
1

AVR320: Software SPI Master

Features
• Up to 444K Bytes/Sec Throughput @ 10 MHz
• Directly Supports Large Block Writes
• Easily Expandable for Multiple SPI Slaves
• Operates in SPI Mode 0
• 16-bit Data, Easily Modified to 8-bit Operation
• No Interrupts Required
• Low Register Count; Only 3 Needed (2 if 8-bit Mode)
• Small Code Size; 35 Words, Including Initialization
• Interfaces to Atmel AT25xxx Serial EEPROM

Introduction
The Synchronous Peripheral Interface
(SPI) standard is gaining rapidly in popu-
larity. It allows faster communication
than I2C and can be implemented using
fewer gates which means lower silicon
costs. Although the larger AVR family
members include a fully-functional SPI
interface, the smaller members do not.
This application note describes a set of

low-level routines for software imple-
mentation of the SPI protocol, in Master
Mode (all communications originate from
the AVR). These can be used as the
basis for communicating with Atmel’s
25XXX family of serial EEPROM memo-
ries, as well as a host of other peripheral
IC’s such as display drivers.

Figure 1. Connection between the AVR MCU and the slave device shown as a serial
EEPROM

PB0
PB1
PB2
PB3

SCK
SS
MOSI
MISO

MASTER SLAVE

AT90S1200 AT25010

Software SPI
Master

Application
Note

Rev. 1108A–09/98

AVR3202

Figure 2. SPI Transmission Timing

Theory of Operation
SPI Mode 0 implies the following conditions:

1. The SCK signal is low when idle,

2. MOSI data (from the AVR) must be stable at some
time (setup) before the rising edge of the clock,

3. MISO data (from the slave) is valid at some time
(tVALID) after the falling edge of the clock,

4. Data is always sent MSB first.

These routines have been written to meet those standards,
with special attention being paid to the boundary condi-
tions, such as tVALID and tSETUP. These timings are detailed
later in this application note.

SS

SCK

MOSI

MISO

SAMPLE

init_spi ena_spi

rw_spi

rw_spi (optional)

disa_spi (ena_spi)

16 BITS TOTAL16 BITS TOTAL

15(MSB) 14 13 2 1 0(LSB)

15(MSB) 14 13 2 1 0(LSB)

AVR320

3

Figure 3. SPI Master Flowchart

Subroutine Description
init_spi:

This routine initializes the SPI port lines. The macros
will need to be modified if Port B is not used; otherwise,
simply changing the Port Definition .EQU’s for the SCK,
MOSI, MISO and NSS (not-Slave-Select) is adequate.
This routine has no entry requirements and returns
nothing.

ena_spi:

This routine makes sure that SCK is low before setting
SS to the active state. This routine has no entry
requirements and returns nothing.

disa_spi:

This routine brings the SS signal high (inactive). It
should be called when a transmission sequence is
complete, to prevent spurious clocking of the SPI

slaves. It also has no entry requirements and returns
nothing.

rw_spi:

This routine sends/receives either an 8-bit or 16-bit
data word, depending on whether the user has modi-
fied the source code. It leaves the SCK signal low upon
exit, and does not modify the SS signal; therefore,
many back-to-back writes are possible by simply calling
this routine repeatedly. Entry requirements are simply
that the spi_lo (and spi_hi, if used in 16-bit mode) are
initialized with the data to be sent, prior to calling this
routine. Upon exit, the same register(s) contain the
data received from the SPI slave.

Conversion to 8-bit Operation
There are only two lines of code that require modification in
order for the appliction note to work with 8-bit data words.
Both of the changes are in the rw_spi routine. First, the bit
counter initialization value must be changed from 16 to 8;
secondly, the line “rol spi_hi” must be commented out. No
other changes are necessary, except that the spi_hi regis-
ter is no longer needed and is never used.

Macros
Macros are used to make the code more readable. It is
assumed that Port B will be used for the SPI interface; if
this is not the case, then the macros themselves must be
modified to reflect the correct port. Pins for the 4 SPI sig-
nals are listed under “PORT DEFINITIONS” as .EQU’s and
are easily modified.

The delay function macros deserve some additional expla-
nation. To help conserve registers, this routine gets double-
duty out of the TEMP register by keeping a 5-bit bit-counter
value and the delay counter for measuring the SCK high
and low time. The latter are kept in the uppermost bits. By
simply incrementing the upper 3 bits and watching for a
rollover, we can track time without affecting the lowest 5
bits. Note that, in reality, we are subtracting values rather
than adding; the end result is the same, except that Carry is
cleared (rather than set) when the value of the upper 3 bits
rolls from 7 to 0.

RESET

init_spi

MAIN

ena_spi

rw_spi

TRANSMIT
MORE
DATA

disa_spi

IN
IT

IA
LI

Z
E

S
P

I T
R

A
N

S
M

IS
S

IO
N

YES

NO

AVR3204

Figure 4. Setup & Hold Timing

Delay from MOSI Update to SCK Rising Edge
The delay period from updating MOSI to the rising edge of
SCK is a critical period, as it is actually the data setup time
(tSETUP) for the connected peripheral. In this routine, the
amount of setup time is 2 clock cycles if MOSI is changing
to low, 3 if changing to high (this skew allows for different
hi/lo drive levels as well). At a 10 MHz clock, this equates
to 200-300 ns. If more time is required, NOPs should be
placed immediately before the sck_hi statement.

SCK Duty Cycle
SCK will spend most of its time low, due to the fact that it is
low during the “overhead” portions of the send loop. How-
ever, if the connected peripheral can handle a faster rate,

the high-time delay (tHILO) can be reduced to match the
minimum SCK-high specification.

With a delay value of 1 being used, the routine requires
approximately 22.5 AVR clocks per data bit, and the SCK-
high time is exactly 4 clocks. At 10 MHz, this would corre-
spond with an equivalent SCK-high spec of 400 ns, and an
overall throughput of 444K bytes/sec.

The low-time delay must be set to meet the “SCK fall to
MISO (slave data out) Valid” period (tVALID), which is deter-
mined by the peripheral. With a delay value of 1, this rou-
tine will have 3 AVR clocks delay before latching the MISO
signal into the pin’s synchronization register. Again, at 10
MHz, this is a 300 ns period, and can be adjusted upward
by increasing the delay value.

SCK

MOSI

MISO

tHILO

tVALID

tSETUP

