Chapter 1: Common Control Basics and the Organizational Common Controls: Toolbars and Status Bars

This is the first of several chapters covering the new 32-bit common controls designed for the Microsoft Windows 95 operating system. These new controls are supported by the COMCTL32.DLL dynamic-link library (DLL), which is supported by the 32-bit Microsoft Windows operating systems: Windows 95, Win32s® (running on Windows version 3.1), and Windows NT™. It is important to remember that these new controls are 32-bit only—they are not supported in 16-bit Windows environments. If I've confused you with that last statement, let me clarify: These controls will run on Windows 3.1, but only if that system is running Win32s. Win32s provides the mechanism, called a thunking layer (don't you just love that name?), to translate between 32-bit system calls and 16-bit system calls.

But why am I covering the common controls in a book about shell programming? Aren't these new controls supported in USER32.DLL? Yes, they are. These controls aren't part of the shell in the classic sense (that is, they aren't in SHELL.DLL); however, they were designed specifically to enhance the look and feel of the new shell elements as seen in the Explorer. As a result, for all you developers out there to get a sense of everything you can do to make your applications look and feel like they are part of the shell, it is important to understand how these controls work and to integrate them into your applications.

I immediately became interested in the common controls when I got a look at the Windows 95 shell. The shell has an application called the Explorer that is an integrated replacement for File Manager and Program Manager. The Explorer is just chock full of examples of these new controls, and I immediately wanted to use them myself. Figure 1 is a screen shot of the Explorer. I have pointed out some of the new handy-dandy controls in the picture.

� EMBED Word.Picture.6 ���

Figure 1. The Windows 95 Explorer

Later, after I started running Windows 95, I bumped into even more new controls that I was delighted to learn were available to me through the common control library. Some of these, such as property sheets, wizards, and the rich-text edit box, provide just the type of functionality I was looking for to easily add some polish to my applications. Now I would finally be able to add wizards to my applications without having to write the code to manage the windows myself. There are more controls, too: progress indicators, trackbars, up-down controls, and the animation control, just to name a few. Each has its own usefulness. In the following chapters, we will take a look at each common control in turn, and I will provide you with sample code in C and in C++ using the Microsoft Foundation Class Library (MFC) to help you understand how to create and manipulate these new controls. Because I like to have as much information at my fingertips as possible, I have also included some lists of messages and notifications to show you the breadth of functionality supported by each control. If you would like more detailed information about the common controls, refer to the Windows 95 Software Development Kit (SDK), and check out the Microsoft Developer Network Development Library. But first, let's take a look at what all the common controls have in common.

Common controls are child windows that send notification messages to their parent windows when events (such as a mouse click or a focus change) occur in the control. Because these controls are windows, they can be manipulated through the standard window management functions. That is, you can send messages or post messages to them. Some common controls send notifications as WM_COMMAND messages, while others use a new message, WM_NOTIFY, to notify the control's parent of an action or change. Each common control supports a set of control messages that an application can use to manipulate the control. There is also a set of macros included in the COMMCTRL.H header file that an application can use to send messages to some of the common controls instead of using the SendMessage or PostMessage function. I was more comfortable using these macros instead of the standard functions or the standard messages because each macro is named in such a way that the type of control you are manipulating is used as the preface of the macro. For example, the ListView_DeleteAllColumns macro is used to delete all the columns in a list view control. Later, when I ported my samples from C to MFC, I was able to easily strip off the preface of the macro and use the remainder in my calls to the member functions. In the example above, an MFC application that has a list view control (CListCtrl class) defined as m_List would make the sample through the m_List.DeleteAllColumns member function.

The COMCTL32.DLL file contains the window procedures, resources, and functions that support common controls. Applications that use the new common controls must link with the COMCTL32.LIB file. Before you make any calls into this library, you should ensure that this DLL has been loaded by calling the Windows InitCommonControls function. InitCommonControls is a stub function that does nothing. It takes no parameters and returns no values. By calling InitCommonControls, your application ensures that the common control library is loaded.

Each common control belongs to a window class that is defined by the common control library. An application creates a common control of a particular type by specifying the appropriate window class name in the CreateWindow or CreateWindowEx function, by using the Create member function for the MFC class designed to support the window class, or in a dialog box template. Table 1 lists the window classes provided by the common control library. These definitions can be found in the COMMCTRL.H file for C projects; for MFC projects, the AFXCMN.H file should be included in STDAFX.H. Common controls will be covered in more detail in later chapters of this book.

Table 1. Common Control Window Classes

Class Name�Description��ANIMATE_CLASS�Provides a method for displaying animated controls within a window.��HOTKEY_CLASS�Allows the developer to define hot keys. A hot key is a key combination that the user can press to perform an action quickly. For example, a user can create a hot key, such as ctrl+z, that activates a given window and brings it to the top of the z order. The hot-key control displays the user's choices and ensures that the user selects a valid key combination.��PROGRESS_CLASS�Provides a method for indicating the progress of a lengthy operation by gradually filling a rectangle, from left to right, with the system highlight color as an operation progresses.��STATUSCLASSNAME�Provides a method for displaying status information.��TOOLBARCLASSNAME�Provides buttons that carry out menu commands.��TOOLTIPS_CLASS�Creates a ToolTip control. This control displays a small pop-up window containing a textual hint that explains the purpose of a tool in an application. ToolTips are generally used with toolbars.��TRACKBARCLASS�Allows the user to select from a range of values by moving a slider.��UPDOWN_CLASS�Provides a pair of arrows to increment or decrement the value in an adjacent (buddy) control. For example, you can create a spin box by combining an up-down control with an edit control.��WC_HEADER�Provides a method for displaying headings above columns of information, and allows the user to sort the information by clicking the headings.��WC_LISTVIEW�Provides a method for displaying a collection of items. Each item consists of an icon and a label. WC_LISTVIEW also provides several methods for arranging the items.��WC_TABCONTROL�Provides a method for defining multiple pages for the same area of a window or dialog box. Each page consists of a set of information or a group of controls that the application displays when the user selects the corresponding tab.��WC_TREEVIEW�Provides a method for displaying a hierarchical list of items. Each item consists of a label and, optionally, a bitmap.��Common Control Window Styles

The Win32 application programming interface (API) offers several styles that you can use when creating the common controls. These styles are listed and described in Table 2. You can generally combine these styles when you create the new controls. In Table 2, I have noted the cases where styles cannot be used in combination.

Table 2. Common Control Styles

Style�Description��CCS_ADJUSTABLE�Allows a toolbar to be configured by the user.��CCS_BOTTOM�Positions the control at the bottom of its parent window's client area, and sets the control width to the parent window width. Status bars have this style by default.��CCS_NODIVIDER�Prevents a 2-pixel highlight from being drawn at the top of the control.��CCS_NOHILITE�Prevents a 1-pixel highlight from being drawn at the top of the control.��CCS_NOMOVEY�Causes the control to resize and move itself horizontally, but not vertically, in response to a WM_SIZE message. This style is ignored if the CCS_NORESIZE style is set.��CCS_NOPARENTALIGN�Prevents the control from automatically moving to the top or bottom of the parent window. A control with this style will maintain its position within the parent window even if the size of the parent window changes. If you specify the CCS_TOP or CCS_BOTTOM style with CCS_NOPARENTALIGN, the height of the control is adjusted to the default, and the position and width of the control remain unchanged.��CCS_NORESIZE�Prevents the control from using the default width and height when setting its initial size or a new size. A control with this style uses the width and height specified in the creation or sizing request.��CCS_TOP�Causes the control to position itself at the top of the parent window client area, and sets the control width to the parent window width. Toolbars have this style by default. ��Common Control Notifications

A common control notifies its parent window of input events by sending notifications. Some common controls send notifications in the form of WM_NOTIFY messages. The lParam parameter of WM_NOTIFY is either the address of an NMHDR structure or the address of a larger structure that includes the NMHDR structure (tabs, list views, and tree views). Each common control has its own specific set of notification values. The common control library also provides notification values that can be sent by more than one type of common control. The following notifications are sent by all of the common controls:

•	NM_CLICK—The user clicked the left mouse button within the control.

•	NM_DBLCLK—The user double-clicked the left mouse button within the control.

•	NM_KILLFOCUS—The control lost the input focus.

•	NM_RCLICK—The user clicked the right mouse button within the control.

•	NM_RDBLCLK—The user double-clicked the right mouse button within the control.

•	NM_RETURN—The control has the input focus, and the user pressed the enter key.

•	NM_SETFOCUS—The control gained the input focus.

Organizational Common Controls

Now that we've discussed the new styles and notifications that come with the common controls, let's take a look at the different controls in more detail. The first controls we'll look at are the organizational controls (status bars and toolbars), which are used to organize or group other controls. Status bars and toolbars have been in existence in applications for several years now; however, with Windows 95, we now have these controls supported in the Win32 API. Before Windows 95, there was support for some of these controls from within Visual C++™ through the Microsoft Foundation Class Library. Clicking a check box was all you needed to do to gain the advantages of these controls. The problem, though, was that these were MFC classes. C programmers were still out of luck if they wanted to get these controls easily. Now that the Win32 API supports them, everybody can have toolbars and status bars that are the same as the ones used within the shell.

Status Bars

A status bar is a horizontal window that is positioned, by default, at the bottom of a parent window. It displays status information defined by the application. If you want to display more than one type of status information, you can divide the status bar into sections. There are now three ways to create status bars:

•	Use the CreateWindow or CreateWindowEx function to create a status bar by specifying the STATUSCLASSNAME window class.

•	Use the MFC CStatusBar class and use its methods to create and manipulate the status bar.

•	Use the MFC CStatusBarCtrl class to create and manipulate the status bar.

At this point, you are probably thinking that either I just listed the same thing twice or I am losing my mind. A second look, though, shows that I actually listed two different MFC classes: CStatusBar and CStatusBarCtrl. CStatusBar is the class that MFC has supported in 16-bit and 32-bit Windows. I will refer to this as the "old-style" control from now on. CStatusBarCtrl is the class that MFC uses to support the new Win32-only status bar control. These classes are entirely different. If you want to have the same functionality that the Win32 control offers, you should use CStatusBarCtrl. If you do this, you will need to create the status bar yourself. The check box for status bars provided by AppWizard when creating your project will not create the Win32 status bar; it will create the old-style status bar. Another point to note is that the built-in support for the old-style status bar Caps Lock and Num Lock indicators is not present by default in the CStatusBarCtrl class. I chose to write a sample in C and port it to MFC using the CStatusBarCtrl class.

With all this in mind, it's time to jump in and see what we can do with status bars. I created the STATUS sample in C to demonstrate what the different text styles look like, how to write text onto a status bar, how to use the different status bar modes, and how to draw a bitmap in a status bar. Figure 2 shows the status bar created by the STATUS sample.

� EMBED Word.Picture.6 ���

Figure 2. The status bar from the STATUS sample

At the far right edge of the status bar, you will notice a sizing grip. This is similar to a sizing border—it is a rectangular area that the user can click and drag to resize the parent window. You can get this functionality by including the SBS_SIZEGRIP window style when you create your status bar. If you decide to include a sizing grip, I recommend against combining the CCS_TOP common control style and the SBS_SIZEGRIP style. Combining the two styles renders the sizing grip nonfunctional. Because the system will still draw the sizing grip in the status bar, the user will try to use it and think that your application is at fault.

Creating a multiple-part status bar

When I first wrote the STATUS sample, I wrote it in C using the messages provided by the Win32 API. I decided that it would be interesting to create a status bar and break it into multiple parts to show:

•	Normal text.

•	Text that pops out.

•	Text without a border.

•	An owner-drawn part with a bitmap displayed in it.

The following code, found in the STATUS.C file, is what I used to create the status bar and break it into parts. The array of integers that is passed in the SB_SETPARTS message (or the SetParts method) is an array of endpoints for each part in the status bar. Since I take care of sizing my status bar when I handle the WM_SIZE message, I will fill in the actual endpoints at that time. As with most of the common controls, you need to include the COMMCTRL.H header file to use trackbars in your application, and you need to include the COMCTL32.LIB file in your list of libraries to link to.

static HWND hWndStatus;

static int aWidths[4];

switch (message)

{

 case WM_CREATE:

 hWndStatus = CreateWindowEx(

 0L, // extended style

 STATUSCLASSNAME, // create a status bar

 "", // window title

 WS_CHILD | WS_BORDER | WS_VISIBLE | SBS_SIZEGRIP, // window styles

 0, 0, 0, 0, // x, y, width, height

 hWnd, // parent window

 (HMENU)ID_STATUSBAR, // ID

 hInst, // instance

 NULL); // window data

 if (hWndStatus == NULL)

 MessageBox (NULL, "Status Bar not created!", NULL, MB_OK);

 // Break the status bar into 4 different parts.

 SendMessage(hWndStatus, SB_SETPARTS, 4, (LPARAM)aWidths);

Now that the status bar has been created, it is time to give it some text to display. What good would a status bar be if it didn't say anything? Setting text is as easy as sending a message (or calling a member function). The trick to getting text to display in the different modes as shown in Figure 2 is to set the drawing style when setting the text. The wParam for the SB_SETTEXT message is a combination of the part (zero-based) that receives the text and the text drawing style.

// Set text in the first part using Normal text mode.

SendMessage(hWndStatus, SB_SETTEXT, (WPARAM)0, (LPARAM)"Mouse position:");

// Set the text in the second part to pop out.

SendMessage(hWndStatus, SB_SETTEXT, (WPARAM)1 | SBT_POPOUT,

 (LPARAM)"This text pops out.");

// Set the text in the third part to have no borders.

SendMessage(hWndStatus, SB_SETTEXT, (WPARAM)2 | SBT_NOBORDERS,

 (LPARAM)"This text has no borders.");

// Load the bitmap for the owner-drawn part of the status bar.

hBmp = LoadBitmap(hInst, MAKEINTRESOURCE(ID_BITMAP));

// Set the fourth part to be owner-drawn and pass the bitmap.

SendMessage(hWndStatus, SB_SETTEXT, (WPARAM)3 | SBT_OWNERDRAW, (LPARAM) hBmp);

In the MFC version of the code, the MFCSTATUS sample, the status bar is created in the view class in the OnCreate handler in the MFCSTVW.CPP file. The status bar is created, and text and parts are initially set using the methods provided by the CStatusBarCtrl class. As you can see, the code is very similar. One difference is in the SetText method. Where the SB_SETTEXT message packed both the part and the drawing style into the wParam, the SetText method receives these two values separately: first the part and then the drawing style. Another difference between the C and MFC versions is that you need to include the AFXCMN.H file in your STDAFX.H file, because AFXCMN.H defines the new common control classes.

// The view class is defined as follows in MFCSTVW.H.

class CMfcstatusView : public CView

{

protected: // create from serialization only

 CMfcstatusView();

 DECLARE_DYNCREATE(CMfcstatusView);

 CStatus m_Status;

// Attributes

public:

 CMfcstatusDoc* GetDocument();

// Operations

public:

// Overrides

 // ClassWizard generated virtual function overrides.

 //{{AFX_VIRTUAL(CMfcstatusView)

 public:

 virtual void OnDraw(CDC* pDC); // overridden to draw this view

 protected:

 //}}AFX_VIRTUAL

// Implementation

public:

 virtual ~CMfcstatusView();

#ifdef _DEBUG

 virtual void AssertValid() const;

 virtual void Dump(CDumpContext& dc) const;

#endif

protected:

// Generated message map functions

protected:

 //{{AFX_MSG(CMfcstatusView)

 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);

 afx_msg void OnSimple();

 afx_msg void OnMultiple();

 afx_msg void OnSize(UINT nType, int cx, int cy);

 afx_msg void OnMouseMove(UINT nFlags, CPoint point);

 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()

};

// The status bar is created in MFCSTVW.CPP.

int CMfcstatusView::OnCreate(LPCREATESTRUCT lpCreateStruct)

{

 if (CView::OnCreate(lpCreateStruct) == -1)

 return -1;

 // Create the status bar.

 m_Status.Create(WS_CHILD | WS_BORDER | WS_VISIBLE | SBS_SIZEGRIP,

 CRect(0,0,0,0),

 this,

 ID_STATUSBAR);

 int aWidths[4] = {0,0,0,0};

 // Set the status bar to have 4 parts.

 m_Status.SetParts(4, aWidths);

 // Set the text of the first part in normal text mode.

 m_Status.SetText((LPCTSTR)"Mouse position:", 0, 0);

 // Set the text in the second part to pop out.

 m_Status.SetText((LPCTSTR)"This text pops out.", 1, SBT_POPOUT);

 // Set the text in the third part to have no borders.

 m_Status.SetText((LPCTSTR)"This text has no borders.", 2, SBT_NOBORDERS);

 // Set the text in the third part as owner-drawn.

 m_Status.SetText((LPCTSTR)"", 3, SBT_OWNERDRAW);

 return 0;

}

Sizing the status bar window and its parts isn't difficult. It's simply a matter of handling the WM_SIZE message, moving the status bar window, and setting the endpoints for the parts in the status bar. Following is the code I used in C. I will leave the MFC code as an exercise for you.

 case WM_SIZE:

 // Resize the status bar so that it fits along the bottom of the client.

 MoveWindow(hWndStatus, 0, HIWORD(lParam) - 10, LOWORD(lParam),

 HIWORD(lParam), TRUE);

 // Set the rectangles for the multiple parts of the status bar.

 // Make each 1/4 of the width of the client window.

 aWidths[0] = LOWORD(lParam) / 4;

 aWidths[1] = LOWORD(lParam) / 2;

 aWidths[2] = LOWORD(lParam) - aWidths[0];

 aWidths[3] = -1;

 SendMessage(hWndStatus, SB_SETPARTS, 4, (LPARAM)aWidths);

 break;

Owner-drawn status bars

Status bars are great for displaying text, but what if you want to put a bitmap in your status bar like Microsoft Mail does? Using the Win32 API, you can put a bitmap in a status bar by taking advantage of the owner-drawn support for the control. Owner drawing lets you display a bitmap instead of text or use different fonts in the sections of a status bar. In the code I showed before, you tell the system that you want a part of your status bar to be owner-drawn by sending the SB_SETTEXT message with the SBT_OWNERDRAW drawing style specified. The lParam parameter is a 32-bit application-defined value that the application can use when drawing the part (that is, you can pass a bitmap handle in this parameter, if you like). At this point, you treat the control like any other owner-drawn control: You handle the WM_DRAWITEM message and use the information in the DRAWITEMSTRUCT that is passed along. The following code demonstrates how this was done in the STATUS sample.

case WM_DRAWITEM:

 if ((int)wParam == ID_STATUSBAR)

 {

 LPDRAWITEMSTRUCT lpDis;

 HDC hdcMem;

 HBITMAP hbmOld;

 BITMAP bm;

 // Save off the drawing information. This information

 // is specific to the actual part of the status bar

 // to be drawn.

 lpDis = (LPDRAWITEMSTRUCT)lParam;

 // Create a compatible DC for blting the bitmap.

 hdcMem = CreateCompatibleDC(lpDis->hDC);

 // Select the bitmap into the DC.

 hbmOld = SelectObject(hdcMem, hBmp);

 // Get the bitmap information for its width and height.

 GetObject(hBmp, sizeof(bm), &bm);

 // Blt the bitmap to the part.

 BitBlt(lpDis->hDC,

 lpDis->rcItem.left, lpDis->rcItem.top, bm.bmWidth, bm.bmHeight,

 hdcMem, 0, 0,

 SRCCOPY);

 // Reselect the original object into the DC.

 SelectObject(hdcMem, hbmOld);

 // Delete the compatible DC.

 DeleteDC(hdcMem);

 }

 break;

Some of you very clever readers will notice that my drawing operation blts a bitmap but that this bitmap will not be drawn transparently. This is true. I cheated a bit by drawing the background as the standard gray used in most status bars. If someone were to change the color of the status bar, this little cheat would show. There is other information available (in the Development Library) that does, however, show how to blt a bitmap transparently if you wish to do so in your own application.

The code that I used in my MFC version of this sample will look strikingly familiar; however, there is a big "gotcha" that I ran into when I ported this portion of my code. In short, the MFC class that is provided demands that the DrawItem method of the CStatusBarCtrl class be overridden in order to use the owner-drawn capabilities of the status bar. This was a big bummer because I initially just handled the WM_DRAWITEM message in the view, and the bitmap and status bar drew correctly. The problem is that I kept getting these pesky ASSERTs. When I tracked it down, I was annoyed (to say the least). To remedy the problem, I used ClassWizard to create a class based on CStatusBarCtrl and handled the DrawItem myself. The MFC sample uses the following code to draw its bitmap on the status bar.

///

// CStatus message handlers

void CStatus::DrawItem(LPDRAWITEMSTRUCT lpDrawItemStruct)

{

 static HBITMAP m_Bmp;

 if (m_Bmp ==NULL)

 // Load the bitmap for the owner-drawn part of the status bar.

 m_Bmp = ::LoadBitmap(AfxGetResourceHandle(),

 MAKEINTRESOURCE(ID_BITMAP));;

 // Create a compatible DC for blting.

 HDC hdcMem = ::CreateCompatibleDC(lpDrawItemStruct->hDC);

 // Select the bitmap into the DC.

 HBITMAP hbmOld = (HBITMAP)::SelectObject(hdcMem, (HBITMAP)m_Bmp);

 BITMAP bm;

 // Get the bitmap information for size.

 ::GetObject((HBITMAP)m_Bmp, sizeof(bm), &bm);

 // Blt the bitmap.

 ::BitBlt(lpDrawItemStruct->hDC,

 lpDrawItemStruct->rcItem.left,

 lpDrawItemStruct->rcItem.top,

 bm.bmWidth,

 bm.bmHeight,

 hdcMem, 0, 0,

 SRCCOPY);

 // Reselect the orginal bitmap.

 ::SelectObject(hdcMem, hbmOld);

 // Delete the compatible DC.

 ::DeleteDC(hdcMem);

}

Simple-mode and multiple-part status bars

A status bar can be in one of two modes: simple, which means there is only one part; and multiple, which means there are up to 255 parts. A simple-mode status bar (as shown in Figure 3) is useful for displaying one-line descriptions of menu items as the user highlights each item or for displaying diagnostic information. To create a simple-mode status bar from a multiple-part status bar, you must send an SB_SIMPLE message (use the SetSimple method) to the status bar. But bear in mind that simple-mode status bars do not support owner drawing—so, no cute bitmaps if you use a simple status bar.

�

Figure 3. Status bar in simple mode

The string that a status bar displays in simple mode is maintained separately from the strings it displays when it is not in simple mode. This means you can put the window in simple mode, set its text, and switch back to non-simple mode without having to reset the text. This is what I do in the STATUS sample. The following code demonstrates how I set the status bar mode in response to a command sent through the Options menu. If you have very sharp eyes, you will see that when I set the text in that status bar, I specify 255 in wParam. Setting wParam to 255 signals the system that this is a simple-mode status bar and that the string shown here should be maintained separately from the strings that I originally used in the multiple-part status bar.

case WM_COMMAND:

 switch(LOWORD(wParam))

 {

 case IDM_SIMPLE:

 // Set the status bar to a simple one.

 SendMessage(hWndStatus, SB_SIMPLE, (WPARAM)TRUE, 0L);

 // Set the text of the status bar.

 SendMessage(hWndStatus, SB_SETTEXT, 255,

 (LPARAM)"We are now in simple mode.");

 // Check the Simple menu option.

 CheckMenuItem(GetMenu(hWnd), IDM_SIMPLE, MF_CHECKED | MF_BYCOMMAND);

 // Uncheck the Multiple menu option.

 CheckMenuItem(GetMenu(hWnd), IDM_MULTIPLE, MF_UNCHECKED | MF_BYCOMMAND);

 break;

 case IDM_MULTIPLE:

 // Reset the status bar to have multiple parts.

 SendMessage(hWndStatus, SB_SIMPLE, (WPARAM)FALSE, 0L);

 // Uncheck the Simple menu option.

 CheckMenuItem(GetMenu(hWnd), IDM_SIMPLE, MF_UNCHECKED | MF_BYCOMMAND);

 // Check the Multiple menu option.

 CheckMenuItem(GetMenu(hWnd), IDM_MULTIPLE, MF_CHECKED | MF_BYCOMMAND);

 break;

The same operations done in the MFC version of the sample are very similar. One difference is that the SetSimple method assumes TRUE by default, so I did not pass any parameters when I set my status bar into simple mode; when I reset the status bar into multiple-part, I simply passed FALSE as the parameter.

Status bar messages and methods

Table 3 lists the messages that can be sent to status bars and the methods supported by the MFC-supplied class, CStatusBarCtrl. I'm giving you this list to show you the different things you can do with a status bar. For that reason, I did not include return values or parameter information. Detailed information about the parameters and return values can be found in the documentation provided by the Win32 SDK and the MFC 3.1 documentation.

Table 3. Status Bar Messages

Message�Method�Use��SB_GETBORDERS�GetBorders�Retrieves the current width of the horizontal and vertical borders of a status bar or header window. These measurements determine the spacing between the outer edge of the window and the rectangles within the window that contain text, and the spacing between rectangles.��SB_GETPARTS�GetParts�Retrieves the number of parts in a status bar and the coordinate of the right edge of the given number of parts.��SB_GETTEXT�GetText�Retrieves the text from the given part of a status bar or header window. SB_GETTEXT returns a 32-bit value consisting of two 16-bit values. The low-order word specifies the length, in characters, of the text. The high-order word specifies the type of operation used to draw the text. If the text has a type of SBT_OWNERDRAW, the message returns the 32-bit value associated with the text instead of the length and type.��SB_GETTEXTLENGTH�GetTextLength�Retrieves the length, in characters, of the text from the given part of a status bar or header window. SB_GETTEXTLENGTH returns a 32-bit value consisting of two 16-bit values. The low-order word specifies the length, in characters, of the text. The high-order word specifies the type of operation used to draw the text.��SB_SETBORDERS�SetBorders�Sets the widths of the horizontal and vertical borders of a status bar or header window. These borders determine the spacing between the outer edge of the window and the rectangles within the window that contain text, and the spacing between rectangles.��SB_SETMINHEIGHT�SetMinHeight�Sets the minimum height for a status bar or header window. The minimum height of the window is the sum of the minimum height (wParam) and the height of the vertical border of the window.��SB_SETPARTS�SetParts�Sets the number of parts in a status bar and gets the coordinate of the right edge of each part. This number cannot be greater than 255. lParam is the address of an integer array that has the same number of elements as parts specified by wParam. Each element in the array specifies the position, in client coordinates, of the right edge of the corresponding part. If an element is –1, the position of the right edge for that part extends to the right edge of the window.��SB_SETTEXT�SetText�Sets the text in the given part of a status bar or header window. This message invalidates the portion of the window that has changed, causing the window to display the new text. wParam is the zero-based index of the part to set and the type of drawing operation. If this value is 255, the status bar is assumed to be a simple window with only one part. lParam is the address of a null-terminated string that specifies the text to set. If wParam is SBT_OWNERDRAW, lParam represents 32 bits of data. The parent window must interpret and draw the data when it receives the WM_DRAWITEM message.��SB_SIMPLE�SetSimple�Specifies whether a status bar displays simple text or displays all window parts set by a previous SB_SETPARTS message.��Toolbars

Now that I've shown you some of the functionality of status bars, it's time to move on to probably the second most pervasive of the new common controls in applications: toolbars. As with status bars, there are many applications on the market today that contain toolbars. These toolbars were created without the luxury of system support. That is, all developers had to go about reinventing their own toolbar whenever they wanted to include one in an application. With the additions to the Win32 API for Windows 95, developers can now implement toolbars as easily as implementing any other type of system-supported control.

For those who have lived in a cave for the past few years, a toolbar is a horizontal window with buttons or other controls that is usually located at the top of the parent window. These buttons provide fast access to commonly used commands, such as Open, Save, and Print. Figure 4 shows the toolbar that is created by the TOOLBAR (for C lovers) and MFCTOOL (for MFC maniacs) samples. The figure shows the different parts of the toolbar, including buttons, a combo box control, a separator (used to logically separate groups of buttons or controls), and a ToolTip (that neat little box that pops up when your mouse cursor lingers over a toolbar button—in this example, the Save button).

� EMBED Word.Picture.6 ���

Figure 4. The TOOLBAR sample

The TOOLBAR and MFCTOOL samples

The design goals of the samples I wrote to demonstrate toolbars were to:

•	Demonstrate what a fairly standard toolbar looks like.

•	Support ToolTips.

•	Include a non-button control in the toolbar (I decided to use a drop-down combo box because that is what I see most commonly in other toolbars in shipping applications).

•	Use the new Windows 95 version of the toolbar rather than the old-style control.

Toolbars, like status bars, have ancestors that were supported in MFC prior to the release of Windows 95. The class that MFC supported, CToolBar, is the window class you will get if you choose to include a toolbar in your project when building the project with MFC. If you check this box, MFC will provide a "standard" toolbar bitmap filled with tools such as New, Open, Save, and so on. MFC will also create the toolbar and manage the ToolTips for you. One other very nice option of the original toolbar class is the ability to make your toolbar dockable. This means that users can pick up the toolbar with the mouse, drag the toolbar around the window, and drop it where they want it. If the user drags the toolbar to the perimeters of the window and drops it, the toolbar will "dock" itself on that side of the window.

As with all of my common control samples, the sample was first written in C and then ported to MFC. I will show you the code I used in both C and MFC.

Creating a toolbar

Creating a toolbar is simple: You fill out a button structure, create a large bitmap containing the buttons, and then call the CreateToobarEx function. This function takes care of adding the bitmaps and buttons to the toolbar. Then, unless there is something special you want to do, you can just let the system take care of handling the toolbar processing. The window procedure for the toolbar automatically positions and sets the size of the toolbar window. By default, the toolbar appears at the top of its parent window's client area; however, you can place the toolbar at the bottom of the client area by specifying CCS_BOTTOM. The TBSTYLE_TOOLTIPS window style allows the toolbar to display ToolTips. Windows sends a WM_NOTIFY message to the toolbar whenever Windows needs to display text in a pop-up.

In the following code snippet (taken from the TOOLBAR sample), I create a toolbar with 24 "buttons" on it, 8 of which are actual buttons. The bitmaps provided for each button are 16-by-16 pixels. The total number of buttons includes all separators. Since I include a combo box, I have to place separators as placeholders for where the combo box will reside. Once the toolbar is created, I create the combo box in the standard way and parent it to the toolbar window. And that, dear friends, is how you can put a non-button control in your toolbar.

TBBUTTON tbButtons[] = {

 { 0, 0, TBSTATE_ENABLED, TBSTYLE_SEP, 0L, 0},

 { 0, 0, TBSTATE_ENABLED, TBSTYLE_SEP, 0L, 0},

 { 0, 0, TBSTATE_ENABLED, TBSTYLE_SEP, 0L, 0},

 { 0, 0, TBSTATE_ENABLED, TBSTYLE_SEP, 0L, 0},

 { 0, 0, TBSTATE_ENABLED, TBSTYLE_SEP, 0L, 0},

 { 0, 0, TBSTATE_ENABLED, TBSTYLE_SEP, 0L, 0},

 { 0, 0, TBSTATE_ENABLED, TBSTYLE_SEP, 0L, 0},

 { 0, 0, TBSTATE_ENABLED, TBSTYLE_SEP, 0L, 0},

 { 0, 0, TBSTATE_ENABLED, TBSTYLE_SEP, 0L, 0},

 { 0, 0, TBSTATE_ENABLED, TBSTYLE_SEP, 0L, 0},

 { 0, 0, TBSTATE_ENABLED, TBSTYLE_SEP, 0L, 0},

 { 0, 0, TBSTATE_ENABLED, TBSTYLE_SEP, 0L, 0},

 { 0, 0, TBSTATE_ENABLED, TBSTYLE_SEP, 0L, 0},

 { 0, IDM_NEW, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0L, 0},

 { 1, IDM_OPEN, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0L, 0},

 { 2, IDM_SAVE, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0L, 0},

 { 0, 0, TBSTATE_ENABLED, TBSTYLE_SEP, 0L, 0},

 { 3, IDM_CUT, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0L, 0},

 { 4, IDM_COPY, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0L, 0},

 { 5, IDM_PASTE, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0L, 0},

 { 0, 0, TBSTATE_ENABLED, TBSTYLE_SEP, 0L, 0},

 { 6, IDM_PRINT, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0L, 0},

 { 0, 0, TBSTATE_ENABLED, TBSTYLE_SEP, 0L, 0},

 { 7, IDM_ABOUT, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0L, 0}

};

TOOLINFO tbToolInfo;

char *szStrings[] = { "Nancy", "Dale", "Dennis", "Herman", "Ken", "Kyle",

 "Nigel", "Renan", "Ruediger"};

static HWND hWndToolbar

// Create toolbar control.

hWndToolBar = CreateToolbarEx(

 hWnd, // parent

 WS_CHILD | WS_BORDER | WS_VISIBLE | TBSTYLE_TOOLTIPS |

 CCS_ADJUSTABLE, // window style

 ID_TOOLBAR, // toolbar ID

 8, // number of bitmaps

 hInst, // mod instance

 IDB_TOOLBAR, // resource ID for the bitmap

 (LPCTBBUTTON)&tbButtons, // address of buttons

 26, // number of buttons

 16,16, // width & height of the buttons

 16,16, // width & height of the bitmaps

 sizeof(TBBUTTON)); // structure size

if (hWndToolBar == NULL)

{

 MessageBox (NULL, "Toolbar Bar not created!", NULL, MB_OK);

 break;

}

// Create the combo box and add it to the toolbar.

hWndCombo = CreateWindowEx (0L, // no extended styles

 "COMBOBOX", // class name

 "", // default text

 WS_CHILD | WS_BORDER | WS_VISIBLE |

 CBS_HASSTRINGS | CBS_DROPDOWN, // styles and defaults

 0, 0, 100, 250, // size and position

 hWndToolBar, // parent window

 HMENU)IDM_COMBO, // ID

 hInst, // current instance

 NULL);

if (hWndCombo)

{

 // Add strings to combo box.

 for (idx=0; idx < 9; idx++)

 SendMessage(hWndCombo, CB_INSERTSTRING,(WPARAM)-1,

 (LPARAM)szStrings[idx]);

}

Using the MFC-supplied class, CToolBarCtrl, I had to do a bit more work. The Create method provided by MFC simply creates the toolbar; it doesn't load the bitmap or add the buttons for you. This is no big deal because you simply need to call the AddBitmap and AddButtons member functions to add these items to your toolbar.

int CMfctoolView::OnCreate(LPCREATESTRUCT lpCreateStruct)

{

 if (CView::OnCreate(lpCreateStruct) == -1)

 return -1;

 // Create the toolbar.

 m_ToolBar.Create(

 WS_CHILD | WS_BORDER | WS_VISIBLE | TBSTYLE_TOOLTIPS |

 CCS_ADJUSTABLE, // style

 CRect(0,0,0,0),

 this,

 ID_TOOLBAR);

 // Add the bitmaps.

 m_ToolBar.AddBitmap(8, IDB_BITMAP1);

 // Add the buttons.

 m_ToolBar.AddButtons(24, (LPTBBUTTON)&tbButtons);

 // Create the combo box.

 m_Combo.Create(

 WS_CHILD | WS_BORDER | WS_VISIBLE | CBS_HASSTRINGS | CBS_DROPDOWN,

 CRect(0,0,100,250),

 (CWnd *)&m_ToolBar,

 ID_COMBO);

 int idx;

 for (idx=0; idx < 8; idx++)

 m_Combo.InsertString(-1, (LPCTSTR)szStrings[idx]);

 return 0;

}

You will notice in the preceding code that I did not specify a size for my toolbar. Instead, I handle the sizing of the toolbar whenever the parent window (the client window for you C people and the View window for MFC fans) handles the WM_SIZE message. In response to this message, I tell the toolbar to size itself through the TB_AUTOSIZE message (AutoSize member function).

Creating a toolbar bitmap

If you have never created a toolbar before, one of the "mysteries" you will have to solve is how to create the bitmaps for the buttons. If you are like me, you might think that you just create a bitmap for each button, include the bitmaps in your application, and pass the identifiers to these bitmaps to set each bitmap for each button. Well, that's not the way it is done. Instead, you do create a bitmap for each button, but you create a larger bitmap by stringing together each of the small bitmaps into one long bitmap.

But what if you want to get your grubby little hands on the bitmaps that the Explorer uses for File Open, Save, and others? One way I found to do this was to run AppWizard and create a stub program that included a toolbar. By default, AppWizard gives you these standard bitmaps in a file ever so creatively called TOOLBAR.BMP (located in the RES subdirectory of your project directory). You can edit this file with the resource editor built into Visual C++ or with Paintbrush™ (but be sure to create a 16-color bitmap rather than a 256-color bitmap). Figure 5 (zoomed up to a readable size) is the standard set of bitmaps that AppWizard provides. The last bitmap provides an easy way for the user to get help on an item shown in the application's window. When you click this bitmap, the cursor changes from the standard arrow pointer to a question mark. Clicking a control or window afterward brings up a Help topic for that item. In my sample, I didn't support this feature.

� EMBED Word.Picture.6 ���

Figure 5. Example of a toolbar bitmap

If you don't use AppWizard, you aren't out of luck: The standard toolbar bitmaps are now built into COMCTL32.DLL. You can add these images to your toolbar through the TB_ADDBITMAP message. In the following code sample, I want to include three of the standard file bitmaps (new, open, and save) and four of the view bitmaps (large icon, small icon, list view, and details view). The TBBUTTON structure is filled in with the predefined bitmap indexes to the bitmaps I want.

// Toolbar buttons.

TBBUTTON tbButtons[] = {

 { STD_FILENEW, IDM_NEW, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0L, 0},

 { STD_FILEOPEN, IDM_OPEN, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0L, 0},

 { STD_FILESAVE, IDM_SAVE, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0L, 0},

 { 0, 0, TBSTATE_ENABLED, TBSTYLE_SEP, 0L, 0},

 { VIEW_LARGEICONS, IDM_LARGEICON, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0L, 0},

 { VIEW_SMALLICONS, IDM_SMALLICON, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0L, 0},

 { VIEW_LIST, IDM_LISTVIEW, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0L, 0},

 { VIEW_DETAILS, IDM_REPORTVIEW, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0L, 0},

};

In the code that creates the toolbar, the application calls the CreateToolbarEx function, specifying HINST_COMMCTRL as the HINSTANCE, IDB_STD_SMALL_COLOR for the bitmap identifier, and a pointer to the TBUTTON structure. You will notice that the number of buttons specified is 4. This is because the last four buttons (the view buttons) come from a different bitmap. The other "oddity" is the number 11 for the number of bitmaps. This is specified because there are 11 bitmaps in the IDB_STD_SMALL_COLOR bitmap. When the toolbar is created, the bitmaps for the view are added through the TB_ADDBITMAP message. This message returns an index that will be used to provide the correct index to the view bitmaps. Remember: We added 11 standard bitmaps, and the view bitmaps are added after the standard file bitmaps. The index returned from the TB_ADDBITMAP message is used as the offset to the actual index to view bitmaps.

HWND CreateTheToolbar(HWND hWndParent)

{

 HWND hWndToolbar;

 TBADDBITMAP tb;

 int index, stdidx;

 hWndToolbar = CreateToolbarEx(hWndParent,

 WS_CHILD | WS_BORDER | WS_VISIBLE | WS_CHILD | TBSTYLE_TOOLTIPS,

 ID_TOOLBAR, 11, (HINSTANCE)HINST_COMMCTRL, IDB_STD_SMALL_COLOR,

 (LPCTBBUTTON)&tbButtons,

 4, 0, 0, 100, 30, sizeof(TBBUTTON));

 // Add the view system-defined bitmaps.

 // The hInst == HINST_COMMCTRL.

 // The nID == IDB_VIEW_SMALL_COLOR.

 tb.hInst = HINST_COMMCTRL;

 tb.nID = IDB_VIEW_SMALL_COLOR;

 stdidx = SendMessage(hWndToolbar, TB_ADDBITMAP, 12, (LPARAM)&tb);

 // Update the indexes to the bitmaps.

 for (index = 4; index < NUM_BUTTONS; index++)

 tbButtons[index].iBitmap += stdidx;

 // Add the view buttons.

 SendMessage(hWndToolbar, TB_ADDBUTTONS, 4, (LONG) &tbButtons[4]);

 return (hWndToolbar);

}

Here is a tip I recently received about creating toolbar bitmaps. A common problem is getting the images to line up properly and knowing exactly where you are in the image. With Windows 95, the images are actually taken out of the bitmap in such a manner that the originating bitmap doesn't have to 'exactly' match the height/width based on the calls that load the bitmap (that is, you tell the CreateToolbarEx function how wide and how tall you want the individual bitmaps to be). This allows you to create a bitmap that looks like the one in Figure 6.

� EMBED Word.Picture.6 ���

Figure 6. Toolbar bitmap tip

In this bitmap, you can easily see exactly where the button boundaries are, as well as the identifiers for the different images. Neat trick, eh?

Supporting ToolTips

You can add ToolTips support to your toolbar by specifying the TBSTYLE_TOOLTIPS style and creating a STRINGTABLE that contains the text to display in your .RC file. When you have done this, you process the WM_NOTIFY message that is sent to the parent window procedure of the toolbar, as shown in the following code.

case WM_NOTIFY:

 switch (((LPNMHDR) lParam)->code)

 {

 case TTN_NEEDTEXT:

 // Display ToolTip text.

 lpToolTipText = (LPTOOLTIPTEXT)lParam;

 LoadString (hInst,

 lpToolTipText->hdr.idFrom, // string ID == cmd ID

 szBuf,

 sizeof(szBuf));

 lpToolTipText->lpszText = szBuf;

 break;

.

.

.

This step is a bit different for those developing in MFC. The standard lists provided with MFC (at the current time) do not include the WM_NOTIFY message. As a result, I needed to put a function into my view class that handles the window procedure directly.

LRESULT CMfctoolView::WindowProc(UINT message, WPARAM wParam, LPARAM lParam)

{

 static CHAR szBuf[128];

 LPTOOLTIPTEXT lpToolTipText;

 if (message == WM_NOTIFY)

 {

 switch (((LPNMHDR) lParam)->code)

 {

 case TTN_NEEDTEXT:

 // Display ToolTip text.

 lpToolTipText = (LPTOOLTIPTEXT)lParam;

 ::LoadString (AfxGetResourceHandle(),

 lpToolTipText->hdr.idFrom, // string ID == cmd ID

 szBuf,

 sizeof(szBuf));

 lpToolTipText->lpszText = szBuf;

 break;

.

.

.

Adding ToolTips to a non-button control in a toolbar

If you create a toolbar that contains a non-button control, you have to do a bit more work to support ToolTips. In my sample, I created a combo box and parented it to the toolbar. To add ToolTips to this control, the application must send the TTM_ADDTOOL message (or use the AddTool method) to the ToolTip control. I also needed to trap the WM_MOUSEMOVE, WM_LBUTTONDOWN, and WM_LBUTTONUP messages in the window procedure for the combo box and pass these on to the ToolTip control so it will know to pop up the ToolTip for the combo box. The following C code demonstrates these steps.

// This code is in the main window procedure after the combo box

// has been created.

// Set the window procedure for the combo box.

lpfnDefCombo = (WNDPROC)GetWindowLong(hWndCombo, GWL_WNDPROC);

SetWindowLong(hWndCombo, GWL_WNDPROC, (LONG)ComboWndProc);

// Get the handle to the tooltip window.

hWndTT = (HWND)SendMessage(hWndToolBar, TB_GETTOOLTIPS, 0, 0);

if (hWndTT)

{

 // Fill in the TOOLINFO structure.

 lpToolInfo.cbSize = sizeof(lpToolInfo);

 // The uID is the handle of the tool (combo box).

 lpToolInfo.uFlags = TTF_IDISHWND | TTF_CENTERTIP;

 // The string ID in the resource.

 lpToolInfo.lpszText = (LPSTR)IDM_COMBO;

 // The window that gets the tooltip messages.

 lpToolInfo.hwnd = hWnd;

 // The tool.

 lpToolInfo.uId = (UINT)hWndCombo;

 // The instance that owns the string resource.

 lpToolInfo.hinst = hInst;

 // Set up tooltips for the combo box.

 SendMessage(hWndTT, TTM_ADDTOOL, 0, (LPARAM)(LPTOOLINFO)&lpToolInfo);

}

.

.

.

//

// This function relays the mouse messages from the combo box

// to get tooltips to work.

//

LRESULT CALLBACK ComboWndProc(HWND hWnd, UINT uMessage, WPARAM wParam, LPARAM lParam)

{

 switch (uMessage)

 {

 case WM_MOUSEMOVE:

 case WM_LBUTTONDOWN:

 case WM_LBUTTONUP:

 {

 MSG msg;

 HWND hWndTT;

 msg.lParam = lParam;

 msg.wParam = wParam;

 msg.message = uMessage;

 msg.hwnd = hWnd;

 hWndTT = (HWND)SendMessage(hWndToolBar, TB_GETTOOLTIPS, 0,0);

 SendMessage(hWndTT, TTM_RELAYEVENT, 0, (LPARAM)(LPMSG)&msg);

 break;

 }

 }

 return (CallWindowProc(lpfnDefCombo, hWnd, uMessage, wParam, lParam));

}

The procedure for doing this same work in MFC is very similar. One change I made was to create a class for my combo box control derived from CComboBox and use ClassWizard to create a message map to the WindowProc. Within this function, I did the same type of processing—except I did not have to fill in the message structure as tediously as the preceding code. Instead, I was able to call CWnd::GetCurrentMessage.

Toolbar customization

You can support toolbar customization if you create your toolbar with the CCS_ADJUSTABLE style. The customization features allow the user to drag a button to a new position or to remove a button by dragging it off the toolbar. In addition, the user can double-click the toolbar to display the Customize Toolbar dialog box, which allows the user to add, delete, and rearrange toolbar buttons. An application can display the dialog box by using the TB_CUSTOMIZE message (the Customize method) in response to a mouse double-click on the toolbar.

Handling toolbar customization in your application involves handling a bunch of notifications that are sent through the WM_NOTIFY message. In my very simple application, I decided to support the following:

•	Allow users to delete any button(s) they want. This is easy. I just respond TRUE to the TBN_QUERYDELETE notification.

•	Allow users to add any button(s) they want. Here again, I respond TRUE to the TBN_QUERYINSERT notification.

•	Support customized Help. This was simple: I popped up a message box saying that the user was now seeing custom Help when I got the TBN_CUSTHELP notification. You, of course, would add something of more substance to your application.

•	Resize the toolbar accordingly by auto-sizing it when I receive the TBN_TOOLBARCHANGE notification.

The following code, from the MFCTOOL sample, demonstrates how I supported minimal customization in my sample.

LRESULT CMfctoolView::WindowProc(UINT message, WPARAM wParam, LPARAM lParam)

{

 static CHAR szBuf[128];

 LPTOOLTIPTEXT lpToolTipText;

 if (message == WM_NOTIFY)

 {

 switch (((LPNMHDR) lParam)->code)

 {

 case TTN_NEEDTEXT:

 // Display tooltip text.

 lpToolTipText = (LPTOOLTIPTEXT)lParam;

 ::LoadString (AfxGetResourceHandle(),

 lpToolTipText->hdr.idFrom, // string ID == cmd ID

 szBuf,

 sizeof(szBuf));

 lpToolTipText->lpszText = szBuf;

 break;

 case TBN_QUERYDELETE:

 // Toolbar customization -- can we delete this button?

 return TRUE;

 break;

 case TBN_GETBUTTONINFO:

 // The toolbar needs information about a button.

 return FALSE;

 break;

 case TBN_QUERYINSERT:

 // Can this button be inserted? Just say yo.

 return TRUE;

 break;

 case TBN_CUSTHELP:

 // Need to display custom help.

 AfxMessageBox("This help is custom.");

 break;

 case TBN_TOOLBARCHANGE:

 // Done dragging a bitmap to the toolbar.

 m_ToolBar.AutoSize();

 break;

 default:

 return TRUE;

 break;

 }

 }

 return CView::WindowProc(message, wParam, lParam);

}

There are many other notifications that your application can handle if you want to have more control over the customization, but I did not include them in my sample. For instance, if you want to do your own button dragging, you can trap the TBN_BEGINDRAG and TBN_ENDDRAG notifications. You may also want to save the state of the toolbar and allow the user to reset the toolbar configuration. You can do this by using the TB_SAVERESTORE message to save the current state of the toolbar and waiting for a TBN_RESET notification to signal that the toolbar needs to be reset to its previous state.

Toolbar messages and member functions

Table 4 lists the messages that are sent to toolbars and the member functions provided by MFC for the CToolBarCtrl class. For more detailed information about each message, its parameters, and the possible return values, refer to the Win32 SDK or the Development Library.

Table 4. Toolbar Messages and Member Functions

Message�Function�Use��TB_ADDBITMAP32�AddBitmap�Adds a new bitmap to the list of bitmaps available for a toolbar.��TB_ADDBUTTONS�AddButtons�Adds one or more buttons to a toolbar.��TB_ADDSTRING�AddString�Adds a new string to the list of strings available for a toolbar.��TB_AUTOSIZE�AutoSize�Forces a toolbar to be resized. An application sends this message whenever it does something (sets the button or bitmap size or adds strings) to change the size of a toolbar.��TB_BUTTONCOUNT�ButtonCount�Retrieves a count of the buttons currently in the toolbar.��TB_BUTTONSTRUCTSIZE�ButtonStructSize�Specifies the size of the TBBUTTON structure. Windows uses this size to determine the version of COMMCTRL.DLL that is being used. If an application uses CreateWindow to create the toolbar, it must send this message before adding any buttons to the toolbar. The CreateToolbarEx function automatically sends this message, and the size of the TBBUTTON structure is a parameter to the CreateToolbarEx function.��TB_CHECKBUTTON�CheckButton�Checks or unchecks a given button. When a button has been checked, it appears pressed.��TB_COMMANDTOINDEX�CommandToIndex�Retrieves the zero-based index for the button associated with the specified command identifier.��TB_CUSTOMIZE�Customize�Displays the Customize Toolbar dialog box.��TB_DELETEBUTTON�DeleteButton�Deletes a button from the toolbar.��TB_ENABLEBUTTON�EnableButton�Enables or disables the specified button. When a button has been enabled, it can be pressed and checked.��TB_GETBUTTON�GetButton�Retrieves information about the given button.��TB_GETITEMRECT�GetItemRect�Retrieves the bounding rectangle of a button in a toolbar. This message does not get the bounding rectangle for buttons whose state is set to TBSTATE_HIDDEN.��TB_GETSTATE�GetState�Retrieves information about the state of the button, such as whether it is enabled, pressed, or checked.��TB_HIDEBUTTON�HideButton�Hides or shows the specified button.��TB_INDETERMINATE�Indeterminate�Sets or clears the indeterminate state of the specified button.��TB_INSERTBUTTON�InsertButton�Inserts a button in the toolbar.��TB_ISBUTTONCHECKED �IsButtonChecked�Determines whether the given button is checked.��TB_ISBUTTONENABLED�IsButtonEnabled�Determines whether the given button is enabled.��TB_ISBUTTONHIDDEN�IsButtonHidden�Determines whether the given button is hidden.��TB_ISBUTTONINDETERMINATE�IsButtonIndeterminate�Determines whether the given button is indeterminate.��TB_ISBUTTONPRESSED�IsButtonPressed�Determines whether the given button is pressed.��TB_PRESSBUTTON�PressButton�Presses or releases the given button.��TB_SAVERESTORE�SaveRestore�Saves or restores the state of the toolbar.��TB_SETBITMAPSIZE�SetBitmapSize�Sets the size of the bitmapped images to be added to a toolbar. The size can be set only before adding any bitmaps to the toolbar. If an application does not explicitly set the bitmap size, the size defaults to 16-by-15 pixels.��TB_SETBUTTONSIZE�SetButtonSize�Sets the size of the buttons to be added to a toolbar. You can set the button size only before you add any buttons to the toolbar. If an application does not explicitly set the button size, the size defaults to 24-by-22 pixels.��TB_SETSTATE�SetState�Sets the state for the given button.��

�filename�SHELL02.DOC�	�DATE�3/28/95�	�PAGE�19�

