chapter � SEQ chapter \c�0�
Resource Dispenser Guide
Managing Resources
Resource dispensers are part of the Microsoft Transaction Server (MTS) programming model and runtime. Application components use resource dispensers to access shared information.
A dispenser can be any component that is compatible with MTS in a standard way, regardless of the interface or API it presents to the user.
The MTS programming model includes declarative component transactions, which protect the work performed by an application object during its lifetime. When an application object uses resource dispensers, the work it performs is automatically transactional; that is,the component doesn’t have to explicitly declare the transactions. These transactions are defined in the OLE Transactions specification, implemented by Microsoft Distributed Transaction Coordinator (DTC), and initiated on behalf of the application object by MTS.
At runtime, dynamic pools of resources are made available to resource dispensers, such as database connections, network connections, connections to queues, threads, objects, memory blocks. The application process achieves high performance by using a minimum number of frequently used resources.
Resource dispensers are managed by the Resource Dispenser Manager (DispMan). DispMan provides resource pooling for the resource dispensers, and ensures that a resource supplied by a resource dispenser is correctly enlisted on the application object’s transaction.
DispMan automatically reclaims resources that are still reserved at the end of an object’s lifetime, eliminating the possibility of resource “leaks.”
A resource dispenser can function independently of MTS, providing only resource pooling capabilities. When MTS is present, it can automate transactions and reclamation.
DispMan uses the Inventory Statistics Manager to manage pool inventory levels. DispMan can request a resource dispenser to create a new resource or to destroy idle resources when necessary to adjust for inventory levels rather than using static settings.
Picture
� INCLUDEPICTURE c:\\viper\\sdk\\alpha\\art\\virm41.bmp * MERGEFORMAT ���
Resource Components
Resources
A resource is anything a resource dispenser creates. For example, a connection to a resource manager is a common resource.
Resources reside in the resource dispenser’s memory;they are never copied to DispMan. A resource is known only by its opaque handle (RESID). Resources may or may not be capable of performing transactions.
Dispenser Manager (DispMan)
DispMan is the controlling executivethat manages the loading and unloading of resource dispensers, interfaces with the MTS Executive for context, and it controls the Inventory Statistics Manager.
DispMan polls each holder every 10 seconds to allow them to readjust their resource inventory. Eachholder calls the Inventory Statistics Manager to suggest inventory levels for each type of resource. As a result, the holder may ask the resource dispenser to either create or destroy some inventory.
Holder
A holder is a component created by DispMan that lists the resource inventory for each resource dispenser.
The conversation from a Dispenser to its Holder goes like “Please get me a resource of type T, if you do not have a free one then call me back an I will create one for you”. And then maybe later at the application’s request it might say “I’m done with this resource, you may return it to your pool”. In the other direction the conversation between the Holder and the Resource Dispenser might go something like “My pool is low on resource R, please create one for me” or “I’ve noticed you have not used resource R for a while, please destroy it”.
Resource Dispensers
A resource dispenser is a plug-in dynamic-link library (DLL) component which provides two interfaces. The first provides the holder with basic information on how to create, destroy and enlist its own type of resources; The second is offered to the application and can be either a Component Object Model (COM) interface or set of interfaces, or an application programming interface (API) to which a component is linked via an import library.
Resource dispensers manage non-durable shared state within a process. Although the resources managed may often be connections to a component managing a durable state, the connections themselves are not durable. A resource dispenser will often use a related Resource Manager to retain the durable state.
An application can call any resource dispenser, which in turn may offer any interface or API to the application.
Resources reside in the resource dispenser and not in the holder. The holder identifies a resource only by its resource handle (void*) but internally the Dispenser casts this to (MyStruct*).
A resource dispenser is when an application component refers to it. On start-up, a resource dispenser must register itself with DispMan.
A transactional resource dispenser must enlist on a Distributed Transaction Coordinator (DTC) transaction. This implies use of either an internal or external (to the dispenser) resource manager that is DTC-compliant.
Implementing a Resource Dispenser as a COM component
DispMan interfaces are like Component Object Model (COM) interfaces. This lets DispMan to be used in a process without initializing COM, for example, to support the ODBC Dispenser.
A resource dispenser maybe implemented as a COM component. If a resource dispenser exposes an API (like ODBC), then the Dispenser may only be a DLL accessed by the application via an import library (or LoadLibrary + GetProcAddress). A resource dispenser may also be a COM component which an application accesses via CoCreateInstance. If the Dispenser is an Automation component, then the resource dispenser may be used from Visual Basic.
Threading Issues
Calls into a resource dispenser may originate in one of the following threads:
Apartment thread (STA)
Free thread (MTA)
Non-COM thread (application or DispMan’s garbage collector thread)

If a resource dispenser is not a COM object, then it must be able to handle calls arriving from any thread at any time. If a resource dispenser is a COM object, then the COM object should be registered as “Threading Model=Both”. This allows STA or MTA threads to create and use the resource dispenser without a thread switch.
If a resource dispenser creates and uses another COM object (for example, an out-of-process Resource Manager) then the resource dispenser may need to maintain multiple proxies to this other COM object, and ensure that calls to this other COM object are made using the appropriate proxy for the calling thread. When the resource dispenser first creates an instance of the other COM object, marshals the reference to it, and saves it away, and then later, when making a call on some thread, unmarshals to produce a proxy good for this thread, and makes the call.
Or possibly more efficiently, it may also be desirable to cache these per-thread proxies by keeping a map from ThreadId to proxy pointer. To make a call from thread x, look up in the map and there’s your interface pointer. To prevent this map from growing large as threads come and go, IDispenserDriver::OnDestroyThread notification can be used to remove an entry from this map.
Inventory Statistics Manager
The current implementation of the Inventory Statistics Manager is very simple. Resources are removed from inventory when they have not been used for x seconds, where x is set per resource when the resource is created.
In the future, more involved statistics will be gathered and used to make better inventory level decisions.
Features
Resource Pooling
At any time a resource is either in use or not in use, and is either enlisted or not enlisted on a transaction. This yields four permutations:
Resources in unenlisted inventory
Resources in enlisted inventory
Resources in unenlisted use
Resources in enlisted use

Resources in Unenlisted Inventory
A resource which is not in use by a object and not enlisted on a transaction is in unenlisted inventory. A resource in general inventory is available for assignment.
Resources in Enlisted Inventory
A resource which is not in use by a object but is enlisted on a transaction is in enlisted inventory. Such a resource is available for assignment only to objects running in the same transaction. A resource moves from enlisted inventory to unenlisted inventory when MTS Executive notifies DispMan that the transaction is complete.
Resources In Unenlisted Use
If a resource is assigned to a object, and the instance is not running in a transaction, or the resource dispenser has identified the resource as not transactional, then this resource is in unenlisted use.
Resources In Enlisted Use
If a resource is assigned to a object, and the instance is running in a transaction, and the resource dispenser has successfully enlisted the resource on the transaction, then this resource is in enlisted use.
Allocating Resources
Each time a resource dispenser chooses to allocate a resource from its holder, the following occurs:
The resource dispenser first creates a resource type identifier (RESTYPID), which describes the type of resource required.
Then the resource dispenser calls the holder’s IHolder::AllocResource passing this RESTYPID.
The holder then generates a candidate list from the available resources. Candidates are resources which are either not enlisted on a transaction, or already enlisted on the calling object’s transaction.
These candidates are individually passed to the resource dispenser’s IDispenserDriver::RateResource interface.where they are rated (on a scale of 0 to 100) by how well the candidate resource matches the desired RESTYPID.
The holder chooses the resource which the resource dispenser rates as highest.
The resource dispenser can terminate the rating loop early by assigningthe candidate a resource rating of 100 (a perfect fit). A rating of 100 would normally be reserved for candidate resources that are already properly enlisted, unless the resource dispenser concludes that enlistment is a light operation. If all candidate resources (if any) are rated 0 (unuseable) then a new resource will be created by calling IDispenserDriver::CreateResource.
The next step is enlistment. If the resource chosen previously is not already enlisted on the calling object’s transaction, then the resource dispenser’s IDispenserDriver::EnlistResource interface is called.
The AllocResource call then returns to the resource dispenser with the enlisted resource.

Enlisting on a Transaction
After a resource is allocated, but just before returning the resource to the resource dispenser, DispMan checks with the MTS Executive to see if the calling object is running within a transaction. If the calling object is running within a transaction, then DispMan calls back to the resource dispenser and asks it to enlist the resource on the transaction. Then the resource is returned to the resource dispenser, which then returns it to the calling instance.
The Microsoft Distributed Transaction Coordinator (MS DTC) and the resource dispenser must be able to enlist on an OLE Transactions transaction.
The previous enlistment step is optional when a resource dispenser dispenses non-transactional resources, such as memory or threads.
Finally, the MTS Executive notifies DispMan when a transaction is complete, whether it committed or aborted. Then DispMan notifies each resource dispenser’s holder that any resources enlisted on this transaction may now be moved to general inventory.
Automatically Reclaiming Resources
The MTS Executive notifies DispMan each time a object’s lifetime ends. DispMan then notifies each registered resource dispenser’s holder to verify if it has any resources still held by this instance. If so, the resource is freed, thus preventing the possibility of resource leaks by components which get resources through a resource dispenser.
The auto-reclamation feature is an option which is turned off by default. A resource dispenser thatcan choose to enable this option and, in doing so, it promises that no reference to any resource dispensed to an object will ever be passed out of the object
Tracking Resources
DispMan can track a resource which is not inventoried based on knowledge of the object’s lifetime. When a “tracked” (as opposed to “allocated”) resource is freed, it is destroyed and therefore not returned to inventory. This mode is useful for resources which are inexpensive to create and destroy ratherthan storing them in inventory, for a memory dispenser, or for a resource which is difficult to inventory because there are too many different types.In this case a Dispenser directly creates a resource instead of asking DispMan to allocate one from inventory. And before returning this resource to the requesting application component, the resource dispenser first tells DispMan to “track” the resource, which means if the component neglects to free the resource, DispMan will do so when the component’s lifetime is over.
Destroying Inactive Resources
Upon resource creation (IDispenserDriver::CreateResource) the Dispenser may specify a destruction timeout. This is interval of time that the resource will be allowed to sit unused in the pool before it is destroyed. There is a thread running in DispMan which is always looking for these idle resources.
Non-Transactional Resources
Resources need not be transactional. A resource dispenser which pools non-transactional resources can still achieve high performance by allowing application objects to access a shared pool of these resources. This type of resource dispenser returns S_FALSE from the IDispenserDriver::EnlistResource, which means that the resource dispenser did not enlist the resource because theresource is not transactional.
Operating without MTS
A resource dispenser can operate with or without Microsoft Transaction Server (MTS). The Dispenser Manager (DispMan) will operate with or without MTS in the process. Without MTS, resource pooling still provides a performance benefit. Without MTS a Dispenser’s EnlistResource will never be called, because DispMan has know knowledge of current component transaction.
Resource Dispenser Startup and Shutdown
When a resource dispenser’s DLL loads, it must immediately (before user calls) register itself with DispMan. The resource dispenser first calls the GetDispenserManager and then calls the IDispenserManager::RegisterDispenser interface, passing the IDispenserDriver that the resource dispenser implements. TheDispenser must remember the IHolder that is returned thatfor future calls.
To shut down, a resource dispenser calls IHolder::Close.
Implementing a Resource Dispenser
Decide on RESTYID format which categorizes how your resources differ from each other.
Mtxdm.h and mtxdm.lib are the header and lib to use.
Build a dll which implements IDispenserDriver, and of course the API you expose to users.
In the startup (dllmain or first call to API) you must call GetDispenserManager. This returns a pointer to the DispMan's IDispenserManager.
On this interface call RegisterDispenser passing a pointer to your implementation of IDispenserDriver. This will cause DispMan to create a Holder (pooling manager) for your Dispenser and then return to you the pointer to your IHolder.
You should remember this pointer in order to know how to call AllocResource, FreeResource,...
Now (in response to calls to your API) you can make AllocResource,FreeResource,.. calls. AllocResource will initially respond by calling back to your CreateResource, but later AllocResource calls will be serviced from the growing pool of resources.\

See samples.
�Reference
Types
The following types are used in the interfaces.
RESTYPID
RESTYPID is a DWORD which identifies a type of resource, not a particular resource. A RESTYPID will most likely be a (void*) which points to a structure in the Dispenser’s memory which describes the resource type. DispMan does not understand (and does not need to understand) this structure within the Dispenser’s memory. DispMan only uses RESTYPID to refer to a resource type within a Dispenser.
RESID
RESID is a DWORD which identifies a particular resource, as opposed to a type of resource. A RESID will most likely be a (void*) which points to a structure in the Dispenser’s memory which represents the resource. DispMan does not understand (and does not need to understand) this structure within the Dispenser’s memory. DispMan uses RESID to refer to a particular resource within a Dispenser.
SRESID
A Unicode string version of RESID, used in the TrackResourceS, UntrackResourceS and DestroyResourceS methods. Strings are sometimes handy when the amount of information needed to be recorded about a resource is small, then the entire description of the resource can be contained in the SRESID. In particular, use of SRESID can sometimes eliminate the need for a map in the dispenser when the resource represents a relationship between two (or more) things.
TRANSID
Identifies a transaction. This may be cast to (ITransaction*).
TIMEINSECS
Used to indicate how long a resource can be inactive before it is destroyed.
GetDispenserManager API
Syntax
HRESULT GetDispenserManager(
IDispenserManager**�ppIDispenserManager);��
Parameters
ppIDispenserManager [out]�Points to the location where the IDispenserManager interface is returned.

Return Values
S_OK�Success.
E_FAIL�Failure. Interface was not returned.

Comments
A Dispenser calls this to get DispMan’s IDispenserManager interface.
IDispenserManager
DispMan exposes IDispenserManager to Dispensers. Individual Dispensers use this to get hooked up.
Method�Description����RegisterDispenser�Dispenser tells DispMan it has started and wants to be connected.��GetContext�Dispenser (or any caller) asks about current MTS instance and tx context.��
IDispenserManager::RegisterDispenser
Syntax
HRESULT IDispenserManager::RegisterDispenser (
const IDispenserDriver*�pDispenserDriver,��const WCHAR*�szDispenserName,��IHolder**�ppIHolder);��
Parameters
pDispenserDriver [in]�Specifies the interface the Dispenser offers to DispMan to use later to notify the Dispenser.
szDispenserName [in]�A friendly name of the Dispenser for admin display.
ppIHolder [out]�The IHolder interface that has been instantiated for the Dispenser.

Return Values

Comments
A Dispenser calls this when it is starting up. The Dispenser is notifying DispMan that it has started and is prepared to accept notifications on this IDispenserDriver interface. Then DispMan creates the Holder for this new Dispenser and returns it to the Dispenser.
IDispenserManager::GetContext
Syntax
HRESULT IDispenserManager::GetContext (
INSTID*�pInstId,��TRANSID*�pTransId);��
Parameters
pInstId [out]�An internal unique identifier of the current object, or 0 if no current object. This may not be interpreted as an (IUnknown*) of the current object.
pTransId [out]�The transaction that the current object is running in, or 0 if none. This may be cast to (ITransaction*).

Return Values
S_OK�Success.
E_FAIL�Failure.

Comments
A Dispenser (or any caller who gets IDispenserManager) can call this to know the current context.
IHolder
DispMan exposes a different IHolder to each installed Dispenser. A Dispenser calls here to allocate/free resources.
Method�Description����AllocResource�Dispenser asks Holder to allocate a resource from inventory.��FreeResource�Dispenser returns a resource to inventory.��TrackResource�Dispenser asks Holder to track life of pre-created resource.��TrackResourceS�Same with string SRESID.��UntrackResource�Dispenser asks Holder to quit following a tracked resource.��UntrackResourceS�Same with string SRESID.��Close�Dispenser asks Holder to close down.��
IHolder::AllocResource
Syntax
HRESULT IHolder::AllocResource (
RESTYPID�ResTypId,��RESID*�pResId);��
Parameters
ResTypId [in]�The type of resource to be allocated.
pResId [out]�Points to the location where the handle of the resource allocated is returned.

Return Values
S_OK�Success.
E_INVALIDARG�ResTypId is NULL or “”, or Dispenser’s CreateResource generated empty or duplicate ResId.
E_FAIL�Failure. *pResId has not been set. Likely cause is that the caller’s transaction is aborting.

Comments
DispMan first tries to find a free resource in the pool of this RESTYPID which is already enlisted on the caller’s current transaction. Second choice is to find a free unenlisted resource in the pool of this RESTYPID, and then enlist it on the caller’s current transaction. Final action is to call back to the Dispenser’s IDispenserDriver::CreateResource to create such a resource, and then enlist it. In the above steps, if the caller does not have a current transaction then the enlistment is skipped. Or if the Dispenser rejects the enlistment (meaning the resource is not transaction capable) then the enlistment is skipped.
IHolder::FreeResource
Syntax
HRESULT IHolder::FreeResource (
const RESID�ResId);��
Parameters
ResId [in]�The handle of the resource to free.

Return Values
S_OK�Success.
E_INVALIDARG�ResId is not a valid resource handle.
E_FAIL�Failure. Resource ResId has not been freed.

Comments
A resource originally returned by AllocResource is put back into the pool. This will notify the Dispenser via IDispenserDriver::ResetResource which is the Dispenser’s opportunity to do anything it wants to prepare the resource before it is returned to the pool.
IHolder::TrackResource
Syntax
HRESULT IHolder::TrackResource (
const RESID�ResId);��
Parameters
ResId [in]�The handle of the resource to track. The Dispenser has already created this resource before calling TrackResource.

Return Values
S_OK�Success.
E_INVALIDARG�ResId is not a valid resource handle; is NULL or “” or duplicate.
E_FAIL�Failure. Resource ResId has not been tracked. Likely cause is that the caller’s transaction is aborting.

Comments
Some resources are not inventoried. They always manufacture on demand. Malloc for instance. In this case the Holder is used only as a mechanism to automatically free the unfreed resources left at end of an object’s lifetime.
This tells the Holder that a resource was created and the Holder should track that it gets freed (the Dispenser calls UntrackResource) or else DispMan will free it automatically at the end of the lifetime of the object who caused the Dispenser to call TrackResource in the first place.
If called from a transactional object, TrackResource calls back to the Dispenser’s EnlistResource method. The EnlistResource method may enlist the resource on the transaction, or it may return S_FALSE indicating that the resource is not transaction capable and has not been enlisted.
This resource will eventually be destroyed after both of the following are true:
Dispenser calls UntrackResource (probably at the component’s request) or the object’s lifetime ends.
and
The transaction that the resource was enlisted on (if any) is done.

IHolder::TrackResourceS
Syntax
HRESULT IHolder::TrackResourceS (
constSRESID�SResId);��
Parameters
SResId [in]�The handle of the resource to track. The Dispenser has already created this resource before calling TrackResourceS.

Return Values
S_OK�Success.
E_INVALIDARG�SResId is not a valid resource handle; is NULL or “” or duplicate.
E_FAIL�Failure. Resource SResId has not been tracked. Likely cause is that the caller’s transaction is aborting.

Comments
This is same as TrackResource except that it takes a string resid SRESID.
IHolder::UntrackResource
Syntax
HRESULT IHolder::UntrackResource (
const RESID�ResId,��const BOOL�fDestroy);��
Parameters
ResId [in]�The handle of the resource to stop tracking.
fDestroy [in]�If TRUE, caller is requesting the resource be destroyed, by calling IDispenserDriver::DestroyResource. If FALSE, caller will destroy the resource.

Return Values
S_OK�Success.
E_INVALIDARG�ResId is not a valid resource handle.
E_FAIL�Failure. Resource ResId has not been freed.

Comments
This Dispenser tells the Holder to stop tracking this resource, and the Holder will call back to the Dispenser’s DestroyResource method to destroy the resource.
IHolder::UntrackResourceS
Syntax
HRESULT IHolder::UntrackResource (
constSRESID�SResId,��const BOOL�fDestroy);��
Parameters
SResId [in]�The handle of the resource to stop tracking.
fDestroy [in]�If TRUE, caller is requesting the resource be destroyed, by calling IDispenserDriver::DestroyResource. If FALSE, caller will destroy the resource.

Comments
This is same as UntrackResource except that it takes a string resid SRESID.
IHolder::Close
Syntax
HRESULT IHolder::Close (void);

Comments
This closes a Dispenser’s Holder, after which the Dispenser will probably be released.
Before closing, any remaining inventory is destroyed by calling back to Dispenser’s DestroyResource.
The following sequence describes how to close down a Dispenser.
You must be holding on to a reference to the Dispenser (that object which exposes IDispenserDriver).
Call a method in Dispenser whose purpose is to close its Holder. This implementation calls IHolder::Close.
IHolder::Close destroys any remaining inventory by calling back to Dispenser’s DestroyResource.
IHolder::Close calls DispMan to remove this Holder from the Holder list. (If there are now no Holders left the DispMan object deletes itself).
IHolder::Close releases its reference to Dispenser’s IDispenserDriver (this is why you better be holding on to your own reference in 1. above, otherwise the Dispenser would delete itself now, which would be too early for the subsequent steps to complete)
IHolder::Close returns to Dispenser.
Now Dispenser calls IHolder::Release (Holder now deletes itself).
Dispenser method called in 2. above now returns.
Release your final reference to the Dispenser (Dispenser now deletes itself)

IDispenserDriver
Implemented by all Resource Dispensers, Dispenser’s private Holder within DispMan will call.
Method�Description����CreateResource�Holder asks Dispenser to create a resource.��RateResource�Holder asks Dispenser to rate how well a candidate resource matches.��EnlistResource�Holder asks Dispenser to enlist a resource on a transaction.��ResetResource�Holder asks Dispenser to prepare a resource to be returned to inventory.��DestroyResource�Holder asks Dispenser to destroy a resource.��DestroyResourceS�String SRESID version of DestroyResource.��
IDispenserDriver::CreateResource
Syntax
HRESULT IDispenserDriver::CreateResource (
const RESTYPID�ResTypId,��RESID*�pResId,��TIMEINSECS*�pSecsFreeBeforeDestroy);��
Parameters
ResTypId [in]�The type of resource to create.
pResId [out]�The handle to the newly created resource.
pSecsFreeBeforeDestroy [out]�The new resource’s timeout. This is the number of seconds that this resource will be allowed to sit unused in the pool before it will be destroyed.

Return Values
S_OK�Success.
E_FAIL�Failure.

Comments
Called by DispMan in two cases when one is needed and there is no inventory:
to satisfy an AllocResource call when none were found in inventory
or when DispMan is setting up initial inventory

The Resource Dispenser assigns ResId as the handle to identify this resource.
IDispenserDriver::RateResource
Syntax
HRESULT IDispenserDriver::RateResource(
const RESTYPID�ResTypId,��const RESID�ResId,��const BOOL�fRequiresTransactionEnlistment,��RESOURCERATING*�pRating);��
Parameters
ResTypId [in]�The type of resource that DispMan is looking to match.
ResId [in]�The candidate resource that DispMan is considering.
fRequiresTransactionEnlistment [in]�If TRUE, the candidate resource (ResId) if chosen, will require transaction enlistment. If enlistment is expensive, RateResource may want to rate such a resource lower than one which is already enlisted on the correct transaction.
pRating [out]�The Dispenser’s rating of this candidate.
0=Candidate resource is unuseable for this request. Resource is not or cannot be changed to be of type ResTypId.
1=Bad fit. But useable. candidate. DispMan will continue to suggest candidates.
2=Better than 1. DispMan will continue to suggest candidates.
…
100=Perfect fit. DispMan stops suggesting candidates when Dispenser gives a “100” rating to a candidate.

Return Values
S_OK�Successfully rated. Dispenser must set *pRating before returning S_OK.
E_FAIL�Failure.

Comments
fRequiresTransactionEnlistment=FALSE means that in this transaction an object was dispensed this resource, the object used the resource, and then the object freed the resource (explicitly or implicitly at end of object lifetime). Now a second object in the same transaction is asking for a similar resource and the resource that the first object used is being considered. It is a good candidate since it is already enlisted on the correct transaction.
If a particular type of resource is able to be used only once per transaction, then a resource which has been already used once in this transaction may be identified by fRequiresTransactionEnlistment=FALSE and may be rejected for further use by returning *pRating=0.
IDispenserDriver::EnlistResource
Syntax
HRESULT IDispenserDriver::EnlistResource (
const RESID�ResId,��const TRANSID�TransId);��
Parameters
ResId [in]�The resource that DispMan is asking to be enlisted on transaction TransId.
TransId [in]�The transaction that DispMan wants the Dispenser to enlist resource ResId on. DispMan will pass 0 here to indicate that the Dispenser should ensure that the resource is not enlisted on any transaction.

Return Values
S_OK�Successfully enlisted.
S_FALSE�The resource is not enlistable (not transaction capable). This is OK.
E_INVALIDARG�ResId or TransId is not a valid handle.
E_FAIL�Failure. Enlistment failed.

Comments

IDispenserDriver::ResetResource
Syntax
HRESULT IDispenserDriver::ResetResource (
const RESID�ResId);��
Parameters
ResId [in]�The resource to be reset.

Return Values
S_OK�Success.
E_INVALIDARG�ResId is not a valid resource handle.
E_FAIL�Failure. Resource ResId has not been reset.

Comments
Prepares the resource to be put back into general or enlisted inventory.
Remember that the resource may still be enlisted at this time, so ResetResource cannot do anything which may disrupt the enlistment.
Example
ODBC Dispenser does SQLFreeStmt SQL_DROP for the hstmts still allocated on the hdbc.
IDispenserDriver::DestroyResource
Syntax
HRESULT IDispenserDriver::DestroyResource (
const RESID�ResId);��
Parameters
ResId [in]�The resource that DispMan is asking Dispenser to destroy.

Return Values
S_OK�Success.
E_NOTIMPL�For Dispensers which do not support numeric RESIDs.
E_FAIL�Failure.

Comments
The Holder has decided this resource is no longer required (due to inactivity or pending shutdown). Or FreeResource of a tracked resource.
eg. SQLDisconnect for ODBC
eg. free for malloc
IDispenserDriver::DestroyResourceS
Syntax
HRESULT IDispenserDriver::DestroyResource (
constSRESID�SResId);��
Parameters
SResId [in]�The resource that DispMan is asking Dispenser to destroy.

Return Values
S_OK�Success.
E_NOTIMPL�For Dispensers which do not support string SRESIDs.
E_FAIL�Failure.

Comments
This is same as DestroyResource, except that it takes a string SRESID.

�

Part Number Part Name

	Chapter Number Chapter Name

� PRINT \p page "
/ndf{1 index where{pop pop pop}{dup xcheck{bind}if def} ifelse}bind def
/ed{exch def}bind def
/SetPageOffset{neg wp$y add/dTop ed/dLeft ed}ndf
/SetPageSize {neg dTop add/dBot ed dLeft add/dRight ed}ndf
40.5 72 SetPageOffset
531 648 SetPageSize
"�

� PAGE * MERGEFORMAT �2� Book Title (Optional)

� PRINT \p page "
/ndf{1 index where{pop pop pop}{dup xcheck{bind}if def} ifelse}bind def
/ed{exch def}bind def
/SetPageOffset{neg wp$y add/dTop ed/dLeft ed}ndf
/SetPageSize {neg dTop add/dBot ed dLeft add/dRight ed}ndf
40.5 72 SetPageOffset
531 648 SetPageSize
"�

	Book Title (Optional) � PAGE * MERGEFORMAT �9�

	

� PRINT \p page "
/ndf{1 index where{pop pop pop}{dup xcheck{bind}if def} ifelse}bind def
/ed{exch def}bind def
/SetPageOffset{neg wp$y add/dTop ed/dLeft ed}ndf
/SetPageSize {neg dTop add/dBot ed dLeft add/dRight ed}ndf
40.5 72 SetPageOffset
531 648 SetPageSize
"�

	Book Title (Optional) � PAGE * MERGEFORMAT �21�

