AVR313: Interfacing the PC AT Keyboard

Features

* Interfacing Standard PC AT Keyboards

* Requires Only Two I/O Pins. One of
them must be an External Interrupt Pin

* No Extra Hardware Required

e Complete Example in C, Implementing a
Keyboard to Serial Converter

Introduction

Most microcontrollers requires some
kind of a human interface. This design
note describes one way of doing this
using a standard PC AT Keyboard

Figure 1. The Interface.

The Physical Interface

The physical interface between the key-
board and the host is shown in Figure 1.
Two signal lines are used, clock and
data. The signal lines are open connec-
tor, with pullup resistors located in the
keyboard. This allows either the key-
board or the host system to force a line
to low level. Two connector types are
available, the 5-pin DIN connector of
“5D” type, and the smaller six-pin mini-
DIN. The pin assignments are shown in
Table 1

Keyboard

V,
cC
AVR
VCE I +5V ﬁ
INTO Clock E] E
(or INT1)
Pxy Data E
GND _L GND o _}—

3

)
AT Computer

DIN41524, Female at 6-pin Mini DIN PS2 Style

Signals Computer, 5-pin DIN 180 ° Female at Computer
Clock 1 5
Data 2 1
nc 3 2,6
GND 4 3
+5V 5 4
Shield Shell Shell

AIMEL

Y (F)

Interfacing PC
AT Keyboard

Application

Rev. 1235A-12/98

AIMEL

Timing

The timing for the data transferred from the keyboard to the
host is shown in Figure 2. The protocol is: one start bit
(always 0), eight data bits, one odd parity bit and one stop
bit (always 1). The data is valid during the low period of the
clock pulse. The keyboard is generating the clock signal,
and the clock pulses are typically 30-50 ps low and 30-50
ps high.

The host system can send commands to the keyboard by
forcing the clock line low. It then pulls the data line low (the
start bit). Now, the clock line must be released. The key-
board will count 10 clock pulses. The data line must be set
up to the right level by the host before the trailing edge of
the clock pulse. After the 10th bit, the keyboard checks for
a high level on the data line (the stop bit), and if it is high, it
forces it low. This tells the host that the data is received by
the keyboard. The software in this design note will not send
any commands to the keyboard.

Scan Codes

The AT keyboard has a scan code associated with each
key. When a key is pressed, this code is transmitted. If a
key is held down for a while, it starts repeating. The repeat
rate is typically 10 per second. When a key is released, a
“break” code ($F0) is transmitted followed by the key scan
code. For most of the keys, the scan code is one byte.
Some keys like the Home, Insert and Delete keys have an
extended scan code, from two to five bytes. The first byte is
always $EO. This is also true for the “break” sequence, e.g.
EO FO xx...

AT keyboards are capable of handling three sets of scan
codes, where set 2 is default. This example will only use
set 2.

The Software

The code supplied with this application note is a simple
keyboard to RS-232 interface. The scan codes received
from the keyboard are translated into appropriate ASCII
characters and transmitted by the UART. The source code

is written in C, and is easily modified and adaptable to all
AVR microconrollers with SRAM.

Note: The linkerfile (AVR313.xcl) included in the software
archive has to be included instead of the standard linker-
file. This is done from the include menu under XLINK -

Options. The linker file applies to AT90S8515 only.

The algorithm

Keyboard reception is handled by the interrupt function
INTO _interrupt . The reception will operate independent of
the rest of the program.

The algorithm is quite simple: Store the value of the data
line at the leading edge of the clock pulse. This is easily
handled if the clock line is connected to the INTO or INT1
pin. The interrupt function will be executed at every edge of
the clock cycle, and data will be stored at the falling edge.
After all bits are received, the data can be decoded. This is
done by calling the decode function. For character keys,
this function will store an ASCII character in a buffer. It will
take into account if the shift key is held down when a key is
pressed. Other keys like function keys, navigation keys
(arrow keys, page up/down keys etc.) and modifier keys
like Ctrl and Alt are ignored.

The mapping from scan codes to ascii characters are han-
dled with table look-ups, one table for shifted characters
and one for un-shifted.

Modifications and improvements

If the host falls out of sync with the keyboard, all subse-
quent data received will be wrong. One way to solve this is
to use a time out. If 11 bits are not received within 1.5 ms,
some error have occurred. The bit counter should be reset
and the faulty data discarded.

If keyboard parameters like typematic rate and delay are to
be set, data must be sent to the keyboard. This can be
done as described earlier. For the commands, see the key-
board manufacturer’s specifications.

Clock \/\/\/\/\/\/\/\/\/\/\/

Data \Startl(BitO X Bit 1 X Bit 2 X Bit 3 X Bit 4 X Bit 5 X Bit 6 X Bit 7 XParity y Stop

Figure 2 — Timing for keyboard to host transfer

2 AVRI LD o

s A\ VR 313

Main.c
#include <pgmspace.h>

#include <stdio.h>
#include <stdlib.h>
#include "i08515.h"

#include "serial.h"
#include "gpr.h"
#include "kb.h"

void main(void)
{

unsigned char key;

init_uart(); /I Initializes the UART transmit buffer
init_kb(); /I Initialize keyboard reception

while(1)

{
key=getchar();
putchar(key);
delay(100);

}
Low_level_init.c

#include <ina90.h>

#include <io8515.h>

int __low_level_init(void)

{
UBRR =12; // 19200bps @ 4 MHz
UCR = 0x08; /l TX enable
GIMSK= 0x40; // Enable INTO interrupt

_SEI();
return 1;
}
Serial.c
#include <stdio.h>
#include <pgmspace.h>
#include <io8515.h> /* SFR declarations */
#include "serial.h"

#define ESC 0x1b
#define BUFF_SIZE 64

flash char CLR[] = {ESC, T','H', ESC, ', '2', 'J',0}

unsigned char UART_buffer[BUFF_SIZE];
unsigned char *inptr, *outptr;

AIMEL

AIMEL

unsigned char buff_cnt;

void init_uart(void)

{
inptr = UART_buffer;
outptr = UART_buffer;
buff_cnt = 0;

void clr(void)

{

puts_P(CLR); /I Send a ‘clear screen' to a VT100 terminal

int putchar(int c)

{
if (buff_cnt<BUFF_SIZE)
{
*inptr = ¢; /I Put character into buffer
inptr++; /I Increment pointer
buff_cnt++;
if (inptr >= UART_buffer + BUFF_SIZE) // Pointer wrapping
inptr = UART_buffer;
UCR = 0x28; /I Enable UART Data register
/I empty interrupt
return 1;
}else {
return O; /I Buffer is full
}
}

/I Interrupt driven transmitter

interrupt [UART_UDRE_vect] void UART_UDRE_interrupt(void)

{
UDR = *outptr; /I Send next byte
outptr++; /I Increment pointer
if (outptr >= UART_buffer + BUFF_SIZE) // Pointer wrapping
outptr = UART_bulffer;
if(--buff_cnt == 0) Il If buffer is empty:
UCR = UCR && (1<<UDRIE); /I disabled interrupt
}

AVRI LD o

s A\ VR 313

Kb.c
#include <pgmspace.h>
#include "kb.h"
#include "serial.h"
#include "gpr.h"

#include "scancodes.h"
#define BUFF_SIZE 64
unsigned char edge, bitcount;// 0 = neg. 1 = pos.

unsigned char kb_buffer[BUFF_SIZE];
unsigned char *inpt, *outpt;
unsigned char buffcnt;

void init_kb(void)

{
inpt = kb_buffer;// Initialize buffer
outpt = kb_buffer;
buffcent = 0;

MCUCR = 2; // INTO interrupt on falling edge
edge =0; //0=falling edge 1 =rising edge
bitcount = 11,

interrupt [INTO_vect] void INTO_interrupt(void)
{

static unsigned char data;// Holds the received scan code

if (ledge) // Routine entered at falling edge
{
if(bitcount < 11 && bitcount > 2)// Bit 3 to 10 is data. Parity bit,
{ /I start and stop bits are ignored.
data = (data >> 1);
if(PIND & 8)
data = data | 0x80;// Store a '1'

MCUCR = 3;// Set interrupt on rising edge
edge = 1;
}else { /I Routine entered at rising edge

MCUCR = 2;// Set interrupt on falling edge
edge = 0;

if(--bitcount == 0)// All bits received

AIMEL

AIMEL

decode(data);
bitcount = 11,

void decode(unsigned char sc)
{
static unsigned char is_up=0, shift = 0, mode = 0;
unsigned char i;
if (lis_up)// Last data received was the up-key identifier
{
switch (sc)
{
case OxFO :// The up-key identifier
is_up=1;
break;

case 0x12 :// Left SHIFT
shift = 1;
break;

case 0x59 :// Right SHIFT
shift = 1,

break;

case 0x05 :// F1

if(mode == 0)

mode = 1;// Enter scan code mode
if(mode == 2)

mode = 3;// Leave scan code mode
break;

default:

if(mode == 0 || mode == 3)// If ASCIl mode
{

if(Ishift)// If shift not pressed,
{ // do a table look-up
for(i = 0; unshifted[i][0]!=sc && unshifted[i][0]; i++);
if (unshifted[i][0] == sc) {
put_kbbuff(unshifted[i][1]);
}
} else {// If shift pressed
for(i = 0; shifted[i][0]!=sc && shifted[i][0]; i++);
if (shifted[i][0] == sc) {
put_kbbuff(shifted[i][1]);

AVRI LD o

s A\ VR 313

} else{ // Scan code mode
print_hexbyte(sc);// Print scan code
put_kbbuff(* *);
put_kbbuff(* *);
}
break;
}
}else {
is_up = 0;// Two OxFO in a row not allowed
switch (sc)
{
case 0x12 :// Left SHIFT
shift = 0;
break;

case 0x59 :// Right SHIFT
shift = 0;
break;

case 0x05 :// F1
if(mode == 1)
mode = 2;
if(mode == 3)
mode = 0;
break;
case 0x06 :// F2
clr();
break;

void put_kbbuff(unsigned char c)

{
if (buffent<BUFF_SIZE)// If buffer not full

{

*inpt = c;// Put character into buffer
inpt++; /I Increment pointer

buffcnt++;

if (inpt >= kb_buffer + BUFF_SIZE)// Pointer wrapping
inpt = kb_buffer;

int getchar(void)
{
int byte;
while(buffcnt == 0);// Wait for data

AIMEL

AIMEL

byte = *outpt;// Get byte
outpt++; /I Increment pointer

if (outpt >= kb_buffer + BUFF_SIZE)// Pointer wrapping
outpt = kb_buffer;

buffcnt--; // Decrement buffer count

return byte;
}
Gpr.c
#include "gpr.h"

void print_hexbyte(unsigned char i)

{

unsigned char h, I;

h =i & OxFO; // High nibble
h = h>>4;
h=h+"'0%

if (h>'9")
h=h+7;

| = (i & OXOF)+'0"; /I Low nibble
if 1>'9")
I=1+7,

putchar(h);
putchar(l);

void delay(char d)
{
char i,j,k;
for(i=0; i<d; i++)
for(j=0; j<40; j++)
for(k=0; k<176; k++);

8 AVRI LD o

s A\ VR 313

Pindefs.h

/ kkkkkkkkkkkkkkkkkkkkk

/I Pin definition file

[[FRFRF TR K AT KKK

/I Keyboard konnections

#define PIN_KB PIND

#define PORT_KB PORTD

#define CLOCK 2

#define DATAPIN 3
Scancodes.h

/I Unshifted characters

flash unsigned char unshifted[][2] = {

0x0d,9,

0x0e,'",

0x15,'q’,

0x16,'1,

Ox1a,'z',

0x1b,'s',

Ox1c,'a’,

0x1d,'w’,

Oxle,'2,

0x21,'c',

0x22,'x',

0x23,'d,

0x24,'e',

0x25,'4',

0x26,'3',

0x29,"",

0x2a,'V',

0x2b,'f",

0x2c,'t,

0ox2d,'r',

0x2e,'5',

0x31,'n’,

0x32,'b',

0x33,'h’,

0x34,'q',

0x35,'y",

0x36,'6',

0x39,"",

0x3a,'m’,

0x3b, ',

0x3c,'u’,

0x3d,'7",

0x3e,'8',

0x41,"),

0x42,'k',

0x43,'',

AIMEL

10

0x44,'0',
0x45,'0',
0x46,'9',
0x49,"",
0x4a,'-,
0x4b,'I',
Ox4c,'s’,
0x4d,'p',
Ox4e,'+',
0x52,'se’,
0x54,'a’,
0x55,'\\',
0x5a,13,
0x5b,"",
0x5d,\",
0x61,'<',
0x66,8,
0x69,'1,
0x6b,'4’,
0oxéc,'7",
0x70,'0,
0x71,"',
0x72,'2,
0x73,'5',
0x74,'6',
0x75,'8',
0x79,'+',
0x7a,'3',
0x7b,'-,
0x7c,™,
0x7d,'9',
0,0

h

/I Shifted characters

AIMEL

flash unsigned char shifted[][2] = {

0x0d,9,
0x0e,'8',
0x15,'Q',
0x16,"",
Ox1a,'Z',
0x1b,'S',
Ox1c,'A’,
0x1d,'W',
Oxle,"™,
0x21,'C',
0x22,'X",
0x23,'D',
0x24,'E',
0x25,'a",
0x26,'#',

AVRI LD o

s A\ VR 313

0x29,"",

0x2a,'V',
0x2b,'F',
0x2c,'T',
0x2d,'R’,
0x2e,'%',
0x31,'N’,
0x32,'B',
0x33,'H’,
0x34,'G',
0x35,'Y",
0x36,'&',
0x39,'L,
0x3a,'M’,
0x3b,'J’,
0x3c,'U’,
0x3d,'/",

0x3e,'("

0x41,";',

0x42,'K",
0x43,'l',

0x44,'0',
0x45,'=",
0x46,"',

0x49,"",

Ox4a,' ',
0x4b,'L',
0x4c,'d',
0x4d,'P’,
Ox4e,'?",
0x52,' &',
0x54,'A,
0x55,""

0x5a,13,
0x5b,"™,

0x5d,"™,

0x61,>',
0x66,8,

0x69,'1,
0x6b,'4’,
0x6c¢,'7",

0x70,'0,
Ox71,"),

0x72,'2',
0x73,'5,
0x74,'6',
0x75,'8',
0x79,'+',
0x7a,'3',
0x7b,"-,

AIMEL

11

12

0x7c,™,
0x7d,'9’,
0,0

AIMEL

AVRI LD o

s A\ VR 313

AIMEL

13

14

AIMEL

AVRI LD o

s A\ VR 313

AIMEL

15

