome of all in-doubt transactions in which it is involved.
m6	The MS DTC Proxy informs the transaction manager that recovery is complete.
m7	The transaction manager discards any information it was keeping regarding committed transactions that this resource manager might have been involved in.
Implementing a Resource Manager
Introduction
This section describes the development environment, and the interfaces that need to be implemented by an MS DTC compliant resource manager. Also described in this section are ways for a resource manager to participate in an application initiated transaction, and propagation of a transaction from one resource manager to another resource manager.
Development Environment
All the transaction interfaces are COM (Component Object Model) interfaces and therefore the natural language of choice is ‘C++’. The interfaces are available via two header files
Transact.H
TxCoord.H
The first header file contains interfaces that an application will use to interact with the Transaction Coordinator (such as MS DTC); interfaces such as ITransactionDispenser, ITransaction, etceteras. The second header file contains interfaces which cover the interaction between the resource manager and the Transaction Coordinator. Both these header files are available with the SDK for MS DTC.
Interfaces to implement
There are only two interfaces which a resource manager needs to implement to work with MS DTC.
IResourceManagerSink
ITransactionResourceAsync
IResourceManagerSink is needed for building the relationship between the resource manager and the Transaction Coordinator. ITransactionResourceAsync is needed to receive the two phase notifications for a transaction that the resource manager is enlisted on. There is one instance of ITransactionResourceAsync per enlistment. Typically, there is one enlistment per transaction, however an RM can choose to enlist multiple times on the same transaction.
A RM (resource manager) will generally go through the following steps to interact with the DTC (Distributed Transaction Coordinator).
Step 1	Build a relationship with DTC
Step 2	Do recovery
Step 3	Enlist on new transactions
Step 1
The RM invokes the DtcGetTransactionManager API to obtain the IUnknown interface on the DTM (Distributed Transaction Manager) object. By invoking IUnknown::QueryInterface method, IResourceManagerFactory interface can be obtained. This interface offers a Create method on it, the invocation of which provides an interface to a resource manager object which offers IResourceManager interface. This relationship lasts until either a failure occurs or the RM decides to undo it. It is the IResourceManager interface which is used by an RM to enlist on new transactions, and for doing recovery.

� EMBED ShapewareVISIO20 ���
Figure � SEQ Figure * ARABIC �1� : The Distributed Transaction Manager object obtained by calling DtcGetTransactionManager API.

Step 2
This step actually has two sub steps (2a) and (2b). In sub step (2a), the Resource Manager resolves all the in-doubt transactions, and having resolved all of them, it does sub step (2b), in which it lets the Transaction Coordinator know that it has completed recovery and therefore has no more transactions in-doubt.
2a.	Having obtained the IResourceManager interface the next step is to do recovery. An RM would go through its log file, picking one by one the prepare information records for the transactions which are in-doubt. For each such transaction, it will invoke the IResourceManager::Reenlist method. This method via an out parameter, provides the outcome for that transaction. If DTC itself does not know the outcome to the transaction then the Reenlist method will fail with a XACT_E_REENLISTTIMEOUT error message. In this case the RM will need to retry at some later time.
2b.	Once the RM knows the outcome to all the in-doubt transactions, it should invoke the IResourceManager::ReenlistmentComplete method. This method completes the recovery and also lets the Transaction Coordinator know that the RM has no more in-doubt transactions. By invoking this method the RM is making a strong promise that it has no more in-doubt transactions and that it will not invoke the Reenlist method anymore. It is not correct for an RM to ask the outcome of a transaction by invoking the Reenlist method once it has invoked the ReenlistmentComplete method.
Note:	It is not necessary for an RM to resolve all the in-doubt transactions before it can enlist (Step 3) on new transactions. Step 2a can be performed at any point in time after Step 1. Step 2a is also idempotent, meaning that it can be repeated multiple times without affecting the outcome of transactions. It is absolutely correct for an RM to invoke the IResourceManager::Reenlist method for the same transaction multiple times. However, once Step 2b is performed, then Step 2a can not be performed.
Step 3
Having established the relationship, the RM can start enlisting on new transactions. Somehow, the RM obtains an ITransaction interface to a transaction that it needs to enlist on. It enlists on this transaction by invoking the IResourceManager::Enlist method. One of the parameters to this method is an instance of ITransactionResourceAsync. Once the RM has enlisted on a transaction, it is expected to participate in the two phase commit protocol. When the initiator of the transaction invokes ITransaction::Commit method, the Transaction Coordinator (DTC), begins the first (voting) phase of the two phase commit protocol. The first phase notifications are delivered to each party (such as a resource manager) that is enlisted on the transaction. This notification is delivered by invoking the ITransactionResourceAsync::PrepareRequest method. The RM then does the relevant work to move from an active state to a prepared state and on moving to the prepared state invokes the ITransactionEnlistementAsync::PrepareRequestDone method. Similarly, the second (decision) phase notification is provided to each enlisted party by the invocation of ITransactionResourceAsync::CommitRequest. An RM after doing the relevant responds to this notification by invoking ITransactionEnlistment::CommitRequestDone. The Abort notification also works the same way as the first phase notification. However, there is no second phase in the case of an Abort.
Obtaining the Transaction to Enlist On
There are three ways for an RM to obtain the ITransaction that it needs to enlist on.
Self Initiated
An RM can also be an initiator of a transaction. In which case it would have obtained the MSDTC Transaction by invoking the ITransactionDispenser::BeginTransaction method.
Initiated by an In-Proc Application Component
Sometimes there is application code (such as a stored procedure) which is in-proc with an RM. This application code could obtain an MS DTC transaction and since it is in-proc with the RM it could provide a reference to the ITransaction interface on the transaction object by some means to the RM; which then can enlist on that transaction.
Propagation of a Transaction
A transaction begun in one process can be propagated to another process. Resource Managers built on a client/server architecture, have a server side and a client side. It is the server side which will enlist on a transaction so as to participate in the two phase commit. However, the transaction (MS DTC transaction) might have been initiated on the client side. Such resource managers use the transaction propagation mechanism to propagate a transaction begun on the client side to the server side. All of this mechanism is implemented by MS DTC, the resource managers only need to use it. This mechanism as explained in section 7, has two parts to it: export, and import.
Export :		The RM Proxy (the client side of the RM), can provide an API which an application can call to request an RM to enlist on a transaction. The transaction (ITransaction *) to enlist on can be provided via a parameter to the enlist API. After obtaining the transaction to enlist on, the RM proxy uses the ITransactionExport interface to propagate the transaction to the Transaction Coordinator.
Application Client obtains an ITransaction by invoking ITransactionDispenser::BeginTransaction
Application Client calls the RM_Enlist API, passing it the ITransaction which it wants the RM to enlist on.
Inside the RM_Enlist API, the RM proxy does the following:
Invokes ITransactionExport::Export passing it the ITransaction which the client provided it. The mechanism for obtaining the ITransactionExport interface is described in the section on Obtaining the Whereabouts.
If step a. succeeds, then it obtains the Transaction Cookie by invoking ITransactionExport::GetTransactionCookie.
This transaction cookie, it then sends to the RM. How, this cookie gets transported from the RM Proxy to the RM is not of concern to MS DTC. MS DTC simply assumes that there is a communication pipe between the RM Proxy and the RM which is used for the transmission of all messages between the RM Proxy and the RM Server.
Import:		Once the RM Server receives the transaction cookie, it invokes the ITransactionImport::Import providing it with the cookie that it had received from its proxy. This invocation translates the cookie to an ITransaction, and if it succeeds, then the RM also has an interface to the same transaction which the Application Client had obtained in step (I) of Export.
Obtaining the Whereabouts
Resource Managers which are designed as client/server systems, will generally have the RM Server on one node and the RM Proxy on other nodes. If the Application Client begins the transaction and wants the RM to enlist on the transaction, then it will do so by invoking an API in the RM Proxy (such as RM_Enlist) and providing it with the ITransaction which it wants the RM to enlist on.
� EMBED ShapewareVISIO20 ���
Figure � SEQ Figure * ARABIC �2� RM Proxy and the RM are on different nodes.
If the transaction is begun on Node A, then before the RM on Node B can enlist on the transaction, the transaction needs to be propagated to the transaction coordinator on Node B. RM Proxy needs to request MS DTC on its node to propagate the transaction to node B. Before making this request, it needs to know which MS DTC should the transaction be propagated to. To obtain this information, the RM Proxy, sends a message to its RM asking for the Whereabouts of the MS DTC which the RM is working with. The RM does the following steps to obtain the Whereabouts:
It obtains the ITransactionImportWhereabouts interface. There are multiple ways to obtain this interface, such as by invoking IResourceManagerFactory::QueryInterface, or by invoking DtcGetTransactionManager API, or by invoking the QueryInterface method on the IUnknown that the RM might have obtained from a previous call to DtcGetTransactionManager, etceteras.
It then invokes ITransactionImportWhereabouts::GetWhereabouts, to obtain the Whereabouts of the MS DTC which it is working with. Having obtained this information once, it can be cashed and therefore, future invocations of this method can be avoided. What is obtained from this invocation is a blob.
After obtaining the Whereabouts blob, the RM sends it to the RM Proxy. RM Proxy after receiving the Whereabouts blob does the following steps to obtain an ITransactionExport interface.
It obtains the ITransactionExportFactory interface from the MS DTC Proxy. This interface is obtained by invoking ITransactionDispenser::QueryInterface. See the section titled Obtaining Transaction Dispenser from a Transaction for more details.
It then invokes ITransactionExportFactory::Create, passing it the Whereabouts blob which it had received from the RM. As a result of this invocation, it obtains an ITransactionExport interface to an export object, which it can then keep for exporting transaction to the MS DTC which its RM is working with.
���Note:	Even in cases where the RM Proxy might be on the same node as the RM, the steps for obtaining the Whereabouts, and propagation of the transaction have to be performed .
�
Obtaining Transaction Dispenser from a Transaction
When the Application Client calls RM_Enlist API passing it the ITransaction interface to the transaction object, the RM Proxy would need to know the transaction dispenser from which the transaction object was obtained. This is essential as there could be multiple transaction dispensers, and the transaction can be propagated only by the Transaction Coordinator which dispensed the transaction. To get to the appropriate transaction dispenser from a transaction the following steps are performed:
ITransaction::QueryInterface method is invoked to obtain the IGetDispenser interface.
IGetDispenser::GetDispenser method is invoked to obtain the ITransactionDispenser interface.
ITransactionDispenser::QueryInterface can then be invoked to obtain the ITransactionExportFactory interface.
Participation in the two phase commit protocol
Once an RM enlists on a transaction, it will need to participate in the two phase commit protocol when the client issues a Commit (ITransaction::Commit). The following figure shows the relationship between the objects that participate in the two phase commit.
� EMBED ShapewareVISIO20 ���
An RM enlists on a transaction by invoking IResouceManager::Enlist. To this method it passes an instance of ITransactionResourceAsync interface. The Transaction Coordinator delivers the Prepare, Commit, and Abort notifications to the RM via this callback interface. The following state diagrams show the states of the Enlistment Object as it exists in the MS DTC Proxy and the states of the RM from the perspective of the enlistment object in the MS DTC Proxy.

� EMBED ShapewareVISIO20 ���
� EMBED ShapewareVISIO20 ���

Supporting Application Program-initiated Transactions
Work Required in the RM Proxy
Text.
Work Required in the Resource Manager
Text.
Supporting Resource Manager-initiated Transactions
Supporting Explicitly Initiated Transactions
Text.
Supporting Implicitly Initiated Transactions
Text.
Supporting Transactions Propagation from One Resource Manager to Another
Text.
Supporting Transactions Recovery
Text.

OLE Transaction Interfaces
All of the OLE Transaction objects and interfaces provided by MS DTC are implemented by the MS DTC Proxy DLL. The MS DTC Proxy DLL is used by both application clients and resource managers

� EMBED ShapewareVISIO20 ���
Figure � SEQ Figure * ARABIC �3� : The MS DTC Proxy Core object obtained by calling the DtcGetTransactionManager API.

Utility Interfaces and APIs
The utility interfaces and APIs include the API for establishing the initial connection to MS DTC and the method for obtaining an interface on the MS DTC Proxy core object given a transaction object.
DtcGetTransactionManager API
Implemented by:�MS DTC Proxy��Object�This is a helper API, not a method on an object.��Interface Source�N/A��Called by:�Application programs and resource managers.��Description:�This is typically the first MS DTC call that application programs and resource managers make when using MS DTC. This helper API establishes the initial connection to MS DTC. It returns an interface pointer to one of the interfaces on the MS DTC Proxy core object. ��
HRESULT DtcGetTransactionManager (
			[in] LPTSTR		pszHost,
			[in] LPTSTR 	pszTmName,
			[in] REFIID		riid,
			[in] DWORD		dwReserved1,
			[in] WORD		wcbVarLenReserved2,
			[in] void *		pvVarDataReserved2,
			[out] void **	ppv);

����Argument�Type�Description������pszHost�LPTSTR�[in] Name of the host system which will serve as the transaction commit coordinator.��pszTmName�LPTSTR�[in] String Name of the transaction manager which will serve as the transaction commit coordinator. Must be NULL.��riid�REFIID�[in] IID of the requested interface.��dwReserved1�DWORD�[in] Reserved parameter. Must be zero.��wcbVarLenReserved2�WORD�[in] Reserved parameter. Must be zero.��pvVarDataReserved2�void *�[in] Reserved parameter. Must be NULL.��ppv�void **�[out] Pointer to the pointer to the requested interface.��Calls to DtcGetTransactionManager can specify a server host name in the pszHost parameter. This allows the transaction to be started and coordinated on a specific computer on the network. If a value of NULL is supplied, the following rules determine where the transaction is started and coordinated:
If the workstation making the call has a locally installed MS DTC, the local MS DTC is used.
If the workstation making the call is a Windows 95 computer or a Windows NT computer which does not have a local MS DTC installed, the default MS DTC is used. The default MS DTC is defined using the DTCCFG control panel application. See the "Microsoft Distributed Transaction Coordinator Administrator’s Guide and Programmer’s Reference” for more information on DTCCFG.

���Return Value�Meaning�����S_OK�Success.��E_NOINTERFACE�Unable to provide the requested interface.��E_UNEXPECTED�Unexpected error encountered.��E_INVALIDARG�One or more arguments are invalid.��E_FAIL�Failed to carry out the operation.��
�IGetDispenser Interface
Implemented by:�MS DTC Proxy��Object�Transaction object��Interface Source�Call QueryInterface on the ITransaction interface on the transaction object with a riid of IID_IGetDispenser.��Called by:�RM Proxy��Description:�This interface contains a single method IGetDispenser::GetDispenser. The GetDispenser method is used by procedures that have a transaction object and need an interfaces on the MS DTC Proxy core object.��
interface IGetDispenser: IUnknown�{�	HRESULT GetDispenser (
				[in] REFIID		riid,
				[out] void **	ppv);�}
IGetDispenser::GetDispenser

HRESULT	GetDispenser (
			[in] REFIID 	riid,
			[out] void ** 	ppvObject)
The IGetDispenser::GetDispenser method is used by procedures that have an interface on a transaction object and need an interface on the MS DTC Proxy core object.

Argument�Type�Description��riid�REFIID�[in] IID of the requested interface on the MS DTC Proxy core object.��PpvObject�void **�[out] Pointer to the pointer to the requested interface.��
Return Value�Meaning��S_OK�Success.��E_ E_INVALIDARG�The value of ppOptions is NULL.��E_UNEXPECTED�An unexpected error occurred.��
�Transaction Initiation and Control Interfaces
These are the interfaces that application programs and resource managers use to begin, commit, and abort transaction, and to determine the status of transactions.
� EMBED ShapewareVISIO20 ���

ITransactionDispenser Interface
Implemented by:�MS DTC Proxy��Object�MS DTC Proxy core object��Interface Source�Either:�Call DtcGetTransactionManager with a riid of IID_ITransactionDispenser when initially connecting to MS DTC.
Call QueryInterface on any interface on the MS DTC Proxy core object with a riid of IID_ITransactionDispenser.��Called by:�Application programs and resource managers that initiate transactions.��Description:�This interface contains two methods. The BeginTransaction method creates new transaction objects. The GetOptionsObject method creates new transaction options objects.��
interface ITransactionDispenser : IUnknown
{
	HRESULT GetOptionsObject(
				[out] ITransactionOptions **ppOptions);

	HRESULT BeginTransaction (
				[in] IUnknown	punkOuter,
				[in] ISOLEVEL	isoLevel,
				[in] ULONG		isoFlags,
				[in] ITransactionOptions *	pOptions,
				[out] ITransaction **	ppTransaction);
};

ITransactionDispenser::GetOptionsObject

HRESULT 	GetOptionsObject (
			[out] ITransactionOptions **		ppOptions)
This method creates a transaction options object. The transaction options object obtained from the GetOptionsObject call can be assigned transaction attributes by calling the ITransactionOptions::SetOptions method. The transaction options object can then be passed to ITransactionDispenser::BeginTransaction. The transaction attributes from the transaction options object will be inherited by the newly created transaction object.
A process may create as many transaction options objects as it wishes.
Two or more threads may simultaneously invoke the BeginTransaction method using the same transaction options object. However, the attributes of the transaction options object must not be changed while the object is in use by the BeginTransaction method.

����Argument�Type�Description������ppOptions�ITransactionOptions **�[out] Pointer to the pointer to the ITtansactionOptions interface on the transaction options object. Must not be NULL.��
���Return Value�Meaning�����S_OK�Success.��E_OUTOFMEMORY�Unable to allocate memory.��E_INVALIDARG�The value of ppOptions is NULL.��
ITransactionDispenser::BeginTransaction

HRESULT BeginTransaction (
			[in] IUnknown		punkOuter,
			[in] ISOLEVEL		isoLevel,
			[in] ULONG			isoFlags,
			[in] ITransactionOptions *	pOptions,
			[out] ITransaction **		ppTransaction)
This method initiates a new transaction and returns a new transaction object which represents the transaction.
A transaction options object which is passed as a parameter to BeginTransaction must not be altered while the BeginTransaction method invocation is outstanding.

����Argument�Type�Description������punkOuter�IUnknown*�[in] Must be NULL.��isoLevel�ISOLEVEL�[in] The isolation level to be used for this transaction. This value is ignored by MS DTC and passed on to the resource managers.��isoFlags�ULONG�[in] Must be zero.��pOptions�ITransactionOptions *�[in] A pointer to a transaction options object. This value may be NULL. �If pOptions is NULL the time-out value for the transaction is infinite and the transaction will not have a description��ppTransaction�ITransaction **�[out] Pointer to the pointer to the ITransaction interface on the new transaction object.��
���Return Value�Meaning�����S_OK�Success.��CLASS_E_NOAGGREGATION�punkOuter was not NULL.��XACTTC_E_LOGFULL�Unable to begin a new transaction because the log file is full.��XACT_E_NOTIMEOUT�A time-out was specified, but time-outs are not supported.��E_OUTOFMEMORY�Unable to allocate memory.��E_FAIL�An unknown error occurred.��E_UNEXPECTED�An unknown error occurred.��E_INVALIDARG�ppTransaction was NULL.��XACT_E_CONNECTION_DOWN�No longer able to communicate with the transaction manager because the connection to the transaction manager failed.��XACT_E_TMNOTAVAILABLE�Unable to connect to the transaction manager or the transaction manager is unavailable.��XACT_E_CONNECTION_�REQUEST_DENIED�The transaction manager did not accept a connection request.��
�ITransactionOptions Interface
Implemented by:�MS DTC Proxy��Object�Transaction options object��Interface Source�Returned by the ITransactionDispenser::GetOptionsObject method.��Called by:�Application programs and resource managers that initiate transactions.��Description:�This interface is used to read and alter attributes within a transaction options object. The transaction options object can be passed as a parameter to the ITransactionDispenser::BeginTransaction method. The attributes of the transaction options object are inherited by the newly initiated transaction. This allows the caller of the BeginTransaction method to control the attributes of a transaction such as its time-out period and transaction description..��
interface ITransactionOptions : IUnknown
{
	HRESULT SetOptions ([in] XACTOPT *	pOptions);

	HRESULT GetOptions ([out] XACTOPT *	pOptions);
}
�ITransactionOptions::SetOptions

HRESULT SetOptions([in] XACTOPT *	pOptions)
The SetOptions method is used to alter transaction attributes in a transaction options object.
SetOptions must not be invoked on a transaction options object which is currently in use by the ITransactionDispenser::BeginTransaction method.

����Argument�Type�Description������pOptions�XACTOPT *�[in] Pointer to the XACTOPT structure. This structure contains attribute information for a transaction options object.��

typedef struct XACTOPT
	{
	ULONG			ulTimeout;
	unsigned char	szDescription[MAX_TRAN_DESC];
	} XACTOPT;

����Member�Type�Meaning������ulTimeOut�ULONG�The time-out limits the duration of the transaction and therefore bounds the amount of time locks are held on database records and system resources. If the time-out period expires before the transaction commits, MS DTC automatically aborts the transaction.
The time-out is specified in milliseconds. A time-out value of zero indicates an infinite time-out.��szDescription�unsigned char *�szDescription provide a textual description for a transaction. The description is displayed by the MS DTC administration tool in the MS DTC Transactions window. The description is only meaningful to the MS DTC administrator and is not processed or interpreted by MS DTC itself.
The string cannot be longer than MAX_TRAN_DESC bytes in length.��
Return Value�Meaning�����S_OK�Success.��E_OUTOFMEMORY�Unable to allocate memory.��E_INVALIDARG�The value of pOptions is NULL.��
�ITransactionOptions::GetOptions

HRESULT GetOptions([out] XACTOPT *	pOptions)
The GetOptions method is used to read transaction attributes from a transaction options object.

����Argument�Type�Description������pOptions�XACTOPT *�[out] Pointer to a structure containing attribute information for a transaction options object. The szDescription field must be pre-allocated with a length of MAX_TRAN_DESC bytes.��
typedef struct XACTOPT
	{
	ULONG			ulTimeout;
	unsigned char	szDescription[MAX_TRAN_DESC];
	} XACTOPT;

����Member�Type�Meaning������ulTimeOut�ULONG�The elapsed time in milliseconds before the transaction is automatically aborted. Zero indicates an infinite time-out.��szDescription�unsigned char *�Text describing the transaction. Administrative tools display this text when displaying information about the transaction. The system maintains and displays this text but does nothing else with it. The system does not use the description internally to identify transactions. The string cannot be longer than MAX_TRAN_DESC bytes in length.��

���Return Value�Meaning�����S_OK�Success.��E_OUTOFMEMORY�Unable to allocate memory.��E_INVALIDARG�The value of pOptions is NULL.���ITransaction Interface
Implemented by:�MS DTC Proxy��Object�Transaction object��Interface Source�Returned by the ITransactionDispenser::BeginTransaction method or the ITransactionImport::Import method.��Called by:�Application programs and resource managers that commit and abort transactions.��Description:�The ITransaction interface is used to commit and abort transactions and to obtain status information about transactions��
interface ITransaction : IUnknown
{
	HRESULT Commit (
				[in] BOOL		fRetaining,
				[in] DWORD		grfTC,
				[in] DWORD		grfRM);

	HRESULT Abort (
				[in] BOID*		pboidReason,
				[in] BOOL		fRetaining,
				[in] BOOL		fAsync);

	HRESULT GetTransactionInfo (
				[out] XACTTRANSINFO*	pinfo);
};
�ITransaction::Commit

HRESULT Commit (
			[in] BOOL		fRetaining,
			[in] DWORD		grfTC,
			[in] DWORD		grfRM)
This method commits the transaction. The Commit method may only be called by the initiator of the transaction.

����Argument�Type�Description������fRetaining�BOOL�[in] Must be FALSE.��grfTC�DWORD�[in] Values taken from the enumeration XACTTC.��grfRM�DWORD�[in] Must be zero. ��
The following values may be specified in grfTC:
���Flag�Meaning�����XACTTC_ASYNC�When this flag is specified, an asynchronous commit is performed. This flag may not be specified when the XACTTC_SYNCPHASEONE flag is specified.��XACTTC_SYNCPHASEONE�When this flag is specified, the call to Commit returns after phase one of the two-phase commit protocol. This flag may not be specified when the XACTTC_ASYNC flag is specified.��
���Return Value�Meaning�����S_OK�Success: the transaction was successfully committed��XACT_S_ASYNC�An asynchronous commit was specified. The commit operation has begun but its outcome is not yet known. When the transaction completes, notification will be sent on the ITransactionOutcomeEvents interface.��XACT_E_NOTRANSACTION�Unable to commit the transaction because it had already been committed or aborted. This call was ignored.��XACT_E_ALREADYINPROGRESS�A commit or abort operation was already in progress. This call was ignored.��XACT_E_NOTSUPPORTED�An invalid combination of commit flags was specified. This call was ignored.��XACT_E_CANTRETAIN�Retaining commit is not supported. This call was ignored.��XACT_E_COMMITFAILED�The transaction failed to commit for an unknown reason. The transaction was aborted.��E_FAIL�The transaction failed to commit for an unknown reason. The transaction was aborted.��XACT_E_INDOUBT�The transaction status is in-doubt. A communication failure has occurred or a transaction manager or resource manager has failed. ��E_UNEXPECTED�An unexpected error has occurred. The transaction status is unknown.��XACT_E_ABORTED�The transaction was aborted before Commit was called.��XACT_E_CONNECTION_DOWN�No longer able to communicate with the transaction manager because the connection to the transaction manager failed. The transaction was aborted.��
�ITransaction::Abort

HRESULT Abort (
			[in] BOID *		pboidReason,
			[in] BOOL		fRetaining,
			[in] BOOL		fAsync)
This method aborts the transaction.
The initiator of the transaction may abort the transaction as may any resource manager enlisted on the transaction.
Abort may be invoked on a transaction repeatedly. XACT_S_ABORTING HRESULT will be returned following the first invocation of Abort.
If a communication failure occurs during a call to Commit or Abort, the status of the transaction is unknown.

����Argument�Type�Description������pboidReason�BOID *�[in] An optional BOID that indicates why the transaction is being aborted. This argument may be NULL indicating that no abort reason is provided.��fRetaining�BOOL�[in] Must be FALSE.��fAsync�BOOL�[in] When fAsync is TRUE, an asynchronous abort is performed and the caller must use ITransactionOutcomeEvents to learn the outcome of the transaaction.��
���Return Value�Meaning�����S_OK�Success: the transaction was successfully aborted.��XACT_S_ASYNC�An asynchronous Abort was specified. The abort operation has begun but its outcome is not yet known. When the transaction completes, notification will be sent on the ITransactionOutcomeEvents interface.��XACT_E_NOTRANSACTION�Unable to abort the transaction because it had already been committed or aborted. This call was ignored.��XACT_E_ALREADYINPROGRESS�A Commit operation was already in progress. This call was ignored.��XACT_E_CANTRETAIN�Retaining Abort is not supported. This call was ignored.��E_FAIL�The transaction failed to abort for an unspecified reason.��E_UNEXPECTED�An unexpected error has occurred. The transaction status is unknown.��XACT_S_ABORTING�An Abort operation was already in progress. This call was ignored.��XACT_E_INDOUBT�The transaction status is in-doubt. A communication failure has occurred or a transaction manager or resource manager has failed. ��XACT_E_CONNECTION_DOWN�No longer able to communicate with the transaction manager because the connection to the transaction manager failed. The transaction state is unknown.��
�ITransaction::GetTransactionInfo

HRESULT 	GetTransactionInfo ([out] XACTTRANSINFO *	pinfo)
This method returns information regarding a transaction object.

����Argument�Type�Description������pinfo�XACTTRANSINFO *�[out] Pointer to the caller allocated XACTTRANSINFO structure which will receive information about the transaction. Must not be NULL.��
XACTTRANSINFO is defined as follows:

typedef struct XACTTRANSINFO
	{
	XACTUOW		uow;
	ISOLEVEL		isoLevel;
	ULONG		isoFlags;
	DWORD		grfTCSupported;
	DWORD		grfRMSupported;
	DWORD		grfTCSupportedRetaining;
	DWORD		grfRMSupportedRetaining;
	} XACTTRANSINFO;

����Member�Type�Description������uow�XACTUOW�The unit of work associated with this transaction.��isoLevel�ISOLEVEL�The isolation level associated with this transaction object. ISOLATIONLEVEL_UNSPECIFIED indicates that no isolation level was specified.��isoFlags�ULONG�Will be zero.��grfTCSupported�DWORD�This bit mask indicates which grfTC flags that this transaction implementation supports. ��grfRMSupported�DWORD�Will be zero.��grfTCSupportedRetaining�DWORD�Will be zero.��grfRMSupportedRetaining�DWORD�Will be zero.��
Return Value�Meaning�����S_OK�Success.��XACT_E_NOTRANSACTION�Unable to retrieve information for the transaction because it was already completed. No information is returned.��E_UNEXPECTED�An unknown error occurred. No information is returned.��E_INVALIDARG�The value of pinfo was NULL.��
�ITransactionOutcomeEvents Interface
Implemented by:�Application program��Object�This object is implemented by the application program. The object must support the ITransactionOutcomeEvents interface.��Interface Source�The application program implements the methods in this interface.��Called by:�MS DTC Proxy��Description:�This interface is used by application programs that require asynchronous notification about transaction outcomes. The application program implements the methods in this interface and registers the interface with the connection point mechanism. MS DTC invokes the appropriate method on this interface to inform the application about the outcome of a transaction. ��Typically, ITransaction::Commit or Abort calls are performed synchronously. This means that the calling thread is blocked until MS DTC makes a commit or abort decision (usually at the end of phase one of the two-phase commit protocol).
It is possible to avoid blocking the calling thread by using asynchronous Commit or Abort calls. Asynchronous Commit or Abort require the following:
The programmer creates an OLE event sink object which implements the ITransactionOutcomeEvents interface.
The programmer uses the OLE events architecture on the MS DTC transaction object to register the event sink.
Calls to ITransaction::Commit are passed the value XACTTC_ASYNC in the grfTC parameter. Calls to ITransaction::Abort are passed a boolean flag of TRUE in the fAsync parameter. Neither call blocks the calling thread.
Once the transaction commits or aborts, the ITransactionOutcomeEvents::Committed or ITransactionOutcomeEvents::Aborted method is called on the registered event sink.
For more information on:
Asynchronous Commit and Abort requests, refer to ITransaction::Commit or ITransaction:Abort.
OLE events architecture, refer to IConnectionPoint
The ITransactionOutcomeEvents events are raised when the transaction's outcome is known. On the root transaction manager's system, the transaction outcome event is raised at the end of phase one. On the subordinate transaction managers' systems, the transaction outcome events are raised at the beginning of phase two.

interface ITransactionOutcomeEvents : IUnknown
{
	HRESULT Committed (
				[in] BOOL		fRetaining,
				[in] XACTUOW *	pNewUOW,
				[in] HRESULT	hr);

	HRESULT Aborted (
				[in] BOID *		pboidReason,
				[in] BOOL		fRetaining,
				[in] XACTUOW *	pNewUOW,
				[in] HRESULT	hr);

	HRESULT HeuristicDecision (
				[in] DWORD		dwDecision,
				[in] BOID *		pboidReason,
				[in] HRESULT	hr);

	HRESULT Indoubt (void);
}
�ITransactionOutcomeEvents::Commit

HRESULT Committed (
			[in] BOOL		fRetaining,
			[in] XACTUOW *	pNewUOW,
			[in] HRESULT	hr)
This event is raised when the transaction committed.

����Argument�Type�Description������fRetaining�BOOL�[in] Indicates whether retaining Commit was specified. Will be FALSE.��pNewUOW�XACTUOW *�[in] Always NULL.��hr�HRESULT�[in] Always S_OK��
���Return Value�Meaning�����S_OK�Success.��
�ITransactionOutcomeEvents::Abort

HRESULT Aborted (
			[in] BOID *		pboidReason,
			[in] BOOL		fRetaining,
			[in] XACTUOW *	pNewUOW,
			[in] HRESULT	hr)
This event is raised when the transaction aborted, either as a result of a call to Abort or an unsuccessful call to Commit.

����Argument�Type�Description������fRetaining�BOOL�[in] Indicates whether retaining Commit was specified. Will be FALSE.��pNewUOW�XACTUOW *�[in] Always NULL.��hr�HRESULT�[in] Always S_OK��
���Return Value�Meaning�����S_OK�Success.��
���Return Value�Meaning�����S_OK�The transaction aborted.��XACT_E_INDOUBT�The transaction is in-doubt.��
�ITransactionOutcomeEvents::HeuristicDecision

HRESULT HeuristicDecision (
			[in] DWORD		dwDecision,
			[in] BOID *		pboidReason,
			[in] HRESULT	hr)
This event is raised when a transaction cannot be consistently committed or aborted because of a heuristic decision made by one of the participants in the transaction.
Note: Heuristic decisions are not supported in the current release.

����Argument�Type�Description������dwDecision�DWORD�[in] Values from the enumeration XACTHEURISTIC.��pboidReason�BOID *�[in] A BOID indicating why the transaction aborted. This value is provided by the party making the heuristic decision.��hr�HRESULT�[in] Always S_OK.��
typedef enum XACTHEURISTIC {
	XACTHEURISTIC_ABORT	,
	XACTHEURISTIC_COMMIT,
	XACTHEURISTIC_DAMAGE,
	XACTHEURISTIC_DANGER,
	} XACTHEURISTIC;

���Return Value�Meaning�����S_OK�Success.��
�ITransactionOutcomeEvents::InDoubt

HRESULT InDoubt (void)
This event is raised when the outcome of the transaction is in-doubt.

���Return Value�Meaning�����S_OK�Success.��
�Transaction Propagation Interfaces
These interfaces are used to propagate transactions from one process to another or from one system to another.
ITransactionImportWhereabouts Interface
Implemented by:�MS DTC Proxy��Object�MS DTC Proxy core object��Interface Source�Either:�Call DtcGetTransactionManager with a riid of IID_ITransactionImportWhereabouts when initially connecting to MS DTC.
Call QueryInterface on any interface on the MS DTC Proxy core object with a riid of IID_ITransactionImportWhereabouts.��Called by:�Resource manager��Description:�ITransactionImportWhereabouts interface is used when propagating transactions from one process to another or one system to another. The resource manager uses this interface to retrieve an opaque address called the Whereabouts from its transaction manager. The Whereabouts describes the location of the transaction manager. The resource manager sends the Whereabouts to the RM Proxy. The RM Proxy sends the Whereabouts to its transaction manager. The Whereabouts allows the transaction manager on the RM Proxy’s system to locate the transaction manager on the resource manager’s system. This permits the two transaction managers to communicate with one another and thereby propagate a transaction from one system to the other.��
interface ITransactionImportWhereabouts : IUnknown
{
	HRESULT GetWhereaboutsSize (
				[out} ULONG *	pcbSize);

	HRESULT GetWhereabouts (
				[in] ULONG		cbWhereabouts,
				[out] BYTE *		rgbWhereabouts,
				[out] ULONG *	pcbUsed);
};
�ITransactionImportWhereabouts::GetWhereaboutsSize

HRESULT 	GetWhereaboutsSize ([out] ULONG *	pcbSize)
This method returns the length in bytes of the Whereabouts of the local transaction manager.

Argument�Type�Description��pcbSize�ULONG *�[out] Pointer to the size in bytes of the Whereabouts.��
Return Value�Meaning��S_OK�Success.��E_INVALIDARG�The value of pcbSize was NULL.��
�ITransactionImportWhereabouts::GetWhereabouts

HRESULT 	GetWhereabouts (
			[in] ULONG			cbWhereabouts,
			[out] BYTE *			rgbWhereabouts,
			[out] ULONG *		pcbUsed)
This method returns the Whereabouts of the local transaction manager.

Argument�Type�Description��cbWherabouts�ULONG�[in] The size in bytes of the rgbWhereabouts buffer.��rgbWhereabouts�BYTE *�[out] Pointer to the caller allocated buffer in which the Whereabouts will be returned.��pcbUsed�ULONG *�[out] Pointer to the size in bytes of the address returned in rgbWhereabouts.��

Return Value�Meaning��S_OK�Success.��E_INVALIDARG�The value of either rgbWhereabouts or pcbUsed is NULL.��
�ITransactionExportFactory Interface
Implemented by:�MS DTC Proxy��Object�MS DTC Proxy core object��Interface Source�Either:�Call DtcGetTransactionManager with a riid of IID_ITransactionExportFactory when initially connecting to MS DTC.
Call QueryInterface on any interface on the MS DTC Proxy core object with a riid of IID_ITransactionExportFactory.��Called by:�RM Proxy��Description:�This interface is used to create a new export object. The export object represents the connection between a process that exports transactions and a process that imports transactions. The export object is used when propagating transactions between the systems.��
interface ITransactionExportFactory : IUnknown
{
	HRESULT GetRemoteClassId([out] CLSID *	pclsid);

	HRESULT Create(
				[in] ULONG					cbWhereabouts,
				[in] BYTE *					rgbWhereabouts,
				[out] ITransactionExport **	ppExport);
};
�ITransactionExportFactory::GetRemoteClassId

HRESULT 	GetRemoteClassId ([out] CLSID *	pclsid)
This method is not needed when MS DTC is the only transaction manager being used. This method is present so that vendors other than Microsoft can provide OLE Transaction compliant transaction managers. These transaction managers could be used in place of MS DTC or in conjunction with it.
GetRemoteClassId returns the class identifier of the local transaction manager. The class identifier can be used to ensure that a transaction manager of the proper type is present on the remote system. Having compatible transaction managers on the two systems makes it possible to propagate transactions between the systems.
Resource managers that wish to work with a variety of transaction manager should have their RM Proxy call this method. The RM Proxy should examine the value returned in pclsid. If pclsid is CLSID_M01_MSDtcTmProxy, then MS DTC is being used as the local transaction manager. In this case, the remote resource manager can call the DtcGetTransactionManager helper API on the remote system. This will connect the remote resource manager to the MS DTC Proxy Core Object on its system. If some other pclsid is returned, then the remote resource manager should call CoCreateInstance on the remote system with a class identifier of *pclsid. This will connect the remote resource manager to the appropriate transaction manager on that system.

Argument�Type�Description��pclsid�CLSID *�[out] Pointer to the class identifier of the local transaction manager.��
Return Value�Meaning��S_OK�Success.��E_INVALIDARG�The value of pclsid is NULL.��
�ITransactionExportFactory::Create

HRESULT 	Create (
			[in] ULONG					cbWhereabouts,
			[in] BYTE *					rgbWhereabouts,
			[out] ITransactionExport **	ppExport)
This method creates an export object. The export object represents the connection between the caller of ITransactionExportFactory::Create and the destination process which provided the Whereabouts. The caller uses the export object returned by this method to marshal a transaction object for export to the destination process.

Argument�Type�Description��cbWhereabouts�ULONG�[in] The size in bytes of rgbWhereabouts.��rgbWhereabouts�BYTE *�[in] Pointer to the Whereabouts.��ppExport�ITransactionExport **�[out] Pointer to the pointer to the ITransactionExport interface on the export object.��
Return Value�Meaning��S_OK�Success.��E_FAIL�The data in rgbWhereabouts is corrupted.��E_INVALIDARG�The value of either rgbWhereabouts or ppExport is NULL.��E_OUTOFMEMORY�Unable to allocate memory.��XACT_E_TMNOTAVAILABLE�Unable to connect to the transaction manager or the transaction manager is unavailable.��XACT_E_CONNECTION_DOWN�No longer able to communicate with the transaction manager because the connection to the transaction manager failed.��XACT_E_CONNECTION_REQUEST_DENIED�The transaction manager did not accept a connection request.��
�ITransactionExport Interface
Implemented by:�MS DTC Proxy��Object�Export object��Interface Source�Returned by the ITransactionExportFactory::Create method.��Called by:�RM Proxy��Description:�A process that wishes to export a transaction uses this interface to marshal a transaction object. The process calls this interface and passes a transaction object. The process is returned an opaque marshaled form of the transaction object called a transaction cookie. The process then sends the transaction cookie to the destination process. This is referred to as “exporting” the transaction.
Communication failures may invalidate the export object. If ITransactionExport::Export returns the error XACT_E_CONNECTION_DOWN then the current export object is invalid and a new export object must be created. ��
interface ITransactionExport : IUnknown
	{
	HRESULT	Export (
				[in] IUnknown *		pITransaction,
				[out] ULONG *		pcbTransactionCookie);

	HRESULT	GetTransactionCookie (
				[in] IUnknown *		pITransaction,
				[in] ULONG			cbTransactionCookie,
				[out] BYTE *			rgbTransactionCookie,
				[out] ULONG *		pcbUsed);
	};
�ITransactionExport::Export
	HRESULT	Export (
				[in] IUnknown *		pITransaction,
				[out] ULONG *		pcbTransactionCookie)
This method is used to marshal a transaction object for export. The input parameter to the method is the transaction object to be exported. The method returns the byte length of the opaque marshaled form of the transaction object as an output parameter. The opaque marshaled form of the transaction object is called the transaction cookie.

Argument�Type�Description��punkTransaction�IUnknown *	�[in] Pointer to the IUnknown interface on the transaction object to be exported.��pcbTransactionCookie�ULONG *�[out] Pointer to the size in bytes of the transaction cookie.��
Return Value�Meaning��S_OK�Success.��E_UNEXPECTED�An unexpected error occurred.��E_INVALIDARG�The value of either punkTransaction or pcbTransactionCookie is NULL.��E_OUTOFMEMORY�Unable to allocate memory.��XACT_E_ALREADYINPROGRESS�An export is already in progress on this export object. Only one export may be done at a time.��E_NOINTERFACE�punkTransaction did not support the ITransaction interface.��XACT_E_CONNECTION_DOWN�No longer able to communicate with the transaction manager because the connection to the transaction manager failed. This export object is now invalid.��XACT_E_NOTRANSACTION�Unable to retrieve information for the transaction because it was already completed.��XACT_E_LOGFULL�The MS DTC log is full.��E_FAIL�Failed to connect to the transaction coordinator.��
�ITransactionExport::GetTransactionCookie

HRESULT 	GetTransactionCookie (
			[in] IUnknown *		pITransaction
			[in] ULONG			cbTransactionCookie,
			[out] BYTE *			rgbTransactionCookie,
			[out] ULONG *		pcbUsed)
This method transforms a transaction object into a transaction cookie. It is called after ITransactionExport::Export has been called. The transaction cookie is the opaque marshaled form of the transaction object. The process sends the transaction cookie to the destination process. The process of marshaling the transaction object into a transaction cookie and sending the transaction cookie to the destination process is referred to as “exporting” the transaction.

Argument�Type�Description��pITransaction�IUnknown *�[in] Pointer to the IUnknown interface on the transaction object to be marshaled. The ITransactionExport::Export must have been called previously.��cbTransactionCookie�ULONG�[in] The size in bytes of the transaction cookie representing the transaction object.��rgbTransactionCookie�BYTE *�[out] Pointer to the caller allocated buffer that will receive the transaction cookie.��pcbUsed�ULONG *�[out] Pointer to the size in bytes of the address returned in rgbTransactionCookie.��
Return Value�Meaning��S_OK�Success.��E_UNEXPECTED�An unexpected error occurred.��E_NOINTERFACE�pITransaction did not support the ITransaction interface.��E_INVALIDARG�A NULL pointer was specified.��
�ITransactionImport Interface
Implemented by:�MS DTC Proxy��Object�MS DTC Proxy core object��Interface Source�Call QueryInterface on any interface on the MS DTC Proxy core object with a riid of IID_ITransactionImport..��Called by:�Resource manager��Description:�ITransactionImport transforms an imported transaction cookie into a transaction object.
A process that wishes to import a transaction calls this interface passing an opaque marshaled form of the transaction object called the transaction cookie. The process is returned a transaction object. This is referred to as “importing” the transaction. After importing the transaction, the process uses the IResourceManager::Enlist method to enlist in the transaction.��
interface (ITransactionImport, IUnknown)
{
	HRESULT Import(
				[in] ULONG		cbTransactionCookie,
				[in] BYTE *		rgbTransactionCookie,
				[in] IID *		piid,
				[out] void **	ppvTransaction);
};
�ITransactionImport::Import

HRESULT 	Import (
			[in] ULONG		cbTransactionCookie,
			[in] BYTE *		rgbTransactionCookie,
			[in] RIID *		piid,
			[out] void **	ppvTransaction)
This method transforms a transaction cookie into a transaction object. A process calls this method passing an opaque marshaled form of the transaction object called the transaction cookie. The process is returned a transaction object. This is referred to as “importing” the transaction. After importing the transaction, the process uses the IResourceManager::Enlist method to enlist in the transaction.

Argument�Type�Description��cbTransactionCookie�ULONG�[in] The size of the transaction cookie��rgbTransactionCooke�BYTE *�[in] The transaction cookie.��piid�IID *�[in] The interface id desired on the resulting transaction object.��ppvTransaction�void **�[out] Pointer to the pointer to the IUnknown interface on the imported transaction object.��
Return Value�Meaning��S_OK�Success��E_UNEXPECTED���E_INVALIDARG�Some parameter(s) was/were invalid.��E_OUTOFMEMORY�Unable to allocate memory.��E_FAIL�The TM failed to import the transaction.��XACT_E_TMNOTAVAILABLE�Unable to connect to the TM��XACT_E_CONNECTION_DOWN�Lost connection with the TM��XACT_E_CONNECTION_REQUEST_DENIED�TM refused a connection request��XACT_E_NOTRANSACTION�The transaction was not found.��
�Resource Manager Interfaces
Transaction managers and resource managers use these interfaces to communicate. The resource manager uses these interfaces to enlist in transactions and to recover transactions following a failure. The resource manager implements one of these interfaces as a callback interface. The resource manager is called on this interface if the transaction manager fails. This informs the resource manager that it must perform recovery.
� EMBED ShapewareVISIO20 ���
�IResourceManagerFactory Interface
Implemented by:�MS DTC Proxy��Object�MS DTC Proxy core object��Interface Source�Call QueryInterface on any interface on the MS DTC Proxy core object with a riid of IID_IResourceManagerFactory.��Called by:�Resource manager��Description:�The interface contains a single method that is used to create a new resource manager object. The resource manager object represents the active connection between the resource manager and the transaction manager. Resource managers use this interface to register themselves with the transaction manager.��
interface IResourceManagerFactory : IUnknown
{
	HRESULT Create (
				[in] GUID *		pguidRM,
				[in] TCHAR *	pszRMName,
				[in] IResourceManagerSink *	 pIResMgrSink,
				[out] IResourceManager **	 ppResMgr) ;
}
�IResourceManagerFactory::Create

HRESULT Create (
			[in] GUID *		pguidRM,
			[in] TCHAR *	pszRMName,
			[in] IResourceManagerSink *	 pIResMgrSink,
			[out] IResourceManager **	 ppResMgr) ;
This method is used to create a resource manager object. The resource manager object represents the connection between the resource manager and the transaction manager. The resource manager object supports the IResourceManager interface that resource manager use to enlist in transactions and to perform transaction recovery.
A resource manager typically invokes the IResourceManager::Create method when the resource manager first starts. By doing this the resource manager registers itself with the transaction manager. The resource manager retains the resource manager object until it no longer needs the services of the transaction manager. It then releases IResourceManager interface. This ends the connection with the transaction manager. A resource manager typically retains the transaction manager connection until the resource manager stops.
If the connection between the transaction manager and the resource manager fails, the MS DTC Proxy invokes the resource manager’s IResourceManagerSink::TMDown method. This callback informs the resource manager that its transaction manager connection has failed. The resource manager must invoke the IResourceManagerFactory::Create method again to re-register with the transaction manager.

Argument�Type�Description��pguidRM�GUID *�[in] A UUID that uniquely identifies this resource manager.��pszName�TCHAR *�[in] A string name that identifies this resource manager.��pIResMgrSink�IResourceManagerSink *�[in] Pointer to the resource manager’s IResourceManagerSink interface. The resource manager developer must implement the TMDown method on this interface.��ppResMgr�IResourceManager **�[out] Pointer to the pointer to the IResourceManager interface on the resource manager object��
Return Value�Meaning��S_OK�Success.��E_NOINTERFACE�Requested interface is not available.��E_OUTOFMEMORY�Unable to allocate memory.��XACT_E_TMNOTAVAILABLE�Unable to connect to the transaction manager.��XACT_E_CONNECTION_DOWN�Connection with the transaction manager was lost��XACT_E_CONNECTION_REQUEST_DENIED�The transaction manager refused to accept a connection��XACT_E_DUPLICATE_GUID�There is already a resource manager connected to the transaction manager with the same GUID as was passed via pguidRM��E_UNEXPECTED�An unexpected error has occurred.��
�IResourceManager Interface
Implemented by:�MS DTC Proxy��Object�Resource manager object��Interface Source�Returned by the IResourceManagerFactory::Create method.��Called by:�Resource manager��Description:�IResourceManager is the interface used by resource managers to enlist in distributed transactions. Following a failure, resource managers use this interface to determine the outcome of in-doubt transactions.��
interface IResourceManager : IUnknown
{
	HRESULT Enlist (
				[in] ITransaction *		pTransaction,
				[in] ITransactionResourceAsync *	pRes,
				[in, out] GUID *	pUOW,
				[out] LONG *			pisoLevel,
				[out] ITransactionEnlistmentAsync **		ppIEnlist);

	HRESULT Reenlist (
				[in] unsigned char *	pPrepInfo,
				[in] ULONG			cbPrepInfo,
				[in] ULONG			ulTimeout,
				[in, out] XACTSTAT *		pXactStat);

	HRESULT ReenlistmentComplete (void);

	HRESULT GetDistributedTransactionManager (
				[in] REFIID		riid,
				[out] void **	ppIDTM);
}
�IResourceManager::Enlist

HRESULT Enlist (
			[in] ITransaction *		pTransaction,
			[in] ITransactionResourceAsync *	pRes,
			[in, out] GUID *	pUOW,
			[out] LONG *			pisoLevel,
			[out] ITransactionEnlistmentAsync **		ppIEnlist);
Resource manager enlists in a transaction by invoking the enlist method. An instance of ITransactionResourceAsync is pass as an argument. This interface is implemented by the RM and there is an instance of it per transaction. If the Coordinator is successful in enlisting the RM on the requested transaction then the RM will receive an instance of ITransactionEnlistmentAsync as an out parameter to the Enlist method. The thing to note is that an ITransaction instance is being provided to the method as in argument, however the transaction in the general case would have been begun by the application. The RM somehow needs to obtain that transaction from the client before it can request to be enlisted in it. The process for propagating the transaction from the application to the RM is discussed later. In brief the application calls an API or invokes a method in the RM Proxy, asking it to enlist in the transaction. The RM Proxy then with the help of MS DTC proxy is responsible for propagating the transaction to the resource manager server.

Argument�Type�Description��pTransaction�ITransaction *�[in] Pointer to the transaction object in which the resource manager wishes to enlist.��pRes�ITransactionResourceAsync *�[in] Pointer to the resource manager’s ITransactionResourceAsync interface. The resource manager developer must implement the methods on this interface..��PUOW�GUID *�[in, out]Pointer to the transaction identifier GUID.��pisoLevel�LONG *�[out] Pointer to the value of the client specified isolation level��ppEnlist�ITransactionEnlistmentAsync **�[out] Pointer to the pointer to the ITransactionEnlistAsync interface on the enlistment object.��
Return Value�Meaning��S_OK�Success��E_INVALIDARG�One or more parameters were invalid��E_OUTOFMEMORY�Unable to allocate memory.��E_UNEXPECTED�Something unexpected happened��XACT_E_ABORT�the transaction has aborted��XACT_E_CONNECTION_DOWN�Lost connection with the TM��XACT_E_NOTRANSACTION�For some reason the transaction could not be found. Perhaps it was not exported or it could have been aborted and forgotten before the enlist call was made.��XACT_E_LOGFULL�Unable to enlist as the LOG is full.��XACT_E_TOOMANY_ENLISTMENTS�The coordinator already has maximum number of Resources Enlisted in the transaction is unable to enlist any more. Typically Coordinators should not have an arbitrary limit as to the maximum number of enlistments they can support. ��
�IResourceManager::Reenlist

HRESULT Reenlist (
			[in] unsigned char *	pPrepInfo,
			[in] ULONG			cbPrepInfo,
			[in] ULONG			ulTimeout,
			[out] XACTSTAT *		pXactStat);
At recovery, the RM re-registers with the coordinator to reestablish it’s relationship with it and obtains a new resource manager object representing the new relationship. After obtaining the IResourceManager interface, it starts asking the coordinator for the outcome of all transactions that are in-doubt from the resource manager’s perspective. Before replying with a Prepared message on a Prepare Request, the resource manager needs to obtain a prepare information from the Enlistment object by using the IPrepareInfo::GetPrepareInfo method. This blob is persisted by the RM in it’s log before it replies with a Prepared message. Once the RM is prepared, the transaction is in-doubt from it’s perspective until it receives an ABORT or a Commit Request from the coordinator. If a fault was to happen that causes the enlistment and the resource manager object to go away, then the RM needs to use this method to determine the final outcome of the transaction. The prepare information is pass as an argument to the Reenlist method invocation.
The outcome can be either COMMITTED or ABORTED. There can be no other outcome the call times out and a XACT_E_REENLISTTIMEOUT error is returned. MS DTC uses the presumed abort protocol; this protocol allows the coordinator to unilaterally abort a transaction if a fault occurs prior to it having made a COMMIT decision. A transaction is said to have been committed only when the Coordinator has successfully persisted its decision to COMMIT the transaction.
CAUTION:
It is not correct to ask for the outcome of a transaction once it has completed. The coordinator is responsible for providing the outcome only for those transactions which it remembers. All aborted transactions are forgotten immediately and no information regarding those transactions is persisted. All committed transactions are forgotten once all the resource managers that were enlisted in that transaction have replied with a COMMITTED message, meaning that the Coordinator successfully obtained a reply to the second phase from each of the resource managers that was enlisted in that transaction. Only under certain optimizations will the RM(s) not receive the second phase notifications.

Argument�Type�Description��pPrepInfo�unsigned char *�[in] Binary blob containing the prepare information previously obtained from the Enlistment object and written into the resource manager’s log��cbPrepInfo�ULONG�[in] Length in bytes of pPrepInfo.��ulTimeout�ULONG�[in] How long the RM is willing to wait for the outcome of a transaction, in milliseconds. 0x0 defined as XACTCONST_TIMEOUTINFINITE is the infinite time-out value.��pXactStatus�XACTSTAT *�[in, out] TM provides the status of the transaction.
Enum XACTSTAT {XACTSTAT_ABORTED, 			XACTSTAT_COMMITTED}��
Return Value�Meaning��S_OK�Success��E_INVALIDARG�One or more arguments are invalid��E_OUTOFMEMORY�Unable to allocate memory.��E_UNEXPECTED�Something unexpected occurred.��XACT_E_CONNECTION_DOWN�Lost connection with the TM��XACT_E_REENLISTTIMEOUT�The reenlist request timed out. XACTSTAT_NONE is returned via *pXactStat when this error occurs.��XACT_E_RECOVERYALREADYDONE�ReenlistmentComplete method was invoked at least once after this interface was obtained. Therefore, the recovery is complete. Cannot reenlist once recovery has completed.��
�IResourceManager::ReenlistmentComplete

HRESULT 	ReenlistmentComplete (void);
Resource manager invokes this after resolving all the in-doubt transactions it knows about. This allows the Coordinator to forget any transactions that it was continuing to remember, as it had an obligation to remember those transactions until it was certain that the resource manager knew the outcome of those transactions. An RM will forget a transaction before responding to the second phase, this allows for a window in which an RM would have forgotten a transaction but not the TM. It is so because, the COMMITTED message from the RM to the Coordinator can get lost on its way due to some fault. A Coordinator would not know if the resource manager has received the COMMIT notification or not, unless it receives the COMMITTED message from the RM. Until it receives the COMMITTED message, it cannot forget the transaction. The RM when it reestablishes a relationship with the Coordinator will query the status for all the in-doubt transactions but it will not ask for the transactions that it had already forgotten. After resolving all the in-doubt transactions, it simply invokes the method IResourceManager::ReenlistmentComplete which then allows the TM to forget the transactions.
This protocol makes the recovery process idempotent. Any number of failures such as crashes can occur during recovery, but the results will always be the same. Also this protocol allows the resource managers to enlist in new transactions while the in-doubt transactions are being resolved. The Coordinator is intelligent enough to segregate new transactions from the old transactions. New transactions are the ones that the RM enlists in from the point the new RM-Coordinator relationship is established, and all the old transactions are the ones that it had enlisted in prior to the establishment of the new relationship.

Return Value�Meaning��S_OK�Success��E_INVALIDARG�One or more arguments are invalid��E_OUTOFMEMORY�Unable to allocate memory.��E_UNEXPECTED�Something unexpected occurred.��XACT_E_CONNECTION_DOWN�Lost connection with the TM��XACT_E_RECOVERYALREADYDONE�ReenlistmentComplete method was invoked at least once after this interface was obtained. Therefore, the recovery is already complete. ��
�IResourceManager::GetDistributedTransactionManager

HRESULT GetDistributedTransactionManager (
			[in] REFIID		riid,
			[out] void **	ppIDTM);
This method can be used to obtain from the resource manager object an interface on the Distributed Transaction Coordinator. IResourceManager interface was obtained by invoking the Create method on IResourceManagerFactory interface. The IResourceManagerFactory interface can be obtained by invoking Query Interface on one of the other interfaces supported by the Distributed Transaction Coordinator object or by calling the DtcGetTransactionManager API.

Argument�Type�Description��riid�REFIID�[in] IID of the requested interface.��ppv�void **�[out] Pointer to the pointer to the requested interface.��
Return Value�Meaning��S_OK�Success.��E_NOINTERFACE�Unable to provide the requested interface.��
�IResourceManagerSink Interface
Implemented by:�Resource manager��Object�N/A��Interface Source�The resource manager implements the method in this interface. The MS DTC Proxy invokes this method if the transaction manager fails.��Called by:�MS DTC Proxy��Description:�This is a callback interface implemented by the resource manager. The interface is passed as a parameter to IResourceManagerFactory::Create and registered in the resource manager object. The MS DTC Proxy calls the resource manager’s IResourceManagerSink callback interface if the transaction manager fails. This informs the resource manager that it must perform recovery.��IResourceManagerSink is a callback interface implemented by the resource manager. The MS DTC proxy calls this resource manager interface to inform the resource manager that the connection between the resource manager and the transaction manager has failed. This would happen, for example. if the transaction manager process fails.
The resource manager registers its IResourceManagerSink callback interface with MS DTC by passing it as a parameter to IResourceManager::Create. MS DTC registers the IResourceManagerSink callback interface in the resource manager object.
If the connection between the MS DTC Proxy and the transaction manager fails, the MS DTC proxy first calls the resource manager’s ITransactionResourceAsync::TMDown method once for each transaction in which the resource manager is enlisted. The MS DTC proxy then calls the resource manager’s IResourceManagerSink::TMDown method. This ensures that the resource manager is informed of the failure even if it has no enlisted transactions.

interface IResourceManagerSink : IUnknown
{
	void	TMDown (void) ;
}

�Transaction Coordination (Two-phase Commit) Interfaces
The transaction coordinator interfaces are ITransactionResourceAsync, IPrepareInfo and ITransactionEnlistmentAsync. These interfaces allow the resource manager to participate in the commit decision on a transaction. ITransactionResourceAsync is an interface on an object implemented by the resource manager. IPrepareInfo and ITransactionEnlistmentAsync are interfaces on the enlistment object.
� EMBED ShapewareVISIO20 ���

�ITransactionResourceAsync Interface
Implemented by:�Resource manager��Object:�An object implemented by the resource manager.��Interface Source:�N/A��Called by:�MS DTC Proxy��Description:�The MS DTC Proxy calls the methods of this interface to deliver phase one and phase two notifications to the resource manager.��
Interface ITransactionResourceAsync : IUnknown
{
	HRESULT PrepareRequest (
				[in] BOOL		fRetaining,
				[in] DWORD		grfRM,
				[in] BOOL		fWantMoniker,
				[in] BOOL		fSinglePhase);

	HRESULT CommitRequest (
				[in] DWORD		grfRM,
				[in] XACTUOW *	pNewUOW);

	HRESULT AbortRequest (
				[in] BOID *		pboidReason,
				[in] BOOL		fRetaining,
				[in] XACTUOW *	pNewUOW);

	HRESULT TMDown (void);
};
�ITransactionResourceAsync::PrepareRequest

HRESULT PrepareRequest (
			[in] BOOL		fRetaining,
			[in] DWORD		grfRM,
			[in] BOOL		fWantMoniker,
			[in] BOOL		fSinglePhase);
The MS DTC Proxy calls on this method to prepare, phase one of the two-phase commit protocol, a transaction. The resource manager needs to return from this call as soon as the transaction object starts preparing. Once the transaction object is prepared the resource manager needs to call ITransactionEnlistmentAsync::PrepareRequestDone.
If fSinglePhase flag is TRUE, it indicates that the RM is the only resource manager enlisted on the transaction. and therefore it has the option to perform the single phase optimization. If the RM does choose to perform the single phase optimization, then it lets the Transaction Coordinator know of this optimization by providing XACT_S_SINGLEPHASE flag to the ITransactionEnlsitementAsync::PrepareRequestDone.

Argument�Type�Description��fRetaining�BOOL�[in] FALSE for MS DTC 1.0.��grfRM�DWORD�[in] Values from XACTRM.��fWantMoniker�BOOL�[in] FALSE for MS DTC 1.0.��fSinglePhase�BOOL�[in] If TRUE, it indicates that the RM is the only resource manager enlisted on the transaction. ��
Return Value�Meaning��S_OK�Success: the resource manager’s transaction object has started preparing.��
�ITransactionResourceAsync::CommitRequest

HRESULT CommitRequest (
			[in] DWORD		grfRM,
			[in] XACTUOW *	pNewUOW);
The MS DTC Proxy calls on this method to commit, phase two of the two-phase commit protocol, a transaction. The resource manager needs to return from this call as soon as the transaction object starts committing. Once the transaction object is prepared the resource manager needs to call ITransactionEnlistmentAsync::CommitRequestDone.

Argument�Type�Description��grfRM�DWORD�[in] Values from XACTRM.��pNewUOW�XACTUOW*�[in] NULL for MS DTC 1.0.��
Return Value�Meaning��S_OK�Success: the resource manager’s transaction object has started committing.��
�ITransactionResourceAsync::AbortRequest

HRESULT AbortRequest (
			[in] BOID *		pboidReason,
			[in] BOOL		fRetaining,
			[in] XACTUOW *	pNewUOW);
The MS DTC Proxy calls on this method to abort a transaction. The resource manager needs to return from this call as soon as the transaction object starts aborting. Once the transaction object is prepared the resource manager needs to call ITransactionEnlistmentAsync::AbortRequestDone.

Argument�Type�Description��pboidReason�BOID*�[in] A pointer to a BOID explaining why the transaction abort was requested.��fRetaining�BOOL�[in] Always will be FALSE for MS DTC 1.0.��pNewUOW�XACTUOW*�[in] Always will be NULL for MS DTC 1.0.��
Return Value�Meaning��S_OK�Success: the resource manager’s transaction object has started aborting.��
�ITransactionResourceAsync::TMDown

HRESULT 	TMDown(void)
The MS DTC Proxy calls on this method if connection to the transaction manager goes down and the resource manager’s transaction object is prepared i.e. after the resource manager has called the ITransactionEnlistmentAsync::PrepareRequestDone method.

Return Value�Meaning��S_OK�Success: the resource manager’s transaction object has started aborting.��
�IPrepareInfo Interface
Implemented by:�MS DTC Proxy��Object:�Enlistment object.��Interface Source:�Call QueryInterface on the ITransactionEnlistmentAsync interface on the enlistment object with a riid of IID_IPrepareInfo.��Called by:�Resource manager.��Description:�IPrepareInfo is used by the resource managers to obtain transaction prepare information from the enlistment objects. Transaction prepare information is binary data that helps the transaction manager determine the outcome of transactions. The resource manager needs to log the transaction prepare information when the transaction prepares to determine the outcome of transactions during recovery.��
interface IPrepareInfo : IUnknown {
	HRESULT GetPrepareInfoSize ([out] ULONG *	pcbPrepInfo) ;

	HRESULT GetPrepareInfo ([out] unsigned char *	pPrepInfo) ;
};
�IPrepareInfo::GetPrepareInfoSize

HRESULT 	GetPrepareInfoSize (ULONG * pcbPrepInfo)
This method is called by the resource manager to determine the size in bytes of the prepare information that needs to be logged. The actual prepare information is available by a call to IPrepareInfo::GetPrepareInfo.

Argument�Type�Description��pcbPrepInfo�ULONG *�[out] A pointer to the size in bytes of the prepare information. ��
Return Value�Meaning��S_OK�Success.��E_INVALIDARG�The value of pcbPrepInfo is NULL.��
�IPrepareInfo::GetPrepareInfo

	HRESULT GetPrepareInfo ([out] unsigned char *	pPrepInfo) ;
This method is called by the resource manager to get the transaction prepare information. The resource manager allocates the buffer pPrepInfo. The size of pPrepInfo is determined by calling IPrepareInfo::GetPrepareInfoSize.

Argument�Type�Description��pPrepInfo�unsigned char *�[out] Pointer to the caller allocated buffer to receive the prepare information.��
Return Value�Meaning��S_OK�Success.��E_INVALIDARG�The value of pPrepInfo is NULL.��
�ITransactionEnlistmentAsync Interface
Implemented by:�MS DTC Proxy��Object�Enlistment object��Interface Source�Returned by the IResourceManager::Enlist method��Called by:�Resource manager��Description:�The resource manager uses this interface to notify the transaction manager that it has completed the prepare, abort or commit request on the transaction object associated with this enlistment object.��
interface ITransactionEnlistmentAsync : IUnknown {
	HRESULT PrepareRequestDone (
				[in] HRESULT hr,
				[in] IMoniker * pmk,
				[in] BOID * pboidReason);

	HRESULT CommitRequestDone([in] HRESULT hr);

	HRESULT AbortRequestDone ([in] HRESULT hr);
};
�ITransactionEnlistmentAsync::PrepareRequestDone

HRESULT PrepareRequestDone (
			[in] HRESULT hr,
			[in] IMoniker * pmk,
			[in] BOID * pboidReason);
The resource manager invokes this method to inform the transaction manager that it has completed the prepare phase of the two-phase commit protocol. The resource manager uses the hr parameter to inform the transaction manager of the outcome of the prepare phase.

Argument�Type�Description��hr�HRESULT�[in] Please see “Value of hr parameter” below.��pmk�IMoniker *�[in] Must be NULL.��pboidReason�BOID *�[in] Pointer to a BOID explaining why the transaction could not be prepared. This parameter must be NULL if hr is S_OK, XACT_S_READONLY or XACT_S_SINGLEPHASE.��
Value of hr parameter�Meaning��S_OK�Success: the transaction is prepared.��XACT_S_READONLY�Success: the resource manager votes yes because the transaction was read-only. Note that the resource manager will not be notified of the commit. ��E_FAIL�Failure: the resource manager has aborted the transaction.��E_UNEXPECTED�Failure: an unknown error occurred. The resource is in an indeterminate state. The transaction will abort.��XACT_S_SINGLEPHASE�Success: The resource manager has committed the transaction and does not want commit notification. Note that this HRESULT should be specified only if the fSinglePhase flag was TRUE in the call to ITransactionResourceAsync::PrepareRequest.��
Return Value�Meaning��S_OK�Success.��E_UNEXPECTED�An unexpected error occurred.��E_INVALIDARG�The value of pboidReason must be NULL for the specified hr or an invalid hr was specified.��E_FAIL�PrepareRequestDone was called illegally.��XACT_E_NOTSINGLEPHASE�Indicates that the fSinglePhase flag to the ITransactionResourceAsync call was FALSE, but the RM is trying to do the Single Phase Optimization.��
�ITransactionEnlistmentAsync::CommitRequestDone

HRESULT CommitRequestDone([in] HRESULT hr);
The resource manager invokes this method to inform the transaction manager that it has successfully aborted the transaction.

Argument�Type�Description��hr�HRESULT�[in] Please see “Value of hr parameter” below.��
Value of hr parameter�Meaning��S_OK�Success: the transaction has committed.��
Return Value�Meaning��S_OK�Success.��E_INVALIDARG�An invalid hr was specified.��E_FAIL�CommitRequestDone was called illegally.��
�ITransactionEnlistmentAsync::AbortRequestDone
	HRESULT AbortRequestDone ([in] HRESULT hr);
The resource manager invokes this method to inform the transaction manager that it has successfully aborted the transaction.

Argument�Type�Description��hr�HRESULT�[in] Please see “Value of hr parameter” below.��
Value of hr parameter�Meaning��S_OK�Success: the transaction has been aborted.��
Return Value�Meaning��S_OK�Success. The enlistment has accepted the notification.��E_FAIL�AbortRequestDone was called illegally.��E_INVALIDARG�An invalid hr was specified.��
�Connection Point Interfaces
These interfaces are part of the OLE Controls, they are being included here for the sake of completeness. For details regarding these interfaces please refer to official OLE Controls documentation. Consumers of events register sinks with the connection points to receive events. In the 1.0 version of MS DTC, some events regarding transactions can be received. Connection Points are supported by the transaction objects. The description provided below is an edited version of the description borrowed from the OLE Controls interface document
The COM technology known as Connectable Objects (also called “connection points”) supports a generic ability for any object, called in this context a “connectable” object, to express these capabilities:
The existence of “outgoing” interfaces,� such as event sets
The ability to enumerate the IIDs of the outgoing interfaces
The ability to connect and disconnect “sinks” to the object for those outgoing IIDs
The ability to enumerate the connections that exist to a particular outgoing interface.

Support for these capabilities involves four interfaces: IConnectionPointContainer, IEnumConnectionPoints, IConnectionPoint, and IEnumConnections. A “connectable object” implements IConnectionPointContainer to indicate existence of outgoing interfaces. Through this interface a client can enumerate connection points for each outgoing IID (via an enumerator with IEnumConnectionPoints) and can obtain an IConnectionPoint interface to a connection point for each IID. Through a connection point a client starts or terminates an advisory loop with the connectable object and the client’s own sink. The connection point can also enumerate the connections it knows about through an enumerator with IEnumConnections.
�IConnectionPoint Interface
The ability to connect to a single outgoing interface (that is, for a unique IID) is provided by a “connection point” sub-object that is conceptually owned by the connectable object. The object is separate to avoid circular reference counting problems. Through this interface the connection point allows callers to connect a sink to the connectable object, to disconnect a sink, or to enumerate the existing connections.

interface IConnectionPoint : IUnknown
{
HRESULT GetConnectionInterface([out] IID *pIID);
HRESULT GetConnectionPointContainer([out] IConnectionPointContainer **ppCPC);
HRESULT Advise([in] IUnknown *pUnk, [out] DWORD *pdwCookie);
HRESULT Unadvise([in] DWORD dwCookie);
HRESULT EnumConnections([out] IEnumConnections **ppEnum);
}

A connection point is allowed to stipulate the number of connections it will allow in its implementation of Advise. A connection point that allows only one interface can return E_NOTIMPL from EnumConnections.
IConnectionPoint::GetConnectionInterface

HRESULT IConnectionPoint::GetConnectionInterface ([out] IID *pIID);
Returns the IID of the outgoing interface managed by this connection point. This is provided such that a client of IEnumConnectionPoints can determine the IID of each connection point thus enumerated. The IID returned from this method must enable the caller to access this same connection point through IConnectionPointContainer::FindConnectionPoint.

����Argument�Type�Description������pIID�IID *�[out] A pointer to the caller’s variable to receive the IID of the outgoing interface managed by this connection point.��
���Return Value�Meaning�����S_OK�The connection has been established and *pdwCookie has the connection key��E_POINTER�The value of pUnk or pdwCookie is not valid (NULL cannot be passed for either argument)��E_OUTOFMEMORY�Unable to allocate memory.��E_UNEXPECTED�An unknown error occurred.��CONNECT_E_ADVISELIMIT�The connection point has already reached its limit of connections and cannot accept any more.��CONNECT_E_CANNOTCONNECT�The sink does not support the interface required by this connection point.��
IConnectionPoint::GetConnectionPointContainer

HRESULT IConnectionPoint::GetConnectionPointContainer([out] IConnectionPointContainer **ppCPC);
Retrieves the IConnectionPointContainer interface pointer to the connectable object that conceptually owns this connection point. The caller becomes responsible for the pointer on a successful return.

����Argument�Type�Description������ppCPC�IConnectionPointContainer *�[out] A pointer to the caller’s variable in which to return a pointer to the connectable object’s IConnectionPointContainer interface. The connection point will call IConnectionPointContainer::AddRef before returning and the caller must call IConnectionPoint::Release when it is done using the pointer.��
���Return Value�Meaning�����S_OK�Success.��E_POINTER�The value in ppCPC is not valid (such as NULL).��E_UNEXPECTED�An unknown error occurred.��
Comments:
E_NOTIMPL is not an allowable return code.
IConnectionPoint::Advise

HRESULT IConnectionPoint::Advise(
			[in] IUnknown*	pUnk,
			[out] DWORD *	pdwCookie);
Establishes an advisory connection between the connection point and the caller’s sink object identified with pUnk. The connection point must call pUnk->QueryInterface(iid, ...) on this pointer in order to obtain the correct outgoing interface pointer to call when events occur, where iid is the inherent outgoing interface IID managed by the connection point (that is, that when passed to IConnectionPointContainer::FindConnectionPoint would return an interface pointer to this same connection point).
Upon successful return, the connection point provides a unique “cookie” in *pdwCookie that must be later passed to IConnectionPoint::Unadvise to terminate the connection.

����Argument�Type�Description������pUnk�IUnknown *�[in] The IUnknown pointer to the client’s sink that wishes to receive calls for the outgoing interface managed by this connection point. The connection point must query this pointer for the correct outgoing interface. If this query fails, this member returns CONNECT_E_CANNOTCONNECT.��pdwCookie�DWORD *�[out] A pointer to the caller’s variable that is to receive the connection “cookie” when connection is successful. This cookie must be unique for each connection to any given instance of a connection point.��
���Return Value�Meaning�����S_OK�The connection has been established and *pdwCookie has the connection key.��E_POINTER�The value of pUnk or pdwCookie is not valid (NULL cannot be passed for either argument).��E_UNEXPECTED�An unknown error occurred.��E_OUTOFMEMORY�There was not enough memory to complete the operation, such as if the connection point failed to allocate memory in which to store the sink's interface pointer.��CONNECT_E_ADVISELIMIT�The connection point has already reached its limit of connections and cannot accept any more.��CONNECT_E_CANNOTCONNECT�The sink does not support the interface required by this connection point.��
IConnectionPoint::Unadvise

HRESULT IConnectionPoint::Unadvise([in] DWORD dwCookie);
Terminates an advisory connection previously established through IConnectionPoint::Advise. The dwCookie argument identifies the connection to terminate.

����Argument�Type�Description������dwCookie�DWORD�[in] The connection “cookie” previously returned from IConnectionPoint::Advise.��
���Return Value�Meaning�����S_OK�The connection was successfully terminated.��E_UNEXPECTED�An unknown error occurred.��CONNECT_E_NOCONNECTION�dwCookie does not represent a value connection to this connection point.��
IConnectionPoint::EnumConnections

HRESULT IConnectionPoint::EnumConnections([out] IEnumConnections **ppEnum);

Creates an enumerator object for iteration through the connections that exist to this connection point.

Argument�Type�Description��ppEnum�IEnumConnections *�[out] A pointer to the caller’s variable to receive the interface pointer of the newly created enumerator. The caller is responsible for releasing this pointer when it is no longer needed.��
���Return Value�Meaning�����S_OK�Success.��E_POINTER�The address in ppEnum is not valid (such as NULL).��E_NOTIMPL�The connection point does not support enumeration.��E_UNEXPECTED�An unknown error occurred.��E_OUTOFMEMORY�There was not enough memory to create the enumerator.��
�IConnectionPointContainer Interface
When implemented on an object, makes the object “connectable” and expresses the existence of outgoing interfaces on the object. Through this interface a client may either locate a specific “connection point” for one IID or it can enumerate the connections points that exist. The ITransaction interface can be queried for this interface as transaction objects support connection points.

interface IConnectionPointContainer : IUnknown
{
HRESULT EnumConnectionPoints([out] IEnumConnectionPoints **ppEnum);
HRESULT FindConnectionPoint([in] REFIID riid
, [out] IConnectionPoint **ppCP);
}
IConnectionPointContainer::EnumConnectionPoints

HRESULT IConnectionPointContainer::EnumConnectionPoints([out] IEnumConnectionPoints **ppEnum);

Creates an enumerator of all the connection points supported in the connectable object, one connection point per IID. Since IEnumConnectionPoints enumerates IConnectionPoint * types, the caller must use IConnectionPoint::GetConnectionInterface to determine the actual IID that the connection point supports.
The caller of this member must call (*ppEnum)->Release when the enumerator object is no longer needed.

����Argument�Type�Description������ppEnum�IEnumConnectionPoints *�[out] A pointer to the caller’s variable that is to receive the interface pointer to the enumerator. The caller is responsible for releasing this pointer after this function returns successfully.��
���Return Value�Meaning�����S_OK�The enumerator was created successfully.��E_UNEXPECTED�An unknown error occurred.��E_POINTER�The value passed in ppEnum is not valid (such as NULL).��E_OUTOFMEMORY�There was not enough memory to create the enumerator object.��
Comments:
E_NOTIMPL is specifically disallowed because outside of type information there would be no other means through which a caller could find the IIDs of the outgoing interfaces.
IConnectionPointContainer::FindConnectionPoint

HRESULT FindConnectionPoint([in] REFIID riid , [out] IConnectionPoint **ppCP);

Asks the “connectable object” if it has a connection point for a particular IID, and if so, returns the IConnectionPoint interface pointer to that connection point. Upon successful return, the caller must call IConnectionPoint::Release when that connection point is no longer needed.
Note that this function is the QueryInterface equivalent for an object’s outgoing interfaces, where the outgoing interface is specified with riid and where the interface pointer returned is always that of a connection point.

����Argument�Type�Description������riid�REFIID�[in] A reference to the outgoing interface IID whose connection point is being requested.��ppCP�IConnectionPoint **�[out] The address of the caller’s variable that is to receive the IConnectionPoint interface pointer to the connection point that manages the outgoing interface identified with riid. This is set to NULL on failure of the call; otherwise the caller must call IConnectionPoint::Release when the connection point is no longer needed.��
���Return Value�Meaning�����S_OK�The call succeeded and *ppCP has a valid interface pointer.��E_POINTER�The address passed in ppCP is not valid (such as NULL).��E_UNEXPECTED�An unknown error occurred.��E_OUTOFMEMORY�There was not enough memory to carry out the operation, such as not being able to create a new connection point object.��CONNECT_E_NOCONNECTION�This connectable object does not support the outgoing interface specified by riid.��
Comments:
E_NOTIMPL is not allowed as a return code for this member. Any implementation of IConnectionPointContainer must implement this method.
�IEnumConnectionPoints Interface
A connectable object can be asked to enumerate its supported connection points–in essence, it’s outgoing interfaces–through IConnectionPointContainer::EnumConnectionPoints. The resulting enumerator returned from this member implements the interface IEnumConnectionPoints through which a client can access all the individual connection point sub-objects supported within the connectable object itself, where each connection point, of course, implements IConnectionPoint.
Therefore IEnumConnectionPoints is a standard enumerator interface typed for IConnectionPoint *.

interface IEnumConnectionPoints : IUnknown
{
HRESULT Next([in] ULONG cConnections
, [out, max_is(cConnections)] IConnectionPoint **rgpcn
, [out] ULONG *pcFetched);

HRESULT Skip([in] ULONG cConnections);

HRESULT Reset(void);

HRESULT Clone([out] IEnumConnectionPoints **ppEnum);
}

IEnumConnectionPoints::Next

HRESULT IEnumConnectionPoints::Next([in] ULONG cConnections , [out, max_is(cConnections)] IConnectionPoint **rgpcn, [out] ULONG *pcFetched);

Enumerates the next cConnections elements in the enumerator’s list, returning them in rgpcn along with the actual number of enumerated elements in pcFetched. The caller is responsible for calling IConnectionPoint::Release through each pointer returned in rgpcn.

����Argument�Type�Description������cConnections�ULONG�Specifies the number of IConnectionPoint * values to return in the array pointed to by rgpcn. This argument must be 1 if pcFetched is NULL.��rgpcn�IConnectionPoint **�A pointer to a caller-allocated IConnectionPoint * array of size cConnections in which to return the enumerated connection points. The caller is responsible for calling IConnectionPoint::Release through each pointer enumerated into the array once this method returns successfully. If cConnections is greater than one the caller must also pass a non-NULL pointer passed to pcFetched to know how many pointers to release.��pcFetched �ULONG�A pointer to the variable to receive the actual number of connection points enumerated in rgpcn. This argument can be NULL in which case the cConnections argument must be 1.��
���Return Value�Meaning�����S_OK�The requested number of elements has been returned and *pcFetched (if non-NULL) is set to cConnections.��S_FALSE�The enumerator returned fewer elements than cConnections because there were not that many elements left in the list. In this case, unused elements in rgpcn in the enumeration are not set to NULL and *pcFetched holds the number of valid entries, even if zero is returned.��E_POINTER�The address in rgpcn is not valid (such as NULL).��E_INVALIDARG�The value of cConnections is not 1 when pcFetched is NULL; or the value of cConnections is zero.��E_UNEXPECTED�An unknown error occurred.��E_OUTOFMEMORY�There is not enough memory to enumerate the elements.��
Comments:
E_NOTIMPL is not allowed as a return value. If an error value is returned, no entries in the rgpcn array are valid on exit and require no release.
IEnumConnectionPoints::Skip

HRESULT IEnumConnectionPoints::Skip([in] ULONG cConnections);

Instructs the enumerator to skip the next cConnections elements in the enumeration such that the next call to IEnumConnectionPoints::Next will not return those elements.

����Argument�Type�Description������cConnections�ULONG�Specifies the number of elements to skip in the enumeration.��
���Return Value�Meaning�����S_OK�The number of elements skipped is cConnections.��S_FALSE�The enumerator skipped fewer than cConnections because there were not that many left in the list. The enumerator will, at this point, be positioned at the end of the list such that subsequent calls to Next (without an intervening Reset) will return zero elements.��E_INVALIDARG�The value of cConnections is zero, which is not valid.��E_UNEXPECTED�An unknown error occurred.��
IEnumConnectionPoints::Reset

HRESULT IEnumConnectionPoints::Reset(void);

Instructs the enumerator to position itself back to the beginning of the list of elements.

����Argument�Type�Description������none����
���Return Value�Meaning�����S_OK�The enumerator was successfully reset to the beginning of the list.��S_FALSE�The enumerator was not reset to the beginning of the list.��E_UNEXPECTED�An unknown error occurred.��
Comments:
There is no guarantee that the same set of elements will be enumerated on each pass through the list: it depends on the collection being enumerated. It is too expensive for some collections, such as files in a directory, to maintain this condition.
IEnumConnectionPoints::Clone

HRESULT IEnumConnectionPoints::Clone([out] IEnumConnectionPoints **ppEnum);

Creates another connection point enumerator with the same state as the current enumerator, which iterates over the same list. This makes it possible to record a point in the enumeration sequence in order to return to that point at a later time.

����Argument�Type�Description������ppEnum�IEnumConnectionPoints**�The address of the variable to receive the IEnumConnectionPoints interface pointer to the newly created enumerator. The caller must release this new enumerator separately from the first enumerator.��
���Return Value�Meaning�����S_OK�Clone creation succeeded.��E_NOTIMPL�Cloning is not supported for this enumerator.��E_POINTER�The address in ppEnum is not valid (such as NULL).��E_UNEXPECTED�An unknown error occurred.��E_OUTOFMEMORY�There is not enough memory to create the clone enumerator.��
�IEnumConnections Interface
Any individual connection point can support enumeration of its known connections through IConnectionPoint::EnumConnections. The enumerator created by this function implements the interface IEnumConnections which deals with the type CONNECTDATA. Each CONNECTDATA structure contains the IUnknown * of a connected sink and the dwCookie that was returned by IConnectionPoint::Advise when that sink was connected. When enumerating connections through IEnumConnections, the enumerator is responsible for calling IUnknown::AddRef through the pointer in each enumerated structure, and the caller is responsible to later call IUnknown::Release when those pointers are no longer needed.

interface IEnumConnections : IUnknown
	{
	typedef struct tagCONNECTDATA
		{
		IUnknown *pUnk;
		DWORD dwCookie;
		} CONNECTDATA;

	typedef struct tagCONNECTDATA *PCONNECTDATA;
	typedef struct tagCONNECTDATA *LPCONNECTDATA;

	HRESULT Next([in] ULONG cConnections
		, [out, max_is(cConnections)] CONNECTDATA *rgpcd
		, [out] ULONG *pcFetched);

	HRESULT Skip([in] ULONG cConnections);
	HRESULT Reset(void);
	HRESULT Clone([out] IEnumConnections **ppEnum);
	}

IEnumConnections::Next

HRESULT IEnumConnections::Next([in] ULONG cConnections , [out, max_is(cConnections)] CONNECTDATA *rgpcd, [out] ULONG *pcFetched);

Enumerates the next cConnections elements in the enumerator’s list, returning them in rgpcd along with the actual number of enumerated elements in pcFetched. The caller is responsible for calling IUnknown::Release through each pUnk pointer returned in the structure elements of rgpcd.

����Argument�Type�Description������cConnections�ULONG�Specifies the number of CONNECTDATA structures to return in the array pointed to by rgpcd. This argument must be 1 if pcFetched is NULL.��rgpcd�CONNECTDATA *�A pointer to a caller-allocated CONNECTDATA array of size cConnections in which to return the enumerated connections. The caller is responsible for calling CONNECTDATA.pUnk->Release for each element in the array once this method returns successfully. If cConnections is greater than one the caller must also pass a non-NULL pointer passed to pcFetched to know how many pointers to release.��pcFetched�ULONG�A pointer to the variable to receive the actual number of connections enumerated in rgpcd. This argument can be NULL in which case the cConnections argument must be 1.��
���Return Value�Meaning�����S_OK�The requested number of elements has been returned and *pcFetched (if non-NULL) is set to cConnections.��S_FALSE�The enumerator returned fewer elements than cConnections because there were not that many elements left in the list. In this case, unused elements in rgpcd in the enumeration are not set to NULL and *pcFetched holds the number of valid entries, even if zero is returned.��E_POINTER�The address in rgpcd is not valid (such as NULL).��E_INVALIDARG�The value of cConnections is not 1 when pcFetched is NULL; or the value of cConnections is zero.��E_UNEXPECTED�An unknown error occurred.��E_OUTOFMEMORY�There is not enough memory to enumerate the elements.��
Comments:
E_NOTIMPL is not allowed as a return value. If an error value is returned, no entries in the rgpcd array are valid on exit and require no release.
IEnumConnections::Skip

HRESULT IEnumConnections::Skip([in] ULONG cConnections);

Instructs the enumerator to skip the next cConnections elements in the enumeration such that the next call to IEnumConnections::Next will not return those elements.

����Argument�Type�Description������cConnections�ULONG�Specifies the number of elements to skip in the enumeration.��
���Return Value�Meaning�����S_OK�The number of elements skipped is cConnections.��S_FALSE�The enumerator skipped fewer than cConnections because there were not that many left in the list. The enumerator will, at this point, be positioned at the end of the list such that subsequent calls to Next (without an intervening Reset) will return zero elements.��E_INVALIDARG�The value in cConnections is zero which is not valid.��E_UNEXPECTED�An unknown error occurred.��
IEnumConnections::Reset
Instructs the enumerator to position itself back to the beginning of the list of elements.

HRESULT IEnumConnections::Reset(void);

����Argument�Type�Description������none����
���Return Value�Meaning�����S_OK�The enumerator was successfully reset to the beginning of the list.��S_FALSE�The enumerator was not reset to the beginning of the list.��E_UNEXPECTED�An unknown error occurred.��
Comments:
There is no guarantee that the same set of elements will be enumerated on each pass through the list: it depends on the collection being enumerated. It is too expensive for some collections, such as files in a directory, to maintain this condition.
IEnumConnections::Clone

HRESULT IEnumConnections::Clone([out] IEnumConnections **ppEnum);

Creates another connections enumerator with the same state as the current enumerator, which iterates over the same list. This makes it possible to record a point in the enumeration sequence in order to return to that point at a later time.

����Argument�Type�Description������ppEnum�IEnumConnections**�The address of the variable to receive the IEnumConnections interface pointer to the newly created enumerator. The caller must release this new enumerator separately from the first enumerator.��
���Return Value�Meaning�����S_OK�Clone creation succeeded.��E_NOTIMPL�Cloning is not supported for this enumerator.��E_POINTER�The address in ppEnum is not valid (such as NULL).��E_UNEXPECTED�An unknown error occurred.��E_OUTOFMEMORY�There is not enough memory to create the clone enumerator.��
Glossary of Terms

Commit coordinator. See transaction tree.
Component Object Model (COM). An architecture and supporting infrastructure for building, using, and evolving component software in a robust manner. COM is an object-based programming model designed to promote software interoperability. It allows two or more applications or “components” to easily cooperate with one another, even if they were written by different vendors at different times, in different programming languages, or if they are running on different machines running different operating systems.
Connection Manager. A facility for communication between MS DTC components.
Enlistment object. An object that represents the relationship between a resource manager and a transaction object in which the resource manager has enlisted. An enlistment object is created each time a resource manager enlists in a transaction. MS DTC uses the enlistment object to determine which resource managers to involve in the two-phase commit process.
Explicitly initiated transaction. A transaction that an application initiates by calling a resource manager-provided application programming interface.
Exporting a transaction. The process of sending a transaction to be sent to another process or system. When exporting a transaction, the RM Proxy passes a transaction object to the MS DTC Proxy and is returned a transaction cookie. The RM Proxy then sends the transaction cookie to the resource manager.
Export object. An object that represents a connection between an RM Proxy and a resource manager. The export object is used to propagate transactions between processes or systems. The export object contains the name and location of the resource manager’s transaction manager. When the RM Proxy exports a transaction to a resource manager, the RM Proxy’s transaction manager uses the export object to locate the resource manager’s transaction manager.
Flat transaction. A transaction with no subtransactions or savepoints. MS DTC transactions are flat transactions.
Globally Unique Identifier (GUID). A 128-bit system-generated identifier that is guaranteed to be unique across all systems for all time.
Implicitly initiated transaction. A transaction that a resource manager initiates automatically on behalf of an application. Typically, the application is written using the resource manager’s stored procedure programming language.
Importing a transaction. The process of receiving a transaction from another process or system. When importing a transaction, the resource manager receives a transaction cookie from the RM Proxy, sends the transaction cookie to the MS DTC proxy on its system, and is returned a transaction object.
Interface. A related group of function calls. These function calls are also referred to as “methods” or “member functions.” All interfaces are named. By convention, interfaces are given a name starting with capital “I”, such as IUnknown. This given name has symbolic meaning to source-level programming tools. Each interface is also assigned an interface identifier (IID). The IID is a system-generated 128-bit globally unique identified (GUID) that unambiguously identifies the interface. The system uses this GUID at runtime to uniquely identify the interface.
Interface identifier (IID). A system-generated 128-bit globally unique identifier (GUID) that unambiguously identifies an interface. The system uses the GUID to uniquely identify an interface at runtime.
Microsoft Distributed Transaction Coordinator (MS DTC). A distributed transaction manager that coordinates transactions across a network of Windows NT- and Windows 95-based systems. MS DTC provides distributed transaction support, making it easy to reliably update data that resides on two or more Microsoft Windows systems. MS DTC allows for transactions controlled by X/Open DTP XA-compliant transaction processing monitors such as Encina, TopEnd, and Tuxedo.
MS DTC proxy. MS DTC’s interface that contains the methods that application programs and resource managers invoke to participate in MS DTC transactions. The MS DTC proxy is a set of dynamic link libraries provided as a part of MS DTC. The MS DTC proxy library is present on each Windows NT system containing a resource manager and each Windows NT or Windows '95 system containing an application program that initiates an MS DTC transaction.
MS DTC proxy core object. The root or central MS DTC object. It provides many essential MS DTC proxy interfaces. For example, it provides the interfaces for creating transaction objects, transaction options objects, export objects, and resource manager objects.
OLE Object. See OLE object instance.
OLE object class. Each OLE Transaction object class contains one or more OLE Transaction interfaces. These are the interfaces that application programs and resource managers use to participate in MS DTC transactions.
OLE object instance. An instance of an OLE object class.
OLE Transaction Interfaces. The OLE Transaction interfaces and APIs are called by application programs and resource managers to participate in MS DTC transactions. These interfaces can be divided into five groups based upon the functions they provide: Utility Interfaces and APIs, Transaction Initiation and Control Interfaces, Transaction Propagation Interfaces, Resource Manager Interfaces, and Transaction Coordination (Two-phase Commit) Interfaces.
OLE Transactions. Microsoft’s interface standard for transaction management. OLE Transactions defines the interfaces that applications, resource managers, and transaction managers use to perform transactions. Applications use OLE Transaction interfaces to initiate, commit, abort, and inquire about transactions. Resource managers use OLE Transaction interfaces to enlist in transactions, to propagate transactions from process to process or from system to system, and to participate in the two-phase commit protocol.
Prepare information An opaque data item that identifies a transaction. The resource manager obtains the prepare information from a transaction manager at phase 1 of the two-phase commit protocol. The resource manager records the prepare information in its log. At failure recovery time, the resource manager sends the prepare information to the transaction manager to learn the outcome of an in-doubt transaction.
Resource Manager (RM). A subsystem that implements a transaction-protected resource. The resource manager typically provides services to application programs or other resource managers. Examples of such resource managers include relational databases, object-oriented databases, file systems, document storage systems, and message queues.
Resource Manager object. An object that represents the connection between a resource manager and a transaction manager. A resource manager object is created when a resource manager initially connects to a transaction manager.
Resource Manager proxy (RM proxy). MS DTC’s application programming interface that application programs may invoke to perform resource manager functions. These interfaces are packaged as dynamic link library routines.
TP monitor. The name of a class of products which allow for distributed transaction processing across a network comprised of various platforms (for example, different hardware, operating systems, databases, and network protocols).
Transaction cookie. An opaque marshaled form of a transaction object.
Transaction coordinator. Same as “commit coordinator.” See transaction tree.
Transaction dispenser object. An object that creates new instances of transaction objects.
Transaction enlistment interface. The application programming interface by which a resource manager joins a transaction. This permits the resource manager to participate in the two-phase commit protocol.
Transaction Manager (TM). A subsystem that creates and coordinates transactions. The transaction manager conducts the two-phase commit protocol by which transactions’ ACID properties are preserved.
Transaction object. An object that represents an MS DTC transaction. A transaction object is created when an application program or resource manager calls BeginTransaction. A transaction object is also created when a resource manager imports a transaction.
Transaction tree. The path along which a distributed transaction is propagated. This path determines the order of subordination, or parent-to-child relationship, of transaction managers and resource managers participating in the transaction. Each resource manager is the subordinate (the child) of its local transaction manager (the parent). Each transaction manager coordinates the two-phase commit protocol with its local resource manager for the part of the transaction for which that resource manager is responsible. One transaction manager on the network is responsible for globally coordinating the entire transaction. This TM is the root of the transaction tree and functions as the commit coordinator; typically, this transaction manager is on the node on which the transaction originates.
Transaction options object An object that contains transaction attribute information, such as the time-out for the transaction and the name of the transaction. The Transaction Options Object is passed as a parameter to the ITransactionDispenser::BeginTransaction method when creating a new transaction. The transaction attributes contained in the Transaction Options Object are inherited by the newly created Transaction Object.
XA Mapper. The MS DTC process that translates between X/Open DTP XA and OLE Transactions.
X/Open DTP TX. The X/Open standard that defines the application programming interfaces which programs use to communicate with a transaction manager. Application programs use the X/Open DTP TX interfaces to begin, commit, and rollback transactions.
X/Open DTP XA. The X/Open standard that defines the application programming interfaces which resource manager use to communicate with a transaction manager. Resource managers use the X/Open DTP XA interfaces to join transactions, to perform the two-phase commit protocol, and to recover in-doubt transactions following a failure.
Whereabouts. An opaque data structure that represents the address of a resource manager’s transaction manager. Transaction managers can use the information in the whereabouts to locate and communicate with a resource manager’s transaction manager.
� 	An “outgoing” interface is one that an object defines itself but for which the object is itself a client. Another piece of code called the “sink” (generically) implements the outgoing interface such that the object can call the sink.

MSDTC : Resource Manager Implementation Guide		©Microsoft Corporation 1995. All Rights Reserved.

�PAGE �

Microsoft Corporation	Page � PAGE �121�	� DATE \l �3/31/96�

Microsoft Corporation		� DATE \l �3/31/96�

MSDTC : Resource Manager Implementation Guide		©Microsoft Corporation 1995. All Rights Reserved.

MSDTC : Resource Manager Implementation Guide		©Microsoft Corporation 1995. All Rights Reserved

Microsoft Corporation	Page � PAGE �1�	� DATE \l �3/31/96�

