
Embedded RISC
Microcontroller
Core

Application Note

Rev. 1268A–02/99
Long Delay Generation Using the
AVR Microcontroller

Background
When a microcontroller-based application requires the implementation of long delays,
the designer can choose among several solutions.

One solution consists of using the on-chip hardware timer. Since a typical timer is only
16 or 24 bits wide, this solution implies that the system clock be slow enough to cope
with long delay. For example, a 24-bit timer running on a 1 MHz system clock can only
lead to a delay of a few tens of seconds. This may be not enough in many applica-
tions. In addition, this solution impacts overall system performance since it imposes a
processing speed.

Another solution involves a software overhead used to count a certain amount of timer
overflows. However, it complicates the software and prevents the core from remaining
in a low power mode while waiting for the delay.

A third solution relies on an external low speed oscillator. The timer is configured as
an external event counter and can generate very long delays; however, system cost is
impacted since additional components are necessary.

The solution presented here shows how the AVR AT90 series microcontrollers
(AT90S2313, AT90S4414 and AT90S8515) generate and handle long delays. On-
chip timers are used without any software intervention, thus allowing the core to be in
a low-power mode during the delay. Since the timers are clocked by the system clock,
there is no need of any additional components.

Due to the very long timing capability, this implementation combines high system per-
formance with long delay generation. For example, an AVR Microcontroller running at
20 Mips can generate delays as long as half an hour.

Applications
The list below shows some applications where long delays are needed:

• Timeouts in man-machine interfaces

• Environmental measurement instruments (sound level, pollution)

• Regulation and process control

AVR Microcontrollers Timers/Counters
The following section briefly describes the timers used in AVR Microcontrollers. For
more information, please refer to the AVR Enhanced RISC Microcontroller Data Book.

Timer/Counters
The AT90 series provides two general purpose Timer/Counters, one 8-bit T/C and one
16-bit T/C. The Timer/Counters have individual prescaling selection from the same
10-bit prescaling timer. Both Timer/Counters can either be used as a timer with an
internal clock time base or as a counter with an external pin connection which triggers
the counting.
1

The Timer/Counter Prescaler
Figure 1 shows the general Timer/Counter prescaler.The
four different prescaled selections are: CK/8, CK/64,
CK/256 and CK/1024, where CK is the oscillator clock. For

the two Timer/Counters, added selections such as CK,
external source and stop can be selected as clock sources.

Figure 1. Timer/Counter Prescaler.

The 8-Bit Timer/Counter0
Fi gu re 2 b e lo w show s t he b l ock d ia g ra m fo r
Timer/Counter0.

The 8-bit Timer/Counter0 can select clock source from CK,
prescaled CK, or an external pin. In addition it can be
stopped as descr ibed in the specif icat ion for the
Timer/Counter0 Control Register (TCCR0). The overflow
status flag is found in the Timer/Counter Interrupt Flag
Regis ter (TIFR). Cont ro l signals are found in the
Timer/Counter0 Control Register (TCCR0). The interrupt
enable/disable settings for Timer/Counter0 are found in the
Timer/Counter Interrupt Mask Register (TIMSK).

When Timer/Counter0 is externally clocked, the external
signal is synchronized with the oscillator frequency of the
CPU. To assure proper sampling of the external clock, the
minimum time between two external clock transitions must
be at least one internal CPU clock period. The external
clock signal is sampled on the rising edge of the internal
CPU clock.

The 8-bit Timer/Counter0 features both a high-resolution
and a high-accuracy usage with lower prescaling opportu-
nities. Similarly, high prescaling opportunities make the
Timer/Counter0 useful for lower speed functions or exact
timing functions with infrequent actions.

Figure 2. Timer/Counter0 Block Diagram.
AVR Core2

AVR Core
The 16-Bit Timer/Counter1
Figure 3 shows the block diagram for Timer/Counter1.

The 16-bit Timer/Counter1 can select clock source from
CK, prescaled CK, or an external pin. In addition it can be
stopped as described in the specif ication for the
T imer/Coun ter1 Con tro l Registe rs (TCCR1A and
TCCR1B). The different status flags (overflow, compare
match and capture event) and control signals are found in
the Timer/Counter1 Control Registers (TCCR1A and
TCCR1B). The interrupt enable/disable sett ings for
Timer/Counter1 are found in the Timer/Counter Interrupt
Mask Register (TIMSK).

When Timer/Counter1 is externally clocked, the external
signal is synchronized with the oscillator frequency of the
CPU. To assure proper sampling of the external clock, the
minimum time between two external clock transitions must
be at least one internal CPU clock period. The external

clock signal is sampled on the rising edge of the internal
CPU clock.

The 16-bit Timer/Counter1 features both a high-resolution
and a high-accuracy usage with lower prescaling opportu-
nities. Similarly, high prescaling opportunities makes the
Timer/Counter1 useful for lower speed functions or exact
timing functions with infrequent actions.

The Timer/Counter1 supports two Output Compare func-
t ions using the Output Compare Register 1 A and B
(OCR1A and OCR1B) as the data sources to be compared
to the Timer/Counter1 contents. The Output Compare func-
tions include optional clearing of the counter on compareA
match, and actions on the Output Compare pins on both
compare matches.

Figure 3. Timer/Counter1 Block Diagram

OC1A

OC1B
3

Hardware Configuration
To derive a long delay from a fast system clock, the pres-
caler and the two on-chip Timer/Counters are cascaded.
The hardware configuration is illustrated in Figure 4.

The Timer/Counter1 is configured as a timer. It is pro-
grammed to divide the system clock by a user-defined ratio
and toggles the OC1A pin each time it reaches the value
written in the Timer/Counter0 output compare register
(OC R1AH -OC R1AL) . W he n OC 1A togg les , t he
Timer/Counter1 register (TCNT1H-TCNT1L) is reloaded
with 0000 and restarts counting.

Since OC1A is connected to T0 at the board level, the tog-
gle on OC1A can trigger an event on Timer/Counter0. The
latter is configured as a counter and increments at each ris-
ing edge on T0. When Timer/Counter0 overflows, a flag is
set in TIFR, and an interrupt is eventually triggered. This
indicates the programmed delay has elapsed.

The longest programmable delay can be calculated as fol-
lows:

Timer1 prescaler maximum ratio: 1024

Timer1 maximum division ratio: 65536

The toggle on OC1A implies an additional division ratio of 2

Counter0 maximum division ratio: 256.

More generally, the value of the programmed delay is given
by the formula below:

where:

FS = System Clock Frequency

T1P = prescaler ratio defined in TCCR1B to be either 8,

64, 256 or 1024.

Figure 4. AVR Microcontroller Hardware Configuration for Long Delay Support

T 2 FS⁄ T1P OCR1A 256 TCNT0–()⋅ ⋅ ⋅=

Prescaler Timer/Counter1

Timer/Counter0 Overflow

Xtal

Xtal

T0

OC1A

AVR Microcontroller
AVR Core4

AVR Core
Example Software
Th is shor t p rog ram shows how to con f igu re the
Timer/Counters to implement a 1-hour delay with a 1 MHz
system clock. (Processing power equivalent to 80C51.)

During the startup phase, the Timer/Counters and the inter-
rupt controller are configured. Then idle mode is entered.
After an hour, the delay elapses and an interrupt is trig

gered. This event wakes up the core which executes the
user-defined task. In the example the task is just a toggle
on an output pin (PA.0). When this task is complete, the
core re-enters the idle mode.

This cycle continues indefinitely.

The commented source code follows.

; Constants definitions ---
.EQU PORTA = $1B
.EQU DDRA = $1A
.EQU DDRD = $11
.EQU TCCR1A = $2F
.EQU OCR1AH = $2B
.EQU OCR1AL = $2A
.EQU MCUCR = $35
.EQU TIMSK = $39
.EQU TCCR0 = $33
.EQU TCCR1B = $2E
.EQU TCNT1L = $2C
.EQU TCNT1H = $2D
.EQU TCNT0 = $32
.EQU SREG = $3F
.EQU SPH = $3E
.EQU SPL = $3D

; Interrupt service routines ---
.ORG $0000

rjmp start
reti ; INT0 service
reti ; INT1 service
reti ; T/C1 capture service
reti ; T/C1 compare match A service
reti ; T/C1 compare match B service
reti ; T/C1 overflow service
reti ; T/C0 overflow service
reti ; SPI transfer complete service
reti ; UART receive service
reti ; UART data reg empty service
reti ; UART transmit service
reti ; Analog comparator service

; Peripherals configuration --
start:

ldi r17, $01 ; Register init

ldi r16, $01 ; Program PORTA.0 as an output
out DDRA, r16

ldi r16, $01 ; Initialize stack pointer ...
out SPH, r16 ; ... to 0x100
ldi r16, $00
out SPL, r16
5

AVR Core
ldi r16, $20 ; Program OC1A as an output
out DDRD, r16

ldi r16, $40 ; Program TCCR1A to toggle ...
out TCCR1A, r16 ; ... OC1A on each compare match

ldi r16, $6D ; Program the output compare ...
out OCR1AH, r16 ; ... register for a division ...
ldi r16, $DD ; ... ratio of 28125
out OCR1AL, r16

ldi r16, $20 ; Configure sleep mode
out MCUCR, r16

ldi r16, $02 ; Enable T/C0 interrupt
out TIMSK, r16

ldi r16, $80 ; Global interrupt enable
out SREG, r16

; Infinite loop ---
loop:

rcall main ; Call the main routine

ldi r16, $06 ; Reload counter 0 for a division ...
out TCNT0, r16 ; ... ratio of 250

ldi r16, $06 ; Start counter 0 for ...
out TCCR0, r16 ; ... external pin T0 source

ldi r16, $00 ; Reset timer 1 value
out TCNT1H, r16
ldi r16, $00
out TCNT1L, r16

ldi R16, $0C ; Start timer 1 for a prescale ...
out TCCR1B, r16 ; ... ratio of 256

sleep ; Wait for delay

ldi r16, $00 ; Stop timer 1
out TCCR1B, r16

ldi r16, $00 ; Stop timer 0
out TCCR0, r16

rjmp loop
; Main routine ---
; This routine just toggles PORTA.0
main:

in r16, PORTA
eor r16, r17
out PORTA, r16
ret
6

	Background
	Applications
	AVR Microcontrollers Timers/Counters
	Timer/Counters
	The Timer/Counter Prescaler
	The 8-Bit Timer/Counter0
	The 16-Bit Timer/Counter1
	Hardware Configuration
	Example Software

