AVR360: Step Motor Controller

Features

* High-Speed Step Motor Controller

* Interrupt Driven

e Compact Code (Only 10 Bytes Interrupt
Routine)

* Very High Speed

* Low Computing Requirement

* Supports all AVR ® Devices

Introduction

This application note describes how to
implement a compact size and high-
speed interrupt driven step motor con-
troller. Step motors are typically used in
applications like camera zoom/film
feeder, fax machines, printers, copying
machines, paper feeders/sorters and
disk drives.

The high performance of the AVR con-
troller enables the designer to implement
high speed step motor applications with
low computing requirements of the con-
troller.

Figure 1. Step Motor Step Sequence

,STEPO , STEP 1 STEP2 A STEP3

YELLOW m

RED/WHITE

YELLOW/WHITE

RED U

Theory of Operation

A DC step motor translates current
pulses into motor rotation. A typical
motor contains four winding coils. The
coils are often labeled red, yellow/white,
red/white and yellow, but may have other
colors. Applying voltage to these coils
forces the motor to step one step.

In normal operation, two winding coils
are activated at the same time. The step
motor moves clockwise one step per
change in winding activated. If the
sequence is applied in reverse order, the
motor will run counterclockwise.

The speed of rotation is controlled by the
frequency of the pulses. Every time a
pulse is applied to the step motor the
motor will rotate a fixed distance. A typi-
cal step rotation is 1.8 degrees. With 1.8
degree rotation in each step will a com-
plete rotation of the motor (360 degrees)
require 200 steps.

By changing the interval of the timer
interrupts, the speed of the motor can be
regulated, and by counting the number
of steps, the rotation angle can be con-
trolled.

Y (F)

Step Motor
Controller

Application
Note

Rev. 1181A-11/98

AIMEL

Table 1 shows the hexadecimal values to be output to the In this example the values for the step motor are stored at
step motor to perform each step. RAM address 0100 (hex). The upper byte of the RAM
Table 1. Step Motor Values address is constant and only the low nibble of the low byte

is used to access the address information. See Figure 2.
Red/ Yellow/

. ; The lower nibble (4 bits) of the variables is the actual value
St Yell Whit Whit Red Hex Val .
°p eow e e ° ox vaue to control the step motor, the upper nibble holds the

0 1 0 0 1 9 address of the next value.

1 1 1 0 0 C Figure 2. Step Motor Addresses and Values

2 0 1 1 0 6

3 0 0 1 1 3 ADDRESS (HEX) ADDRESS Y VALUE VALUE (HEX)

0100 19

Software Description

The software uses a 16 bits timer with capture function to
generate interrupt every 100 ms. When the interrupt is exe-
cuted, a new step value is output to PORTB.

Values for the step motor are stored in flash memory. At ADDRESSY VALUE
startup, the values are copied to SRAM to achieve faster 0102 0011 | o110 36
access and maximum speed performance.

In this implementation, the interrupt routine takes 7 cycles
+ 4 cycles to enter and 4 cycles to exit the interrupt. This ADDRESS ¥ VALUE
totals 15 cycles. With a clock speed of 8 MHz, the step 0103 03
motor control takes less than 2ms. If interrupt is required
every 100 ms, the step motor handling takes only 2% of the
processing power in the CPU. By using this method, maximum speed can be achieved,
combined with a minimum of processor resources.

ADDRESS V VALUE
0101 0010 | 1100 2C

Resources
Table 2. CPU and Memory Usage
Function |Code Size Cycles Register Usage Interrupt Description
main 38 words - R16, XL, XH, ZL, ZH | - Initialization and example program
OC1A 10 words 13 + return | R16, XL, XH Timer 1 output compare A S;:f\lj;lit:p motor value and calculate
TOTAL 48 words - R16, XL, XH, ZL, ZH
Table 3. Peripheral Usage
Peripheral Description nterrupts Enabled
4 1/0 pins Step motor output pins
Timer 1 Generate timer interrupt for step motor frequency generation Timer 1 output compare A

2 AV R 3600 1

s A\ VR 360

Code Listing

*APPLICATION NOTE FORTHEAVR FAMILY

T3
’

* Number:AVR360

;* File Name: "stepmot.asm”

;* Title :Simple high speed step motor controller
;* Date :98.07.02

;* Version :1.00

;* Support telephone 1 +47 72 88 43 88 (ATMEL Norway)

;* Support fax +47 72 88 43 99 (ATMEL Norway)

;* Support E-mail :avr@atmel.com

;* Target MCU :All AVR devices

o

.include "..\8515def.inc"

Jeerrrrrrrx Define global registers
.def temp =R16

kel Define constants

.equ c_value =500 ;Compare value for output compare interrupt
; 500 cycles@5Mhz = 100us

¥ PROGRAM START - EXECUTION STARTS HERE

.cseg
;Initialize interrupt vectors
.org 0x00
rjmp main
.org OC1 Aaddr ;Init Output compare A interrupt vector
rmp OC1A

3

;* OC1A- Timerl Output compare A interrupt routine

ok

3
’

;* DESCRIPTION

“*
’

;*This interrupt routine load new step motor value from the step

AIMEL

AIMEL

;*motor table in SRAM. The values in the table have two functions,
;*the lower nibble contains the value to output to the step motor.
;*The upper nibble holds the address of the next value. First the
;*step value is output to the port, next the address is moved to
;*the XL register.

3

;* Number of words :6 + return

;* Number of cycles 7 +return

;* Low registers used :None

;* High registers used :3 (temp,XL,XH)

OC1A: in temp,SREG
push temp
Id temp,X ;Load temp with X pointer value
mov XL,temp ;Move value to X pointer
andi temp,0x0F ;Mask away upper nibble
out PORTB,temp ;Output lower nibble to step motor
swap XL ;Swap upper and lower nibble
andi XL,0x0F ;Mask away upper nibble, address is ready
pop temp

out SREG,temp
reti

)
*x

;* Main Program

o

;*This program initialize Timer 1 output compare interrupt to
;*occur with a interval defined with the ¢_value constant.

;*The step motor lookup table is loaded from the flash and stored
;*in SRAM address 0x0100 to achieve maximum speed.

-k
’

;***** Code
main: Idi r16,high(RAMEND) ;Intialize stackpointer
out SPH,r16
Idi r16,low(RAMEND)
out SPL,r16
Idi temp,0x0F ;Set PORTB pin3-0 as output

out DDRB,temp
Idi temp,0x00

out PORTB,temp ;Write initial value to PORTB
Idi temp,high(c_value) ;Load compare high value

out OCR1AH,temp

Idi temp,low(c_value) ;Load compare low value

out OCRI1AL,temp
Idi temp,0x00

AV R 3600 1

s A\ VR 360

out TCNT1H,temp ;Clear timer high byte
out TCNTLL,temp ;Clear timer low byte
out TCCR1A,temp ;Clear timer control reg A
Idi temp,0x40
out TIFR,temp ;Clear pending timer interrupt
out TIMSK,temp ;Enable Timer compare interrupt
Idi ZH,high(step*2) ;Init Z pointer to step table in flash
Idi ZL low(step*2)
Idi XH,high(0x0100) ;Init X pointer to RAM location
Idi XL,low(0x0100)
Idi temp,0x04 ;Load counter value
load: Ipm ;Load step value from flash
st X+,R0O ;Store step value in RAM
adiw ZL,0x01 ;Increment flash pointer
dec temp ;Decrement counter
brne load ;Continue until table is loaded
Idi XH,high(0x0100) ;Initialize X pointer to RAM location
Idi XL,low(0x0100)

Idi temp,0x9

out TCCR1B,temp ;Clear timer on compare match,CK/1
sei ;Enble global interrupt

loop: rjmp loop ;Do something else

step: .db 0x19,0x2C,0x36,0x03 ;Step motor lookup table

AIMEL

AIMEL

AV R 3600 1

s A\ VR 360

AIMEL

