
1

AVR240: 4 x 4 Keypad – Wake up on Keypress

Features
• 16 Key Pushbutton Pad in 4 x 4 Matrix
• Very Low Power Consumption
• AVR in Sleep Mode and Wakes Up on

Keypress
• Minimum External Components
• ESD Protection Included if Necessary
• Efficient Code
• Complete Program Included for

AT90S1200
• Suitable for any AVR MCU

Introduction
This application note describes a simple
interface to a 4 x 4 keypad designed for
low power battery operation. The AVR
spends most of its time in power down
mode, waking up when a key is pressed
to instigate a simple test program that
flashes one of two LEDs according to the
key pressed. If 0 (zero) is pressed the
RED LED flashes 10 times. All other
keys flash the GREEN LED the number
of times marked on the key (e.g. if “C” is
pressed the GREEN LED flashes twelve
times).

Figure 1. Keypad and LED connections

Theory of Operation
The keypad columns are connected to
the high nibble of port B. The keypad
rows are connected to the low nibble.
Resistors R1 to R8 (this is shown in Fig-
ure 1) serve to limit input current to a
safe level in the event of ESD from the

keypad. They can be omitted in most
applications.

In the steady state condition the high
nibble is configured as outputs and are
in the low state. The low nibble is config-
ured as inputs and has the internal pull-
ups enabled, removing the need for

PB7

PB6

PB5

PB4

PB3

PB2 PD2

PB1 PD1

PB0 PD0

AT90S1200

R10

R9

LED2
GREEN

R1

R2

R3

R4

R5

R6

R7

R8

D1

D2

D3

D4

R1

R2

R3

R4

F

E

D

C

3

6

9

B

2

5

8

0

1

4

7

A

C1 C2 C3 C4

ALL
1N4148 4 x 4 KEYPAD

LED1
REDALL

470Ω
ALL

330Ω

VCC

4 x 4 Keypad –

Wake up on
Keypress

Application
Note

Rev. 1232A–12/98

AVR2402

external pull-up resistors. After initialization the AVR is put
to sleep. When a key is pressed one of the diodes D1-D4
pull down the external interrupt line PD2, which also has
internal pull-ups enabled. This wakes up the AVR and
causes it to run the interrupt service routine which scans
the keypad and calculates which key is pressed.

It then returns to the main program and drives the LEDs
according to the key pressed, putting the AVR back to
sleep when it has finished.

Resistors R9 and R10 are the traditional current limit resis-
tors for the LEDs and can be any suitable value for the sup-
ply rail. This application note was tested using 330 ohms
on a 5v supply. The LEDs are driven in current sink mode
(“0” = ON) and provide about 10 mA of forward current with
the values specified.

Implementation
The firmware consists of three sections, the reset routine,
the test program and the interrupt service routine sets up
the ports, sleep mode, power saving and the interrupts.
The test program flashes the LED on wake-up and the
interrupt service routine responds to the keypress.

Reset Routine
The flowchart for the Reset Routine is shown in Figure 2.
On reset the ports are initialized with their starting direc-
tions. These are fixed on port D, with all bits as outputs
except PD2 which must be an input for the external inter-
rupt. This bit has its pull-up enabled by setting bit 2 of Port
D. The unused bits are configured as outputs to avoid
noise pickup or excessive power consumption which could
otherwise occur if left floating. Port B starts with the high
nibble as outputs sending out zeroes, and the low nibble
set as inputs with the pull-ups enabled.

Since we are using a minimum of external components, we
must ensure that internal pull-ups are turned on for all
those bits set up as inputs. This is achieved by configuring
the Data Direction Register with “1”s for outputs, “0”s for
inputs, and then writing “1”s to the input bits in the PORT
register. The inputs can then be read or tested from the
PIN register. This program looks for “0”s and uses the
SBIS instruction to skip over the keypress action if not a
“0”.

Power down mode is selected by setting the SE and SM
bits of the MCUCR. At the same time the external interrupt
configured by writing “0”s into the ISC00/01 bits. This will
set the external interrupt INT0 to trigger on a LOW level.
When using “power down” mode the AVR can only be
woken up by LOW LEVEL trigger.

Power consumption is reduced further by turning off the
analog comparator. This is done by setting the ACD bit in
the ACSR register. This must be done with care, otherwise

an unwanted interrupt can be generated. This program dis-
ables global interrupts until the program is ready to be
interrupted, solving this problem. If you wish to use the
analog comparator this code can be removed, but you will
need to change ports for the keypad since port B is used
for this.

The AVR then enters sleep mode. This is placed in the
main loop to ensure that it goes back to sleep after it has
finished its interrupt function and carried out the “flash” test
routine. When the AVR wakes up after a keypress, the
“flash” routine is called after the interrupt routine is finished.
When the “flash” routine is done, the external interrupt is
enabled, so that another interrupt can occur.

Figure 2. Flowchart for “flash” function

Flash Test Function
The flow chart is shown in Figure 3.

This function can be replaced by your own application to be
executed out of “power down” mode. It serves to demon-
strate that the key scan routine is working correctly. The
value of the key pressed is taken from the “key” variable

start

Initialize ports

Set up
interrupts and
sleep mode

Disable
analog

comparator

Disable global
interrupts

Reset port
configuration

Enable global interrupts

Sleep

Flash

Enable external
interrupt

AVR240

3

and used as a pointer to access a 16 byte look-up table
stored in EEPROM. The look-up table contains the number
of the key pressed.

The table has been used for two reasons, it makes the pro-
gram much shorter, and it allows easy extension to provide
full ASCII coding for the key press. For the larger AVRs it
would make sense to store this table in program memory
and access it using the LPM instruction.

The key value derived from the EEPROM is then used as a
countdown variable inside an ON/OFF loop for the LED
outputs. If the value is “0” the RED LED is flashed 10
times. If the value is non-zero the GREEN LED is flashed
that number of times. e.g Three times for the “3” key,
fifteen times for the “F” key etc., The AVR then repeats the
loop and falls asleep.

The LED flashing routine is easily modified for your own
application, replacing the “flash” function by your routine.
The main consideration is the timing. Because the test pro-
gram spends some time flashing the LEDs, no extra
debounce arrangements are necessary. If your code is
very fast you might need to put a short delay in to allow
time for contact bounce. Wake up from sleep mode typi-
cally takes 16 ms or so, although this is being reduced on
the newer devices. This also provides some debouncing.

Figure 3. Flowchart for Reset and Main Routine

Long Time Delay Subroutine (delay)
To see the LEDs flash requires a delay of about 0.25 sec-
ond. This is achived using a conventional FOR loop to keep
the timer/counter free for other work. To achieve 0.25 sec-
ond with a 4 MHz clock requires three nested loops. Three
local variables contained in registers “fine”, “medium” and
“coarse” are used for the loop. The fine and medium
counters run the maximum of 255 times with the coarse
counter set to 8, giving just over 0.25 second delay. The
flowchart is shown in Figure 4.

Figure 4. Flowchart for Delay Subroutine

Flash Red
LED ten

times

flash

Read
EEPROM at

key value

value
=0?

Flash Green
LED value

times

return

Y

N

delay

Coarse=8

Medium=255

Fine=255

Fine=fine-1

0?

Medium=
medium-1

0?

Coarse=
coarse-1

0?

return

Y

N

N

Y

N

Y

AVR2404

Interrupt Service Routine
On entry the status register is preserved to avoid corrupting
any work the main program was doing. In this application it
may be left out for optimisation if you wish. The flowchart is
shown in Figure 5.

The key row is first detected by testing each row input in
turn looking for “0”. A base number 0, 4, 8 or 12 is then
assigned to the variable “key”. The ports are then reinitial-
ized with port B I/O swapped over so that the key rows are
tested.

A short time delay “settle” is used to allow the pins time to
discharge. This takes the form of a conventional time waste
loop using a FOR loop arrangement.

The key column is then detected and a number assigned in
a temporary variable “temp” of 0, 1, 2 or 3. The final key-
press is then computed by adding “key” and “temp”, placing
the result in “key” ready for use by the “flash” function. This
method is easier to code than the conventional single bit
scan in this application.

The port B configuration is the swapped back prior to
restoring the status register. This saves using the settling
delay again.

At the end, the external interrupt is disabled. This is done to
avvoid the interrupt routine being triggered again immedi-
ately upon exit.

Short Time Delay Subroutine
This short delay is required when changing the port B I/O
contiguration to allow time for the pin values to settle. The
routine uses the global scratch register “temp” as a single
loop counter for the FOR loop, set at maximum 255
passes. This provides a delay of 0.129 ms at 4 MHz. This
value could be shortened by experimentation if time is of
the essence or the pins are set high prior to reconfiguration
to speed things up. This might remove the need for this
delay completely.

Figure 5. Flowchart for Interrupt Service Routine

Y

N

Y

N

Y

N

Y

N

Key=0

Key=4

Key=8

Key=12

scan

Preserve Status
Register

Test rows

Row
1?

Row
2?

Row
3?

Row
4?

Swap port
I/O nibbles

Settle
delay

Test columns

A

AVR240

5

Figure 6. Flowchart for Interrupt Service Routine Continued

Y

N

Y

N

Y

N

Y

N

Key=key+0

Key=key+1

Key=key+2

Key=key+3

A

Col
1?

Col
2?

Col
3?

Col
4?

Reset
port B I/O

Restore Status
Register

Disable external
interrupt

Return from
interrupt

AVR2406

Resources
Table 1. Main CPU and Memory Usage

Function Code Size Cycles Register Usage Interrupt Description

Main 24 words 19 cycles R16 - Initialization

Flash 20 words - R16 - Example program

Scan 31 words 47 typical R16, R17, R21 INTO Scans 4x4 keypad

Delay 10 words 1,000,000 R18, R19, R20 - 0.25 second delay used in example
program only

Settle 4 words 516 cycles R16 . Pin settling time delay used in scan

Total 87 words - R16, R17, R18, R19, R20, R21 -

Table 2. Peripheral Usage

Peripheral Description Interrupts

External Interrupt 0 (INT0) Key pressed wake up signal External Interrupt 0 (Low Level triggered)

16 bytes EEPROM Key to value mapping -

8 I/O pins 4 x 4 keypad connections -

2 I/O pins Flashing LEDs for example only -

AVR240

7

;**** A P P L I C A T I O N N O T E A V R 240 ************************

;*

;* Title:4x4 keypad, wake-up on keypress

;* Version:1.1

;* Last Updated:98.05.30

;* Target:All AVR Devices

;*

;* Support E-mail:avr@atmel.com

;*

;* DESCRIPTION

;* This Application note scans a 4 x 4 keypad and uses sleep mode

;* causing the AVR to wake up on keypress. The design uses a minimum of

;* external components. Included is a test program that wakes up the AVR

;* and performs a scan when a key is pressed and flashes one of two LEDs

;* the number of the key pressed. The external interrupt line is used for

;* wake-up. The example runs on the AT90S1200 but can be any AVR with suitable

;* changes in vectors, EEPROM and stack pointer. The timing assumes a 4 MHz clock.

;* A look up table is used in EEPROM to enable the same structure to be used

;* with more advanced programs e.g ASCII output to displays.

;***

;***** Register used by all programs

;******Global variable used by all routines

.deftemp=r16;general scratch space

;Port B pins

.equ ROW1 =3; keypad input rows

.equ ROW2 =2

.equ ROW3 =1

.equ ROW4 =0

.equ COL1 =7 ;keypad output columns

.equ COL2 =6

.equ COL3 =5

.equ COL4 =4

;Port D pins

.equ GREEN =0 ;green LED

.equ RED =1 ;red LED

.equ INT =2 ;interrupt input

.include "1200def.inc"

;***** Registers used by interrupt service routine

.def key =r17 ;key pointer for EEPROM

.def status =r21 ;preserve sreg here

AVR2408

;***** Registers used by delay subroutine

;***** as local variables

.def fine =r18;loop delay counters

.def medium =r19

.def coarse =r20

;*****Look up table for key conversion******************************

.eseg ;EEPROM segment

.org 0

.db 1,2,3,15,4,5,6,14,7,8,9,13,10,0,11,12

;****Source code***

.cseg ;CODE segment

.org 0

rjmp reset ;Reset handler

rjmp scan ;interrupt service routine

reti ;unused timer interrupt

reti ;unused analogue interrupt

;*** Reset handler **

reset:

ldi temp,0xFB ;initialize port D as O/I

out DDRD,temp ;all OUT except PD2 ext.int.

ldi temp,0x30 ;turn on sleep mode and power

out MCUCR,temp ;down plus interrupt on low level.

ldi temp,0x40 ;enable external interrupts

out GIMSK,temp

sbi ACSR,ACD ;shut down comparator to save power

main: cli ;disable global interrupts

ldi temp,0xF0 ;initialize port B as I/O

out DDRB,temp ; 4 OUT 4 IN

ldi temp,0x0F ;key columns all low and

out PORTB,temp ;active pull ups on rows enabled

ldi temp,0x07 ;enable pull up on PD2 and

out PORTD,temp ;turn off LEDs

sei ;enable global interrupts ready

sleep ;fall asleep

rcall flash ;flash LEDs for example usage

ldi temp, 0x40

out GIMSK, temp ;enable external interrupt

rjmp main ;go back to sleep after keyscan

;****Interrupt service routine***************************************

scan:

in status,SREG ;preserve status register

sbis PINB,ROW1 ;find row of keypress

ldi key,0 ;and set ROW pointer

sbis PINB,ROW2

AVR240

9

ldi key,4

sbis PINB,ROW3

ldi key,8

sbis PINB,ROW4

ldi key,12

ldi temp,0x0F ;change port B I/O to

out DDRB,temp ;find column press

ldi temp,0xF0 ;enable pull ups and

out PORTB,temp ;write 0s to rows

rcall settle ;allow time for port to settle

sbis PINB,COL1 ;find column of keypress

ldi temp,0 ;and set COL pointer

sbis PINB,COL2

ldi temp,1

sbis PINB,COL3

ldi temp,2

sbis PINB,COL4

ldi temp,3

add key,temp ;merge ROW and COL for pointer

ldi temp,0xF0 ;reinitialize port B as I/O

out DDRB,temp ; 4 OUT 4 IN

ldi temp,0x0F ;key columns all low and

out PORTB,temp ;active pull ups on rows enabled

out SREG,status ;restore status register

ldi temp,0x00

out GIMSK,temp ;disable external interrupt

;have to do this, because we're

;using a level-triggered interrupt

reti ;go back to main for example program

;***Example test program to flash LEDs using key press data************

flash: out EEAR,key ;address EEPROM

sbi EECR,EERE ;strobe EEPROM

in temp,EEDR ;set number of flashes

tst temp ;is it zero?

breq zero ;do RED LED

green_flash:

cbi PORTD,GREEN ;flash green LED 'temp' times

rcall delay

sbi PORTD,GREEN

rcall delay

dec temp

brne green_flash

exit: ret

zero: ldi temp,10

flash_again: cbi PORTD,RED ;flash red LED ten times

rcall delay

sbi PORTD,RED

rcall delay

AVR24010

dec temp

brne flash_again

rjmp exit

;****Time Delay Subroutine for LED flash*********************************

delay:

ldi coarse,8 ;triple nested FOR loop

cagain: ldi medium,255 ;giving about 1/2 second

magain: ldi fine,255 ;delay on 4 MHz clock

fagain: dec fine

brne fagain

dec medium

brne magain

dec coarse

brne cagain

ret

;***Settling time delay for port to stabilise******************************

settle:

ldi temp,255

tagain: dec temp

brne tagain

ret

