
1

AVR236: CRC Check of Program Memory

Features
• CRC Generation and Checking of

Program Memory
• Supports all AVR ® Controllers with

LPM Instruction
• Compact Code Size, 44 words

(CRC Generation and CRC Checking)
• No RAM Requirement
• Checksum Stored in EEPROM
• Execution time: 90 ms

(AT90S8515 @ 8 MHz)
• 16 bits Implementation, Easily Modified

for 32 bits
• Supports the CRC-16 Standard, Easily

Modified for CRC-CCITT, CRC-32

Introduction
This application note describes CRC
(Cyclic Redundancy Check) theory and

implementation of CRC to detect errors
in program memory of the Atmel AVR
microcontroller.

CRC is a widely used method of detect-
ing errors in messages transmitted over
noisy channels. New standards for
secure microcontroller applications has
introduced CRC as a method of detect-
ing errors in program memory of micro-
controllers. It is preferable to implement
the CRC calculation in compact code
with low requirement for data storage
memory since it frees up MCU resources
for use in the actual application.

The implementation of CRC used in this
application note is optimized for mini-
mum code size and register usage.

Figure 1. CRC checking of program memory using 16-bit divisor.

0011011 10011100 10000101 1011

ADDRESS 0 ADDRESS 1FFF

8K BYTE

XOR

10000000 00000101

CODE 1

DIVISOR 1

AVR236

Application
Note

Rev. 1143A–10/98

AVR2362

Theory of Operation
Checksums was originally used in communication through
noisy channels. A number (the checksum) is computed as
a function of the transmitted message. The receiver uses
the same function to compute a checksum, and compares
the computed value with the value received from the trans-
mitting side.

In this application note the checksum is constructed as a
function of the code, and stored in the internal EEPROM.
The microcontroller can later use the same function to cal-
culate the checksum of the code and compare it with the
appended checksum.

Example: Checksum calculated by summing the numbers
of the code:

Code: 04 29 06

Code with checksum: 04 29 06 39

This checksum is simply the sum of the numbers in the
code.

If the second byte in the code is corrupted from 29 to 23,
the error will be detected when the original checksum is
compared with the computed checksum.

Original code with checksum:04 29 06 39

Code with error: 04 23 06 39 -> Wrong !

If the first byte in the code is corrupted from 04 to 10 and
the second byte is corrupted from 29 to 23, the checksum
will not detect the errors.

Original code with checksum:04 29 06 39

Code with error: 10 23 06 39-> Correct !

The problem with this checksum is that it is too simple. It
may not detect errors on multiple bytes in the code and it
may not detect errors in the checksum itself.

This example shows that addition is not sufficient to detect
errors. CRC calculations use division instead of addition to
calculate the checksum for the code. The principles are
similar, but by using division multiple bit errors and burst
errors will be detected.

The CRC algorithm treat the program memory as an enor-
mous binary number, which is divided by another fixed
binary number. The remainder of this division is the check-
sum. The microcontroller will later perform the same divi-
sion and compare the remainder with the calculated
checksum.

Note that the division uses polynomial (modulo-2) arith-
metic, which is similar to regular binary arithmetic, except it
uses no carry. The addition of the numbers with polynomial
arithmetic are simply XOR’ing the data.

Example: Addition in polynomial arithmetic:

1011 0110

+ 1101 0011

0110 0101

The addition is equal to XOR’ing the two numbers.

AVR236

3

Lets define the some properties for the polynomial arithmetic:

M(x) = a k-bit number (the code to be checked).

G(x) = an (n+1) bit number (the divisor or polynom).

R(x) = an n-bit number such that k>n (the remainder or checksum).

Q(x) can now be described as:

Which is equal to Q(x) since the divisor and the remainder
are the same number, and adding it to itself is the same as
XORing it, which results in zero.

M(x)*2n

G(x)
-------------------- Q(x)

R(x)
G(x)
----------- Where Q(x) is the quotient+=

Q(x)
M(x)*2n R(x)+

G(x)
-------------------------------------- M(x) 2n equals adding n zeros to the end of the code×=

If M(x)*2n

G(x)
------------------------- is replaced in the last equation

M(x)*2n+R(x)
G(x)

----------------------------------- Q(x)+
R(x)
G(x)
-----------+

R(x)
G(x)
-----------=Q(x)=

AVR2364

Example of CRC Division
The hexadecimal number 6A which is the binary number
0110 1010, is divided with the divisor 1001 (=9 hex). The
checksum will be the remainder of the operation 0110 1010
divided with 1001.

First append W zeros to the end of the original message
(where W is the width of the divisor).

011010100000 / 1001 = 01100 Quotient is Ignored

0000

 1101

 1001

 1000

 1001

 0011

 0000

 0110

 0000

 1100

 1001

 1010

 1001

 0110

 0000

 1100

 1001

 0101 = 5 = Remainder = Checksum

The checksum is added to the end of the original code. The
resulting code will be 6A5. When this code is checked, the
code and the checksum is divided by the divisor. The
remainder of this division is zero if no errors has occurred,
non-zero otherwise.

Several standards are used today for CRC detection. The
characteristics of the divisor vary from 8 to 32 bits, and the
ability to detect errors varies with the width of the divisor
used. Some commonly used CRC divisors are:

CRC-16 = 1 1000 0000 0000 0101= 8005(hex)

CRC-CCITT = 1 0001 0000 0010 0001= 1021 (hex)

CRC-32 = 1 0000 0100 1100 0001 0001 1101 1011 0111 = 04C11DB7 (hex)

Observe that in 16 bits divisors, the actual numbers of bits
are 17, and in a 32 bits divisor the number of bits are 33.
The MSB is always 1.

AVR236

5

Software Description
Main Program
The main program is supplied to show operation of both the
CRC generation and CRC checking. The checksum gener-
ated is stored in the internal EEPROM, and read back
before the CRC checking is performed.

In most applications, the checksum will be generated by a
programmer and placed at the last address of the program
memory.

Figure 2. Flowchart for the Main Program

The main program call the sub routine CRC_gen with sta-
tus register = 0x00 after reset to generate a new checksum
for the code. The generated checksum is stored in
EEPROM.

To check the CRC checksum the routine CRC_gen is
called with status register = 0xFF, or any value different
from 0x00.

CRC Checksum Generation
The operation is based on the principle of rotating the
entire program memory bit by bit. The MSB is shifted into
the carry flag. If the carry flag is 1 (one), the word is
XOR’ed with the divisor. Note that the MSB of the program
memory which is shifted into the carry flag also is XOR’ed
with the MSB of the divisor. Since they are both 1, the
result will always be zero and the division is ignored.

At the end of the program memory 16 zeros are appended
to the code. The checksum is the resulting value of the
complete XOR operation.

START

INITIALIZATION
UNIT STACK POINTER

SET UP I/O PORTS

STATUS = 00

CRC_GEN

STORE CHECKSUM
IN EEPROM

STATUS = FF

LOAD CHECKSUM
FROM EEPROM

CRC_GEN

OUTPUT CHECKSUM

END

GENERATE CHECKSUM

CHECK CHECKSUM

AVR2366

CRC Checksum Checking
The same principles are applied as for the generation, but
the generated checksum is appended to the code, replac-
ing the zeros. The result of the calculation including the
appended checksum is zero if no errors has occurred, non-
zero otherwise.

If the checksum is included in the program code, only the
checking part of the computation needs to be done in the
program code.

The same routine is used for both CRC generation and the
CRC checking. A global register status is loaded with 0x00
at function call to perform CRC generation. If the status
register is loaded with any value different from 0x00 at
function call, the function performs a CRC checksum
checking.

The flowchart shows the flow of crc_gen routine which
includes both the CRC generation and CRC checking.

The flowcharts in Figure 3 and Figure 4 describes the oper-
ation of the crc_gen subroutine.

Figure 3. CRC_gen Subroutine

Figure 4. Rotate Subroutine

START

LOAD DIVISOR VALUE

LOAD 2 BYTES

ROTATE WORD
ROUTINE

ROUTINE WORD
ROUTINE

APPEND CHECKSUM

RETURN

LOAD INITIAL VALUE

END
OF

CODE

STATUS
= 00

APPEND ZEROS

NO

YES

START

LOAD BIT COUNTER
11 (HEX)

SHIFT DATA LEFT

RETURN

DECREMENT BIT
COUNTER

COUNTER
= 0

CARRY
= 7

XOR CODE
AND DIVISOR

NO

YES

NO

YES

AVR236

7

Modifications
The code example implements a 16-bit checksum for CRC-
16 computation. The code is easily modified to support 32-
bit checksum by increasing the size of the code buffer from
32 to 64 bits, and increasing the size of the divisor from 16
to 32 bits.

If the checksum is generated by a programmer and placed
in the last memory location, only the code for checking the
checksum needs to be included in the program. The code
in the “end” section of the routine can be removed. Please
see comments in the code.

Some CRC-algorithms requires the data register to have
an initial value different from 0x00. If other values is used,
the initial values can be loaded into the registers, replacing

the two first LPM instructions. See comments in code for
more information.

If the CRC algorithm is reflected, which means that the LSB
of the bytes are shifted in first instead of the MSB, the rou-
tine can support this by replacing the LSL (Logical shift left)
and ROL (Rotate left) instructions with LSR (Logical shift
right) and ROR (Rotate right) instructions.

Other implementations of CRC computation exists with
higher speed, most of them use a lookup table to increase
the speed of the operation. The RAM requirements for such
application makes them suitable for more complex sys-
tems. C-code examples for table driven CRC implementa-
tion can be obtained from avr@atmel.com.

Resources
Table 1. CPU and Memory Usage

Function Code Size Cycles Register Usage Interrupt Description

main 36 words - R2, R3, R16, R22,
R23, R24, R25

-
Initialization and example program

CRC_gen 44 words 700.000 (approx.) R0, R1, R2, R3, R17, R18,
R19, R20, R21, R22, R30, R31

-
Generate and check CRC checksum

EEwrite 7 words 13 cycles R16, R23, R24, R25 - Write CRC checksum to EEPROM

EERread 4 words 8 cycles R16, R23, R24, R25 - Read CRC checksum from EEPROM

TOTAL 91 words - -

Table 2. Peripheral Usage

Peripheral Description

2 bytes EEPROM Storing CRC value

8 I/O pins Output low byte of CRC to LEDs

AVR2368

Code Listing
;**** A P P L I C A T I O N N O T E A V R236 ************************

;*

;* Title: CRC check of program memory

;* Version: 1.0

;* Last updated: 98.06.15

;* Target: AT90Sxxxx (All AVR Devices with LPM instr)

;*

;* Support E-mail: avr@atmel.com

;*

;* NOTE: Always check out the Atmel web site, www.atmel.com for the latest and

;*updated version of this software.

;*

;* DESCRIPTION

;* This application note describes how to perform CRC computation

;* of code memory contents using a simple algorithm.

;* To generate CRC checksum load the register "status" with 00 and call the

;*routine "crc_gen". The resulting checksum is placed in the registers

;* byte2(low byte) and byte3(high byte).

;*

;* To check the CRC checksum load the register "status" with FF and call the

;*routine "crc_gen". The resulting checksum is placed in the registers

;* byte2(low byte) and byte3(high byte). If the checksum is 00 the program code

;*is

;* correct, if the checksum is non-zero an error has been introduced in the

;*program code

;**

.include "8515def.inc"

.device AT90S8515

;***** Constants

.equ PROGSIZE = 0x1FFF ; Size of program memory(bytes)

.equ CR = 0x8005 ; CRC divisor value

;**

;*

;* PROGRAM START - EXECUTION STARTS HERE

;*

;**

 .cseg

 .org $0000

 rjmp RESET ;Reset handle

;***

;*

AVR236

9

;* "crc_gen" - Generation and checking of CRC checksum

;*

;* This subroutine generates the checksum for the program code.

;* 32 bits are loaded into 4 register, the upper 16 bits are XORed

;* with the divisor value each time a 1 is shifted into the carry flag

;* from the MSB.

;*

;* If the status byte is 0x00,the routine will generate new checksum:

;* After the computing the code 16 zeros are

;* appended to the code and the checksum is calculated.

;*

;* If the status byte is different from 0X00, the routine will check if the

;* current checksum is valid.

;* After the computing the code the original checksum are

;* appended to the code and calculated. The result is zero if no errors occurs

;* The result is placed in registers byte2 and byte3

;*

;* Number of words :44 + return

;* Number of cycles :program memory size(word)*175(depending on memory content)

;* Low registers used :6 (byte0,byte1,byte2,byte3)

;* High registers used :7 (sizel,sizeh,crdivl,crdivh,count,status,zl,zh)

;*

;***

;***** Subroutine Register Variables

.def byte0 = r0 ; Lower byte of lower word

.def byte1 = r1 ; Upper byte of lower word

.def byte2 = r2 ; Lower byte of upper word

.def byte3 = r3 ; Upper byte of upper word

.def crc = r4 ; CRC checksum low byte

.def crch = r5 ; CRC checksum high byte

.def sizel = r17 ; Program code size register

.def sizeh = r18

.def crdivl = r19 ; CRC divisor register

.def crdivh = r20

.def count = r21 ; Bit counter

.def status = r22 ; Status byte: generate(0) or check(1)

crc_gen:ldi sizel,low(PROGSIZE) ;Load end of program memory address

ldi sizeh,high(PROGSIZE)

clr zl ;Clear Z pointer

clr zh

ldi crdivh,high(CR) ;Load divisor value

ldi crdivl,low(CR)

lpm ;Load first memory location

mov byte3,byte0 ;Move to highest byte

adiw zl,0x01 ;Increment Z pointer

lpm ;Load second memory location

mov byte2,byte0

AVR23610

new_word:cp zl,sizel ;Loop starts here

cpc zh,sizeh ;Check for end of code

brge end ;Jump if end of code

adiw zl,0x01

lpm ;Load high byte

mov byte1,byte0 ;Move to upper byte

adiw zl,0x01 ;Increment Z pointer

lpm ;Load program memory location

rcall rot_word ;Call the rotate routine

rjmp new_word

end: ;ret ;uncomment this line if checksum is in last flash memory address.

ldi count,0x11

cpi status,0x00

brne check

 clr byte0 ;Append 16 bits(0x0000) to

 clr byte1 ;the end of the code for CRC generation

rjmp gen

check:mov byte0,crc ;Append the original checksum to

 mov byte1,crch ;the end of the code for CRC checking

gen:rcall rot_word ;Call the rotate routine

mov crc,byte2

mov crch,byte3

ret ;Return to main prog

rot_word:ldi count,0x11

rot_loop:dec count ;Decrement bit counter

breq stop ;Break if bit counter = 0

lsl byte0 ;Shift zero into lowest bit

rol byte1 ;Shift in carry from previous byte

rol byte2 ;Preceed shift

rol byte3

brcc rot_loop ;Loop if MSB = 0

eor byte2,crdivl

eor byte3,crdivh ;XOR high word if MSB = 1

rjmp rot_loop

stop:ret

;***

;*

;* EERead_seq

;*

;* This routine reads the

;* EEPROM into the global register variable "temp".

;*

;* Number of words :4+ return

;* Number of cycles :8 + return

;* High Registers used :4 (temp,eeadr,eeadrh,eedata)

;*

;***

AVR236

11

.def temp = r16

.def eeadr = r23

.def eeadrh = r24

.def eedata = r25

;***** Code

eeread:

out EEARH,eeadrh ;output address high byte

out EEARL,eeadr ;output address low byte

sbi EECR,EERE ;set EEPROM Read strobe

in eedata,EEDR ;get data

ret

;***

;*

;* EEWrite

;*

;* This subroutine waits until the EEPROM is ready to be programmed, then

;* programs the EEPROM with register variable "EEdwr" at address "EEawr"

;*

;* Number of words :7 + return

;* Number of cycles :13 + return (if EEPROM is ready)

;* Low Registers used :None

;* High Registers used: :4 (temp,eeadr,eeadr,eedata)

;*

;***

.def temp = r16

.def eeadr = r23

.def eeadrh = r24

.def eedata = r25

eewrite:sbic EECR,EEWE ;If EEWE not clear

rjmp EEWrite ; Wait more

out EEARH,eeadrh ;Output address high byte

out EEARL,eeadr ;Output address low byte

out EEDR,eedata ;Output data

sbi EECR,EEMWE

sbi EECR,EEWE ;Set EEPROM Write strobe

ret

;**

;*

;* Start Of Main Program

;*

.cseg

.def crc = r4 ;Low byte of checksum to be returned

.def crch = r5 ;High byte of checksum to be returned

.def temp = r16

AVR23612

.def status = r22 ;Status byte: generate(0) or check(1)

.def eeadr = r23

.def eeadrh = r24

.def eedata = r25

RESET:ldi r16,high(RAMEND) ;Initialize stack pointer

out SPH,r16 ;High byte only required if

ldi r16,low(RAMEND) ;RAM is bigger than 256 Bytes

out SPL,r16

ldi temp,0xff

out DDRB,temp ;Set PORTB as output

out PORTB,temp ;Write 0xFF to PORTB

clr status ;Clear status register,ready for CRC generation

rcall crc_gen

ldi eeadr,0x01 ;Set address low byte for EEPROM write

ldi eeadrh,0x00 ;Set address high byte for EEPROM write

mov eedata,crc ;Set CRC low byte in EEPROM data

rcall eewrite ;Write EEPROM

ldi eeadr,0x02 ;Set address low byte for EEPROM write

ldi eeadrh,0x00 ;Set address high byte for EEPROM write

mov eedata,crch ;Set CRC high byte in EEPROM data

rcall eewrite ;Write EEPROM

out PORTB,crc ;Output CRC low value to PORTB

mainloop:

sbic EECR,EEWE ;If EEWE not clear

rjmp mainloop ; Wait more

;********** Insert program code here *************

ldi eeadr,0x01 ;Set address low byte for EEPROM read

ldi eeadrh,0x00 ;Set address high byte for EEPROM read

rcall eeread ;Read EEPROM

mov crc,eedata ;Read CRC low byte from EEPROM

ldi eeadr,0x02 ;Set address low byte for EEPROM read

ldi eeadrh,0x00 ;Set address high byte for EEPROM read

rcall eeread ;Read EEPROM

mov crch,eedata ;Read CRC low byte from EEPROM

ser status ;Set status register, prepare for CRC checking

rcall crc_gen

loop: out PORTB,crc ;Output CRC low value to PORTB

rjmp loop

.exit

AVR236

13

References
Fred Halsall “Data Communication, Computer Networks and Open Systems”

1992 Addison-Wesley Publishers

Ross N. Williams “The Painless Guide to Error Detection Algorithms”

ftp.adelaide.edu.au/pub/rocksoft/crc_v3.txt

AVR23614

AVR236

15

