
1

AVR242: 8-bit Microcontroller
Multiplexing LED Drive and a 4 x 4 Keypad

Features
• 16 Key Pushbutton Pad in 4 x 4 Matrix
• 4 Digit Multiplexed LED Display with

Flashing Colon
• Industrial Real Time Clock/timer
• Controls ON/OFF Times for two Loads
• Tactile Feedback via Piezo-sounder
• Flashing Display to Indicate Power

Down Event
• Dual Function I/O Pins
• Minimum External Components
• Efficient Code
• Complete Program Included for

AT90S1200
• Suitable for any AVR MCU with 20 Pins

or more

Introduction
This application note describes a com-
prehensive system providing a 4 x 4 key-
pad as input into a real time clock/timer
with two outputs. This system control
external loads, and a four digit mulit-
plexed LED display. The application is
designed to show the versatility of the
AVR port configuration, and the effi-
ciency of the rich instruction set. The
application will run on any AVR with 20
pins or more, although due consideration
will have to be given to stack initialization
and table placement. The program has
been structured within the confines of
the three level deep hardware stack at
the AT90S1200 and could be better
structured in the other AVRs with soft-
ware stack.

Theory of Operation
The connection of a 4 x 4 keypad, a
piezo sounder, two LED loads and a four
digit multiplexed display, would normally
require twenty-three I/O lines. This
appl ication shows how this can be

reduced to fifteen with a bit of ingenuity,
allowing the smaller 20-pin AVR to be
used. The circuit diagram is shown in
figure 1 and is complete apart from the
oscillator components, which have been
omitted for clarity.

The four keypad columns are connected
to the low nibble of port B and the four
keypad rows are connected to the high
nibble. The same eight bits also directly
drive the segment cathodes of the four
digit LED display, via current limit resis-
tors R13-20. The pins thus serve a dual
function, acting as outputs when driving
the LED display and I/O when scanning
the keypad. This is accomplished by
using the programmable nature and
large current drive capabilities of the
AVR ports to good effect.

The majority of the time port B sinks the
9 mA of current, to directly drive the LED
segments . Each d ig i t is swi tched
sequentially in 5 ms time slots, to multi-
plex the displays via the PNP transistors
Q1-4. The common anodes of the LED
display digits are driven via PNP transis-
tors, since the maximum possible 72 mA
(9mA - 8 segments) of current is outside
the handling capabilities of the ports.

These can be any PNP type capable of
driving 100 mA or so (e.g BC479). This
could be modified by paralleling up two
port pins for each anode to share the
current, but then the number of I/O pins
required would necessitate the use of a
larger MCU.

Before the start of each display cycle,
the port configuration is changed to pro-
vide four inputs with internal pull-ups
enabled, and four outputs in the low
state to scan the keypad. If a key is
pressed the nibble configuration is trans-

Multiplexing
LED Drive and a
4 x 4 Keypad

Application
Note

Rev. 1231A–12/98

AVR2422

posed to calculate the key value with the key number
stored in a variable. A short delay is allowed between each
port change to allow the port to settle. This method is more
code efficient than the conventional “snake” method in this
application.

The common anode drives are disabled during this time to
avoid interference. The port configuration is then rein-
stated ready for the multiplexing routine. The main house-
keeping function then uses this key variable to take the
appropriate action.

The real time clock is interrupt driven, using Timer 0
clocked from the system clock divided by 256. The timer is
preloaded with the number 176 and interrupts on overflow
every five milliseconds, ensuring high accuracy if a good
quality crystal is used. To be accurate a 4.096 MHz clock
crystal is employed. The program could be modified to use
a 4 MHz crystal with minor modifications.

The interrupt service routine reloads the timer and incre-
ments three variables: a counter variable (tock), a keypad
debounce variable (bounce) and a counter to maintain the
seconds count (second). This is used by the main house-
keeping function to update the minutes and hours, which in
turn are displayed by the display function.

The housekeeping function checks the two loads for ON or
OFF times and controls the outputs on the high nibble of
port D accordingly. In this application the loads are simu-
lated by red and green LEDs driven in current sink (active
low) configuration. These could be replaced by relay driv-
ers or opto-coupled triacs to drive power loads.

The keypad provides a means of setting up (SET) the real
time and the ON/OFF times of each load and also allows
the loads to be turned off (CLEAR) at once. A Piezo-
sounder, connected to the top bit of port D, provides an
audible beep on keypress.

The use of the port B pins requires some careful consider-
ation. Since the pins are used for two functions, it is impor-
tant that if a key is pressed, it does not short out the
display. This is achieved by placing current limit resistors
in series with each key. When used as inputs the internal
pull-up resistors are employed saving external compo-
nents. The choice of resistor value (R1-8) is such that the
potential division is negligible. With the values chosen, and
on a 5V supply, the logic levels are about 0.6V for logic “0”
and 4.95V for logic “1”. Resistors R21 and R22 are the tra-
ditional current limit resistors for the LEDs and can be any
suitable value for the supply rail. This note was tested
using 330 ohms on a 5V supply. The LEDs are driven in
current sink mode (“0” = ON) and provide about 9 mA of
forward current with the values specified.

Implementation
The firmware comprises of two main areas, a background
function, which is interrupt driven and provides the real-
time accuracy, and the foreground processes. These con-
sist of three sections, the reset routine, which sets up the
ports, timer and the interrupts, the timesetting routine and
the main housekeeping function.

Foreground Process
The foreground process is running for most of the time,
only interrupted for 5.127 microseconds (21 cycles) every 5
ms to update the real time clock variables. It consists of
three sections, RESET, TIME SETTING and HOUSE-
KEEPING. The flowchart is shown in Figure 1.

Figure 1. .Foreground process flow chart (Part 1) Contin-
ued on Figure 3.

Reset Section
On power up, or reset conditions, a reset routine is entered
to initializes the system hardware. The ports are initialized

Y

N

Start

Initialise ports

Set up timer
prescaler

Load timer 0

Enable interrupts

Display
flash FFFF

Set?

Set RTC

A

Reset

Time setting

AVR242

3

with their starting directions and all pins set high to turn off
any loads. These are fixed as all outputs initially, requiring
255 to be loaded into the data direction registers of both
ports. The directions are modified on port B for a short time
by the keypad scanning function. The timer prescaler is set
up to divide the clock by 256, giving a 5 ms interrupt period
when the timer is loaded with 176. The timer overflow inter-
rupt is then enabled followed by Global interrupts.

The equation for the interrupt period is tied to the 4.096
MHz clock, providing an instruction cycle time of 0.2441
microseconds. The number n to be loaded into the timer 0
register TCNT0 is thus given by :-

(256 - n) * 256 * 0.2441 microseconds.

A value of 176 provides 5 ms exactly , ensuring high RTC
accuracy.

Time Setting
The LEDs are now made to flash EEEE to indicate that the
time is incorrect and needs resetting. This will continue
until the SET key is pressed on the key pad. This calls the
“setrtc” function which handles input from the keypad and
display feedback. Once the time has been reset, the main
housekeeping function handles the updating and driving of
the display from the main “second” variable, and scans the
keypad for commands.

Figure 2. Circuit Diagram for Keypad/Display Unit

20

19

18

17

16

15

14

13

12

11

RESET

PD0

PD1

XTAL2

XTAL1

PD2

PD3

PD4

PD5

GND

VCC

PB7

PB6

PB5

PB4

PB3

PB2

PB1

PB0

PD6

AT90S1200
1

2

3

4

5

6

7

8

9

10

AT1
vcc

D1
GREEN

R21
330

vcc

D2
RED

R22
330

LS1

PIEZO SOUNDER

C1

C2

100n

100uF Tant

vcc

R9
4K7

R12
4K7

R11
4K7

R10
4K7

A4 A1A3 A2

vcc vcc vcc vcc

Q3
PNP

Q4
PNP

Q3
PNP

Q2
PNP

dp g f e d c b a

R6

R5

R7

R8

R2

R3

R4

R1
2K7

2K7

2K7

2K7

2K7

2K7

2K7

2K7

8
Row 4

7
Row 3

6
Row 2

5
Row 1

C
ol

1

C
ol

2

C
ol

3

C
ol

41 2 3 4

1

4

7

A

2

5

8

0

3

6

9

B

F

E

D

C

R20
330

R19
330

R18
330

R17
330

R16
330

R15
330

R14
330

R13
330

AVR2424

Housekeeping
The main housekeeping function does the work of updating
the time variables derived from the background process
and driving the LED display with the correct time. The key
pad is also scanned to allow command inputs and the
on/off times are checked for the loads. The flowchart is
shown in Figure 3.

The seconds, incremented by the interrupt service routine,
are compared with 60. If 60 seconds has passed the
minute variable is incremented and the seconds reset to
zero. The same procedure is adopted for the hours, with
the minute variable compared to sixty and the hour variable
incremented accordingly. The hour variable is then com-
pared with twenty-four to check for the start of a new day
and the hours and seconds all reset to zero.

To save on the use of RAM storage, the minutes and hours
have been confined to one byte each. The low nibble
houses the low digit and the high nibble the high digit. This
means that it must be treated as BCD and the appropriate
error trapping included to ensure correct counting. The
minute or hour byte must therefore be split up into nibbles
and checked for size on each check.

If no change is encountered during any of the checks on
minutes or hours the next section is bypassed and the time
is displayed. The clock is a twenty-four hour type and con-
sequently must cause a start of new day when the time is
incremented from 23:59. The display routine is a function
called “display” which also includes the keyscan routine.
This function is explained later.

On return from the display function the key value is
checked, followed by the on/off times for the loads and any
appropriate action taken before the housekeeping loop is
repeated. E.g. If load 1 on time equals the RTC then load 1
is turned on.

A “flag” variable is used to contain single bits to indicate
various actions. This is used to pass control from one func-
tion to another. For this application NINE flags were
required, which is one more than that available in one byte.
To save using another register just for one bit, the “T” flag
in the status register has been employed for the ninth bit.
This is useful because it can be tested using specific
branch instructions (BRTC, BRTS) making programming
easy, with the SBRS and SBRC instructions used for the
main “flag” tests. The flags are active high and are allo-
cated as shown in table 1 below, along with their function:
The time taken around the loop does not affect the accu-
racy of the RTC since it is interrupt driven, with the loop
being interrupted four times during one pass of the loop.

Figure 3. -Foreground process flow chart (part 2)

Y

N

Y

N

Y

N

A

Toggle
colon blink

60s?

Increment
minutes

60m?

Increment
hours

24h?

Start new day

Display time

Time set?

Load
control

Y

N

Y

N

Set RTC

Control loads

AVR242

5

The central colon (dp) is flashed at half second intervals
using the “blink” variable incremented by the background
interrupt process. This is used to toggle the “flash” variable
which is used as a mask by the display function.The load
check routine is actually more complex than the single flow-
chart box would suggest, testing the various control bits in
the “flag” word and taking action accordingly. Including this
in the flowchart would have made it very difficult to follow.

If it picks up a “set load” command it calls up the “setrtc”
function to load in a new on or off time for the load key
selected. The same flashing method is employed here,
only now the display flashes “n” in the appropriate digit
being entered and moves across from high to low as the
time is entered. The user is thus sure which number is
going where.

A CLEAR command turns off both loads immediately can-
celling any previous on/off commands.These processes do
not affect the RTC, which still maintains the correct time in
the background. The RTC can also be modified, to update
the time, at any stage by the same process.

Display Function
The flowchart is shown in Figure 5. This function is called
up by the flashing reset routine, the “setrtc” function and
the housekeeping routine, and serves to scan the keypad
and multiplex the display. If a larger AVR is to be employed
it would be worth making the digit drive segments a func-

tion and calling it up four times. This can not be done with
the AT90S1200, because of the 3 level deep stack.

The first section disables the display anode drives and then
scans the keypad. This is done by changing the PORTB
configuration to inputs on the row nibble and outputs on the
column nibble. The internal pull-ups are also enabled on
the four inputs. All four columns bits are taken low and the
row inputs read from PINB. This generates either a base
number, stored in “key” of 0, 4, 8, or 12 depending on the
key row pressed, or the number 0x10 if no key is pressed.

The port configuration is then swapped over to make the
row nibble outputs and the column nibble inputs, and the
row bits taken low. After a short settling time the column
inputs are read from PINB and used to add a small offset of
0, 1, 2, or 3 to the base number depending on the key col-
umn pressed. The end result is a number stored in “key”
which is used as an index to look up the actual key value
required in a table stored in EEPROM. The true key value
is written back into “key” and used by the calling functions.
This is necessary because the keys are not arranged in a
logical order. It also provides greater flexibility for the pro-
grammer. The keypad layout and functions are shown in
Figure 4.

Figure 4. Keypad Layout and function

Key values greater than 9 are trapped and used to set the
corresponding bits in the “flag” word used by the calling
functions. A key value of 0x10 indicates that no key has
been pressed.

TABLE 1. Flag word usage

“FLAG” bit number Function

0 Load 1 active

1 Load 2 active

2 Load 1 ON

3 Load 1 OFF

4 Load 2 ON

5 Load 2 OFF

6 Key press OK (debounced)

7 5 ms tick pulse

Status T flag Time Set encountered

1
#1

4
#4

7
#7

A
SetRTC

2
#2

5
#5

8
#8

0
#0

3
#3

6
#6

9
#9

B
Clear

F
Load 1 ON

E
Load 1 OFF

D
Load 2 ON

C
Load 2 OFF

AVR2426

Figure 5. Flowchart for keyscan part of “display” function

If a key has been pressed a short “beep” is sent to the
piezo sounder connected to PORTD bit 6 for tactile feed-
back to the user.

The digits are then multiplexed in turn in 5 ms time slots,
timed by the 5 ms flag set by the background process. This
gives about a 50 Hz display rate producing a bright, flicker
free display (ignoring the short keyscan time).

Y

N

Y

N

Display

Clear Display

Change port
B I/O

Settle time

Row 1?

Row 2?

Row 3?

Row 4?

Swap port
I/O nibbles

Settle delay

A

Y

N

Y

N

Key = 0

Key = 4

Key = 8

Key = 12

Y

N

Y

N

Y

N

Y

N

Key = Key +0

Key = Key +1

Key = Key +2

Key = Key +3

A

Col1?

Col 2?

Col 3?

Col 4?

Set "flag"
if needed

Key ?

Restore port
B configuration

B

Beep
Y

N

AVR242

7

Each digit drive uses a look-up table stored in EEPROM for
the seven segment decoding, taking the index in via the
“temp” register and using it to access the byte required to
light up that character. Several special characters are used
to make keypad input more meaningful. For instance the
letter’ E’ is defined for the flashing error display on power
up, the letters “o”, “n” and “f” are defined for the load setting
ON/OFF inputs. If you are using a larger AVR for your
application you may wish to transfer these tables to ROM
and access them by indexed addressing.

The colon blinking section then checks for a half second
event and changes the “flash” mask used in the previous
display process, thus blinking the centre colon to indicate
correct clock function.

The function then returns to the calling function with the key
value stored in “key”.

Figure 6. .Flowchart for display part of “Display” function

Setrtc Function
The flowchart is shown in Figure 7. This function is called
up by all the routines which require keypad input to set up
the display. This happens at power up/reset to enter the
real time, on pressing the SET key to modify the real time,
and on pressing any of the four load setting keys. It calls
the display function to find the keypress and display the
appropriate digits. It uses a “bounce” counter, incremented
every 5 ms by the background interrupt function, to provide
a reasonable keypress action.

The function proceeds in four phases, starting from the
most significant digit and working to the least significant
digit, displays a flashing “n” in each digit until a suitable
value has been entered via the keypad. Values that are out
of range are trapped and the input requested again until it
is in range.

When all four digits have been input correctly the function
exits with the hours in the variable “hiset” and the minutes
in the varibable “loset”. These are redirected by the calling
function into the appropriate variables for use by the house-
keeping function.

Figure 7. Flow chart for “setrtc” function

B

Light Digit 1
for 5 ms

Light Digit 2
for 5ms

Light Digit 3
for 5 ms
including

colon flash

Light Digit 4
for 5 ms

Return

Y

N

Y

N

Y

N

Y

N

SetRTC

Set flashing
display

Enter digit 4

OK?

Enter digit 3

OK?

Enter digit 2

OK?

Enter digit 1

OK?

Clear digit flash

Return

AVR2428

Background Function (tick)
This function is triggered every 5 ms by timer 0 overflow
and interrupts the foreground function at any point in the
loop. The routine consequently preserves the status regis-
ter on entry and restores it on exit as a matter of course, to
avoid disturbing the foreground processes. The use of the
“temp” register is also avoided for the same reason.

The function is very straightforward and merely increments
three counting registers on every entry, sets the 5 ms tick
flag used by the display routine, reloads timer 0, and incre-
ments the RTC second counter if necessary. The flowchart
is shown in Figure 8.

Figure 8. Flowchart for “tick” Background Function

Y

N

N

tick

Preserve status

Increment
counters

Set 5 ms flag

1s?

Reload timer 0

Restore status

Return

Increment
"seconds"

AVR242

9

Resources
Table 2. CPU and Memory Usage

Function Code Size Cycles Register Usage Interrupt Description

Reset 17 words 17 cycles R16, R31 - Initiialization

Timesetting 9 words 14 cycles R1, R2, R18, R19, R24, R25 - Initial setting of RTC

Housekeeping 97 words 52 typical R1, R2, R16, R17, R18, R19, R20,
R21, R24, R25, R28

- Main housekeeping loop to maintain
real time display, respond to keypad
and control loads.

Display 158 words 150 typical R16, R17, R20, R21, R23, R24,
R25, R26, R28

- Keyscan and Display function

Setrtc 47 words 45 typical R1, R2, R16, R20, R22, R24, R25,
R26, R28

- Function to handle keypad time and
load setting input

tick 15 words 21 cycles R0, R31 TIMER0 Background interrupt service routine
to provide real time 5 ms and 1 s
“tick”

TOTAL 343 words - R0, R1, R2, R16, R17, R18, R19,
R20, R21, R22, R23, R24, R25,
R26, R28, R31

TIMER0

Table 3. Peripheral Usage

Perpheral Description Interrupts

Timer 0 5 ms tick counter Timer 0 overflow with prescalar set to
divide by 256

16 byte EEPROM Key to value mapping Seven segment decoding -

8 I/O pins PORT B 4 x 4 keypad connections and LED segment drive(dual
function)

-

3 I/O pins PORT D Load 1 and 2 and piezo-sounder -

4 I/O pins PORT D Anoder drive for four digit LED display -

AVR24210

;**** A P P L I C A T I O N N O T E A V R 242 ************************

;*

;* Title: Multiplexing LED drive and 4x4 keypad sampling

;* Version: 1.0

;* Last Updated: 98.07.24

;* Target: All AVR Devices

;*

;* Support E-mail:avr@atmel.com

;*

;* DESCRIPTION

;* This Application note covers a program to provide a 24 hr Industrial

;* timer or real-time clock using I/O pins for dual functions.

;* With input via a 4 x 4 matrix keypad, output to a multiplexed

;* four digit LED display and two ON/OFF outputs to drive loads via additional

;* interface circuitry. LED loads are driven in this example but it could drive

;* any load with the addition of suitable components. Tactile feedback is provided

;* on every key press by a piezo sounder which beeps when a key is pressed.

;* Included is a main program that allows clock setting via the keypad

;* and one ON/OFF time setting per 24 hours for each load, functions for the

;* real time clock, key scanning, and adjustment routines. The example runs on

;* the AT90S1200 to demonstrate how limited I/O can be overcome, but can

;* be any AVR with suitable changes in vectors, EEPROM and stack pointer.

;* The timing assumes a 4.096 MHz crystal is employed (a 4 MHz crystal produces

;* an error of -0.16% if 178 instead of 176 used in the timer load sequence, but this

;* could be adjusted in software at regular intervals). Look up tables are

;* used in EEPROM to decode the display data, with additional characters provided

;* for time and ON/OFF setting displays and a key pad conversion table.

;* If the EEPROM is needed for your application the tables could be moved

;* to ROM in the larger AVR devices.

;***

;***** Registers used by all programs

;******Global variables used by routines

.def loset =r1 ;storage for timeset minutes

.def hiset =r2 ;storage for timeset hours

.def ld1minon =r3 ;storage for load on and off times

.def ld1hron =r4 ;set from keypad entry

.def ld1minoff =r5 ;and tested in the housekeeping function

.def ld1hroff =r6 ;and stores on or off times for the loads

.def ld2minon =r7

.def ld2hron =r8

.def ld2minoff =r9

.def ld2hroff =r10

.def temp =r16 ;general scratch space

.def second =r17 ;storage for RTC second count

.def minute =r18 ;storage for RTC minute count

.def hour =r19 ;storage for RTC hour count

.def mask =r20 ;flash mask for digits flashing

AVR242

11

.def blink =r21 ;colon blink rate counter

.def bounce =r22 ;keypad debounce counter

.def flash =r23 ;flash delay counter

.def lobyte =r24 ;storage for display function minutes digits

.def hibyte =r25 ;storage for display function hours digits

.def key =r26 ;key number from scan

;***'key' values returned by 'keyscan'***************************

;VALUE 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

;KEY 1 2 3 F 5 6 E 7 8 9 D A 0 B C NONE

;FUNC 1 2 3 LD1ON 4 5 6 LD1OFF 7 8 9 LD2ON SET 0 CLEAR LD2OFF

.deftock=r27 ;5 ms pulse

.defflags=r28 ;flag byte for keypad command keys

; 7 6 5 4 3 2 1 0

; 5ms keyok ld2off ld2on ld1off ld1on ld2 ld1

; tick 0 = off, 1 = on

.equ ms5 =7 ;ticks at 5 ms intervals for display time

.equ keyok =6 ;sets when key is debounced, must be cleared again

.equ ld2off =5 ;set by load ON/OFF key press and flags

.equ ld2on =4 ;up the need for action

.equ ld1off =3 ;in the housekeeping routine

.equ ld1on =2

.equ ld2 =1 ;when set tells the housekeeping routine to

.equ ld1 =0 ;check load on/off times.

;***the T flag in the status register is used as a SET flag for time set

.equ clear =0 ;RTC modification demand flag

;Port B pins

.equ col1 =0 ;LED a segment/keypad col 1

.equ col2 =1 ;LED b segment/keypad col 2

.equ col3 =2 ;LED c segment/keypad col 3

.equ col4 =3 ;LED d segment/keypad col 4

.equ row1 =4 ;LED e segment/keypad row 1

.equ row2 =5 ;LED f segment/keypad row 2

.equ row3 =6 ;LED g segment/keypad row 3

.equ row4 =7 ;LED decimal point/keypad row 4

;Port D pins

.equ A1 =0 ;common anode drives (active low)

.equ A2 =1 ;

.equ A3 =2 ;

.equ A4 =3 ;

.equ LOAD1 =4 ;Load 1 output (active low)

.equ LOAD2 =5 ;Load 2 output (active low)

.equ PZ =6 ;Piezo sounder output (active low)

.include "1200def.inc"

AVR24212

;***** Registers used by timer overflow interrupt service routine

.def timer =r31 ;scratch space for timer loading

.def status =r0 ;low register to preserve status register

;*****Look up table for LED display decoding **********************

.eseg ;EEPROM segment

.org 0

table1:

.db 0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90

;digit 0 1 2 3 4 5 6 7 8 9

.db 0x86,0x8E,0xA3,0xAB,0XFF,0XFF

;digit E f o n BLANK special characters

;****Look up table for key value conversion into useful numbers****

;key1 2 3 F 4 5 6 E 7 8 9 D A 0 B C

table2:

.db 1, 2, 3,15, 4, 5, 6,14, 7, 8, 9, 13, 10, 0, 11, 12

;value 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

;****Source code***

.cseg ;CODE segment

.org 0

rjmp reset ;Reset handler

nop ;unused ext. interrupt

rjmp tick ;timer counter overflow (5 ms)

nop ;unused analogue interrupt

;*** Reset handler **

;*** to provide initial port, timer and interrupt setting up

reset:

ser temp ;

out DDRB,temp ;initialize port B as all Outputs

out DDRD,temp ;initialize port D as all Outputs

out PORTB,temp ;key columns all high/LEDs off

out PORTD,temp ;turn off LEDs and loads off

ldi temp,0x04 ;timer prescalar /256

out TCCR0,temp

ldi timer,176 ;load timer for 5 ms

out TCNT0,timer ;(256 - n)*256*0.2441 us

ldi temp,0x02 ;enable timer interrupts

out TIMSK,temp

clr flags ;clear control flags

clr tock ;clear 5 ms tick

clr bounce ;clear key bounce counter

clr flash

AVR242

13

clr blink

sei ;enable global interrupts

;****Flash EEEE on LEDS as test and power down warning**************

;****repeats until SET key is pressed on keypad

timesetting:

ldi hibyte,0xaa ;show "EEEE" on LED

ldi lobyte,0xaa ;display and

ser mask ;set flashing display

notyet:

rcall display ;display until time set

brtc notyet ;repeat until SET key pressed

rcall setrtc ;and reset time

mov hour,hiset ;and reload hours

mov minute,loset ;and minutes

clt ;clear T flag

;*****Main clock house keeping loop*****************************

do:

clr mask ;do housekeeping

cpi blink,100 ;is half second up

brne nohalf

clr blink

com flash ;invert flash

nohalf:

cpi second,60 ;is one minute up?

brne nochange ;no

clr second ;yes clear seconds and

inc minute ;add one to minutes

mov temp,minute

andi temp,0x0f ;mask high minute

cpi temp,10 ;is it ten minutes?

brne nochange ;no

andi minute,0xf0 ;clear low minutes

ldi temp,0x10

add minute,temp ;increment high minutes

cpi minute,0x60 ;is it 60 minutes?

brne nochange ;no

clr minute ;yes, clear minutes and

inc hour ;add one to hours

mov temp,hour

andi temp,0x0f ;mask high hour

cpi temp,10 ;is 10 hours up?

brne nochange ;no

andi hour,0xf0 ;yes, increment

ldi temp,0x10

add hour,temp ;high hours

AVR24214

nochange:

cpi hour,0x24 ;is it 24 hours?

brne sameday ;no,

clr hour ;yes, clear time variables

clr minute ;to start new day

clr second

sameday: ;update times

mov lobyte,minute

mov hibyte,hour

rcall display ;show time for 20 ms

brtc case1 ;if not SET

rcall setrtc ;and reset time

mov hour,hiset ;and reload hours

mov minute,loset ;and minutes

clt ;else, clear T flag

case1:sbrc flags,ld1 ;is load 1 active?

rjmp chkload1 ;yes, check load 1

case2:sbrc flags,ld2 ;is load 2 active

rjmp chkload2 ;yes, check load 2

case3:

sbrc flags,ld1on ;is load 1 on time reset

rjmp setld1on ;yes reset on time

case4:

sbrc flags,ld1off ;is load 1 off time reset

rjmp setld1off ;yes reset off time

case5:

sbrc flags,ld2on ;is load 2 on time reset

rjmp setld2on ;yes reset on time

case6:

sbrc flags,ld2off ;is load 2 on time reset

rjmp setld2off ;yes reset on time

case7:

rjmp do ;repeat housekeeping loop

;****case routines to service load times and key presses********

chkload1:

cp hour,ld1hroff ;is load 1 off time reached?

brne onload1

cp minute,ld1minoff

brne onload1

sbi PORTD,LOAD1 ;yes, turn load 1 off

onload1:

cp hour,ld1hron ;is load 1 on time reached?

brne case2

cp minute,ld1minon

brne case2

cbi PORTD,LOAD1 ;yes,turn load 1 on

rjmp case2 ;repeat with load on

AVR242

15

chkload2:

cp hour,ld2hroff ;is load 2 off time reached?

brne onload2

cp minute,ld2minoff

brne onload2

sbi PORTD,LOAD2 ;yes, turn load 2 off

onload2:

cp hour,ld2hron ;is load 2 on time reached?

brne case3

cp minute,ld2minon

brne case3

cbi PORTD,LOAD2 ;yes,turn load 2 on

rjmp case3 ;repeat with load on

setld1on:

sbr flags,0x01 ;make load 1 active

rcall setrtc ;pickup new on time

mov ld1hron,hiset ;and store

mov ld1minon,loset

cbr flags,0x04 ;clear ld1on flag

rjmp case4

setld1off:

rcall setrtc ;pickup new off time

mov ld1hroff,hiset ;and store

mov ld1minoff,loset

cbr flags,0x08 ;clear ld1off flag

rjmp case5

setld2on:

sbr flags,0x02 ;make load 2 active

rcall setrtc ;pickup new on time

mov ld2hron,hiset ;and store

mov ld2minon,loset

cbr flags,0x10 ;clear ld2on flag

rjmp case6

setld2off:

rcall setrtc ;pickup new on time

mov ld2hroff,hiset ;and store

mov ld2minoff,loset

cbr flags,0x20 ;clear ld2off flag

rjmp case7

;****Multiplexing routine to display time and scan keypad every*****

;****second pass,used by all routines taking digits from hibyte

;****and lobyte locations with each digit on for 5 ms

display:

ser temp ;clear display

out PORTB,temp

AVR24216

;****Keypad scanning routine to update key flags*******************

keyscan:

cbr flags,0x40 ;clear keyok flag

ldi key,0x10 ;set no key pressed value

ser temp ;set keypad port high prior to

out PORTB,temp ;reinitializing the port

in temp,PORTD ;turn off LEDs and leave loads

ori temp,0x0f ;untouched prior to

out PORTD,temp ;key scan

ldi temp,0x0f ;set columns output and

out DDRB,temp ;rows input with pull-ups

ldi temp,0xf0 ;enabled and all columns

out PORTB,temp ;low ready for scan

ldi temp,20 ;short settling time

tagain1:

dec temp

brne tagain1

sbis PINB,ROW1 ;find row of keypress

ldi key,0 ;and set ROW pointer

sbis PINB,ROW2

ldi key,4

sbis PINB,ROW3

ldi key,8

sbis PINB,ROW4

ldi key,12

ldi temp,0xF0 ;change port B I/O to

out DDRB,temp ;find column press

ldi temp,0x0F ;enable pull ups and

out PORTB,temp ;write 0s to rows

ldi temp,20 ;short settling time

tagain2:

dec temp

brne tagain2 ;allow time for port to settle

clr temp

sbis PINB,COL1 ;find column of keypress

ldi temp,0 ;and set COL pointer

sbis PINB,COL2

ldi temp,1

sbis PINB,COL3

ldi temp,2

sbis PINB,COL4

ldi temp,3

add key,temp ;merge ROW and COL for pointer

cpi key,0x10 ;if no key pressed

breq nokey ;escape routine, else

ldi temp,0x10

add key,temp ;change to table 2

out EEAR,key ;send address to EEPROM (0 - 15)

sbi EECR,EERE ;strobe EEPROM

AVR242

17

in key,EEDR ;read decoded number for true key

convert:

cpi key,10 ;is it SET key ?

brne notset ;no check next key

set ;yes set T flag in status register

notset:

cpi key,11 ;is key CLEAR?

brne notclear ;no, check next key

sbi PORTD,LOAD1 ;yes, shut down all loads

sbi PORTD,LOAD2

cbr flags,0x03 ;deactivate both loads

notclear:

cpi key,15 ;is key LD1ON?

brne notld1on ;no, check next key

sbr flags,0x04 ;yes, set LD1ON flag

notld1on:

cpi key,14 ;is key LD1OFF?

brne notld1off ;no, check next key

sbr flags,0x08 ;yes, set LD1OFF flag

notld1off:

cpi key,13 ;is key LD2ON?

brne notld2on ;no, check next key

sbr flags,0x10 ;yes, set LD2ON flag

notld2on:

cpi key,12 ;is key LD2OFF?

brne notld2off ;no, check next key

sbr flags,0x20 ;yes, set LD2OFF flag

notld2off:

;***Tactile feedback note generation routine*****************

;***provides a 4 kHz TONE to the piezo sounder for 5 ms*****

tactile:

cbr flags,0x80

cbi PORTD,PZ ;turn on piezo

ldi temp,125 ;for a short time

t1again:

dec temp

brne t1again

sbi PORTD,PZ ;turn on piezo

ldi temp,125 ;for a short time

t2again:

dec temp

brne t2again

sbrs flags,ms5 ;repeat for 5ms

rjmp tactile

notok:

cpi bounce,40

brlo nokey

sbr flags,0x40 ;set bounce flag

AVR24218

nokey:

ser temp

out DDRB,temp ;reinitialize port B as all Outputs

out PORTB,temp ;and clear LEDs

;***Display routine to multiplex all four LED digits****************

cbi PORTD,A1 ;turn digit 1 on

mov temp,lobyte ;find low minute

digit1:

cbr flags,0x80 ;clear 5 ms tick flag

andi temp,0x0f ;mask high nibble of digit

out EEAR,temp ;send address to EEPROM (0 - 15)

sbi EECR,EERE ;strobe EEPROM

in temp,EEDR ;read decoded number

sbrs flash,clear ;flash every 1/2 second

or temp,mask ;flash digit if needed

out PORTB,temp ;write to LED for 5 ms

led1:

sbrs flags,ms5 ;5 ms finished?

rjmp led1 ;no, check again

sbi PORTD,A1 ;turn digit 1 off

ser temp ;clear display

out PORTB,temp

cbi PORTD,A2;

mov temp,lobyte ;find high minute

swap temp

digit2:

cbr flags,0x80 ;clear 5 ms tick flag

andi temp,0x0f ;mask high nibble of digit

out EEAR,temp ;send address to EEPROM (0 - 15)

sbi EECR,EERE ;strobe EEPROM

in temp,EEDR ;read decoded number

sbrs flash,clear ;flash every 1/2 second

or temp,mask ;flash digit if needed

out PORTB,temp ;write to LED for 5 ms

led2:

sbrs flags,ms5 ;5 ms finished?

rjmp led2 ;no, check again

sbi PORTD,A2 ;

ser temp ;clear display

out PORTB,temp

cbi PORTD,A3 ;

mov temp,hibyte

digit3:

cbr flags,0x80 ;clear 5 ms tick flag

andi temp,0x0f ;mask high nibble of digit

out EEAR,temp ;send address to EEPROM (0 - 15)

sbi EECR,EERE ;strobe EEPROM

in temp,EEDR ;read decoded number

AVR242

19

sbrs second,clear ;flash colon

andi temp,0x7f

sbrs flash,clear ;flash every 1/2 second

or temp,mask ;flash digit if needed

out PORTB,temp ;write to LED for 5 ms

led3:

sbrs flags,ms5 ;5 ms finished?

rjmp led3 ;no, check again

sbi PORTD,A3

ser temp ;clear display

out PORTB,temp

cbi PORTD,A4;

mov temp,hibyte

swap temp

andi temp,0x0f ;is hi hour zero?

brne digit4

ldi temp,0xff ;yes,blank hi hour

digit4:

cbr flags,0x80 ;clear 5 ms tick flag

andi temp,0x0f ;mask high nibble of digit

out EEAR,temp ;send address to EEPROM (0 - 15)

sbi EECR,EERE ;strobe EEPROM

in temp,EEDR ;read decoded number

sbrs flash,clear ;flash every 1/2 second

or temp,mask ;flash digit if needed

out PORTB,temp ;write to LED for 5 ms

led4:

sbrs flags,ms5 ;5 ms finished?

rjmp led4 ;no, check again

sbi PORTD,A4

ser temp ;clear display

out PORTB,temp

tst mask ;is flash complete?

breq outled ;yes, exit

cpi blink,50 ;is blink time done?

brlo outled ;no, exit

clr blink ;yes, clear blink rate counter

com flash ;and invert flash byte

outled:

ret

;****Function to Set RTC/on-off hours and minutes from keypad

;****returns with minutes in 'loset' and hours in'hiset'

setrtc:

ser mask ;set flashing display

ldi hibyte,0xdf ;place 'n' in hi hour

ser lobyte ;and blank in lo hr & minutes

hihrus:

clr bounce

AVR24220

bounce1:

rcall display ;display and check keypad

sbrs flags,keyok

rjmp bounce1

cbr flags,0x40 ;clear keyok flag

cpi key,0x03 ;is high hour > 2

brsh hihrus ;yes, read key again

hihrok: ;no, valid entry

swap key ;move hihour to hi nibble

mov hiset,key ;and store in hours

ldi hibyte,0x0d ;place 'n' in lo hour

add hibyte,hiset ;merge hihour and 'n'

lohrus:

clr bounce

bounce2:

rcall display ;display and check keypad

sbrs flags,keyok ;is key stable?

rjmp bounce2 ;no try again

cbr flags,0x40 ;yes, clear keyok flag

mov temp,hibyte ;check that total hours

andi temp,0xf0 ;are not > 24

add temp,key

cpi temp,0x24 ;is hour>24?

brsh lohrus ;yes, read key again

add hiset,key ;no, merge hi and lo hours

lohrok:

mov hibyte,hiset ;display hours as set

ldi lobyte,0xdf ;place 'n' in hi minutes

himinus:

clr bounce

bounce3:

rcall display ;display and check keypad

sbrs flags,keyok

rjmp bounce3

cbr flags,0x40 ;clear keyok flag

cpi key,6 ;is hi minutes >5

brsh himinus ;no, read key again

lominok:

swap key ;move himin to hi nibble

mov loset,key ;and store in minutes

ldi lobyte,0x0d ;place 'n' in lo minutes

add lobyte,loset ;merge with hi minute

lominus:

clr bounce

bounce4:

rcall display ;display and check keypad

sbrs flags,keyok

rjmp bounce4

cbr flags,0x40 ;clear keyok flag

cpi key,10 ;is key >9

brsh lominus ;no, read key again

AVR242

21

add loset,key ;yes, merge hi and lo minutes

clr mask ;clear digits flash

ret ;and return with time set

;****Timer Overflow Interrupt service routine******************************

;****Updates 5 ms, flash and debounce counter to provide RTC time reference

tick:

in status,SREG ;preserve status register

inc tock ;add one to 5 ms 'tock' counter

inc blink ;and blink rate counter

inc bounce ;and bounce rate delay

sbr flags,0x80 ;set 5 ms flag for display time

cpi tock,200 ;is one second up?

breq onesec ;yes, add one to seconds

nop ;balance interrupt time

rjmp nosecond ;no, escape

onesec:

inc second ;add one to seconds

clr tock ;clear 5 ms counter

nosecond:

ldi timer,176 ;reload timer

out TCNT0,timer

out SREG,status ;restore status register

reti ;return to main

