AVR236: CRC Check of Program Memory

Features

* CRC Generation and Checking of
Program Memory

* Supports all AVR ® Controllers with
LPM Instruction

e Compact Code Size, 44 words
(CRC Generation and CRC Checking)

* No RAM Requirement

* Checksum Stored in EEPROM

* Execution time: 90 ms
(AT90S8515 @ 8 MHz)

* 16 bits Implementation, Easily Modified
for 32 bhits

* Supports the CRC-16 Standard, Easily
Modified for CRC-CCITT, CRC-32

Introduction

This application note describes CRC
(Cyclic Redundancy Check) theory and

implementation of CRC to detect errors
in program memory of the Atmel AVR
microcontroller.

CRC is a widely used method of detect-
ing errors in messages transmitted over
noisy channels. New standards for
secure microcontroller applications has
introduced CRC as a method of detect-
ing errors in program memory of micro-
controllers. It is preferable to implement
the CRC calculation in compact code
with low requirement for data storage
memory since it frees up MCU resources
for use in the actual application.

The implementation of CRC used in this
application note is optimized for mini-
mum code size and register usage.

Figure 1. CRC checking of program memory using 16-bit divisor.

i

Y

ADDRESS 0

8KBYTE
ADDRESS 1FFF

0011011| 10011100

CODE 1

T orer
g

10000000 | 00000101

DIVISOR 1

((
))
10000101 | 1011 ¢
))

AIMEL

Y (F)

AVR236

Application
Note

Rev. 1143A-10/98

AIMEL

Theory of Operation

Checksums was originally used in communication through
noisy channels. A number (the checksum) is computed as
a function of the transmitted message. The receiver uses
the same function to compute a checksum, and compares
the computed value with the value received from the trans-
mitting side.

In this application note the checksum is constructed as a
function of the code, and stored in the internal EEPROM.
The microcontroller can later use the same function to cal-
culate the checksum of the code and compare it with the
appended checksum.

Example: Checksum calculated by summing the numbers
of the code:

Code: 04 29 06
Code with checksum: 04 29 06 39

This checksum is simply the sum of the numbers in the
code.

If the second byte in the code is corrupted from 29 to 23,
the error will be detected when the original checksum is
compared with the computed checksum.

Original code with checksum:04 29 06 39

Code with error: 04 23 06 39 ->Wrong !

If the first byte in the code is corrupted from 04 to 10 and
the second byte is corrupted from 29 to 23, the checksum
will not detect the errors.

Original code with checksum:04 29 06 39

Code with error: 10 23 06 39-> Correct!

The problem with this checksum is that it is too simple. It
may not detect errors on multiple bytes in the code and it
may not detect errors in the checksum itself.

This example shows that addition is not sufficient to detect
errors. CRC calculations use division instead of addition to
calculate the checksum for the code. The principles are
similar, but by using division multiple bit errors and burst
errors will be detected.

The CRC algorithm treat the program memory as an enor-
mous binary number, which is divided by another fixed
binary number. The remainder of this division is the check-
sum. The microcontroller will later perform the same divi-
sion and compare the remainder with the calculated
checksum.

Note that the division uses polynomial (modulo-2) arith-
metic, which is similar to regular binary arithmetic, except it
uses no carry. The addition of the numbers with polynomial
arithmetic are simply XOR’ing the data.

Example: Addition in polynomial arithmetic:
1011 0110
+ 11010011
01100101

The addition is equal to XOR'ing the two numbers.

2 AVRZ G0 o

YA\ 2]

Lets define the some properties for the polynomial arithmetic:

M(x) = a k-bit number (the code to be checked).
G(x) = an (n+1) bit number (the divisor or polynom).
R(X) = an n-bit number such that k>n (the remainder or checksum).

M((;(();)Zn = Q(X) + % Where Q(x) is the quotient

Q(x) can now be described as:

*2N
W M(x) x 2" equals adding n zeros to the end of the code

Q) =

If M(x)*2"

W is replaced in the last equation

M(X)*2"+R(X) _ RX), R(X)_
G = Q(X)*‘@Jf@—Q(X)

Which is equal to Q(x) since the divisor and the remainder
are the same number, and adding it to itself is the same as
XORing it, which results in zero.

AIMEL

AIMEL

Example of CRC Division

The hexadecimal number 6A which is the binary number
0110 1010, is divided with the divisor 1001 (=9 hex). The

First append W zeros to the end of the original message
(where W is the width of the divisor).

checksum will be the remainder of the operation 0110 1010

divided with 1001.

011010100000/ 1001 = 01100 Quotient is Ignored
0000

1101

1001

1000

1001

0011

0000

0110

0000

1100

1001

1010

1001

0110

0000___

1100

1001

0101 = 5 = Remainder = Checksum

The checksum is added to the end of the original code. The Several standards are used today for CRC detection. The
resulting code will be 6A5. When this code is checked, the
code and the checksum is divided by the divisor. The

characteristics of the divisor vary from 8 to 32 bits, and the
ability to detect errors varies with the width of the divisor

remainder of this division is zero if no errors has occurred,

non-zero otherwise.

used. Some commonly used CRC divisors are:
CRC-16 = 11000 0000 0000 0101= 8005(hex)

CRC-CCITT = 1 0001 0000 0010 0001= 1021 (hex)
CRC-32

= 1 0000 0100 1100 0001 0001 1101 1011 0111 = 04C11DB7 (hex)
Observe that in 16 bits divisors, the actual numbers of bits

are 17, and in a 32 bits divisor the number of bits are 33.
The MSB is always 1.

AVRZ G0 o

YA\ 2]

Software Description

Main Program

The main program is supplied to show operation of both the
CRC generation and CRC checking. The checksum gener-
ated is stored in the internal EEPROM, and read back
before the CRC checking is performed.

In most applications, the checksum will be generated by a
programmer and placed at the last address of the program
memory.

Figure 2. Flowchart for the Main Program

INITIALIZATION
UNIT STACK POINTER
SET UP I/O PORTS

STATUS =00

CRC_GEN

STORE CHECKSUM
IN EEPROM

STATUS = FF

LOAD CHECKSUM
FROM EEPROM

CRC_GEN

OUTPUT CHECKSUM

GENERATE CHECKSUM

CHECK CHECKSUM

The main program call the sub routine CRC_gen with sta-
tus register = 0x00 after reset to generate a new checksum
for the code. The generated checksum is stored in
EEPROM.

To check the CRC checksum the routine CRC_gen is
called with status register = OxFF, or any value different
from 0x00.

CRC Checksum Generation

The operation is based on the principle of rotating the
entire program memory bit by bit. The MSB is shifted into
the carry flag. If the carry flag is 1 (one), the word is
XOR’ed with the divisor. Note that the MSB of the program
memory which is shifted into the carry flag also is XOR’ed
with the MSB of the divisor. Since they are both 1, the
result will always be zero and the division is ignored.

At the end of the program memory 16 zeros are appended

to the code. The checksum is the resulting value of the
complete XOR operation.

AIMEL 5

A

L

CRC Checksum Checking

The same principles are applied as for the generation, but
the generated checksum is appended to the code, replac-
ing the zeros. The result of the calculation including the
appended checksum is zero if no errors has occurred, non-
zero otherwise.

If the checksum is included in the program code, only the
checking part of the computation needs to be done in the
program code.

The same routine is used for both CRC generation and the
CRC checking. A global register status is loaded with 0x00
at function call to perform CRC generation. If the status
register is loaded with any value different from 0x00 at
function call, the function performs a CRC checksum
checking.

The flowchart shows the flow of crc_gen routine which
includes both the CRC generation and CRC checking.

The flowcharts in Figure 3 and Figure 4 describes the oper-
ation of the crc_gen subroutine.

Figure 3. CRC_gen Subroutine

!

LOAD DIVISOR VALUE

|

LOAD INITIAL VALUE

|

LOAD 2 BYTES

END
OF
CODE

ROTATE WORD

ROUTINE
R

NO

YES

Y

APPEND ZEROS

l<
ROUTINE WORD
ROUTINE

APPEND CHECKSUM
|

Figure 4. Rotate Subroutine

LOAD BIT COUNTER
11 (HEX)

A

>

A

DECREMENT BIT
COUNTER

YES
NO

SHIFT DATA LEFT

NO
YES

XOR CODE
AND DIVISOR

YA\ 2]

Modifications

The code example implements a 16-bit checksum for CRC-
16 computation. The code is easily modified to support 32-
bit checksum by increasing the size of the code buffer from
32 to 64 bits, and increasing the size of the divisor from 16
to 32 bits.

If the checksum is generated by a programmer and placed
in the last memory location, only the code for checking the
checksum needs to be included in the program. The code
in the “end” section of the routine can be removed. Please
see comments in the code.

Some CRC-algorithms requires the data register to have
an initial value different from 0x00. If other values is used,
the initial values can be loaded into the registers, replacing

the two first LPM instructions. See comments in code for
more information.

If the CRC algorithm is reflected, which means that the LSB
of the bytes are shifted in first instead of the MSB, the rou-
tine can support this by replacing the LSL (Logical shift left)
and ROL (Rotate left) instructions with LSR (Logical shift
right) and ROR (Rotate right) instructions.

Other implementations of CRC computation exists with
higher speed, most of them use a lookup table to increase
the speed of the operation. The RAM requirements for such
application makes them suitable for more complex sys-
tems. C-code examples for table driven CRC implementa-
tion can be obtained from avr@atmel.com.

Resources
Table 1. CPU and Memory Usage
Function | Code Size Cycles Register Usage Interrupt Description
main 36 words - R2, R3, R16, R22,) Initialization and example program
R23, R24, R25
CRC_gen | 44 words 700.000 (approx.) | RO, R1, R2, R3, R17, R18,) Generate and check CRC checksum
R19, R20, R21, R22, R30, R31
EEwrite 7 words 13 cycles R16, R23, R24, R25 - Write CRC checksum to EEPROM
EERread | 4 words 8 cycles R16, R23, R24, R25 - Read CRC checksum from EEPROM
TOTAL 91 words - -
Table 2. Peripheral Usage
Peripheral Description
2 bytes EEPROM Storing CRC value
8 1/0 pins Output low byte of CRC to LEDs

AIMEL

AIMEL

Code Listing

o APPLICATION NOTE AV R236

*

* Title: CRC check of program memory

;* Version: 1.0

;* Last updated: 98.06.15

;* Target: AT90Sxxxx (All AVR Devices with LPM instr)
o

;* Support E-mail: avr@atmel.com

*
)

* NOTE: Always check out the Atmel web site, www.atmel.com for the latest and
*updated version of this software.

T3
’

;* DESCRIPTION

;* This application note describes how to perform CRC computation

;* of code memory contents using a simple algorithm.

;* To generate CRC checksum load the register "status" with 00 and call the
;*routine "crc_gen". The resulting checksum is placed in the registers

;* byte2(low byte) and byte3(high byte).

T3
’

;* To check the CRC checksum load the register "status" with FF and call the
;*routine “crc_gen". The resulting checksum is placed in the registers

;* byte2(low byte) and byte3(high byte). If the checksum is 00 the program code
*is

;* correct, if the checksum is non-zero an error has been introduced in the
;*program code

.include "8515def.inc"
.device AT90S8515

ek Constants

.equ PROGSIZE = Ox1FFF ; Size of program memory(bytes)
.equ CR = 0x8005 ; CRC divisor value

* PROGRAM START - EXECUTION STARTS HERE

.cseg

.org $0000
rjmp RESET ;Reset handle

8 AVRZ G0 o

YA\ 2]

;* "crc_gen" - Generation and checking of CRC checksum

3
’

;* This subroutine generates the checksum for the program code.

;* 32 bits are loaded into 4 register, the upper 16 bits are XORed

;* with the divisor value each time a 1 is shifted into the carry flag

;* from the MSB.

o

* If the status byte is 0x00,the routine will generate new checksum:
;* After the computing the code 16 zeros are

;* appended to the code and the checksum is calculated.

*

;* If the status byte is different from 0X00, the routine will check if the
;* current checksum is valid.

;* After the computing the code the original checksum are

;* appended to the code and calculated. The result is zero if no errors occurs
;* The result is placed in registers byte2 and byte3

*x
)

;* Number of words 44 + return

;* Number of cycles :program memory size(word)*175(depending on memory content)
;* Low registers used :6 (byte0,bytel,byte2,byte3)

;* High registers used :7 (sizel,sizeh,crdivl,crdivh,count,status,zl,zh)

3
’

;¥ Subroutine Register Variables

.def byteO =10 ; Lower byte of lower word

.def bytel =rl ; Upper byte of lower word

.def byte2 =r2 ; Lower byte of upper word

.def byte3 =13 ; Upper byte of upper word

.def crc =r4 ; CRC checksum low byte
.def crch =r5 ; CRC checksum high byte
.def sizel =rl7 ; Program code size register
.def sizeh =rl8

.def crdivi =r19 ; CRC divisor register

.def crdivh =r20

.def count =r21 ; Bit counter

.def status =r22 ; Status byte: generate(0) or check(1)

crc_gen:ldi sizel,low(PROGSIZE) ;Load end of program memory address

Idi sizeh,high(PROGSIZE)

clr zl ;Clear Z pointer

clr zh

Idi crdivh,high(CR) ;Load divisor value

Idi crdivl,low(CR)

Ipm ;Load first memory location
mov byte3,byte0 ;Move to highest byte

adiw zl,0x01 ;Increment Z pointer

Ipm ;Load second memory location
mov byte2,byte0

AIMEL

10

new_word:cp

cpc
brge
adiw
Ipm
mov
adiw
Ipm
rcall

rimp

end:
Idi
cpi
brne
clr
clr
rimp

check:mov

mov

gen:rcall

mov
mov
ret

zl,sizel
zh,sizeh
end

z|,0x01

bytel,byte0
zI,0x01

rot_word
new_word

;ret
count,0x11
status,0x00

check
byte0
bytel
gen
byte0,crc
bytel,crch
rot_word
crc,byte2
crch,byte3

rot_word:ldi count,0x11

rot_loop:dec count

breq
Isl
rol
rol
rol
brcc
eor
eor
rimp
stop:ret

stop
byte0

bytel

byte2
byte3
rot_loop
byte2,crdivl
byte3,crdivh
rot_loop

AIMEL

;Loop starts here
;Check for end of code
;Jump if end of code

;Load high byte
;Move to upper byte
;Increment Z pointer
;Load program memory location
;Call the rotate routine

;uncomment this line if checksum is in last flash memory address.

;Append 16 bits(0x0000) to
;the end of the code for CRC generation

;Append the original checksum to
;the end of the code for CRC checking
;Call the rotate routine

;Return to main prog

;Decrement bit counter
;Break if bit counter = 0
;Shift zero into lowest bit
;Shift in carry from previous byte
;Preceed shift

;Loop if MSB =0

;XOR high word if MSB = 1

3
’

;* EERead_seq

ok
’

;* This routine reads the

;* EEPROM into the global register variable “temp".

T3
’

;* Number of words
;* Number of cycles

4+ return
:8 + return

;* High Registers used :4 (temp,eeadr,eeadrh,eedata)

“*

AVRZ G0 o

YA\ 2]

.def temp =rl6

.def eeadr =r23

.def eeadrh =r24

.def eedata =r25

;***** Code

eeread:
out EEARH,eeadrh ;output address high byte
out EEARL,eeadr ;output address low byte
sbi EECR,EERE ;set EEPROM Read strobe
in eedata,EEDR ;get data
ret

*

;* EEWrite

*

;* This subroutine waits until the EEPROM is ready to be programmed, then
;* programs the EEPROM with register variable "EEdwr" at address "EEawr"

*
’

;* Number of words .7 + return
;* Number of cycles :13 + return (if EEPROM is ready)
;* Low Registers used :None

;* High Registers used: :4 (temp,eeadr,eeadr,eedata)

T3
’

.def temp =rl6

.def eeadr =r23

.def eeadrh =r24

.def eedata =r25

eewrite:shic EECR,EEWE ;If EEWE not clear
rimp EEWrite ; Wait more
out EEARH,eeadrh ;Output address high byte
out EEARL,eeadr ;Output address low byte
out EEDR,eedata ;Output data
sbi EECR,EEMWE
shi EECR,EEWE ;Set EEPROM Write strobe
ret

)
*x
)

;* Start Of Main Program

ok

.cseg

.def crc =r4 ;Low byte of checksum to be returned
.def crch =r5 ;High byte of checksum to be returned
.def temp =rl6

AIMEL

11

AIMEL

.def status =r22 ;Status byte: generate(0) or check(1)
.def eeadr =r23
.def eeadrh =r24
.def eedata =r25
RESET:Idi r16,high(RAMEND) ;Initialize stack pointer
out SPH,r16 ;High byte only required if
Idi r16,low(RAMEND) ;RAM is bigger than 256 Bytes
out SPL,r16
Idi temp,Oxff
out DDRB,temp ;Set PORTB as output
out PORTB,temp ;Write OxFF to PORTB
clr status ;Clear status register,ready for CRC generation
rcall crc_gen
Idi eeadr,0x01 ;Set address low byte for EEPROM write
Idi eeadrh,0x00 ;Set address high byte for EEPROM write
mov eedata,crc ;Set CRC low byte in EEPROM data
rcall eewrite ;Write EEPROM
Idi eeadr,0x02 ;Set address low byte for EEPROM write
Idi eeadrh,0x00 ;Set address high byte for EEPROM write
mov eedata,crch ;Set CRC high byte in EEPROM data
rcall eewrite ;Write EEPROM
out PORTB,crc ;Output CRC low value to PORTB
mainloop:

shic EECR,EEWE
rjmp mainloop ;

:If EEWE not clear
Wait more

SRkkkkkRRR* | ngert program code here *#xkxkxkkkkix

Idi eeadr,0x01

Idi eeadrh,0x00
rcall eeread
mov crc,eedata

Idi eeadr,0x02
Idi eeadrh,0x00
rcall eeread

;Set address low byte for EEPROM read
;Set address high byte for EEPROM read
;Read EEPROM
;Read CRC low byte from EEPROM

;Set address low byte for EEPROM read
;Set address high byte for EEPROM read
;Read EEPROM

mov crch,eedata ;Read CRC low byte from EEPROM

ser status ;Set status register, prepare for CRC checking
rcall crc_gen

loop: out PORTB,crc ;Output CRC low value to PORTB
rimp loop

.exit

AVRZ G0 o

YA\ 2]

References

Fred Halsall “Data Communication, Computer Networks and Open Systems”

1992 Addison-Wesley Publishers

Ross N. Williams “The Painless Guide to Error Detection Algorithms”

ftp.adelaide.edu.au/pub/rocksoft/crc_v3.txt

AIMEL

13

14

AIMEL

AVRZ G0 o

YA\ 2]

AIMEL

15

AIMEL

I P

Atmel Headquarters Atmel Operations

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL (408) 441-0311
FAX (408) 487-2600

Atmel Colorado Springs
1150 E. Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL (719) 576-3300
FAX (719) 540-1759

Europe
Atmel U.K., Ltd.

Atmel Rousset
Zone Industrielle

Coliseum Business Centre
Riverside Way
Camberley, Surrey GU15 3YL

13106 Rousset Cedex, France
TEL (33) 4 42 53 60 00
FAX (33) 4 42 53 60 01

England
TEL (44) 1276-686677
FAX (44) 1276-686697

Asia
Atmel Asia, Ltd.
Room 1219
Chinachem Golden Plaza
77 Mody Road
Tsimshatsui East
Kowloon, Hong Kong
TEL (852) 27219778
FAX (852) 27221369

Japan
Atmel Japan K.K.
Tonetsu Shinkawa Bldg., 9F
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Fax-on-Demand
North America:
1-(800) 292-8635

International:
1-(408) 441-0732

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

BBS
1-(408) 436-4309

© Atmel Corporation 1998.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard war-
ranty which is detailed in Atmel's Terms and Conditions located on the Company’s website. The Company assumes no responsibility for
any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without
notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual prop-
erty of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are
not authorized for use as critical components in life support devices or systems.

Marks bearing ® and/or ™ are registered trademarks and trademarks of Atmel Corporation.

@ Printed on recycled paper.
1143A-10/98/xM

Terms and product names in this document may be trademarks of others.

