C51 Primer

C51 Primer

by Mike Beach, Hitex (UK) Ltd.

HTML version by
Steffen Duffner, Irena & Olaf Pfeiffer

Last modified on 03/03/96.

Click here for the Table of Contents

About The C51 Primer

If you've flicked through this publication, you may be left thinking that it is necessary to be an expert
to produce workable programs with C51. Nothing could be further from the truth. It is perfectly
possible to write real commercial programs with nothing more than a reasonable knowledge of the
ANSI C language.

However, to get the maximum performance from the 8051, knowing afew tricksis very useful. This
Is particularly true if you are working on a very cost-sensitive project where needing abigger RAM or
EPROM can result in an unacceptable on-cost. After al, if cost was not a consideration, we would all
be using 80C166s and 68000s!

Whilst the C51 Primer isreally aimed at users of the Keill C51 Compiler, it is applicablein part to

other compilers. However, some compilers do not allow such low-level access and have fewer 8051-
specific extensions. They are less likely to be used on projects where getting maximum performance
IS essential.

The C51 Primer Will Help You

« Find your way around the basic 8051 architecture.

. Make a sensible choice of memory model and special things to watch out for.
. Locate things at specific addresses.

. Make best use of structures.

. Use bit-addressable memory.

. Think in terms of chars rather than ints.

. Get the best out of the various pointer types.

. Get amodular structure into programs.

http://www.esacademy.com/automation/docs/c51primer/ (1 di 6) [09/11/01 11.02.45]

http://www.hitex.co.uk/
http://www.hitex.com/hitools/ffkeil.htm

C51 Primer

« Access on and off-chip ports and peripherals.

. Deal with interrupts.

« Useregisterbanks.

. Deal with the stack.

. Understand RAM overlaying.

. Interface to assembler code.

. Use specia versions like the 80C517 and 87C751.

. Useassembler tricksin C.

. Help the optimiser to produce the smallest, fastest code.

The C51 Primer Will Not Help You

. Program in ANSI C - get agood reference like Kernighan & Ritchie.

. Write portable code - simply use the compiler without using any extensions.

« Set-up each and every on-chip peripheral on all of the 90 different 8051 variants! Some are,
however, covered in the appendices.

This guide should be read in association with a good C reference such as Kernighan and Ritchie and is
not meant to be a definitive work on the C language. It covers all the 8051-specific language
extensions and those areas where the CPU architecture h as an impact on coding approach.

Contents

o About The C51 Primer
o 1 Introduction
o 2 Kell C51 Compiler Basics - The 8051 Architecture
« 2.1 8051 Memory Configurations
« 2.1.1 Physical Location Of The Memory Spaces
«» 2.1.2 Possible Memory Models
« 2.1.3 Choosing The Best Memory Configuration/Model
« 2.1.4 Setting The Memory Modd - #Pragma Usage
« 2.2 L oca Memory Moddl Specification
« 2.2.1 Overview
« 2.2.2 A Point To Watch In Multi-Model Programs
o 3 Declaring Variables And Constants
« 3.1 Constants
« 3.2 Variables
« 3.2.1 Uninitialised Variables
« 3.2.2 Initialised Variables
« 3.3 Watchdogs With Large Amounts Of Initialised Data

http://www.esacademy.com/automation/docs/c51primer/ (2 di 6) [09/11/01 11.02.45]

C51 Primer

= 3.4 C51 Variables
«» 3.4.1 Variable Types
« 3.4.2 Specia Function Bits
« 3.4.3 Converting Between Types
« 3.4.4 A Non-ANSI Approach To Checking Data Type
o 4 Program Structure And Layout
« 4.1 Modular Programming In C51
« 4.2 Accessibility Of Variables In Modular Programs
« 4.3 Building A Rea Modular Program -
« 4.3.1 The Problem
» 4.3.2 Maintainable Inter-Module Links
« 4.4 Task Scheduling
« 4.4.1 8051 Applications Overview
« 4.4.2 Simple 8051 Systems
« 4.4.3 Simple Scheduling - A Partial Solution
« 4.4.4 A Pragmatic Approach
o 5 C Language Extensions For 8051
« 5.1 Accessing 8051 On-Chip Peripherals
« 5.2 Interrupts
« 5.2.1 The Interrupt Function Type
5.2.2 Using C51 With Target Monitor Debuggers
5.2.3 Coping Interrupt Spacings Other Than 8
« 5.2.4 The Using Control
« 5.3 Interrupts, USING, Registerbanks, NOAREGS In C51
« 5.3.1 The Basic Interrupt Service Function Attribute
« 5.3.2 The absolute register addressing trick in detail
« 5.3.3The USING Control
« 5.3.4 Notes on C51's "Stack Frame"
« 5.3.5When To Use USING
« 5.3.6 The NOAREGS pragma
« 5.3.7 The REGISTERBANK Control Alternative To NOAREGS
» 5.3.8 Summary Of USING And REGISTERBANK
« 5.3.9 Reentrancy In C51 - The Final Solution
« 5.3.10 Summary Of Controls For Interrupt Functions
« 5.3.11 Reentrancy And Library Functions
o 6 PointersIn C51
« 6.1 Using Pointers And Arrays In C51
« 6.1.1 Pointers In Assembler
« 6.1.2 PointersIn C51
« 6.2 Pointers To Absolute Addresses
« 6.3 Arrays And Pointers - Two Sides Of The Same Coin?

http://www.esacademy.com/automation/docs/c51primer/ (3 di 6) [09/11/01 11.02.45]

C51 Primer

« 6.3.1 Uninitialised Arrays
6.3.2 Initialised Arrays
6.3.3Using Arrays
« 6.3.4 Summary Of Arrays And Pointers
« 6.4 Structures
« 6.4.1 Why Use Structures?
« 6.4.2 Arrays Of Structures
« 6.4.3 Initialised Structures
« 6.4.4 Placing Structures At Absolute Addresses
« 6.4.5 Pointers To Structures
« 6.4.6 Passing Structure Pointers To Functions
« 6.4.7 Structure Pointers To Absolute Addresses
« 6.5 Unions
« 6.6 Generic Pointers
« 6.7 Spaced Pointers In C51

o 7 Accessing External Memory Mapped

« 7.1 The XBYTE And XWORD Macros

« 7.2 Initialised XDATA Pointers

« 7.3 Run Time xdata Pointers

« /.4 Thevolatile Storage Class

7.5 Placing Variables At Specific Locations -

« 7.6 Excluding External Data Ranges From Specific

o 8 Linking Issues And Stack Placement

« 8.1BasicUse Of L51 Linker
« 8.2 Stack Placement
« 8.3Using The Top 128 Bytes of the 8052 RAM
« 8.4L51 Linker Data RAM Overlaying
« 8.4.1 Overlaying Principles
« 8.4.2 Impact Of Overlaying On Program Construction
« 8.4.2.1 Indirect Function Calls With Function Pointers
« 8.4.2.2 Indirectly called functions solution
« 8.4.2.3 Function Jump Table Warning (Non-hazardous)
» 8.4.2.4 Function Jump Table Warning Solution
« 8.4.2.5 Multiple Call To Segment Warning (Hazardous)
« 8.4.2.6 Multiple Call To Segment Solution
» 8.4.3 Overlaying Public Variables

o 9 Other C51 Extensions

« 9.1 Specia Function Bits

« 9.2 Support For 80C517/537 32-bit Maths Unit
« 9.2.1TheMDU - How To Use It
« 9.2.2 The 8 Datapointers

http://www.esacademy.com/automation/docs/c51primer/ (4 di 6) [09/11/01 11.02.45]

C51 Primer

« 9.2.380C517 - Things To Be Aware Of
« 9.387C751 Support
« 9.3.187C751 - Steps To Take
« 9.3.2 Integer Promotion
10 Miscellaneous Points

« 10.1 Tying The C Program To The Restart Vector
« 10.2 Intrinsic Functions
« 10.3 EA Bit Control #pragma
« 10.4 16 Bit sfr Support
« 10.5 Function Level Optimisation
« 10.6 In-Line FunctionsIn C51
11 Some C51 Programming Tricks

« 11.1 Accessing RO etc. directly from C51
« 11.2 Making Use Of Unused Interrupt Sources
« 11.3 Code Memory Device Switching
« 11.4 Simulating A Software Reset
« 11.5 The Compiler Preprocessor - #define
12 C51 Library Functions

« 12.1 Library Function Caling
« 12.2 Memory-Model Specific Libraries
13 Outputs From C51

= 13.1 Object Files
« 13.2 HEX Files For EPROM Blowing
= 13.3 Assembler Output

14 Assembler Interfacing To C Programs

« 14.1 Assembler Function Example
« 14.2 Parameter Passing To Assembler Functions
« 14.3 Parameter Passing In Registers

15 General Things To Be Aware Of

« 151
« 152
« 153
» 154
« 155
« 156
« 15.7 Floating Point Numbers

n 16 Conclusion

http://www.esacademy.com/automation/docs/c51primer/ (5 di 6) [09/11/01 11.02.45]

C51 Primer

http://www.esacademy.com/automation/docs/c51primer/ (6 di 6) [09/11/01 11.02.45]

Introduction

1 Introduction

C can be arather terse and mystifying language. Widely quoted as being a high level language, C does
indeed contain many such features like structured programming, defined procedure calling, parameter
passing, powerful control structures etc.

However much of the power of C liesin its ability to combine simple, low-level commandsinto
complicated high-level language-like functions and allow access to the actual bytes and words of the
host processor. To a great extent then, C isasort of universal assembly language. Most programmers
who are familiar with C will have been used to writing programs within large machines running Unix
or latterly MS-DOS. Even in the now cramped 640KB of MSDOS, considerable space is available so
that the smallest variable in a program will be an int (16 bits). Most interfacing to the real world will
be done via DOS Ints and function calls. Thus the actual C written is concerned only with the
manipulation and processing of variables, strings, arrays etc.

Within the modern 8 bit microcontroller, however, the situation is somewhat different. Taking the
8051 as an example, the total program size can only occupy 4 or 8K and use only 128bytes of RAM.
Ideally, real devices such as ports and special function registers must be addressed from C. Interrupts
have to be serviced, which require vectors at absolute addresses. Special care must be taken with a
routine's data memory allocation if over-writing of background loop data is to be avoided. One of the
fundamentals of C isthat parameters (input variables) are passed to a function (subroutine) and results
returned to the caller viathe stack. Thus afunction can be called from both interrupts and the
background without fear of itslocal data being overwritten (re-cutrancy).

A serious restriction with the 8051 family is the lack of a proper stack; typically with a processor such
as the 8086, the stack pointer is 16 bits (at |east). Besides the basic stack pointer, there are usually
other stack relative pointers such as a base pointer etc..

With these extra demands on the stack control system, the ability to access data on the stack is crucial.
As already indicated, the 8051 family is endowed with a stack system which isreally only capable of
handling return addresses. With only 256 bytes of stack potentially available, it would not take too
much function-calling and parameter-passing to use this up.

From this you might think that implementing a stack-intensive language like C on the 8051 would be
impossible. Well, it very nearly has been! While there have been compilers around for some years
now that have given C to 8051 users, they have not been overly effective. Most have actually been
adapted from generic compilers originally written for more powerful micros such as the 68000. The
approach to the stack problem has largely been through the use of artificial stacks implemented by
using 8051 opcodes.

http://www.esacademy.com/automation/docs/c51primer/c01.htm (1 di 3) [09/11/01 11.02.48]

Introduction

Typicaly, an areain external RAM is set aside as a stack; special library routines manage the new
stack every time afunction is called. While this method works and gives a re-entrant capability, the
price has been very slow runtimes. The net effect is that the processor spends too much time executing
the compiler's own code rather than executing your program!

Besides the inherent inefficiency of generating a new stack, the compiled program code is not highly
optimised to the peculiarities of the 8051. With al this overhead, the provision of banked switch
expanded memory, controlled by 10 ports, becomes amost a necessity!

Therefore, with the 8051 in particular, the assembler approach to programming has been the only real
aternative for small, time-critical systems.

However, as far back as 1980, Intel produced a partial solution to the problem of allowing high-level
language programming on its new 8051 in the shape of PLM51. This compiler was not perfect, having
been adapted from PLM85 (8085), but Intel were realistic enough to realise that afull stack-based
implementation of the language was simply not on.

The solution adopted was to ssimply pass parameters in defined areas of memory. Thus each procedure
has its own area of memory in which it receives parameters and passes back the results. Provided the
passing segments are internal the calling overhead is actually quite small.

Using external memory slows the process but is still faster than using an artificial stack.

The drawback with this"compiled stack” approach is that re-entrancy is now not possible. This
apparently serious omission in practice does not tend to cause a problem with typical 8051 programs.
However the latest C51 versions do alow selective re-entrancy, so that permitting re-entrant use of a
few critical functions does not compromise the efficiency of the whole program.

Other noteworthy considerations for C on amicrocontroller are:

control of on and off-chip peripheral devices

servicing of interrupts

making the best use of limited instruction sets

supporting different ROM/RAM configurations

avery high level of optimisation to conserve code space

control of registerbank switching

support of enhanced or special family variants (87C751, 80C517 etc..).

NoakrwbdE

The Keil C51 compiler contains all the necessary C extensions for microcontroller use. ThisC
compiler builds on the techniques pioneered by Intel but adds proper C language features such as
floating point arithmetic, formatted/unformatted 10 etc. It is, in fact, an implementation of the C
language ANSI standard specifically for 8051 processors.

http://www.esacademy.com/automation/docs/c51primer/c01.htm (2 di 3) [09/11/01 11.02.48]

Introduction

http://www.esacademy.com/automation/docs/c51primer/c01.htm (3 di 3) [09/11/01 11.02.48]

Keil C51 Compiler Basics

2 Keil C51 Compiler Basics - The 8051 Architecture

The Kell C51 compiler has been written to allow C programmers to get code running quickly on 8051 systems
with little or no learning curve. However, to get the best from it, some appreciation of the underlying hardware is
desirable. The most basic decision to be made is which memory model to use.

For general information on the C language, number and string representation, please refer to a standard C textbook
suchasK & R

2.1 8051 Memory Configurations
2.1.1 Physical Location Of The Memory Spaces

Perhaps the most initially confusing thing about the 8051 is that there are three different memory spaces, al of
which start at the same address.

Other microcontrollers, such as the 68HC11, have a single Von Neuman memory configuration, where memory
areas are located at sequential addresses, regardless of in what device they physically exist.

Within the CPU thereis one such, the DATA on-chip RAM. This starts at D:00 (the 'D:" prefix implies DATA
segment) and ends at 07fH (127 decimal). This RAM can be used for program variables. It is directly addressable,
so that instructions like ' MOV A X' are usable. Above 80H the special function registers are located, which are
again directly addressable. However, a second memory area exists between 80H and OFFH which is only indirectly
addressable and is prefixed by I: and known as IDATA. It isonly accessible viaindirect addressing (MOV A,@Ri)
and effectively overlays the directly addressable sfr area. This constitutes an extended on-chip RAM area and was
added to the ordinary 8051 design when the 8052 appeared. Asit isonly indirectly addressable, it is best |eft for
stack use, which is, by definition, always indirectly addressed via the stack pointer SP. Just to confuse things, the
normal directly addressable RAM from 0-80H can also be indirectly addressed by the MOV A,@RI instruction!

0xFFFF - efm—m— e e e e e eee-eeememmmmmmmmmmmmemmmmme—a—aa

CODE XDATA

0xFF
IDATA OxZ0

: DATA LEG Ox1F

Fig.1. - The 8051's Memory Spaces.

http://www.esacademy.com/automation/docs/c51primer/c02.htm (1 di 7) [09/11/01 11.02.56]

Keil C51 Compiler Basics

A third memory space, the CODE segment, also starts at zero, but thisisreserved for the program. It typically runs
from C:0000 to C:0FFFFH (65536 bytes) but asit is held within an external EPROM, it can be any size up to
64K B (65536 bytes). The CODE segment is accessed via the program counter (PC) for opcode fetches and by
DPTR for data. Obviously, being ROM, only constants can be stored here.

A fourth memory areais also off-chip, starting at X:0000. This existsin an external RAM device and, like the
C:0000 segment, can extend up to X:0FFFFH (65536 bytes). The 'X:' prefix implies the external XDATA segment.
The 8051's only 16 bit register, the DPTR (data pointer) is used to access the XDATA. Finally, 256 bytes of
XDATA can also be addressed in a paged mode. Here an 8 bit register (RO) is used to access this area, termed
PDATA.

The obvious question is: "How does the 8051 prevent an access to C:0000 resulting in data being fetched from
D:00?

The answer isin the 8051 hardware: When the cpu intends to access D:00, the on-chip RAM is enabled by a purely
internal READ signal - the external /RD pin is unchanged.

MOV A 40 : Put value held in location 40 into the accunul ator.
Thi s addressing node (direct) is the basis of the
SMALL nenory nodel .

MOV RO, #0A0H ; Put the value held in | DATA | ocation OAOH into

MOV A @RO ;. the accunul at or

This addressing mode is used to access the indirectly addressable on-chip memory above 80H and as an alternative
way to get at the direct memory below this address.

A variation on DATA isBDATA (bit data). Thisisa 16 byte (128 bit) area, starting at 020H in the direct segment.
It isuseful inthat it can be both accessed byte-wise by the normal MOV instructions and addressed by special bit-
orientated intructions, as shown below:

SETB 20.0 ;
CLRB 20.0 ;

The external EPROM device (C:0000) is not enabled during RAM access. In fact, the external EPROM is only
enabled when a pin on the 8051 named the PSEN (program store enable) is pulled low. The name indicates that the
main function of the EPROM isto hold the program.

The XDATA RAM and CODE EPROM do not clash asthe XDATA deviceis only active during arequest from
the 8051 pins named READ or WRITE, whereas the CODE device only responds when the PSEN pinislow.

To help access the external XDATA RAM, specia instructions exist, conveniently containing an 'X'....

MOV DPTR, #08000H
MOVX A, @PTR : "Put a value in A located at address in the
external RAM contained in the DPTR regi ster (8000H)".

The above addressing mode forms the basis of the LARGE mode!.

MOVX RO, #080H :
MOVX A @RO ;

http://www.esacademy.com/automation/docs/c51primer/c02.htm (2 di 7) [09/11/01 11.02.56]

Keil C51 Compiler Basics

This alternative access mode to external RAM forms the basis of the COMPACT memory model. Note that if Port
2 is attached to the upper address lines of the RAM, it can act like a manually operated "paging" control.

The important point to remember is that the PSEN pin is active when instructions are being fetched; READ and
WRITE are active when MOV X.... ("move external") instructions are being carried-out.

Note that the X" means that the address is not within the 8051 but is contained in an external device, enabled by
the READ and WRITE pins.

2.1.2 Possible Memory Models

With amicrocontroller like the 8051, the first decision is which memory model to use. Whereas the PC
programmer chooses between TINY, SMALL, MEDIUM, COMPACT, LARGE and HUGE to control how the
processor segmentation of the RAM isto be used (overcome!), the 8051 user has to decide where the program and
data areto reside.

C51 currently supports the following memory configurations:

1. ROM: currently the largest single object file that can be produced is 64K, although up to IMB can be

supported with the BANKED model described below. All compiler output to be directed to Eprom/ROM,

constants, look-up tables etc., should be declared as "code".

RAM: There are three memory models, SMALL, COMPACT and LARGE

SMALL.: al variables and parameter-passing segments will be placed in the 8051's internal memory.

COMPACT: variables are stored in paged memory addressed by ports 0 and 2. Indirect addressing opcodes

are used. On-chip registers are till used for locals and parameters.

5. LARGE: variables etc. are placed in externa memory addressed by @DPTR. On-chip registers are still
used for locals and parameters.

6. BANKED: Code can occupy up to IMB by using either CPU port pins or memory-mapped latches to page
memory above OxFFFF. Within each 64K B memory block a COMMON area must be set aside for C library
code. Inter-bank function calls are possible.

AW

Seethe section on BL51 for moreinformation on the BANKED modd!.

A variation on these modelsis to use one model globally and then to force certain variables and data objects into
other memory spaces.

Thistechniqueis covered later.
2.1.3 Choosing The Best Memory Configuration/Model

With the four memory models, a decision has to be made as to which one to use. Single chip 8051 users may only
use the SMALL model, unless they have an external RAM fitted which can be page addressed from Port 0 and
optionally, Port 2, using MOV X A,@RO0 addressing.

This permits the COMPACT model. While it is possible to change the global memory model half way through a
project, it is not recommended!

SMALL: Total RAM 128 bytes (8051/31)

http://www.esacademy.com/automation/docs/c51primer/c02.htm (3 di 7) [09/11/01 11.02.56]

Keil C51 Compiler Basics

Rather restricting in the case of 8051/31. Will support code sizes up to about 4K but a constant check must be kept
on stack usage. The number of global variables must be kept to a minimum to allow the linker OVERLAY er to
work to best effect. With 8052/32 versions, the manual use of the 128 byte IDATA area above 80H can allow
applications up to about 10-12K but again the stack position must be kept in mind.

Very large programs can be supported by the SMALL model by manually forcing large and/or slow data objectsin
to an external RAM, if fitted. Also variables which need to be viewed in real time are best located here, as dual-
ported emulators like the Hitex T51 can read their values on the fly. This approach is generally best for large, time-
critical applications, asthe SMALL global model guarantees that |ocal variables and function parameters will have
the fastest access, while large arrays can be located off-chip.

COMPACT: Total RAM 256 bytes off-chip, 128 or 256 bytes on-chip.

Suitable for programs where, for example, the on-chip memory is applied to an operating system. The compact

model israrely used on its own but more usually in combination with the SMALL switch reserved for interrupt
routines.

COMPACT isespecialy useful for programs with alarge number of medium speed 8 bit variables, for which the
MOVX A,@RO is very suitable.

It can be useful in applications where stack usage is very high, meaning that data needs to be off-chip. Note that
register variables are still used, so the loss of speed will not be significant in situations where only a small number
of local variables and/or passed parameters are used.

LARGE: Total RAM up to 64KB, 128 or 256 bytes on-chip.

Permits slow access to a very large memory space and is perhaps the easiest model to use. Again, not often used on

its own but in combination with SMALL. Aswith COMPACT, register variables are still used and so efficiency
remains reasonabl e.

In summary, there are five memory spaces available for data storage, each of which has particular pros and cons.
Here are some recommendations for the best use of each:

DATA: 128 bytes; SMALL model default location

Best For:

Frequently accessed data requiring the fastest access. Interrupt routines whose run timeis critical should use
DATA, usually by declaring the function as"SMALL". Also, background code that is frequently run and has many
parameters to pass. If you are using re-entrant functions, the re-entrant stacks should be located here as a priority.
Worst For:

Any variable arrays and structures of more than afew bytes.

IDATA; Not model-dependant

Best For:

http://www.esacademy.com/automation/docs/c51primer/c02.htm (4 di 7) [09/11/01 11.02.56]

Keil C51 Compiler Basics

Fast access data arrays and structures of limited size (up to around 32 bytes each) but not totalling more than 64 or
so bytes. Asthese datatypes require indirect addressing, they are ideally placed in the indirectly addressable area.
It isalso agood place to locate the stack, asthisis by definition indirectly addressed.

Worst For:

Large data arrays, fast access words.

CODE: 64K bytes

Best For:

Constants and large lookup tables, plus opcodes, of course!
Worst For:

Variables!

PDATA: 256bytes; COMPACT model default area

Best For:

Medium speed interrupt and fast background char (8 bit) variables and moderate-sized arrays and structures. Also
good for variables which need to be viewed in real time using an emulator.

Worst For:

Very large data arrays and structure above 256 bytes.
Very frequently used data (in interrupts etc..).
Integer and long data.

XDATA; LARGE model default area

Best For:

Large variable arrays and structures (over 256 bytes)

Slow or infrequently-used background variables. Also good for variables which need to be viewed in real time
using an emulator.

Worst For:
Frequently-accessed or fast interrupt variables.
2.1.4 Setting The Memory Model - #Pragma Usage

The overall memory type is selected by including the line #pragma SMALL asthefirst linein the C sourcefile.

http://www.esacademy.com/automation/docs/c51primer/c02.htm (5 di 7) [09/11/01 11.02.56]

Keil C51 Compiler Basics

See Section 2.1.3 for details on specific variable placement. SMALL isthe default model and can be used for quite
large programs, provided that full useis made of PDATA and XDATA memory spaces for less time-critical data.

Special note on COMPACT model usage

The COMPACT model makes certain assumptions about the state of Port 2. The XDATA space is addressed by
the DPTR instructions which place the 16 bit address on Ports 0 and 2. The COMPACT model uses RO as a 8 bit
pointer which places an address on port 0. Port 2 is under user control and is effectively a memory page control.
The compiler has no information about Port 2 and unless the user has explicitly set it to avalueit will be
undefined, although generally it will be at Oxff. The linker has the job of combining XDATA and PDATA
variables and unless told otherwise it puts the PDATA (COMPACT default space) at zero. Hence, the resulting
COMPACT program will not work.

It istherefore essential to set the PPAGE number in the startup.abl file to some definite value - zero is agood
choice. The PPAGEENABLE must be set to 1 to enable paged mode. Also, when linking, the PDATA(ADDR)
control must be used to tell L51 where the PDATA areais, thus:

L51 modulel.obj, module2.obj to exec.abs PDATA(O)XDATA(100H)

Note that the normal XDATA area now starts at 0x100, above the zero page used for PDATA. Failure to do this
properly can result in very dangerous results, as data placement is at the whim of PORT2!

2.2 Local Memory Model Specification
2.2.1 Overview

C51 version 3.20 allows memory models to be assigned to individual functions. Within a single module, functions
can be declared as SMALL, COMPACT or LARGE thus

#pragma COMPACT
/* A SMALL Model Function */
fsmal |l () small {
printf("HELLO") ;
}
/* A LARCGE Mbdel Function */
flarge() large {
printf("HELLO") ;

}

[* Caller */

mai n() {
fsmall () ; // Call small func.
flarge() ; // Call large func.
}

See pages 5-20 in the C51 reference manual for further details.
2.2.2 A Point To Watch In Multi-Model Programs

A typical C51 program might be arranged with al background loop functions compiled as COMPACT, whilst all
(fast) interrupt functions treated as SMALL. The obvious approach of using the #pragma MODEL or command

http://www.esacademy.com/automation/docs/c51primer/c02.htm (6 di 7) [09/11/01 11.02.56]

Keil C51 Compiler Basics

line option to set the model can cause odd side effects. The problem usually manifestsitself at link time asa
MULTIPLE PUBLIC DEFINITION error related to, for instance, putchar().

The cause is that in modules compiled as COMPACT, C51 creates references to library functionsin the
COMPACT library, whilst the SMALL modules will accessthe the SMALL library. When linking, L51 finds that
it has two putchars() etc. from two different libraries.

The solution isto stick to one global memory model and then use the SMALL function attribute, covered in the
previous section, to set the memory model locally.

Example:

#pragma COVPACT
voi d fast_func(void) SMALL{
[*code*/

}

http://www.esacademy.com/automation/docs/c51primer/c02.htm (7 di 7) [09/11/01 11.02.56]

Declaring Variables and Constants

3 Declaring Variables And Constants

3.1 Constants

The most basic requirement when writing any program is to know how to allocate storage for program data. Constants are
the simplest; these can reside in the code (Eprom) area or as constants held in RAM and initialised at runtime. Obviously,
the former really are constants and cannot be changed.

While the latter type are relatively commonplace on big systems (Microsoft C), in 8051 applications the code required to set
them up is often best used elsewhere. Also, accessis generally faster to ROMmed constants than RAM onesif the RAM is
external to the chip, asROM "MOVC A,@DPTR" instruction cycle is much faster than the RAM "MOV X A,@DPTR".

Examples of Eprommed constant data are:
code unsi gned char cool ant _tenp = 0x02 ;

code unsi gned char | ook _up table[5]="1","2","3","4""}
code unsigned int pressure = 4 ;

Note that "const” does not mean "code". Objects declared as "const” will actually end up in the data memory area
determined by the current memory model.

Obvioudly, any large lookup tables should be located in the CODE area - a declaration might be:

/* Base Fuel Map */
/* x = Load : y = engine speed : output = Injector PW 0 - 8.16ns */
/* (x_size,y_size,

X_br eakpoi nts,
y_breakpoi nt s,

map_dat a)
*/
code unsi gned char default_base fuel PWmap[] = {
0x08, 0x08,

0x00, . 0x00, 0x00, 0x09, 0x41, 0x80, 0xC0, OxFF,
0x00, 0x00, 0x13, Ox1A, 0x26, 0x33, 0x80, OxFF,
0x00, 0x00, 0x00, 0x09, 0x41, 0x80, 0x66, 0x66,
0x00, 0x00, 0x00, 0x09, 0x41, 0x80, 0x66, 0x66,
0x00, 0x00, 0x00, 0x00, 0x4D, 0x63, 0x66, 0x66,
0x00, 0x00, 0x00, 0x02, 0x4D, 0x63, 0x66, 0x66,
0x00, 0x00, 0x00, 0x05, Ox4A, 0x46, 0x40, 0x40,
0x00, 0x00, 0x00, 0x08, 0x43, 0x43, 0x3D, 0x3A,
0x00, 0x00, 0x00, 0x00, 0x2D, 0x4D, 0x56, 0x4D
0x00, 0x00, 0x00, 0x00, 0x21, 0x56, Ox6C, Ox6F

http://www.esacademy.com/automation/docs/c51primer/c03.htm (1 di 9) [09/11/01 11.03.00]

Declaring Variables and Constants

With large objects like the above it is obviously important to state a memory space. When working in the SMALL model in
particular, it isvery easy to fill up the on-chip RAM with just asingle table!

RAM constants would be;

128 :
OxFD34 ;

unsi gned char scal e_factor
unsi gned int fuel _constant

These could, however, have their values modified during program execution. As such, they are more properly thought of as
initialised variables - see section 3.2.2

3.2 Variables
3.2.1 Uninitialised Variables

Naturally, all variables exist in RAM, the configuration of which isgiven in section 2.1.1.

The #pragma SMALL line will determine the overall memory model. In this case, all variables are placed within the on-
chip RAM. However, specific variables can be forced elsewhere as follows:

#pragma SMALL

xdat a unsi gned char engi ne_speed ;
xdata char big_variable_array[192] ;

Thiswill have engine_speed placed in an external RAM chip. Note that no initial value is written to engine_speed, so the
programmer must not read this before writing it with a start value! This xdata placement may be done to allow
engine_speed to be traced "on the fly", by an in-circuit emulator for example.

In the case of the array, it would not be sensible to place thisin the on-chip RAM because it would soon get filled up with
only 128 bytes available. Thisis avery important point - never forget that the 8051 has very limited on-chip RAM.

Another exampleis:

#pragma LARCGE

function(data unsigned char paral)

{

dat a unsi gned char | ocal _variabl e ;

}
Here the passed parameters are forced into fast directly addressed internal locations to reduce the time and code overhead
for calling the function, even though the memory model would normally force al datainto XDATA.

In this case it would be better to declare the function as SMALL, even though the prevailing memory model islarge. Thisis

http://www.esacademy.com/automation/docs/c51primer/c03.htm (2 di 9) [09/11/01 11.03.00]

Declaring Variables and Constants

extremely useful for producing a few fast executing functions within avery big LARGE model program.
On a system using paged external RAM on Port 0, the appropriate directive is "pdata’.

See notesin section 2.1.3 for details on how to best locate variables.

3.2.2 Initialised Variables

To force certain variables to a start value in an overall system setup function, for example, it is useful to be able to declare
and initialise variables in one operation. Thisis performed thus:

unsi gned i nt engi ne_speed = 0 ;

function()

{

}
Here the value "0" will be written to the variable before any function can accessit. To achieve this, the compiler collects

together al such initialised variables from around the system into a summary table. A runtime function named "C_INIT" is
called by the "startup.obj" program which writes the table values into the appropriate RAM location, thusinitialising them.

Immediately afterwards, the first C program "main()" is called. Therefore no read before write can occur, as C_INIT gets
therefirst. The only point to noteis that you must modify the "startup.a51" program to tell C_INIT the location and size of
the RAM you are using. For the large model, XDATASTART and XDATALEN are the appropriate parameters to change.

3.3 Watchdogs With Large Amounts Of Initialised Data

In large programs the situation may arise that the initialisation takes longer to complete than the watchdog timeout period.
The result is that the cpu will reset before reaching main() where presumably a watchdog refresh action would have been
taken.

To adlow for thisthe INIT.A51 assembler file, located in the \C51p\L 1B directory, should be modified.

This file is part of the C51 Conpiler package Copyright KEIL ELEKTRONI K GrbH 1990

INIT.A51: This code is executed if the application programcontains initialised
variables at file |evel.

; User-defined Wat ch- Dog Refresh.

; |If the C application containing nany initialised variables uses a watchdog it
; mght be possible that the user has to include a watchdog refresh in the

; initialisation process. The watchdog refresh routine can be included in the

; followng MACRO and can alter all CPU registers except DPTR

WATCHDOG MACRO
;I ncl ude any Wat chdog refresh code here

P6 "= watchdog_refresh ; Special application code
ENDM

http://www.esacademy.com/automation/docs/c51primer/c03.htm (3 di 9) [09/11/01 11.03.00]

Declaring Variables and Constants

NAVE ?CINT

?C_C51STARTUP SEGVENT CODE
?C_I NI TSEG SEGVENT CODE ; Segnent with Initialising Data

EXTRN CODE (MAI N)
PUBLIC ?C_START

RSEG ?C_C51STARTUP | NI TEND: LIMP VAl N
?C_START:

MoV DPTR, #?C_| NI TSEG
L OOP:

WATCHDOG ; <<_ WATCHDOG REFRESH CODE ADDED HERE!

CLR A

MOV R6, #1

MOVC A, GAMDPTR

JZ I NIl TEND

| NC DPTR

MOV R7, A

Large initialisation | oop code

XCH
XCH
XCH
XCH
DINZ R7, XLoop

DINZ R6, XLoop

SIVP Loop

LIMP MAIN ; C51 Program start

SYR3

H

>>2>>

RSEG ?C_I NI TSEG
DB 0
END

A specia empty macro named WATCHDOG is provided which should be altered to contain your normal watchdog refresh
procedure. Subsequently, thisis automatically inserted into each of the initialisation loops within the body of INIT.A51.

3.4 C51 Variables

3.4.1 Variable Types

Variables within a processor are represented by either bits, bytes, words or long words, corresponding to 1, 8, 16 and 32 bits
per variable. C51 variables are similarly based, for example:

bi t =1 bit 0-1

char =8 bhits 0 - +/- 127
unsi gned char =8 bits 0 - 255

I nt =16 bits 0 - +/-32768
unsi gned i nt =16 bits g0 - 65535

http://www.esacademy.com/automation/docs/c51primer/c03.htm (4 di 9) [09/11/01 11.03.00]

Declaring Variables and Constants

| ong =32 bits 0 - +/- 2.147483648x109
unsigned long =32 bits 0 - 4.29496795x109
fl oat =32 bits +/-1. 176E- 38
to +/-3.4E+38
poi nt er =24/ 16/ 8 bits Variabl e address

Typi cal declarations woul d be:
xdat a unsi gned char battery volts ;
idata int correction_factor ;
bit flag_1 ;

(Note: bit variables are always placed in the bit-addressable memory area of the 8051 - see section 2.1.1)

With a processor such as the 8086, int is probably the commonest data type. Asthisisa 16 bit processor, the handling of 16
bit numbersis generally the most efficient. The distinction between int and unsigned int has no particular impact on the
amount of code generated by the compiler, since it will simply use signed opcodes rather than the unsigned variety.

For the 8051, naturally enough, the char should be the most used type. Again, the programmer has to be aware of the
thoroughly 8 bit nature of the chip. Extensive use of 16 bit variables will produce slower code, as the compiler hasto use
library routines to achieve apparently innocuous 16 by 8 divides, for example.

The use of signed numbers has to be regulated, as the 8051 does not have any signed arithmetic instructions. Again, library
routines have to do the donkey work.

An interesting devel opment has been the Siemens 80C537, which does have an extended arithmetic instruction set. This
has, for instance, 32 by 16 divide and integer instructions. Indeed, this device might be a good upgrade path for those 8051
users who need more number crunching power and who might be considering the 80C196. A suite of runtime librariesis
available from Keil to allow the compiler to take advantage of the 80C537 enhancements.

3.4.2 Special Function Bits

A major frustration for assembler programmers coming to C istheinability of ANSI C to handle bitsin the bit-addressable
BDATA areadirectly. Commonly bit masks are needed when testing for specific bits with charsand ints. In C51 version 3
however, it is possible to force data into the bit-addressable area (starting at 0x20) where the 8051's bit instructions can be
used directly from C.

An example istesting the sign of a char by checking for bit = 1.

Here, the char is declared as "bdata’ thus:

bdata char test ;
sign_bit is defined as:
shit sign ~ 7 ;

To use this:

void main(void) {

test = -1 ;

if(test & 0x80) { // Conventional bit mask and &
test = 1 ; [/ test was -ve
}

if(sign == 1) [/ Use sbit
test = 1 ; [/ test was -ve

http://www.esacademy.com/automation/docs/c51primer/c03.htm (5 di 9) [09/11/01 11.03.00]

Declaring Variables and Constants

}
}

Results in the assenbl er:

RSEG 7?BA?T2
test: DS 1
si gn EQU test.7
; bdata char test ;
; sbhit sign =test ~ 7 ;

; void main(void) {

mai n:

: test = -1 ;
MoV t est, #OFFH

; if(test & 0x80) { // Conventional bit nmask and &
MoV A test
JNB ACC. 7, ?C0001

X test = 1 ; /] test was -ve
MoV t est, #01H

; }

?C0001:

; if(sign == 1) { /'l Use sbhit
JNB si gn, ?7C0003

: test = 1 ; /] test was -ve
MoV test, #01H

; }

; }

?C0003:
RET

Here, using the shit, the check of the sign bit isa single INB instruction, which is an awful lot faster than using bit masks
and &'sin thefirst case! The situation with ints is somewhat more complicated. The problem is that the 8051 does not store
things as you first expect. The same sign test for an int would still require bit 7 to be tested. Thisis because the 8051 stores
int's high byte at the lower address. Thus bit 7 is the highest bit of the higher byte and 15 is the highest bit of the lower.

Byte Number: test_int(high) 20H Bit Number: 0,1,2,3,4,5,6,7

Byte Number: test_int+1(low) 21H Bit Number: 8,9,10,11,12,13,14,15

Bit locations in an integer

3.4.3 Converting Between Types

One of the easiest mistakes to make in C is to neglect the implications of type within calculations or comparisons

Taking asimple example:

http://www.esacademy.com/automation/docs/c51primer/c03.htm (6 di 9) [09/11/01 11.03.00]

Declaring Variables and Constants

unsi gned char x ;
unsi gned char vy ;
unsi gned char z ;

x =10 ;
y =5
zZ =X *y;

Results in z = 50

However :
x = 10 ;
y =50 ;
Z =X *y,;

resultsin z = 244. The true answer of 500 (0x1F4) has been lost as z is unable to accommodate it. The solution is, of course,
to make z an unsigned int. However, it is dways a good idea to explicitly cast the two unsigned char operands up to int
thus:

unsi gned char x ;
unsi gned char vy ;
unsigned int z ;

z = (unsigned int) x * (unsigned int) vy ;

While C51 will automatically promote charstoint, it is best not to rely on it! It could be argued that on any small
microcontroller you should always be aware of exactly what size datais.

3.4.4 A Non-ANSI Approach To Checking Data Type

A very common situation is where two bytes are to be added together and the result limited to 255, i.e. the maximum byte
value. With the 8051 being byte-orientated, incurring integers must be avoided if maximum speed isto be achieved.
Likewise, if the sum of two numbers exceeds the type maximum the use of integersis needed.

In this example the first comparison uses a proper ANSI approach. Here, the two numbers are added byte-wise and any
resulting carry used to form the least significant bit of the upper byte of the notional integer result. A normal integer
compare then follows. Whilst C51 makes a good job of this, amuch faster route is possible, as shown in the second case.

; #include <reg51. h>

; unsigned char x, y, z ;

; [*** Add two bytes together and check if ***/
; /***the result has exceeded 255 ***/

; void main(void) {
RSEG ?PR?mai n?T
USI NG 0
mai n:
; SOURCE LINE # 8

http://www.esacademy.com/automation/docs/c51primer/c03.htm (7 di 9) [09/11/01 11.03.00]

Declaring Variables and Constants

; if(((unsigned int)x + (unsigned int)y) > Oxff) {
; SOURCE LINE # 10

MOV A, X
ADD Ay
MOV R7, A
CLR A
RLC A
MoV R6, A
SETB C
MoV A R7
SUBB A, #OFFH
MOV A, R6
SUBB A, #00H
JC ?C0001
X z = Oxff ; /1 ANSI C version
; SOURCE LINE # 12
MoV z, #OFFH
, }

; SOURCE LINE # 13

In this case the carry flag, "CY", is checked directly, removing the need to perform any integer operations, as any addition
resulting in avalue over 255 sets the carry. Of course, thisisno longer ANSI C as areference to the 8051 carry flag has
been made.

?C0001:
; z=x+y;
; SOURCE LINE # 15
MOV A X
ADD Ay
MOV z, A
; iF(CY) {
; SOURCE LINE # 17
JNB CY, 2700003
; z = Oxff ; /1 C51 Version using the carry flag
; SOURCE LINE # 19
MOV z, #OFFH
, }
; SOURCE LINE # 20
; }
; SOURCE LINE # 25
?C0003:
RET

http://www.esacademy.com/automation/docs/c51primer/c03.htm (8 di 9) [09/11/01 11.03.00]

Declaring Variables and Constants

The situation of an integer compare for greater than 65535 (0xffff) is even worse as long maths must be used. Thisis amost
adisaster for code speed as the 8051 has very poor 32 hit performance. The trick of checking the carry flag is ill valid as
the final addition naturally involves the two upper bytes of the two integers.

In any high performance 8051 system this loss of portability is acceptable, asit alows run time targets to be met.
Unfortunately, complete portability always compromises performance!

http://www.esacademy.com/automation/docs/c51primer/c03.htm (9 di 9) [09/11/01 11.03.00]

Program Structure And Layout

4 Program Structure And Layout

4.1 Modular Programming In C51
Thisis possibly not the place to make the case for modular programming, but a brief justification might be appropriate.

In anything but the most trivial programs the overall job of the software is composed of smaller tasks, al of which must be
identified before coding can begin. As an electronic system is composed of several modules, each with aunique function, so a
software system is built from a number of discrete tasks. In the electronic case, each module is designed and perfected
individually and then finally assembled into a complete working machine. With software, the tasks are the building blocks
which are brought together to achieve the final objective.

The overall program thus has aloosely-predefined modular structure which could sensibly form the basis of the final software
layout. The largest identifiable blocks within the program are the tasks. These are in turn built from modules, which
themselves are constructed from functions in the case of C.

The modules are in reality individual source files, created with atext editor. Grouping the software sections together according
to the function with which they are associated is the basis of modular programming.

Using the CEM S engine control system again as areal example, the task of running the engineis divided into the following
tasks:

Task 1
Provide Tinmed Sparks For lgnition

Task 2
Provide controlled pul sewidths for fuel injection

Task 3
Al'low alteration of tune paraneters via term nal

Considering Task 1, this is in turn conposed of nodul es thus:

Task 1, Module 1
Det erm ne crank shaft position and speed

Task 1, Module 2
Measur e engi ne | oad

Task 1, Mdule 3
Qobtain required firing angle from !l ook-up table

Taking module 2, a C function exists which uses an A/D converter to read a voltage from a sensor. It is part of the overall
background loop and hence runs in a fixed sequence. In module 1 an interrupt function attached to an input capture pin

calcul ates engine speed and generates the ignition coil firing pulse. Module 3 is another function in the background loop and
takes speed and load information from the other modul es constituting the ignition function, to calculate the firing angle.
Obvioudly, data must be communicated from the data collecting functions to the processing functions and thence to the signal
generation parts across module boundaries.

http://www.esacademy.com/automation/docs/c51primer/c04.htm (1 di 13) [09/11/01 11.03.09]

Program Structure And Layout

In this case, the data flows are thus;

Hodule 1 Module 2 Module 3

FReluctor S3ensor

| . Prezzure Zensor
Input Capture Pin

Engine Speed ——— P Find Adwanced Anglecd———— Engine Load

Advance Angle -

Cutput Compare Pin

Ignition Coil

Commonly, the variables used are declared in the module that first supplies them with data. Hence the engine_load would be
defined in Module 2 as that is where its input data comes from.

In this system the data would be declared thus:

Modul e 1.c Modul e 3.c Modul e_2.c

/* d obal Data Decl aration */ /* d obal Data Declaration */ /* d obal Data
Decl arati on */

unsi gned char engi ne_speed unsi gned char advance unsi gned char
engi ne_| oad

/* External Data References */ [* External Data References */ /* External Data
Ref er ences */

extern unsigned char advance extern unsi gned char engi ne_speed extern unsigned
char engi ne_| oad

The most important thing to note is how the data defined in another module is referenced by redeclaring the required data item
but prefixed with "extern”.

Now, with a complete program spread across many different source files, the problem arises of how data is communicated
between modules (files) and how separate C functions which lie outside of the home module may be accessed.

The next section illustrates how the linkage between modules is undertaken.

4.2 Accessibility Of Variables In Modular Programs

A typical C51 application will consist of possibly five functional blocks (modules) contained in five source files. Each block
will contain a number of functions (subroutines) which operate on and use variablesin RAM. Individual functionswill
(idedlly) receive their input data via parameter passing and will return the results similarly. Within a function temporary
variables will be used to store intermediate calculation values. As used to be done years ago in assembler, all variables (even
the temporary ones) will be defined in one place and will remain accessible to every routine.

This approach is very inefficient and would seriously limit the power of C programs, as the internal RAM would soon be used
up. The high-level language feature of a clearly defined input and output to each function would also be lost.

Similarly, an entire C program might be written within one single source file. As has been said, this practice was common

http://www.esacademy.com/automation/docs/c51primer/c04.htm (2 di 13) [09/11/01 11.03.09]

Program Structure And Layout

many years ago with simple assemblers. Ultimately the source program can get so big that the 640K of a PC will get full and
the compiler will stop. Worse than this, the ideal of breaking programs into small, understandable chunks is lost. Programs
then become a monolithic block and consume huge amounts of listing paper...

There should therefore be a hierarchical arrangement of variables and functions within a program; complete functional blocks
should be identified and given their own individual source files or modules. Use should be made of the ability to access
external variables and functions to achieve small program files!

The following should help explain:

'\mJLEl C: kkhkkhkhkhkhkhkhkhkhkhkhkhkhkhhhhhhhhhhhhhhhhhhkhhdhdkdk*dx*x***x*x**x***************%

unsi gned char global 1 ; (1)
unsi gned char gl obal 2 ;
extern unsigned char ext_function(unsigned char) ; (2)

[* Uility Routine */
i nt_function(x) (3)
unsi gned char x ; (4)
{
unsigned int templ ; (5)
unsi gned char tenp2 ;
temp 1 X * X ;
tenp2 X + X ;

X = tenpl/tenp2 ;

return(x) (6)
}

/* Program Proper */
mai n() (7)

{

unsi gned char local 1 ; (5)

unsi gned char |ocal 2 ;

local 2 = int_function(locall) ; (8)
local 1 = ext_function(local 2) ; (9)
}

end Of '\mJLEl c R IR R R b b S b S I I R I b I b S I S b S R R Sk S b S S b S b S I

mLEZ C: IR R R b b b S I S S R R b b b I S R R R b b b b S R R S S I

extern unsigned char globall ; (10)

ext _function(y)
unsi gned char vy ;

{

unsi gned char tenp ;

static unsigned char special ; (11)
speci al ++ ;

y =tenp * globall ; (12)

return(y) ;

)

Line (1) declares variables which will be accessible from al parts of the program. Ideally, such global usage should be avoided
but where an interrupt has to update a value used by the background program, for example, they are essential.

http://www.esacademy.com/automation/docs/c51primer/c04.htm (3 di 13) [09/11/01 11.03.09]

Program Structure And Layout

Line (2) makes an external reference to a function not defined in the current module (block). Thisline allows al the functions
in this MODULE to call the external function.

Line (3) declares afunction which isto be used by another function in this module. These utility functions are placed above
the calling function (here "main()").

Line (4) declares the variable which has been passed-over by the calling function. When the variable left "main()", it was
caled "locall". Within this function it is known simply as "x". The byte of ram is alocated to "x" only while the 8051's
program counter is within this function. At the closing }, x will vanish.

Line (5) like"x" above, these variables are simply used as intermediate values within the function. They have no significance
outside. Again, the byte of RAM will be re-assigned within another function. However the locals defined in "main()" will
always exist asthe C program is entirely contained within "main()".

Line (6) allows the result of the calculation to be passed back to the calling function. Once back in "main()" the valueis placed
in"local2".

Line (7) defines the start of the C program. Immediately prior to the point at which the program counter reachs main(), the
assembler routine "STARTUP.A51" will have been executed. Thisin turn starts at location C:0000, the reset vector. Note that
no parameters are passed to "main()".

Line (8) effectively calls the function defined above, passing the value "local 1" to it.

Line (9) islike 8, but thistime afunction is being called which resides outside of the current module.

Line(10) links up with ling(1) in that it makes "global 1" visible to function within MODULE 2.

Line(11) declares a variable which islocal to this function but which must not be destroyed having exited. Thusit behaves like
aglobal except that no other function can use it. If it were placed above the function, accessibility would be extended to all

functionsin MODULE 2.

The physical linking of the data names and function names between modulesis performed by the L51 linker. Thisis covered in
detail in section 8.

4.3 Building A Real Modular Program -
The Practicalities Of Laying Out A C51 Program

The need for a modular approach to program construction has been outlined earlier. Here the practicalities of building easily
mai ntai nable and documentable software is given, along with atrick for easing the devel opment of embedded C programs
using popular compilers such asthe Keil C51.

4.3.1 The Problem
The simplest embedded C program might consist of just

/* Modul e Containing Serial Port Initialisation */ /* V241 N537.C */
voi d v24ini _537(voi d)
{

/* Serial Port Initialisation Code */

}

/* Mbdul e Containing Main Program*/ /* MAIN. C */
/* External Definitions */

http://www.esacademy.com/automation/docs/c51primer/c04.htm (4 di 13) [09/11/01 11.03.09]

Program Structure And Layout

extern void v24ini_537(void) ;

voi d mai n(void) {
v24ini _537() ;
while(1) {
printf("Time = ") ;
}

This minimal program has only one purpose - to print an as yet incomplete message on the terminal attached to the serial port.
Obvioudly, asingle source file or "modul€” is sufficient to hold the entire C program.

Any real program will of course contain more functionality than just this. The natural reaction isto simply add further code to
the existing main function, followed by additional functions to the MAIN.C source file. Unless action is taken the program will
consist of one enormous source file, containing dozens of functions and interrupts and maybe hundreds of public variables.

Whilst compilers will still compile the file, the compilation time can become greatly extended, meaning that even the smallest
modification requires the entire program to be re-compiled. A monolithic program is usually symptomatic of alack of proper
program planning and is likely to contain suspect and difficult to maintain code.

The next stage in the sample program development is to add some means of generating the time thus:

/* Module Containing TinmerO Initialisation */
/* TOINI537.C */

void tinmerO_init_537(void) {
/* Enable Tinmer O ExtO interrupts */
} /*init_timer_0*/

/* Modul e Containing TimerO Service Routine */
/[* RLT_INT.C */

/* Local Data Declarations */

/* Cock Structure Tenplate */

struct time { unsigned char nsec ;
unsi gned char sec ; } ;

/* Create XDATA Structure */

struct time xdata clock ;
bit clock run fl =0 ; [// Flag to tell tinmerO interrupt
/1l to stop clock

/* External References */

extern bit clock reset fl // Flag to tell timerO interrupt
/1l to reset clock to zero

[*** | NTERRUPT SERVICE FOR TIMER O ***/
void tinmerO_int(void) interrupt 1 using 1 {
i f(clock.nsec++ == 1000) {
cl ock. sec++ ;
i f(clock.sec == 60) {
clock _sec = 0 ;

}

http://www.esacademy.com/automation/docs/c51primer/c04.htm (5 di 13) [09/11/01 11.03.09]

Program Structure And Layout

To make this 4 nodul e programuseful, the main | oop needs to be altered to:

/* Modul e Contai ning Main Program */
/* MAIN. C */

#i ncl ude <reg517. h>
/* External Definitions */

extern void v24ini _537(void) ;
extern void tinerO_init_537(void) ;

/* CGeneral Cock Structure Tenplate */

struct time { unsigned char secs ;
unsi gned char nsec ; } ;

/* Reference XDATA Structure |In Another Mdule */

extern struct tine xdata clock ; extern bit clock_reset fl // Flag to tell tinerO
interrupt to reset clock to zero
/* Local Data Declaration */
bit clock run fl ; // Flag to tell tinmerO interrupt
/1l to stop clock

voi d mai n(void) {

v24ini _537() ;

timerO_init _537() ;

while(1) {

printf("Time

%: %d: %d: %d" , cl ock. hours,
cl ock. m ns,
cl ock. secs,
cl ock. nsecs) ;

}
if(PL | 0x01) {

clock run fl =1 ; // If button pressed start clock
}

el se {
clock_run_fl =0 ; // If button released stop cl ock
}

if(P1 | 0x02) {
clock reset fl

}

1; // If button pressed clear clock

}

4.3.2 Maintainable Inter-Module Links

The foregoing program has been contructed in amodular fashion with each major functional block in a separate module (file).
However even with this small program a maintenance problem is starting to become apparent The source of the trouble is that
to add a new dataitem or function, at least two modules need to be edited - the module containing the data declaration plus any
other module which makes a reference to the additional items. With long and meaningful names common in C and complex
memory space qualification widespread in C51, much time can be wasted in getting external references to match at the linking
stage. Simple typographic errors can waste huge amounts of time!

In large programs with many functions and global variables, the global area preceding the executable code can get very untidy
and cumbersome. Of course, there is an argument that says that having to add external references to the top of a module when
first using a new piece of global datais good practice, asit means that you are always aware of exactly which items are used. It
is preferable to the common approach of having a single include file incorporated as a matter of course in each sourcefile,
containing an external reference for every global item, regardless of whether the host file actually needs them all.

http://www.esacademy.com/automation/docs/c51primer/c04.htm (6 di 13) [09/11/01 11.03.09]

Program Structure And Layout

Thislatter method inevitably |eads to the undesirable situation where an original data declaration in the source moduleis
sitting alongside its external reference in the general include file.

A solution to thisisto have "module-specific" include files. Basically, for each source module ".c" file, asecond ".h" include is
created. Thisauxilliary file contains both original declarations and function prototypes plus the external references. It is
therefore similar in concept to the standard library .h files used in every C compiler. Thetrick is, however, to use conditiona
compilation to prevent the original declarations and the external versions being seen simultaneously.

When included in their home modules, i.e. the ".c" file having the same root, only the original declarations are seen by C51
whereas, when included in aforeign module, only the external form is seen. To achieve this apparent intelligence, each source
module must somehow identify itself to the include file.

The means to achieve thisis to place a#define at the top of each module giving the name of the module. When included in its
"home" module, the #ifdef-#else#-endif will cause the preprocessor to see the original declarations. When placed in foreign
modules not sharing the same root, the preprocessor will see the external equivalents. Keil supports __ FILE__ but it is not of
practicle use in this context, asits "value" cannot be used for a #define name.

By only including module-specific header filesin those modules that actually need to access an item in another module, the
operation of powerful make utilities such as Polymake or Keil's own AMAKE, isimproved; provided the dependency list is
kept up to date, any changesto a.h file will cause all modules that reference it to be recompiled automatically. Thus a
modified program cannot be built for testing unless all modules referencing the atered item successfully re-compile. This
usefully relieves the linker from being aone responsible for symbol attribute cross-checking - something which some linkers
cannot be relied upon to do.

In most embedded C dialects this can be amajor help in program development as, for example, a change in awidely-used
function's memory model attribute can easily be propagated through an entire program; the change in the intelligent header file
belonging to the function's home module causing the AMAKE to recompile al other modules referencing it. Likewise, a
changein avariable's memory space from say XDATA to PDATA needs only one header file to be edited - AMAKE will do
the rest!

Here's how it's done in practice:

/* Modul e Containing Main Program- MAIN. C */
#define _MAI N_
/* Define nodule name for include file control */
#i ncl ude <reg517. h> /1l Definitions for CPU
#i ncl ude <v24ini537.h> // External references from V24l N . C #i nclude <tOQOi ni 537. h>
/'l External references from
// TOI NI 537. C
#include <rlt_int.h>
/'l External references for RLT_INT.C

voi d mai n(void) {
v24ini _537() ;
timerO_init 537() ;

while(1) {

printf("Tinme
}

if(P1L | 0x01) {
clock run_fl

}

el se {

%l. %d", cl ock. secs, cl ock. nsecs) ;

1; // If button pressed start clock

http://www.esacademy.com/automation/docs/c51primer/c04.htm (7 di 13) [09/11/01 11.03.09]

Program Structure And Layout

clock_run_fl =0 ; // If button rel eased stop cl ock

}
if(P1L | 0x02) {
cl ock_reset _fl

}

1; // If button pressed clear clock

}

/* Modul e Containing TimerO Service Routine - RLT INT.C */
#define _RLT_INT_ /* ldentify nodul e nane */

/* External References */
extern bit clock reset fl // Flag to tell timerO interrupt to
I/l reset clock to zero

[*** | NTERRUPT SERVICE FOR TIMER O ***/
void timerO_int(void) interrupt 1 using 1 {
i f(clock.msec++ == 1000) {
cl ock. sec++ ;
i f(clock.sec == 60) {
clock_sec = 0 ;
}
}
}

Taking the include files:
/* Include File For RLT_INT.C */

/* General, non-nodul e specific definitions */
/* such as structure and union tenplates */
/* dock Structure Tenplate - Available To All Mdul es */
struct tinme { unsigned char secs ;
unsi gned char nsec ; } ;

#ifdef _RLT_INT_

/* Original declarations - active only in hone nodule */

/* Create XDATA Structure */

struct tinme xdata cl ock

bit clock_run_fl =0 ; // Flag to tell tinerO interrupt to stop clock

#el se

/* External References - for use by other nodul es */

extern struct tinme xdata clock ;

extern bit clock run fl =0 ; // Flag to tell timerO interrupt to stop clock
#endi f

/* Include File For MAIN. C */
#i fdef _MAIN_
/* Local Data Declaration */

bit clock_run_fl = 0 ; // Flag to tell timerO interrupt to stop clock
#el se

/* External References - for other nodul es */

extern bit clock_run_fl ; // Flag to tell tinmerO interrupt to stop clock
#endi f

/* Include File For V241 Nl 537.C */

#i fdef V241 NI 537 _

/[* Original Function Prototype - for use in V241 NI 537.C */
voi d v24ini _537(void) ;

#el se

/* External Reference - for use in other nodul es */

http://www.esacademy.com/automation/docs/c51primer/c04.htm (8 di 13) [09/11/01 11.03.09]

Program Structure And Layout

extern void v24ini _537(void) ;
#endi f

Now, should any new global data be added to, for example, RLT_INT.C, adding the original declaration above the "#endif"
and the external version below, this makes the new item instantly available to any other module that wantsiit.

To summarise, the basic source module format is;

#def i ne _MODULE_
#i ncl ude <nodl. h>#i ncl ude <npd2. h?

functions()
The include file format is:

/* CGeneral, non-nodul e specific definitions such as structure and union tenplates */
#i fdef _MODULE_

/* Put original function prototypes and gl obal data decl arations here */

#el se

/* Put external references to itens in above section here */

#endi f

Standard Module Layouts For C51

To help integrate this program construction method, the following standard source and header modules shown overleaf may be
used.

Standard Source M odule Template

#define __STD

* 1 *
[* Define hone nodul e nane */
****~k*******~k*******~k~k******~k~k*****************************l

***/

/* Project: X */
/* Aut hor: X Creation Date: XX\ XX\ XX */
/* Fil ename: X Language: X */
/* Rights: X Ri ghts: X */
/* */
[* Conpiler: X Assenbler: X */
/* Version: X. XX Ver si on: X. XX */
/*****************-k**/
/* Modul e Details: */
/**/
/ * Purpose: */
/* */
/* */
/**/
/* Modification History */
/**/
/* Narme: X Date: XX\ XX\ XX */
/* Modification: X */
/* */
/* Narme: X Date: XX\ XX\ XX */

http://www.esacademy.com/automation/docs/c51primer/c04.htm (9 di 13) [09/11/01 11.03.09]

Program Structure And Layout

/* Modification: X */
/* */
[* Nane: X Date: XX\ XX\ XX */
/* Mbodification: X */
/* */

/**/

/**/

/* External Function Prototypes */
/***~k****~k~k*~k*******~k*******~k~k*****************************l

#i ncl ude ". h"

/[* Standard ANSI C header files */

/**/
i

/* d obal Data Decl arations */

/*****************-k**-k*************************************/

#i ncl ude ". h"
/* Home header file */
/**l

/* External Declarations */

/**/

#i nclude ".h"

/* Header files for other nodul es */
/*****************-k**/
/* Functions Details: */
/**/
/* Function Nane: */
/* Entered From */
[* Calls: */

/**/

/***/

/* Purpose: main |oop for training program */
/* */
/***~k**/
/ * Resource Usage: */
/* */
/* CODE CONST DATA | DATA PDATA */
/* nla n/ a n/ a n/ a n/ a */
/* */
/* Performnce: */
/* Max Runti ne: M n Runti ne: */
/* */
/* */

/**/

[/ * Executabl e functions */
/***~k*******~k******************~k***************************/

/********************-k*******-k**'k****-k*********************/

/* End OF STD.c */

/**/

Standard Include Header File Template

/**/

/* Project: X */
/* Aut hor: X Creation Date: XX\ XX\ XX */
[* Filenane: X Language: X */
/* Rights: X Ri ghts: X */
/* */

http://www.esacademy.com/automation/docs/c51primer/c04.htm (10 di 13) [09/11/01 11.03.09]

Program Structure And Layout

[* Conpiler: X Assenbler: X */
/* Version: X. XX Ver si on: X. XX */
/**/
/* Modification History */
/**/
[/ * Nane: X Date: XX\ XX\ XX */
/* Modification: X */
[* */
[/ * Nane: X Date: XX\ XX\ XX */
/* Modification: X */
[* */
[* Nane: X Date: XX\ XX\ XX */
/* Modification: X */
/* */

/**/
/**/

/* dobal Definitions */

/*****************-k**/

[* Structure and union tenplates plus other definitions */

#ifdef _STD_

[* Check for inclusion in hone nodul e */
/***~k**~k*************~k************************************/

/*****************-k***************************************/

/* Wthin Mdul e Function Prototypes */

/***/

/* Function prototypes from honme nodul e */

/*****************-k***************************************/

/* Wthin Mdul e Data Decl arati ons */

/***/

/* Data declarations from hone nodul e */

/***/

t#el se

/***/

/***/

/* External Function Prototypes */

/*****************-k***************************************/

/* External function prototypes for use by other nodul es */
/***/

/* External Data Decl arations */

/***/

/* External data definitions for use by other nodul es */
/***/

#endi f

Summary

Provided the necessary module name defines are added to the first line of any new module and the new globals placed into the
associated ".h" file, the overall amount of editing required over amajor project is usefully reduced. Compilation and, more
particularly, linking errors are reduced as there is effectively only one external reference for each global item in the entire
program. For structures and unions the template only appears once, again reducing the potential for compilation and linking
problems.

4.4 Task Scheduling

http://www.esacademy.com/automation/docs/c51primer/c04.htm (11 di 13) [09/11/01 11.03.10]

Program Structure And Layout

4.4.1 8051 Applications Overview

When most people first start to learn to program, BASIC is used on a PC or similar machine. The programs are not usually too
complicated; they start when you type "RUN" and finish at END or STOP. In between, the PC istotally devoted to executing
your "HELLO WORLD" program. When it is finished you are simply thrown back to the BASIC editor/"operating
environment".

All thisis very good and you think you now know how to program. However, when writing for an embedded microcontroller
like the 8051, the problem of where does the program start and finish suddenly presents itself. The average 8051 software
system consists of many individual programs which, when executed together, contribute towards the fulfilment of the overall
system objective. A fundamental problem is then how to ensure that each part is actually run.

4.4.2 Simple 8051 Systems

The simplest approach isto call each major sub-function in asimple sequential fashion so that after a given time each function
has been executed the same number of times. This constitutes a background loop. In the foreground might be interrupt
functions, initiated by real time events such asincoming signals or timer overflows.

Datais usually passed from background to foreground via global variables and flags. This essentialy simple program model
can be very successful if some careis taken over the order and frequency of execution of particular sections.

The background-called functions must be written so that they run a particular section of their code on each successive entry
from the background loop. Thus each function is entered, a decision is taken as to what to do this time, the code is executed
and finally the program is exited, probably with some special control flags set up to tell the routine program what to do next
time. Thus each functional block must maintain its own control system to ensure that the right code is run on any particular

entry.

In this system al functional blocks are considered to be of equal importance and no new block can be entered until itsturnis
reached by the background loop. Only interrupt routines can break this, with each one having its own priority. Should a block
need a certain input signal, it can either keep watching until the signal arrives, so holding up all other parts, or it can wait until
the next entry, next time round the loop. Now there is the possibility that the event will have been and gone before the next
entry occurs. Thistype of system is OK for situations where the time-critical parts of the program are small.

In reality many real time systems are not like this. Typically they will consist of some frequently-used code, the execution of
which is caused by or causes some real-world event. This code is fed data from other parts of the system, whose own inputs
may be changing rapidly or slowly.

Code which contributes to the system's major functionality must obviously take precedence over those sections whose purpose
is not critical to the successful completion of the task. However most embedded 8051 applications are very time-critical, with
such parts being attached to interrupts. The need to service as many interrupts as quickly as possible requires that interrupt
code run times are short. With most real world events being asynchronous, the system will ultimately crash when too many
interrupt requests occur per unit time for the cpu to cope with.

Fast runtimes and hence acceptabl e system performance are normally achieved by moving complex functions into the
background loop, leaving the time-critical sectionsin interrupts. This givesrise to the problem of communication between
background code and its dependant interrupt routine.

The simple system is very egdlitarian, with al parts treated in the same way. When the cpu becomes very heavily loaded with
high speed inputs, it is likely that major sub-functions will not be run frequently enough for the real-world interrupt code to be
able to run with sufficiently up to date information from the background. Thus, system transient response is degraded.

4.4.3 Simple Scheduling - A Partial Solution

The problems of the simple loop system can be partially solved by controlling the order and frequency of function calling. One

http://www.esacademy.com/automation/docs/c51primer/c04.htm (12 di 13) [09/11/01 11.03.10]

Program Structure And Layout

approach isto attach a priority to each function and allow each function to specify the next one to be executed. The real-world
driven interrupt functions would override this steady progression so that the most important (highest priority) jobs are executed
as soon as the current job is completed. Thiskind of system can yield useful results, provided that no single function takes too
long.

An aternative isto control overall execution from areal time interrupt so that each job is allocated a certain amount of timein
which to run. If atimeout does occur, that task is suspended and another begins.

Unfortunately all these tend to be bolt-ons, added late in a project when run times are getting too long. Usually what had been
awell-structured program degenerates into spaghetti code, full of fixes and specia modes, designed to overcome the
fundamental mismatch between the demands of real time events and the response of the program. Moreover, the individual
control mechanisms of the called functions generate an overhead which simply contributes to the runtime bottle-neck.

Thereality isthat real time events are not orderly and predictable. Some jobs are naturally more important than others.
However inconvenient, the real world produces events that must be responded to immediately.

4.4.4 A Pragmatic Approach
Without resorting to a full real time executive like RTX51, what can be done?

A simple mechanism to control the running of the background loop can be a simple switch statement, with the switch variable
controlled by some external real time event. Ideally this should be the highest priority interrupt routine. The high priority
background tasks are placed at the top case, with lower priority tasks located further down the case statement. Thus, on every
occurrence of the interrupt, the switch is set back to the top. As the background tasks execute, they increment the switch. If the
interrupt is absent for long enough, the switch will reach the lowest level and then return to the highest level automatically.

Should the interrupt occur at level 2, the switch variable is forced back to zero and so tasks at the lowest levels are simply
missed. Thisis by no means an ideal system, since only the top level is ever executed.given a high enough interrupt frequency.

However under normal conditionsit is a useful way of ensuring that low priority tasks are not executed frequently. For
example, there would be little point in measuring ambient temperature more than once per second. In atypica system this
measurement might be at level 100 in a switch scheduler.

To be able to make a judgement about how best to structure the program, it is vital to know the run times for each section.

Where this smple method falls down is when alow priority task has along run time. Even though the interrupt has requested
that the loop returns back to the top level to calculate more data, there is no way of exiting the task until completed. To do so
requires a proper time-slice mechanism.

A useful dodge can be to utilise an unused interrupt to guarantee that high priority tasks will be run on time. By setting the
unused interrupt pending flag within the exiting high priority interrupt routine and placing the background task into the
corresponding service routine, the punctual execution of the second task will occur. Of course, the unused interrupt priority
must be set to alower priority in the appropriate interrupt priority register(s).

The most important factor overall isto keep run times as short as possible, particularly in interrupt routines. This means
making full use of C51 extensions like memory-specific pointers, special function bits and local regsiter variables.

http://www.esacademy.com/automation/docs/c51primer/c04.htm (13 di 13) [09/11/01 11.03.10]

C Language Extensions For 8051

5 C Language Extensions For 8051

Programming

8051 programming is mainly concerned with accessing real devices at specific locations, plus coping with interrupt servicing.
C51 has made many extensions to the C language to allow near-assembler code efficiency. The main points are now covered.

5.1 Accessing 8051 On-Chip Peripherals

In the typical embedded control application, reading and writing port data, setting timer registers and reading input captures
etc. are commonplace. To cope with this without recourse to assembler, C51 has the special data types sfr and shit.

Typica declarations are:

sfr PO 0x80

sfr P1 0x81

sfr ADCON, OxDE
shit EA Ox9F

and so on.

These declarations reside in header files such as reg51.h for the basic 8051 or reg552.h for the 80C552 and so on. It isthe
definition of sfrsin these header files that customises the compiler to the target processor. Accessing the sfr dataisthen a
simple matter:

{

ADCON = 0x08 ; /* Wite data to register */

P1 = OxFF ; /* Wite data to Port */

io status = PO ; /* Read data from Port */

EA =1 X /* Set a bit (enable all interrupts) */
}

It isworth noting that control bitsin registers which are not part of Intel's original 8051 design generally cannot be bit-
addressed.

Theruleisusually that addresses that are divisible by 8 are bit addressable. Thus for example, the seria Port 1 control bitsin
an 80C537 must be addressed via byte instructions and masking.

Always check the processor's user manual to verify which sfr register bits can be bit addressed.
5.2 Interrupts
Interrupts play an important part in most 8051 applications. There are several factors to be taken into account when servicing

an interrupt:

http://www.esacademy.com/automation/docs/c51primer/c05.htm (1 di 11) [09/11/01 11.03.16]

C Language Extensions For 8051
The correct vector must be generated so that the routine may be called. C51 does this automatically.
Thelocal variablesin the service routine must not be shared with locals in the background loop code: the L51 linker will try to
re-use locations so that the same byte of RAM will have different significance depending on which function is currently being

executed. Thisis essential to make best use of the limited internal memory. Obviously this relies on functions being executed
only sequentially. Unexpected interrupts cannot therefore use the same RAM.

5.2.1 The Interrupt Function Type
To allow C coding of interrupts a special function type is used thus,

timerO_int() interrupt 1 using 2

{
unsi gned char tenpl ;

unsi gned char tenp2 ;
executable C statenents ;

}

Firstly, the argument of the "interrupt” statement, "1" causes a vector to be generated at (8*n+3), where n is the argument of
the "interrupt” declaration. Here a"LJIMP timerO_int" will be placed at location OBH in the code memory. Any local variables
declared in the routine are not overlaid by the linker to prevent the overwriting of background variables.

Logically, with an interrupt routine, parameters cannot be passed to it or returned. When the interrupt occurs, compiler-inserted
code is run which pushes the accumulator, B,DPTR and the PSW (program status word) onto the stack. Finally, on exiting the
interrupt routine, the items previously stored on the stack are restored and the closing "} " causes a RET!| to be used rather than
anormal RET.

5.2.2 Using C51 With Target Monitor Debuggers

Many simple 8032 target debuggers place the monitor's EPROM code at 0, with a RAM mapped into both CODE and XDATA
spaces at 0x8000. The user's program is then loaded into the RAM at 0x8000 and, as the PSEN is ANDed with the RD pin, the
program is executed. This poses something of a problem as regards interrupt vectors. C51/L51 assume that the vectors can be
placed at 0. Most monitors for the 8032 foresee this problem by redirecting all the interrupt vectors up to 0x8000 and above,
i.e. they add afixed offset of 0x8000. Thus the timer O overflow interrupt is redirected by avector at C:0x000B to C:0x800B.

Before C51 v3.40 the interrupt vector generation had to be disabled and assembler jumps had to be inserted. However now the
INTVECTOR control has been introduced to allow the interrupt vector areato be based at any address.

In most cases the vector areawill start at 0x8000 so that the familar "8 * n + 3" formula outlined in section 5.2.1 effectively
becomes:

8* n+3+INTVECTOR

To usethis:

#pragma | NTVECTOR(0x8000) /* Set vector area start to 0x8000 */
void timerO_int(void) interrupt 1 {

/* CODE...*/

}

This produces an LIMP timerO_int at address C:0x800B. The redirection by the monitor from C:0x000B will now work

http://www.esacademy.com/automation/docs/c51primer/c05.htm (2 di 11) [09/11/01 11.03.16]

C Language Extensions For 8051

correctly.
5.2.3 Coping Interrupt Spacings Other Than 8

Some 8051's do not follow the normal interrupt spacing of 8 bytes - the'8' inthe 8 * n + 3 formula. Fortunately the
"INTERVAL #pragma' copes with this.

Theinterrupt formulais, in reality:

INTERVAL * n+ INTVECTOR and so:

#pragma | NTERVAL(6) /* Change spacing */

will allow a 6 byte spacing.

Please note that for convenience INTERVAL defaults to 8 and INTVECTOR to 0x80000!

5.2.4 The Using Control

The "using" control tells the compiler to switch register banks. Thisis an area where the 8051 architecture works for the
compiler rather than against it; the registers RO to R7 are used extensively for the temporary storage of library routines and for

locals. Ordinarily Bank 1 is used. However, to be able to use this standard code in an interrupt the register bank must be
switched to 2 in the above example. Thus the variables of the interrupted routines are preserved.

Asaruleinterrupts of the same priority can share aregister bank, since there is no risk that they will interrupt each other.

If interrupt runtime is not important the USING can be omitted, in which case C51 examines the registers which are actually
used within the routine and pushes only these onto the stack. This obviously increases the effective interrupt latency.

5.3 Interrupts, USING, Registerbanks, NOAREGS In C51

Everything You Need To Know

Interrupts play an important part in most 8051 applications and fortunately, C51 allows interrupt service routines to be written
entirely in C. Whilst you can write perfectly workable (and safe) programs by using just straight ANSI C, you can significantly
improve the efficiency of your code by gaining an understanding of the following special C51 controls:

. INTERRUPT

. USING

. NOAREGS

. RE-ENTRANT

. REGISTERBANK

5.3.1 The Basic Interrupt Service Function Attribute

The correct vector must be generated so that the routine may be called. C51 does this based on the argument to the interrupt
keyword. The linker thereafter does not allow local data from interrupt routines to be overlaid with that from the background
by creating specia sectionsin RAM. C51 special "interrupt” function attribute example:

[*Timer O Overflow Interrupt Service Routine */

timerO_int() interruptl

{
unsi gned char tenpl ;

unsi gned char tenp2 ;

http://www.esacademy.com/automation/docs/c51primer/c05.htm (3 di 11) [09/11/01 11.03.16]

C Language Extensions For 8051

/* executable C statenents ; */

}

. The"interrupt 1" causes a vector to be generated at (8*n+3), where n is the argument of the "interrupt” declaration. An

"LIMP timerO_int" will be placed at location OBH in the code memory.
Local variables declared in the routine are not overlaid by the linker to prevent the overwriting of background variables.

. When the interrupt occurs, compiler-inserted code is run which pushes the accumulator, B,DPTR and the PSW

(program status word) onto the stack if used in function, along with any registers RO-R7 used in the function.

. A RETI isinserted at the end of the function rather than RET. Taking an empty interrupt service function for the timer O

overflow interrupt, thisis how C51 starts off an interrupt routine that uses no registers at all:

timerO_int Entry Code

void tinmerO_int(void) interruptl
{

RSEG ?PR?ti mer O_i nt ?TI MERO

USI NG 0

timerO_int:

; SOURCE LINE # 2

If afunction, here called "sys _interp” is now called from the timer0O service function, thisis how the entry code to the interrupt
changes.

timerQ_int Entry Code Now With Called Function

; void tinmerO_int(void) interrupt 1

{

RSEG ?PR?ti nmer 0_i nt ?TI MERO
USI NG 0
timerO_int:

PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH

ACC
B
DPH
DPL
PSW
ARO
AR1
AR2
AR3
AR4
AR5
ARG
AR7

Note that the entire current registerbank is pushed onto the stack when entering timerO_int() as C51 assumes that all will be
used by sys interp. Sys interp receives parametersin registers; if the entry to sys_interp is examined, an important compiler
trick isrevealed:

sys interp() Entry Code

; unsigned char sys_interp(unsigned char x_val ue,
RSEG ?PR?_sys_i nter p?l NTERP
USI NG 0
_sys_interp:
MOV y_val ue?10, RS

http://www.esacademy.com/automation/docs/c51primer/c05.htm (4 di 11) [09/11/01 11.03.16]

C Language Extensions For 8051

MOV map_base?10, R2

MOV nmap_base?10+01H, R3

;--Variable 'x value?10'" assigned to Register 'Rl --
MOV R1, AR7

The efficient MOV of R7 to R1 by using AR7 alowsaMOQV direct, direct on entry to sys interp(). Thisis absolute register
addressing and is a useful dodge for speeding up code.

5.3.2 The absolute register addressing trick in detail

The situation often arises that the contents of one Ri register needs to be moved directly into another general purpose register.
This usually occurs during a function's entry code when a pointer is passed. Unfortunately, Intel did not provideaMOV
Reg,Reg instruction and so Keil use the trick of treating aregister as an absolute D: segment address:

Smulating A MOV Reg,Reg Instruction:
In registerbank 0 - MOV RO,AR7, isidentical to- MOV RO0,07H.
Implementing a "MQOV Reg,Reg" instruction the long way:

XCH A R1
MOV A RL

The use of thistrick means however, that you must make sure that the compiler knows which is the current registerbank in use
so that it can get the absolute addresses right. If you use the USING control, problems can arise! See the next few sections...

5.3.3 The USING Control

"using" tells the compiler to switch register banks on entry to an interrupt routine. This "context”" switch is the fastest way of
providing a fresh registerbank for an interrupt routine's local dataand isto be preferred to stacking registers for very time-
critical routines. Note that interrupts of the same priority can share aregister bank, since thereis no risk that they will interrupt
each other.

8051 Register Bank Base Addresses

RO ARO Absol ute Addr.0x00 REG STERBANK 0
Rl ARl
R2 AR2
R3 AR3
R4 AR4
R5 AR5
R6 ARG
R7 AR7

Absol ute Addr. 0x08 REG STERBANK 1, "USI NG 1"

RBSRE

R5
R6
R7

RO Absol ute Addr. 0x10 REG STERBANK 2, "USI NG 2"
R1
R2

http://www.esacademy.com/automation/docs/c51primer/c05.htm (5 di 11) [09/11/01 11.03.16]

C Language Extensions For 8051

R3
R4
R5
R6
R7

RO Absol ute Addr. 0x18 REG STERBANK 3, "USI NG 3"
R1
R2
R3
R4
R5

R6
R7

If aUSING 1 is added to the timerl interrupt function prototype, the pushing of registersis replaced by asimple MOV to PSW
to switch registerbanks. Unfortunately, while the interrupt entry is speeded up, the direct register addressing used on entry to
sys interp fails. Thisis because C51 has not yet been told that the registerbank has been changed. If no working registers are
used and no other function is called, the optimizer eliminiates teh code to switch register banks.

timerO_int Entry Code With USING
With USING 1

; void tinmerO_int(void) interrupt 1 using 1 {
RSEG ?PR?ti mer O_i nt ?TI MERO

USING 1 <--- New register bank now
timerO_int:

PUSH ACC

PUSH B

PUSH DPH

PUSH DPL

PUSH PSW

MOV PSW #08H

sys interp() Entry Code
Sill using registerbank 0

; unsigned char sys_interp(unsigned char x_val ue,
RSEG ?PR?_sys_i nter p?l NTERP

USI NG 0

_sys_interp:

MOV y_val ue?10, R5

MOV map_base?10, R2

MOV map_base?10+01H, R3;

--Variable 'x value?10' assigned to Register 'Rl'" --
MOV R1, AR7 <----- FAI LS

Absolute register addressing used assuming registerbank 0 is still current and so program fails! (Solutionsin 5.3.6-8).
5.3.4 Notes on C51's "Stack Frame"

C51 uses a degree of intelligence when entering interrupt functions. Besides the obvious step of substituting RETI for RET at
the end of the function, it automatically stacks only those registers that are actually used in the function.

http://www.esacademy.com/automation/docs/c51primer/c05.htm (6 di 11) [09/11/01 11.03.16]

C Language Extensions For 8051

There are however, some points to be aware of:

. If aninterrupt function calls afunction, C51 will stack all the Ri registers, regardless of whether they are used or not.
Thetotal time to PUSH and POP theseis 16us at 12MHz, which may be viewed as unacceptable for atime critical
interrupt.

Therefore you should either avoid calling functions or use the USING control. Thiswill do a simple registerbank switch
at the entry and exit from the routine. As the PUSHING of registers onto the stack uses the same overall number of
DATA locations, thereis no differencein overall RAM usage.

. Any variable declared within an interrupt function will not be overlaid onto background data or that originating from
other interrupts.

. Never cal an interrupt function from the background. There is sometimes a temptation to do this during program
initialisation, for example. The linker will get very confused and will quite likely make dangerous mistakes like
overwriting background variables!

. Using the USING control will generally consume more RAM than simply PUSHing registers onto the stack: in the case
where the interrupt function employs less than 8 registers, 8 - <number of registers actually used> will be wasted. Thus
there is no virtue in avoiding the USING control!

. Interrupts of equal priority can share the same register bank as there is no chance of them interrupting each other.

5.3.5 When To Use USING

. Interrupts which must run as fast as possible, regardless of overall RAM usage.
. Interrupts which call other functions.

5.3.6 The NOAREGS pragma
Dealing With C51's Absolute Register Addressing.

As has been pointed out, the 8051 has no MOV Register, Register instruction so the compiler uses MOV R1,AR7 where AR7
is the absolute address of the current R7. To do this though, the current registerbank number must be known. If afunctionis
called from an interrupt where ausing isin force, when compiling a called function the compiler must be told:

(1) not to use absolute register addressing with #pragma NOAREGS control before the function, and #pragma RESTORE or
#pragmas AREGS control enter the function.

Or:
(i) the current registerbank number with #pragma REGISTERBANK (n).

For (i), applying NOAREGS to the sys_interp function removes the MOV R7,AR7, replacing it with an awkward move of R7
to R1 using XCH A,Ri!

timerO_int Entry Code

; void tinmerO_int(void) interrupt 1 using 1 {
RSEG ?PR?ti mer O_i nt ?TI MERO

USI NG 1

timerO_int:

PUSH ACC

PUSH B

PUSH DPH

PUSH DPL

PUSH PSW

MOV PSW #08H

sys interp() Entry Code With NOAREGS

http://www.esacademy.com/automation/docs/c51primer/c05.htm (7 di 11) [09/11/01 11.03.16]

C Language Extensions For 8051

; unsigned char sys_interp(unsigned char x_val ue,
RSEG ?PR?_sys_i nterp?l NTERP

USI NG 0

_Ssys_interp:

MOV y_val ue?10, RS

MOV map_base?10, R2

MOV nmap_base?10+01H, R3;

--Variable 'x _value?10' assigned to Register 'Rl" --
XCH A R1 ;

MOV A R7 ; Slow Reg to Reg nove

5.3.7 The REGISTERBANK Control Alternative To NOAREGS

#pragma REGISTERBANK (n) tells C51 the absolute address of the current "using” registerbank base so that direct register
addressing will work.

EXAMPLE:

/* Timer O Overflow Interrupt Service Routine */
timerO_int() interrupt 1 USING 1 {

unsi gned char tenpl ;

unsi gned char tenp2 ;

/| * executable C statenents */

}

Called function:

#pragma SAVE // Renber current registerbank

#pragma REG STERBANK(1) // Tel C51 base address of current registerbank.
voi d func(char x) { /1l Called frominterrupt routine

/[l wth "usingl"

/* Code */

}

#pragma RESTORE // Put back to original registerbank

Applying #pragma REGISTERBANK (1) to sys interp() restores absolute register addressing as C51 now knows the base
address of the current register bank.

Note: Alwaystry to use the REGISTERBANK(n) control for any functions called from an interrupt with a USING!
sys interp() Entry Code With REGISTERBANK (n)

; unsigned char sys_interp(unsigned char x_val ue,
RSEG ?PR?_sys_i nter p?l NTERP

USI NG 1

_sys_interp:

MOV y_val ue?10, R5

MOV map_base?10, R2

MOV map_base?10+01H, R3; - -

Vari abl e ' x_val ue?10' assigned to Register 'Rl --
MOV R1, ARY

5.3.8 Summary Of USING And REGISTERBANK

Expressed in psuedo-code!

http://www.esacademy.com/automation/docs/c51primer/c05.htm (8 di 11) [09/11/01 11.03.16]

C Language Extensions For 8051

if(interrupt routine = USING 1){
subsequently call ed function uses #pragna REG STERBANK(1)

}

Note: subsequently called function must now only be called from functions using register bank 1.
5.3.9 Reentrancy In C51 - The Final Solution

In addition to calling afunction from interrupt, it is aso sometimes necessary to call the same function from the background as
well. Thisleaves the possibility open that the function may be called from two places simultaneously with disasterous results!

The attribute required to permit afunction to be safely called both from background and interrupt routines simultaneously is
"reentrant”. This can also help in the previous situation of afunction being called from an interrupt. The linker's"MULTIPLE
CALL TO SEGMENT" warning isthe first sign that you may be trying to use a function reentrantly.

Due to the way that C51 allocates storage for local variables and parameters, it is not possible to call afunction from both an
interrupt and the background loop. To alow only those functions to be used reentrantly that really need to be, it is possible to
specify the reentrant attribute when declaring a function.

The ?C_IBP value set up in startup.ab1 tells C51 where to locate the artificial stacks used for reentrant functions. Each time a
reentrant function is called, its incoming parameters are moved from the registers in which they were passed into an area of
RAM, starting at the address indicated by ?C_IBP. Likewise, any local variables used by the reentrant function are also
allocated a place on this special stack.

When startup.a51 is executed before main(), the line:

| F I BPSTACK <> 0

EXTRN DATA (?C_I| BP)

MOV 2C_| BP, #LOW | BPSTACKTOP
ENDI F

initialises ?C_IBP to the value of IBPSTACKTORP that you set up earlier. Aseach local is"pushed” on to the reentrant stack,
?C_IBPisdecremented. Thusif an interrupt occurs which calls the function again, the new call will start its reentrant stack
from the current ?C_IBP value. Thereafter, any local data or parameter is accessed by the code sequence:

Get a local variable at offset 2 from the current base of the re-entrant stack:

MOV RO, ?C I BP ; Get stack base

MOV A @RO ; Add of fset of | ocal

ADD A, #002 ;

MOV A @0 ; Get local via indirect addressing.
MOV R7, A ; Store value whilst other local is ;
accessed.

On leaving the function, ?C_IBP isrestored to entry value by adding the total number of locals and parameters that were used.
This represents a very large overhead and shows why reentrancy should only be used where absolutely necessary.

EXAMPLE:

The Reentrant Stack When Located In The IDATA Area

Oxff sys_interp paraneter O
Oxfe sys_interp paraneter 1
oxfd sys_interp paraneter 2L
Oxfc sys_interp paraneter 2H - call from background:

http://www.esacademy.com/automation/docs/c51primer/c05.htm (9 di 11) [09/11/01 11.03.16]

C Language Extensions For 8051

2C | BP= Oxfc

Oxfb sys_interp paraneter 0O

Oxfa sys_interp paraneter O

Oxf9 sys_interp paraneter 1

Oxf 8 sys_interp paraneter 2L

oxf 7 sys_ interp paraneter 2H - call fromtinmerO
interrupt: ?C_I1BP = Oxf7

Oxf 6 sys_interp paraneter O

Oxf5 sys_interp paraneter O

Oxf 4 sys_interp paraneterl

Oxf 3 sys_interp paraneter 2L

Oxf 2 sys_interp paraneter 2H - call from background
?C_ I BP = 0Oxf2

Oxf 1

Oxf O

Oxef

Oxee

?C_IBP acts as a base pointer to the reentrant stack and is used to access all locals in a reentrant function.

Adding the reentrant attribute to sys_interp() still requires the NOAREGS control as the registerbank has been changed by
USING 1. Asamatter of policy, any reentrant function should also have the NOAREGS control so that it becomes totally
registerbank-independent.

sys interp() Entry Code

; unsigned char interp_sub(unsigned char x,
RSEG ?PR?_7?i nt er p_sub?l NTERP

USI NG 0
_?interp_sub:
DEC ?C_|I BP
DEC ?C_I BP
MOV RO, ?2C | BP
XCH A @R0

MOV A R2

XCH A @R0

I NC RO

XCH A @R0

MOV A R3

XCH A @R0

DEC ?C | BP
MOV RO, ?C_I BP
XCH A @R0

MOV A RS

XCH A @RO

DEC ?C I BP
MOV RO, ?C_| BP
XCH A, @RO
MOV A R7

XCH A, @RO

DEC ?C I BP ;

SOURCE LINE # 22
sys interp() Exit Code

200009:
MOV A, ?C_| BP

http://www.esacademy.com/automation/docs/c51primer/c05.htm (10 di 11) [09/11/01 11.03.16]

C Language Extensions For 8051

ADD A, #010H <-- Restore ?C_IBP to original

position

MOV ?C_I BP, A

RET ;

END OF _?sys_interp
END

5.3.10 Summary Of Controls For Interrupt Functions
Provided the following combinations of controls are used, you will avoid linker warnings and potentially dangerous code.

Interrupt Function Attribute | Cal l ed Function Attribute:

"non-reentrant”

No USI NG no special attribute required
USI NG n USI NG n

or

or

#pragma NOAREGS
Interrupt Function Attribute Call ed Function Attribute

I
I
I
I
| #pragma REGQ STERBANK(n)
I
I
I

| "reentrant"”
no USI NG | no register attribute
USI NG n | #pragma NOAREGS

5.3.11 Reentrancy And Library Functions

The majority of C51 library functions are reentrant and can be freely used from interrupts and background. However, some
larger library functions such as printf(), scanf() etc. are not reentrant. If you have used a non-reentrant library function
reentrantly, you will get a"MULTIPLE CALL TO SEGMENT" warning, as would be expected.

"Hidden" library functions used to perform integer divides and multiplies etc. are all reentrant so you can perform a 16/16
divide in an interrupt without fear of upsetting the background.

To Summarise:

Y ou can generally use library functions reentrantly but always check the C51 manual section 9 to check whether afunctionis
reentrant or not.

http://www.esacademy.com/automation/docs/c51primer/c05.htm (11 di 11) [09/11/01 11.03.16]

Pointersin C51

6 Pointers In C51

Whilst pointers can be used just asin PC-based C, there are several important extensions to the way they are used in C51.
These are mainly aimed at getting more efficient code

6.1 Using Pointers And Arrays In C51

One of C's greatest strengths can aso be its greatest weakness - the pointer. The use and, more appropriately, the abuse of this
language feature islargely why C is condemned by some as dangerous!

6.1.1 Pointers In Assembler

For an assembler programmer the C pointer equates closely to indirect addressing. In the 8051 thisis achieved by the
following instructions

MOV RO, #40 ; Put on-chip address to be indirectly

MOV A @RO addressed in RO

MOV RO, #40 ; Put off-chip address to be indirectly

MOVX A, @GRO addressed in RO

MOVX A, @PTR ; Put off-chip address to be indirectly
addressed in DPTR

CLR A

MOV DPTR, #0040 ; Put off-chip address to be indirectly

MOVC A, @GA+DPTR addressed in DPTR

In each case the datais held in amemory location indicated by the value in registers to the right of the'@'.
6.1.2 Pointers In C51

The C equivalent of the indirect instruction is the pointer. The register holding the address to be indirectly accessed in the
assembler examplesisanormal C type, except that its purpose isto hold an address rather than a variable or constant data
value.

It isdeclared by:
unsigned char *pointer0 ;

Note the asterisk prefix, indicating that the data held in this variable is an address rather than a piece of data that might be
used in a calculation etc..

In al casesin the assembler example two distinct operations are required:

1. Place addressto beindirectly addressed in aregister.
2. Usethe appropriate indirect addressing instruction to access data held at chosen address.

Fortunately in C the same procedure is necessary, although the indirect register must be explicitly defined, whereas in

http://www.esacademy.com/automation/docs/c51primer/c06.htm (1 di 16) [09/11/01 11.03.24]

Pointersin C51

assembler the register existsin hardware.

/[* 1 - Define a variable which will hold an address */
unsi gned char *pointer ;

/* 2 - Load pointer variable with address to be accessed*/
/*indirectly */

poi nter = &c_vari able ;

/[* 3 - Put data 'Oxff' indirectly into c variable via*/
[*pointer */

*poi nter = Oxff ;
Taking each operation in turn...

1. Reserve RAM to hold pointer. In practice the compiler attaches a symbolic nameto a RAM location, just aswith a
normal variable.

2. Load reserved RAM with address to be accessed, equivalent to 'MOV RO0,#40'. In English this C statement means: "take
the 'address of' ¢_variable and put it into the reserved RAM, i.e, the pointer” In this case the pointer's RAM corresponds
to RO and the '&' equates loosely to the assembler '#'.

3. Movethe dataindirectly into pointed-at C variable, as per the assembler ' MOV A,@RO'.

The ability to access data either directly, x =y, or indirectly, x = *y_ptr, isextremely useful. Here is C example:

/* Denonstration OF Using A Pointer */

unsi gned char c_variable ; /1 1 - Declare a c variable unsigned char *ptr ;
/1 2 - Declare a pointer (not
poi nti ng at anythi ng yet!)

mai n() {
c_variable = Oxff ; /1 3 - Set variable equal to Oxff
directly
ptr = & variable ; /'l 4 - Force pointer to point at
c_variable at run tine
*ptr = Oxff ; /1 5 - Muwve Oxff into c_variable
indirectly
}

Note: Line 4 causes pointer to point at variable. An aternative way of doing thisis at compile time thus:

/* Denonstration O Using A Pointer */

unsi gned char c_vari abl e; /11-Declare a c variable
unsi gned char *ptr = &c_variable; //2-Declare a pointer,
intialised to pointing at
c_variable during
conpi | ati on

mai n() {

http://www.esacademy.com/automation/docs/c51primer/c06.htm (2 di 16) [09/11/01 11.03.24]

Pointersin C51

c_variable = Oxff ; /[l 3 - Set variable equal to Oxff
directly

*ptr = Oxff /15 - Mve Oxff into c_variable
indirectly

}

Pointers with their asterisk prefix can be used exactly as per normal data types. The statement:
X =y + 3,

could equally well perform with pointers, as per

char x, vy ;

char *x_ptr = & ;
char *y ptr = & ;
*X_ptr = *y ptr + 3 ;
or:

X =y * 25 ;

*X_ptr = *y_ptr * 25 ;

The most important thing to understand about pointersis that

*ptr = var ;

means "set the value of the pointed-at address to value var”, whereas

ptr = &var ;
means "make ptr point at var by putting the address of (&) in ptr, but do not move any data out of var itself".

Thustheruleistoinitialise a pointer,

ptr = &var ;

To access the data indicated by *ptr ;

var = *ptr ;
6.2 Pointers To Absolute Addresses

In embedded C, ROM, RAM and peripherals are at fixed addresses. Thisimmediately raises the question of how to make
pointers point at absolute addresses rather than just variables whose address is unknown (and largely irrelevant).

The simplest method is to determine the pointed-at address at compile time:

http://www.esacademy.com/automation/docs/c51primer/c06.htm (3 di 16) [09/11/01 11.03.24]

Pointersin C51

char *abs_ptr = 0x8000 ; // Declare pointer and force to
/1 0x8000 i medi ately

However if the address to be pointed at is only known at run time, an alternative approach is necessary. Simply, an
uncommitted pointer is declared and then forced to point at the required address thus:

char *abs ptr ; // Declare unconmtted pointer

abs ptr = (char *) 0x8000 ; // Initialise pointer to 0x8000 *abs ptr = Oxff ;
/1 Wite Oxff to 0x8000

*abs_ptr++ ; /| Make pointer point at next
| ocation in RAM

Please see sections 6.8 and 6.9 for further details on C51 spaced and generic pointers.

6.3 Arrays And Pointers - Two Sides Of The Same Coin?

6.3.1 Uninitialised Arrays

The variables declared via

unsi gned char x ;
unsi gned char vy ;

are single 8 bit memory locations. The declarations:

unsigned int a ;
unsigned int b ;

yield four memory locations, two allocated to 'a and two to 'b'. In other programming languagesiit is possible to group similar
types together in arrays. In basic an array is created by DIM a(10).

Likewise 'C' incorporates arrays, declared by:

unsigned char a[10] ;

This has the effect of generating ten sequential locations, starting at the address of 'a. Asthere is nothing to the right of the
declaration, no initial values are inserted into the array. It therefore contains zero data and serves only to reserve ten contiguous
bytes.

6.3.2 Initialised Arrays

A more usual instance of arrays would be

unsigned char test_array [] = { 0x00,0x40,0x80,0xCO,0xFF } ;

where the initial values are put in place before the program getsto "main()". Note that the size of thisinitialised array is not
given in the square brackets - the compiler works-out the size automatically.

Another common instance of an array is analogous to the BASIC string as per:

http://www.esacademy.com/automation/docs/c51primer/c06.htm (4 di 16) [09/11/01 11.03.24]

Pointersin C51

A$ = "HELLO "

In C this equates to:

char test_array[] = { "HELLO" } ;

In C thereis no real distinction between strings and arrays asa C array isjust a series of sequential bytes occupied either by a
string or a series of numbers. In fact the realms of pointers and arrays overlap with strings by virtue of :

char test_array = { "HELLO" } ;
char *string_ptr ={ "HELLO" } ;

Case 1 creates a sequence of bytes containing the ASCII equivalent of "HELLO!". Likewise the second case all ocates the same
sequence of bytes but in addition creates a separate pointer called * string_ptr to it. Notice that the "unsigned char" used
previously has become "char", literally an ASCII character.

The second isreally equivalent to:

char test_array = { "HELLO" } ;

Then at run time:

char arr_ptr test _array ; [// Array treated as pointer

or;

char arr_ptr & est_array[0] ; // Put address of first
/1l elenment of array into

[l pointer

This again shows the partial interchangeability of pointers and arrays. In English, the first means "transfer address of test_array
into arr_ptr". Stating an array name in this context causes the array to be treated as a pointer to the first location of the array.
Hence no "address of" (&) or ™' to be seen.

The second case reads as "get the address of the first element of the array name and put it into arr_ptr". No implied pointer
conversion is employed, just the return of the address of the array base.

The new pointer "*arr_ptr" now exactly corresponds to *string_ptr, except that the physical "HELLO!" they point at isat a
different address.

6.3.3 Using Arrays

Arrays are typically used like this
/* Copy The String HELLO Into An Enpty Array */

unsi gned char source_array[] = { "HELLO" } ;
unsi gned char dest_array[7];

unsi gned char array_index ;

unsi gned char

array_index = 0 ;

http://www.esacademy.com/automation/docs/c51primer/c06.htm (5 di 16) [09/11/01 11.03.24]

Pointersin C51

while(array_index < 7) { [// Check for end of array

dest _array[array_index] = source_array[array_index] ;
/I Move character-by-character into destination array

array_i ndex++ ;

}

The variable array_index shows the offset of the character to be fetched (and then stored) from the starts of the arrays.

As has been indicated, pointers and arrays are closely related. Indeed the above program could be re-written thus:

/[* Copy The String HELLO Into An Enpty Array */

char *string_ptr ={ "HELLO" } ;
unsi gned char dest_array[7] ;
unsi gned char array_i ndex

unsi gned char

array_index = 0 ;
whil e(array_index < 7) { /'l Check for end of array
dest _array[array_index] = string_ptr[array_index] ; [/ Mve character-by-character

into destination array.
array_i ndex++ ;

}

The point to note is that by removing the ™' on string_ptr and appending a'[]’ pair, this pointer has suddenly become an array!
However in this case there is an alternative way of scanning along the HELL O! string, using the * ptr++ convention:
array_index = 0 ;

while(array_index < 7) { // Check for end of array

dest _array[array_index] = *string ptr++ ; // Mve character-by-character into
destination array.
array_i ndex++ ;

}

Thisis an example of C being somewhat inconsistent; this * ptr++ statement does not mean "increment the thing being pointed
at" but rather, increment the pointer itself, so causing it to point at the next sequential address. Thus in the example the
character is obtained and then the pointer moved along to point at the next higher address in memory.

6.3.4 Summary Of Arrays And Pointers
To summarise

Create An Uncommitted Pointer

unsi gned char *x_ptr ;

Create A Pointer To A Normal C Variable

http://www.esacademy.com/automation/docs/c51primer/c06.htm (6 di 16) [09/11/01 11.03.24]

Pointersin C51

unsi gned char x ; unsigned char *x_ptr = &x ;
Create An Array With No Initial Values

unsi gned char x_arr[10] ;

Create An Array With Initialised Values

unsigned char x_arr[] ={ 0,1,2,3 } ;

Create An Array In The Form Of A String

char x_arr[] = { "HELLO' }

Create A Pointer To A String

char *string_ptr = { "HELLO' } ;

Create A Pointer To An Array

char x_arr[] = { "HELLO' } ; char *x_ptr = x_arr
Force A Pointer To Point At The Next Location

*ptr++

6.4 Structures

Structures are perhaps what makes C such a powerful language for creating very complex programs with huge amounts of
data. They are basically away of grouping together related data items under a single symbolic name.

6.4.1 Why Use Structures?

Hereisan example: A piece of C51 software had to perform alinearisation process on the raw signal from a variety of
pressure sensors manufactured by the same company. For each sensor to be catered for thereis an input signal with a span and
offset, atemperature coefficient, the signal conditioning amplifier, again and offset. The information for each sensor type
could be held in "normal™ constants thus:

unsi gned char sensor_typel gain = 0x30 ;

unsi gned char sensor_typel of fset = 0x50 ;
unsi gned char sensor_typel tenp_coeff = 0x60 ;
unsi gned char sensor_typel span = 0xC4 ;

unsi gned char sensor_typel anp_gain = 0x21 ;

unsi gned char sensor_type2 gain = 0x32 ;

unsi gned char sensor_type2_of fset = 0x56

unsi gned char sensor_type2 tenp _coeff = 0x56
unsi gned char sensor_type2 span = 0xC5 ;

unsi gned char sensor_type2_anp_gain = 0x28
unsi gned char sensor_type3_gain = 0x20 ;

unsi gned char sensor_type3 offset = 0x43

unsi gned char sensor_type3 tenp_coeff = 0x61 ;
unsi gned char sensor_type3_span = 0x89

unsi gned char sensor_type3_anp_gain = 0x29

http://www.esacademy.com/automation/docs/c51primer/c06.htm (7 di 16) [09/11/01 11.03.24]

Pointersin C51

As can be seen, the names conform to an easily identifiable pattern of:

unsi gned char sensor_typeN gain = 0x20 ;

unsi gned char sensor_typeN offset = 0x43 ;
unsi gned char sensor_typeN_ tenp_coeff = 0x61 ;
unsi gned char sensor_typeN span = 0x89 ;

unsi gned char sensor_typeN anp_gain = 0x29 ;

Where 'N' is the number of the sensor type. A structure is a neat way of condensing this type is related and repeating data.

In fact the information needed to describe a sensor can be reduced to a generalised:

unsi gned char gain ;

unsi gned char offset ;
unsi gned char tenp_coeff ;
unsi gned char span ;

unsi gned char anp_gain ;

The concept of a structure is based on thisidea of generalised "template” for related data. In this case, a structure template (or
"component list") describing any of the manufacturer's sensors would be declared:

struct sensor_desc {unsigned char gain ;
unsi gned char offset ;
unsi gned char tenp_coeff ;
unsi gned char span ;
unsi gned char anp_gain ; } ;

This does not physically do anything to memory. At this stage it merely creates atemplate which can now be used to put real
datainto memory.

Thisis achieved by:

struct sensor_desc sensor dat abase ;

This reads as "use the template sensor_desc to layout an area of memory named sensor_database, reflecting the mix of data
types stated in the template”. Thus agroup of 5 unsigned chars will be created in the form of a structure.

Theindividual e ements of the structure can now be accessed as:

sensor _dat abase. gain = 0x30 ;
sensor _dat abase. of fset = 0x50 ;
sensor _dat abase.tenp_coeff = 0x60 ;
sensor _dat abase. span = 0x4 ;
sensor _dat abase. anp_gain = 0x21 ;

6.4.2 Arrays Of Structures

In the exampl e though, information on many sensors is required and, as with individual charsand ints, it is possible to declare
an array of structures. This alows many similar groups of data to have different sets of values.

http://www.esacademy.com/automation/docs/c51primer/c06.htm (8 di 16) [09/11/01 11.03.24]

Pointersin C51

struct sensor_desc sensor_dat abase[4] ;

This creates four identical structuresin memory, each with an internal layout determined by the structure template. Accessing
thisarray is performed simply by appending an array index to the structure name:

/*Cperate On Elenments In First Structure Describing */
/ *Sensor 0 */

sensor _dat abase[0] .gain = 0x30 ;

sensor _dat abase[0] . of fset = 0x50 ; sensor_database[0].tenp_coeff = 0x60 ;
sensor _dat abase[0] . span = OxC4 ;

sensor _dat abase[0] . anp_gai n = 0x21 ;

/* Operate On Elenents In First Structure Describing */
/ *Sensor 1 */

sensor _dat abase[1].gain = 0x32 ;

sensor _dat abase[1] . of f set 0x56 ;

sensor _dat abase[1] .tenp_coeff = 0x56 ;
sensor _dat abase[1] . span = 0xC5 ;
sensor _dat abase[1] . anp_gai n = 0x28 ;

and so on. ..
6.4.3 Initialised Structures

Aswith arrays, a structure can be initialised at declaration time

struct sensor_desc sensor_database = { 0x30, 0x50, 0x60,
OxC4, 0x21 } ;

so that here the structure is created in memory and pre-loaded with values.

The array case follows asimilar form:

struct sensor_desc sensor_dat abase[4] = {{0x30, 0x50, 0x60,
OxC4, 0x21 },

{ 0x32, 0x56, 0x56, OxC5, 0x28 ; }
b

6.4.4 Placing Structures At Absolute Addresses

It is sometimes necessary to place a structure at an absolute address. This might occur if, for example, the registers of a
memory-mapped real time clock chip are to be grouped together as a structure. The template in this instance might be

Contents O RTCBYTES. C Modul e

struct RTC { unsigned char seconds ;
unsi gned char m nutes ;
unsi gned char hours ;
unsi gned char days ;

http://www.esacademy.com/automation/docs/c51primer/c06.htm (9 di 16) [09/11/01 11.03.24]

Pointersin C51

struct RTC xdata RTC chip ; [// Create xdata structure

A trick using the linker is required here so the structure creation must be placed in a dedicated module. This module's XDATA
segement, containing the RTC structure, is then fixed at the required address at link time.

Using the absolute structure could be:

/[* Structure |ocated at base of RTC Chip */
MAI N. C Modul e

extern xdata struct RTC chip ;

/[* O her XDATA Objects */

xdat a unsi gned char tinme_secs, tinme_mns ;
voi d mai n(void) {

time_secs = RTC chip. seconds ;
time_mns RTC _chi p. m nut es;

}

Linker Input File To Locate RTC_chip structure over real RTC Registersis:
| 51 mai n. obj, rtcbytes. obj XDATA(?XD?RTCBYTES(0h))
See section 7.6 for further examples of this placement method.

6.4.5 Pointers To Structures

/* Define pointer to structure */
Pointers can be used to access structures, just as with simple dataitems. Here is an example:

struct sensor_desc *sensor_dat abase ;
/* Use Pointer To Access Structure Elenents */

sensor _dat abase->gai n = 0x30 ;
sensor _dat abase- >of f set = 0x50 ;
sensor _dat abase- >t enp_coeff = 0x60 ;
sensor _dat abase- >span = 0xC4
sensor _dat abase->anp_gain = 0x21 ;

Note that the *' which normally indicates a pointer has been replaced by appending '->' to the pointer name. Thus * name' and
'name->' are equivalent.

6.4.6 Passing Structure Pointers To Functions

A common use for structure pointersis to allow them to be passed to functions without huge amounts of parameter passing; a
typical structure might contain 20 data bytes and to pass this to a function would require 20 parameters to either be pushed
onto the stack or an abnormally large parameter passing area. By using a pointer to the structure, only the two or three bytes
that constitute the pointer need be passed. This approach is recommended for C51 as the overhead of passing whole structures

http://www.esacademy.com/automation/docs/c51primer/c06.htm (10 di 16) [09/11/01 11.03.24]

Pointersin C51

can tie the poor old 8051 CPU in knots!

This would be achieved thus;

struct sensor _desc *sensor _dat abase ;

sensor _dat abase-> gain = 0x30 ;
sensor _dat abase-> of fset = 0x50 ;
sensor _dat abase-> tenp_coeff = 0x60 ;
sensor _dat abase-> span = 0xC4 ;
sensor _ dat abase- >anp_gain = 0x21 ;

test _function(*struct_pointer) ;

test _function(struct sensor_desc *received_struct_pointer) {
recei ved_struct _pointer->gain = 0x20 ;
recei ved _struct _pointer->tenp_coef = 0x40 ;

}

Advanced Note: Using a structure pointer will cause the called function to operate directly on the structure rather than on a
copy made during the parameter passing process.

6.4.7 Structure Pointers To Absolute Addresses

It is sometimes necessary to place a structure at an absolute address. This might occur if, for example, a memory-mapped real
time clock chip isto be handled as a structure. An aternative approach to that given in section 6.4.4. is to address the clock
chip viaa structure pointer.

The important difference isthat in this case no memory isreserved for the structure - only an "image" of it appears to be at the
address.

The template in this instance might be:

[* Define Real Tinme dock Structure */

struct RTC {char seconds ;
char mns ;
char hours ;
char days ; } ;

/* Create A Pointer To Structure */

struct RTC xdata *rtc_ptr ; // 'xdata' tells C51 that this
/lis a nmenory-mapped devi ce.

voi d mai n(void) {
rtc_ptr = (void xdata *) 0x8000 ; // Move structure
/'l pointer to address
/1of real time clock at
/1 0x8000 in xdata

rtc_ptr->seconds = 0 ; // QOperate on elenents
rtc_ptr->mns = 0x01 ;

}

http://www.esacademy.com/automation/docs/c51primer/c06.htm (11 di 16) [09/11/01 11.03.24]

Pointersin C51

This general technique can be used in any situation where a pointer-addressed structure needs to be placed over a specific IO
device. However it is the user's responsibility to make sure that the address given is not likely to be allocated by the linker as
general variable RAM!

To summarize, the procedure is:

1. Definetemplate
2. Declare structure pointer as normal
3. At runtime, force pointer to required absolute address in the normal way.

6.5 Unions

A union issimilar in concept to a structure except that rather than creating sequential locations to represent each of the itemsin
the template, it places each item at the same address. Thus a union of 4 bytes only occupies asingle byte. A union may consist
of acombination of longs, char and ints all based at the same physical address.

The the number of bytes of RAM used by aunion is ssimply determined by the size of the largest element, so:

union test { char x ;
inty ;
char a[3] ;
long z ;

b

requires 4 bytes, this being the size of along. The physical location of each element is:

addr _ O x byte y high byte a[0] =z highest byte
+1 y low byte a[l] =z byte
+2 a[2] z byte
+3 a[3] z lowest byte

Non-8051 programmers should see the section on byte ordering in the 8051 if they find the idea of the MSB being at the low
address odd!

In enbedded C the commbnest use of a union is to allow fast access to individual
bytes of longs or ints. These mght be 16 or 32 bit real time counters, as in this
exanpl e:

/* Declare Union */

union clock {long real time_count ; // Reserve four byte

int real time_words[2] ; /'l Reserve four bytes as
/1 int array
char real tinme_bytes[4] ; /'l Reserve four bytes as

/'l char array

I
/* Real Time Interrupt */
void timerO_int(void) interrupt 1 using 1 {
clock.real tinme_count ++ ; /1l Increment clock

if(clock.real _tinme_words[1l] == 0x8000) { // Check
/1 lower word only for value

http://www.esacademy.com/automation/docs/c51primer/c06.htm (12 di 16) [09/11/01 11.03.24]

Pointersin C51

/* Do sonething! */

if(clock.real tinme_bytes[3] == 0x80) { // Check nost
/1 significant byte only for val ue

/* Do sonething! */
}

}
6.6 Generic Pointers

C51 offers two basic types of pointer, the spaced (memory-specific) and the generic. Up to version 3.00 only generic pointers
were available.

As has been mentioned, the 8051 has many physically separate memory spaces, each addressed by special assembler
instructions. Such characteristics are not peculiar to the 8051 - for example, the 8086 has data instructions which operate on a
16 bit (within segment) and a 20 bit basis.

For the sake of simplicity, and to hide the real structure of the 8051 from the programmer, C51 uses three byte pointers, rather
than the single or two bytes that might be expected. The end result is that pointers can be used without regard to the actual
location of the data.

For example:

xdata char buffer[10] ;
code char nessage[] = { "HELLO' } ;
void mai n(void) {

char *s ;

char *d ;

S
d

nessage ;
buffer ;

while(*s I'="\0") {
*d++ = *s++
}
}

Yi el ds:

RSEG ?XD?T1
buffer: DS 10
RSEG ?CO?T1
nessage:
B 'H ,'’E ,'L" ,'L" ,"O ,000H

; xdata char buffer[10] ;
; code char nessage[] = { "HELLO' } ;

; void mai n(void) {
RSEG ?PR?mai n?T1

USI NG 0

mai n:

http://www.esacademy.com/automation/docs/c51primer/c06.htm (13 di 16) [09/11/01 11.03.24]

Pointersin C51

; SOURCE LINE # 6

char *s ;
; char *d ;
X S = nessage ;
; SOURCE LINE # 11
MOV s?02, #05H
MoV s?02+01H, #H GH nessage
MOV s?02+02H, #LOW nessage
; d = buffer ;
; SOURCE LINE # 12
MOV d?02, #02H
MOV d?02+01H, #H GH buffer
MOV d?02+02H, #LOW buf f er
?C0001:
; while(*s '="\0") {
; SOURCE LINE # 14
MoV R3, s?02
MOV R2, s?02+01H
MOV R1, s?02+02H
LCALL ?C CLDPTR
JZ ?C0003
: *d++ = *s++ ;
; SOURCE LINE # 15
I NC s?02+02H
MoV A, s?02+02H
JNZ ?C0004
| NC s?02+01H
?C0004:
DEC A
MOV R1, A
LCALL ?C CLDPTR
MOV R7, A
MOV R3, d?02
| NC d?02+02H
MOV A, d?02+02H
MOV R2, d?02+01H
JNZ ?C0005
| NC d?02+01H
?C0005:
DEC A
MOV R1, A
MOV A R7
LCALL ?C _CSTPTR
; }
; SOURCE LINE # 16
SIMP ?C0001
; }
; SOURCE LINE # 17
?C0003:
RET
: END OF main
END

http://www.esacademy.com/automation/docs/c51primer/c06.htm (14 di 16) [09/11/01 11.03.24]

Pointersin C51

As can be seen, the pointers *s and *d' are composed of three bytes, not two as might be expected. In making *s point at the
message in the code space an '05' is loaded into s ahead of the actual address to be pointed at. In the case of *d '02' is |loaded.
These additional bytes are how C51 knows which assembler addressing mode to use. The library function C_CLDPTR checks
the value of the first byte and loads the data, using the addressing instructions appropriate to the memory space being used.

This means that every access via a generic pointer requires this library function to be called. The memory space codes used by
C51 are:

CODE - 05
XDATA - 02
PDATA - 03
DATA - 05
| DATA - 01

6.7 Spaced Pointers In C51

Considerable run time savings are possible by using spaced pointers. By restricting a pointer to only being able to point into
one of the 8051's memory spaces, the need for the memory space "code" byte is eliminated, along with the library routines
needed to interpret it.

A spaced pointer is created thus:

char xdata *ext_ptr ;

to produce an uncommitted pointer into the XDATA space or
char code *const_ptr ;

which gives a pointer solely into the CODE space. Note that in both cases the pointers themselves are located in the memory
space given by the current memory model. Thus a pointer to xdata which isto be itself located in PDATA would be declared
thus:

pdata char xdata *ext _ptr ;

| ocati on |

of pointer |
Menory space pointed into
by pointer

In this example strings are always copied from the CODE areainto an XDATA buffer. By customising the library function
"strepy()" to use a CODE source pointer and a XDATA destination pointer, the runtime for the string copy was reduced by
50%. The new strcpy has been named strepy_x_c().

The function prototypeis:

extern char xdata * strcpy(char xdata* ,char code *) ; Here is the code produced by the spaced pointer strcpy():

; char xdata *strcpy_x_c(char xdata *sl1, char code *s2) {
_strcpy_x_c:

MOV s2?10, R4

MOV s2?10+01H, RS

http://www.esacademy.com/automation/docs/c51primer/c06.htm (15 di 16) [09/11/01 11.03.24]

Pointersin C51

; ___ Variable 's1?10" assigned to Register 'R6/R7

; unsi gned char i = 0;

__Variable '"i?11' assigned to Register 'Rl
CLR A
MOV R1, A

?C0004:

; while ((sl[i++] = *s2++) = 0);

| NC s2?10+01H
MOV A s2?10+01H
MOV R4, s2?10
JNzZ ?C0008
| NC 2?10
?C0008:
DEC A
MOV DPL, A
MOV DPH, R4
CLR A
MovC A, GA+DPTR
MOV R5, A
MOV R4, ARL
| NC R1
MoV A R7
ADD A R4
MOV DPL, A
CLR A
ADDC A R6
MOV DPH, A
MOV A R5
MOVX @PTR, A
JINZ ?C0004
?C0005:
; return (sl);
Y
?C0006:
END

Notice that no library functions are used to determine which memory spaces are intended. The function prototype tells C51
only to look in code fot the string and xdata for the RAM buffer.

http://www.esacademy.com/automation/docs/c51primer/c06.htm (16 di 16) [09/11/01 11.03.24]

Accessing External Memory Mapped

7 Accessing External Memory Mapped

Peripherals

Commonly, extralO ports are added to 8051s to compensate for the loss of Ports 0 and 2. Thisis normally done by making
the additional device(s) appear to be just external RAM bytes. Thus they are addressed by the MOV X A,@DPTR
instruction. Typically UARTS, additional ports and real time clock devices are added to 8031s as xdata-mapped devices.

The simplest approach to adding external devicesis to attach the /RD and or /WR lines to the device. Provided that only one
deviceis present and that it only has one register, no address decoding is necessary. To access this device from C simply
prefix an appropriately named variable with "xdata'. Thiswill cause the compiler to use MOV X A, @DTPR instructions
when getting datain or out. In actual fact the linker will try to allocate areal address to this but, as no decoding is present,
the device will smply be enabled by /WR or /RD.

In practicelifeisrarely thissimple. Usually a mixture of RAM, UARTS, ports, EEPROM and other devices may all be
attached to the 8031 by being mapped into the xdata space. Some sort of decoding is provided by discrete logic or (more
usually) aPAL.

Here the various registers of the different devices will appear at fixed locations in the xdata space. With normal on-chip
resources the smple "data book™ name can be used to access them, so ideally these external devices should be the same.

There are three basic approaches to this:

1. Usenormal variables, char, ints etc, located by the linker
2. Use pointers and offsets, either viathe XBY TE macros or directly with user-defined pointers.
3. Usethe At _and ORDER directives.

In detail, these may be implemented as shown in the following sections.

7.1 The XBYTE And XWORD Macros

To allow memory-mapped devices to be accessed from C, amethod is required to effectively force pointers to point to fixed
addresses. C51 provides many methods of achieving this, the ssimplest of which are the XBY TE[addr16] and
XWORD[addr16] macros

For instance:

The byte wide PORT8_DDI register of amemory mapped IO deviceisat 8000H. To accessit from C it must be declared
thus:

#i ncl ude "absacc. h"; [*Contains macro definitions */
#defi ne port8_ddi XBYTE[0x8000]
#define port8 data XBYTE[0x8001]

Touseit then,

port8 ddi = OxFF ;

http://www.esacademy.com/automation/docs/c51primer/c07.htm (1 di 9) [09/11/01 11.03.29]

Accessing External Memory Mapped

i nput _val = port8_data ;
To access aword at an even external address;

#define word_reg XWORD[0x4000]
/* gives a word variable at 8000H */

Ignoring the pre-defined XWORD macro, the equivalent C lineis:

#define word_reg_ptr ((unsigned int *) 0x24000L)
/*creates a pointer to a word (int) at address 8000H*/

To use this address then,

*word reg_ptr = OXFFFF ;
Note that the address 8000H corresponds to 4000H words, hence the " 0x24000L ".
Here are some examples with the code produced:

#def i ne XBYTE ((unsigned char volatile *) 0x20000L)
#define XWORD ((unsigned int volatile *) 0x20000L)

mai n() {

char x ;
inty ;

X = XBYTE[0x8000] ;

0000 908000 MOV DPTR, #08000H
0003 EO MOVX A @PTR

0004 FF MoV R7, A

0005 8FO00 R MoV X, R7

y = XWORD[0x8000/ si zeof (int)] ;

}

0007 908000 MoV DPTR, #08000H
000A EO MOVX A, @PTR

000B FE MoV R6, A

000C A3 | NC DPTR

000D EO MOVX A, @PTR

000E FF MOV R7, A

000F 8EO0O0 R MoV y, R6

0011 8FO00 R MOV y+01H, R7

}

0013 ?2C0001:

0013 22 RET

However the address indicated by "word_reg" isfixed and can only be defined at compile time, as the contents of the square
brackets may only be a constant. Any alteration to the indicated address is not possible with these macro-based methods.
This approach is therefore best suited to addressing locations that are fixed in hardware and unlikely to change at run time.

Note the use of the volatile storage class modifier. Thisis essential to prevent the optimiser removing data reads from
external ports.

http://www.esacademy.com/automation/docs/c51primer/c07.htm (2 di 9) [09/11/01 11.03.29]

Accessing External Memory Mapped
See section 7.4 for more details.

Note: the header file "absacc.h" must be included at the top of the source file as shown above. This contains the prototype
for the XBYTE macro. (see page 9-15 in the C51 manual)

7.2 Initialised XDATA Pointers

In many cases the external address to be pointed at is known at compile time but may need to be altered at some point
during execution. Thus some method of making a pointer point at an intial specific external addressis required.

Probably the smplest way of setting up such a pointer isto let the C_INIT program set the pointer to a location. However
theinitial address must be known at compile time. If the pointer isto be altered at run time, just equate it (without the "*" at
run time) to the new address.

Note: this automatic initialisation was not supported on earlier versions of C51.

Simply do:

/| * Spaced pointer */
xdata char xdata *a_ptr = 0x8000 ;
/* Generic Pointer */

xdata char *a_ptr = 0x028000L ;

Here the pointer is setup to point at xdata address 0x8000. Note that the spaced *a_ptr can only point at xdata locations as a
result of the second xdata used in its declaration. In the generic *a_ptr case, the "02" tells C51 that an xdata addressis
intended.

An exanpl e m ght be:

6 xdata char xdata *ptr = 0x8000 ;
7
8
9 mai n() {
11 1 char x ;
13 1 ptr += 0xfO ;
0000 900000 R MoV DPTR, #pt r +01H
0003 EO MOVX A, @PTR
0004 24F0 ADD A, #0FOH
0006 FO MOVX @PTR, A
0007 900000 R MoV DPTR, #ptr
000A EO MOVX A, @PTR
000B 3400 ADDC A, #00H
000D FO MOVX @PTR, A
15 1 X = *ptr ;
16 1
17 1 }
000E EO MOVX A, @PTR
000F FE MoV R6, A

http://www.esacademy.com/automation/docs/c51primer/c07.htm (3 di 9) [09/11/01 11.03.29]

Accessing External Memory Mapped

0010 A3 I NC DPTR
0011 EO MOVX A, @PTR
0012 F582 MOV DPL, A
0014 8ES83 MOV DPH, R6
0016 EO MOVX A @PTR
0017 F500 R MoV X, A

17 1 }
0019 22 RET

7.3 Run Time xdata Pointers

The situation often occurs that you need to point at addresses in the xdata space which are only known at run time. Here the
xdata pointer is setup in the executable code.

The best way to achieve thisisto declare an "uncommitted” pointer at compile time and to then equate it to an address when
running:

char xdata *xdata_ptr ; /* Unconmtted pointer */
/* to xdata nmenory */
mai n() {

xdat a_ptr=(char xdata*) 0x8000 ; /*Point at 0x8000 in */
/ *xdata */

}

An dternative is to declare a pointer to the xdata space and simply equate it to avariable.

Here is an exanpl e:

char xdata *ptr ; /* This is a spaced pointer!!! */
mai n() {
start _address = 0x8000 ; /*Variable containing address*/

/*to be pointed to */

0000 750080 R MoV start address, #080H
0003 750000 R MoV start address+01H, #00H

ptr = start_address ;

000C AEO00 R MoV R6, start _address
000E AFO0O R MoV R7, start _address+01H
0010 8EO0O R MOV ptr, R6
0012 8F00 R MOV ptr+01H, R7
0014 ?0C0001:

while(1l) {

X = *ptr++

0014 0500 R I NC ptr+01H
0016 E500 R MOV A ptr+01H
0018 AEOO R MOV R6, ptr
001A 7002 JNZ ?C0004

http://www.esacademy.com/automation/docs/c51primer/c07.htm (4 di 9) [09/11/01 11.03.29]

Accessing External Memory Mapped

001C 0500 R I NC ptr
001E ?00004:
001E 14 DEC A
001F FF MOV R7, A
0020 8F82 MoV DPL, R7
0022 8E83 MOV DPH, R6
0024 EO MOVX A @PTR
0025 FF MoV R7, A
0026 8FOO R MoV X, R7
}

0028 80EA SIVP ?C0001
002A ?00002:

}
002A ?0C0003:
002A 22 RET

A variation of this is to declare a pointer to zero and use a vari able as an of fset
t hus:

char xdata *ptr ;
mai n() {

unsigned int i ;
unsi gned char x ;

ptr = (char*) 0x0000 ;
for(i =0 ;
i < 0x40 ;
i ++) {
X =ptr[i] ;

}
}

Thisresultsin rather more code, as an addition to the pointer must be performed within each loop.

7.4 The volatile Storage Class

A common situation with external devicesis that values present in their registers change without the cpu taking any action.
A good exampleisareal time clock chip - the time changes continuously without the cpu writing anything.

Consider the following:

unsi gned int xdata *m|liseconds = 0x8000 ; // Pointer to
/'l RTC chip
time = *mlliseconds ; -> (1) // Get RTC register value

X = array[time] ;

time = *mlliseconds ; -> (2) [// Second register access
/1 optimsed out!

y = array[tinme] ;

http://www.esacademy.com/automation/docs/c51primer/c07.htm (5 di 9) [09/11/01 11.03.29]

Accessing External Memory Mapped

Here the value retrieved from the array isrelated to the value of *milliseconds, aregister in an external RTC.

If thisis compiled it will not work. Why? Well the compiler's optimiser shoots itself in the foot by assuming that, because
no WRITE occurred between (1) and (2), *millisec cannot have changed. Hence all the code generated to make the second
access to the register isoptimised out and so y == x!

The solution is declare *milliseconds as "volatile' thus:
unsigned int volatile xdata * milliseconds = 0x8000 ;

Now the optimiser will not try to remove subsequent accesses to the register.

7.5 Placing Variables At Specific Locations -
The Linker Method

A final method of establishing external variables at fixed addresses, especialy arrays, is by using the linker rather than the
compiler. For example, to produce a 10 character array in external memory, starting at 8000H, the following steps are
necessary:

[*** Nodule 1 ***/
/* This nodul e contains only data declarations! */
xdat a unsi gned char array[30] ;
/[* End Module 1 */
AAAANAAAAAAAAAAAAAAAAANAAANAAAAAAAAA
[*** Nodule 2 ***/
/* This nmodul e contains the executable statements */
extern xdata unsigned char array[10] ;

mai n()

{

unsi gned char i ;
i = array[i] ;
}
Now by linking with the invocation:

L51 nodul el. obj, nodul e2. obj XDATA (?XD?nodul el (8000H))

the linker will make the XDATA segment in Module 1 (indicated by ?XD?modulel) start at 8000H, regardless of other
xdata declarations el sewhere. Thus the array starts at 8000H and is 10 bytes (+ null terminator) long.

This approach lacks the flexibility of the above methods but has the advantage of making the linker reserve space in the
XDATA space.

http://www.esacademy.com/automation/docs/c51primer/c07.htm (6 di 9) [09/11/01 11.03.29]

Accessing External Memory Mapped

Similar control can be exercised over the address of segments in other memory spaces. C51 uses the following convention
for segment names:

CODE ?PR?functi onnanme?nodul e_nane (executabl e code)
CODE ?CO?functi onnanme?nodul e_nane (| ookup tables etc.)
BIT ?BI ?f unct i onnanme?nodul e_nane

DATA ?DT?functi onnane?nodul e_nane

XDATA ?XD?f uncti onnanme?nodul e_nane

PDATA ?PD?f uncti onnane?nodul e_nane

Thus the parameter receiving area of a LARGE model function 'test()' in module MOD1.C would be:

?XD?TEST?MOD1,
Thecodeis:

?PR?TEST?MOD1

And so on.

A knowledge of thisis useful for assembler interfacing to C51 programs. See section 14.

7.6 Excluding External Data Ranges From Specific
Areas

This very much follows on from the previous section. Occasionally a memory-mapped device, such asreal time clock chip,
is used as both a source of time values and RAM. Typically thefirst 8 bytesin the RTC's address range are the time counts,
seconds, minutes etc. whilst the remaining 248 bytes are RAM.

Left to itsown devices, the L51 linker will automatically place any xdata variables starting at zero. If the RTC has been
mapped at this address a problem occurs, as the RTC time registers are overwritten. In addition, it would be convenient to
allow the registers to be individually named.

One approach isto define a special module containing just a structure which describes the RTC registers. In the main
program the RTC registers are accessed as elements in the structure. The trick is that, when linking, the XDATA segment
belonging to the special module is forced to a specific address, here zero. Thisresultsin the RTC structure being at zero,
with any other XDATA variables following on. The basic method could also be used to stop L51 locating any variablesin a
specific area.

Example Of Excluding Specific Areas From L51

/* Structure | ocated at base of RTC Chip */
MAI N. C Modul e

extern xdata struct { unsi gned char seconds ;
unsi gned char m nutes ;
unsi gned char hours ;
unsi gned char days 7 } RTC chip ;

http://www.esacademy.com/automation/docs/c51primer/c07.htm (7 di 9) [09/11/01 11.03.29]

Accessing External Memory Mapped

/* O her XDATA (bjects */
xdat a unsigned char tine_secs, time_mns ;
voi d mai n(void) {

time_secs = RTC chip. seconds ;

time_mns RTC chi p. m nutes ;
}
RTCBYTES.C Module

xdata struct { unsigned char seconds ;

unsi gned char m nutes ;

unsi gned char hours ;

unsi gned char days ; } RTC chip ;
Linker Input File To Locate RTC_chip structure over real RTC Registersis:

| 51 mai n. obj , rtcbytes. obj XDATA(?XD?RTCBYTES(0h))

7.7 -missing ORDER and AT now in C51

Perhaps the most curious omission from C51 was the inability to fix the address of a data object at an absolute address from
the source file. Whilst there have always been methods of achieving the same effect, users have long requested an extension
to allow the address of an object to be included in the original declaration. In C51 v4.xx, the new _AT_control now exists.

7.8 Using The_at_and_ORDER_Controls

Here, the order of the variables must not change as it must match the physical location of the real time clock’ sregisters. The
#pragma ORDER tells c51 to place the data objects at ascending addresses, with the first item at the lowest address. The
linker must then be used to fix the address of the whole block in memory.

Source File MAIN.C

#pragma ORDER

unsi gned char xdata RTC secs ;
unsi gned char xdata RTC m ns ;
unsi gned char xdata RTC hours ;

mai n() { RTC mins =1 ; }

Linker Input File MAIN.LIN

mai n. obj] & to main & XDATA(?XD?NMAI N(Of a00h))

The alternative_at_control forces C51 to put data objects at an address given in the source file:

/** Fix Real Time O ock Registers Over Menory-Mapped Device **/
/** Fix each itemindividually **/
unsi gned char xdata RTC secs _at_ 0xfaOO ;

http://www.esacademy.com/automation/docs/c51primer/c07.htm (8 di 9) [09/11/01 11.03.29]

Accessing External Memory Mapped

unsi gned char xdata RTC mins _at_ OxfaOl ;
unsi gned char xdata RTC hours _at_ Oxfa02 ;

mai n() { RTC mins =1 ;
}

...which hopefully is self-explanatory!

http://www.esacademy.com/automation/docs/c51primer/c07.htm (9 di 9) [09/11/01 11.03.29]

Linking Issues and Stack Placement

8 Linking Issues And Stack Placement

This causes some confusion, especialy to those used to other compiler systems.

8.1 Basic Use Of L51 Linker

The various modules of a C program are combined by alinker. After compilation no actual addresses are assigned to
each line of code produced, only an offset is generated from the start of the module. Obviously before the code can be
executed each module must be tied to a unique address in the code memory. Thisis done by the linker.

L51, in the case of Keil (RL51 for Intel), isautility which assigns absol ute addresses to the compiled code. It also
searches library files for the actual code for any standard functions used in the C program.

A typical invocation of the linker might be:
|51 startup.obj, modulel.obj, module2.obj, module3.obj, C51L.lib to exec.abs

Here the three unlocated modules and the startup code (in assembler) are combined. Any callsto library functionsin any
of these filesresultsin the library, C51L.lib, being searched for the appropriate code.

The target addresses (or offsets) for any IMPs or CALLs are calculated and inserted after the relevant opcodes.

When al five .obj files have been combined, they are placed into another file called EXEC.ABS, the ABS implying that
thisis absolute code that could actually be executed by an 8051 cpu. In addition, a"map" file called EXEC.M51 is
produced which summarises the linking operation. This gives the address of every symbol used in the program plus the
size of each module.

In anything other than avery small program, the number of modules to be linked can be quite large, hence the command
line can become huge and unwieldy. To overcome this the input list can be a simple ASCII text file thus:

| 51 @i nput _file>
where input _file = ;

startup.obj, &
nodul el. obj, &
nodul e2. obj , &
nodul e3. obj , &
&

ColL.lib &

&

to exec. abs

There are controls provided in the linker which determine where the various memory types should be placed.

For instance, if an external RAM chip starts at 4000H and the code memory (Eprom) is at 8000H, the linker must be

http://www.esacademy.com/automation/docs/c51primer/c08.htm (1 di 15) [09/11/01 11.03.37]

Linking Issues and Stack Placement

given:

| 51 startup.obj, nodul el.obj, nodul e2.obj, nodul e3. obj,
C51L.lib to exec. abs CODE(8000H) XDATA(4000H)

Thiswill move all the variablesin external RAM to 4000H and above and all the executable code to 8000H. Even more
control can be exercised over where the linker places code and data segments. By further specifying the module and
segment names, specific variables can be directed to particular addresses - see 2.1.8 for an example.

8.2 Stack Placement

Unless you specify otherwise, the linker will place the stack pointer to give maximum stack space. Thus after locating al
the sfr, compiled stack and dataitems, the real stack pointer is set to the next available IDATA address. If you use the
8032 or other variant with 128 bytes of indirectly-addressable memory (IDATA) above 80H, this can be used very
effectively for stack.

?C_C51STARTUP SEGVENT CODE ; Decl are segnent in indirect
area
?STACK SEGVENT | DATA;
RSEG ?STACK ; Reserve one byte
DS 1
EXTRN CODE (?C_START)
PUBLI C ?C_STARTUP
CSEG AT 0
?C_STARTUP: LJMP STARTUP1
RSEG ?C_C51STARTUP
STARTUP1: ENDI F
MOV SP, #?STACK-1 ; Put address of STACK
| ocation into SP
LIMP ?C_START ; Goto initialised data
section

8.3 Using The Top 128 Bytes of the 8052 RAM

The original 8051 design has just 128 bytes of directly/indirectly addressable RAM. C51, when in the SMALL modd,
can use thisfor variables, arrays, structures and stack. Above 128 (80H) direct addressing will result in access of the sfrs.
Indirect addressing (MOV A,@R0) does not work.

However with the 8052 and above, the area above 80H can, when indirectly addressed, be used as additional storage.
The main use of thisareaisreally as stack. Datain this areais addressed by the MOV A,@Ri instruction. Asonly
indirect addressing can be used, there can be some loss of efficiency as the Ri register must be loaded with the required 8
bit address before any access can be made.

Left to its own devices C51 will not use this area other than for stack. Unusually, the 8051 stack grows up through RAM,
so the linker will place the STACK area at the top of the areataken up with variables, parameter passing segments etc.. If
your application does not need all the stack area allocated, it is possible to useit for variables. Thisis simply achieved by
declaring some variables as "idata’ and using "RAMSIZE(256)" when linking.

Such is human nature that most people will not think of using idata until the lower 128 bytes actually overflows and a
panic-driven search begins for more memory!

http://www.esacademy.com/automation/docs/c51primer/c08.htm (2 di 15) [09/11/01 11.03.37]

Linking Issues and Stack Placement

As has been pointed out, idata variables are rather harder to get at because of the loading of an Ri register first. However
thereis onetype of variable which isideally suited to this - the array or pointer-addressed variable.

The MOV A,@Ri isideal for array access asthe Ri simply contains the array index. Similarly avariable accessed by a
pointer is catered for, asthe @RI is effectively a pointer. Thisis especially significant now that version 3.xx supports
memory space specific pointers. The STACK is now simply moved above these new idata objects.

To summarise, with the 8052 if you are hitting the 128 byte ceiling of the directly addressable space, the moving of
arrays and pointer addressable objects can free-up large amounts of valuable directly addressable RAM very easily.

8.4 L51 Linker Data RAM Overlaying

8.4.1 Overlaying Principles

One of the main tricks used to allow large programs to be generated within an 8051 isthe OVERLAY function. Thisisa
mechanism whereby different program variables make use of the same RAM location(s). This possibility arises when
automatic local variables are declared. These by definition only have significance during the execution of the function
within which they were defined. Once the function is exited the area of RAM used by them is no longer required. Of
course static locals must remain intact until the function is next called. A similar situation exists for C51's reserved
memory areas used for parameter passing.

Taken over a complete program, each function will have a certain area of memory reserved for itslocals and parameters.
Within the confines of an 8051 the on-chip RAM would soon be exhausted.

The possibility then arises for these individual areas to be combined into a single block, capable of supplying enough
RAM for the needs of the single biggest function.

In C51 this processis performed by the linker's OVERLAY function. In simple terms, this examines all functions and
generates a special data segment called "DATA_GROUP", ableto contain all the local variables and parameters of all
C51 functions. As an example, if most functions require only 4 byes of local data but one particular one needs 10, the
DATA_GROUP will be 10 bytes long.

Using the registers as alocation for temporary data means that alarge number of locals and parameters can be
accommodated without recourse to the DATA_GROUP - thisiswhy it may appear smaller than you expect.

The overlayer works on the basis that if function 1 calls function 2, then their respective local data areas may not be
overlaid, as both must be active at the sametime. A third function 3, which isalso called by 1, may haveitslocals
overlaid with 2, as the two cannot be running at the same time.

mai n
I

funcA - func2 - func3 - func4d

funcB - funcb5 - func6 - func?

funcC - func8 - func9 - funclO

AsfuncA refersto func2 and func2 refersto func3 etc., A,2,3 and 4 cannot have their locals overlaid, asthey all form
part of the same path. Likewise, asfuncB refersto funcb and funcé refers to func? etc., B,6,7 and 4 cannot have their
locals overlaid. However the groups 2,3,4; 5,6,7 and 8,9,10 may have their locals overlaid asthey are never active
together, being attached to sequential branches of the main program flow. Thisisthe basis of the overlay strategy.

http://www.esacademy.com/automation/docs/c51primer/c08.htm (3 di 15) [09/11/01 11.03.37]

Linking Issues and Stack Placement

However a complication arises with interrupt functions. Since these can occur at any time, they would overwrite the
local data currently generated by whichever background (or lower priority interrupt) function was running, were they
also to usethe DATA_GROUP. To cope with this, C51 identifies the interrupt functions and called functions and
allocates them individual local data areas.

8.4.2 Impact Of Overlaying On Program Construction
The general rule used by L51 isthat any two functions which cannot be executing simultaneously may have their local
dataoverlaid. Re-entrant functions are an extension of thisin that a single function may be called simultaneously from
two different places.
In 99% of cases the overlay function works perfectly but there are some cases where it can give unexpected results.
These are basically:

1. Indirectly-called functions using function pointers

2. Functions called from jump tables of functions

3. Re-entrant functions (-incorrect or non-declaration thereof)
Under these conditions the linker issues the following warnings:
MULTI PLE CALL TO SEGVENT

UNCALLED SEGVENT
RECURSI VE CALL TO SEGVENT

8.4.2.1 Indirect Function Calls With Function Pointers
(hazardous)
Taking (i) first:

Here func4 and func5 are called from main by an intermediate function called EXECUTE. A pointer to the required
function is passed. When L51 analyses the program, it cannot establish a direct link between execute and func4/5
because the function pointer received as a parameter breaks the chain of references - this function pointer is undefined at
link time. Thus L51 overlays the local segments of func4, func5 and execute asif they were all references from main.
Refer to the overlay diagram above if in doubt.

Theresult isthat the locals of func4/5 will corrupt the locals used in execute. Thisis clearly VERY dangerous, especially
as the overwriting may not be immediately obvious - it may only appear under abnormal operating conditions once the
code has been delivered.

#i ncl ude <regb517. h>

/***

*okx OVERLAY HAZARD 1 - Indirectly called functions *okx
***/
char funcl(void) { /1l Function to be called directly

char x, y, arr[10] ;

for(x =0 ; x <10 ; x++) {
arr[x] = x ;

}

http://www.esacademy.com/automation/docs/c51primer/c08.htm (4 di 15) [09/11/01 11.03.37]

Linking Issues and Stack Placement

return(x) ;

}

char func2(void) { /'l Function to be called directly
(.... CCode ...)

}

char func3(void) { /'l Function to be called directly
(.... CCode ...)

return(x) ;

}

char func4(void) { /'l Function to be called indirectly

char x4, y4, arr4[10] ; /'l Local vari ables
for(x4 =0 ; x4 <10 ; x4++) {

arr4[x4] = x4 ;
}

return(x4) ;

}

char func5(void) { /'l Function to be called indirectly
char x5, y5, arr5[10] ; /'l Local vari ables
for(x5 =0 ; x5 < 10 ; x5++) {

arr5[x5] = x5 ;
}

return(x5) ;

}

/*** Function which does the calling ***/

char execute(fptr) //Receive pointer to function to be used
char (*fptr)() ;
{

char tex ; // Local variables for execute function
char arrex[10] ;

for(tex = 0 ; tex < 10 ; tex++) {
arrex[tex] = (*fptr)() ;
}

return(tex) ;

}

/| *** Declaration of general function pointer ***/

char (code *fp[3])(void)

http://www.esacademy.com/automation/docs/c51primer/c08.htm (5 di 15) [09/11/01 11.03.37]

Linking Issues and Stack Placement

/*** Main Calling Function ***/
voi d mai n(void) {
char am ;

funcl ; /1l Point array elements at functions
func2 ;
func3 ;

_..,
©
=
e
I

fp[O] ; /| Execute functions
fpl1] ;
fpl2] ;

i f(Pl) { /1l Control which function is called

M
3
o

am = execute(func4d) ; // Tell execute function which
to run

}

el se {

am = execute(funcb) ; // Tell execute function which
to run

}
}

Resulting Linker Output .M51 File for the dangerous condition.

M5- DOS MCS-51 LINKER / LOCATER L51 V2.8, |INVCKED BY: L51 MAIN OBJ TO EXEC. ABS

OVERLAY MAP OF MODULE: EXEC. ABS (MAI N)
//loverlaid wth

SEGVENT DATA- GROUP
+_> CALLED SEGVENT START LENGTH

2C_C51STARTUP
+ > ?PR?MAI N?MAI N

?PR?MAI N?MAI N 000EH 0001H
+ > ?PR?FUNCL?MAI N
> ?PR?FUNC2?MAI N
> ?PR?FUNC3?MAI N
> ?PR?FUNC4?MAI N
> ?PR?_EXECUTE?MAI N
> ?PR?FUNC5?MAI N

?PR?FUNC1?MAI N 00O0OFH 000BH
?PR?FUNC2?MAI N 0O0OFH 000BH

?PR?FUNC3?MAI N OO0OFH 000BH /| Danger func4's
/ /1 ocal
?PR?FUNC4?MAI N OO0OFH 000BH //func4d4's data

http://www.esacademy.com/automation/docs/c51primer/c08.htm (6 di 15) [09/11/01 11.03.37]

Linking Issues and Stack Placement

?PR?_EXECUTE?NAI N OO0OFH 000EH /|l execute's, its
+ > ?C LI B_CODE [lcaller!!
?PR?FUNC5?MAI N 000FH 000BH /1 funch's | ocal

//data overlaid
//with execute's,
[lits caller!!

RAM Locati ons Used:

D: 0012H SYMBOL t ex /'l execute's locals overlap
D: 0013H SYMBCL arrex /] func4 and funch5' s - K
D: O00OFH SYMBOL y

D: 0010H SYMBCL arr4

D: O0OOFH SYMBOL y5

D: 0010H SYMBOL arrb

Incidentally, the overlay map shows which functions referred to which other functions. By checking what L51 has found
against what you expect, overlay hazards may be spotted.

8.4.2.2 Indirectly called functions solution
Use the overlay command when linking thus
main.obj & to exec.abs & OVERLAY (main ; (func4,funcb), _execute! (func4,funcb))

Note: Thetilde sign';" means: "Ignore the reference to func4/5 frommain” The'!" means: "Manually generate a
reference between intermediate function 'execute’ and func4/5 to prevent overlaying of local variables within these
functions.”

Please make sure you under stand exactly how this works!!!
The new linker output is:
MS-DOSMCS-51 LINKER / LOCATER L51 V2.8, INVOKED BY:

L51 MAIN. OBJ TO EXEC. ABS OVERLAY(MAI N ; (FUNC4, FUNC5), _EXECUTE ! (FUNC4, FUNCH))
OVERLAY NMAP OF MODULE: EXEC. ABS (MAIN)

SEGVENT DATA- GROUP
+ > CALLED SEGVENT START LENGTH

?2C_C51STARTUP
+ > ?PR?MAI N?MAI N - - - -

?PR?MAI N?MAI N 0024H 0001H
+ > ?PR?FUNCL?MAI N - -
> ?PR?FUNC2?MAI N
> ?PR?FUNC3?MAI N
> ?PR?_EXECUTE?MAI N

+
+
+_

?PR?FUNC1?MAI N 0025H 000BH

http://www.esacademy.com/automation/docs/c51primer/c08.htm (7 di 15) [09/11/01 11.03.37]

Linking Issues and Stack Placement

?PR?FUNC2?MAI N 0025H 000BH

?PR?FUNC3?MAI N 0025H 000BH

?PR? _EXECUTE?NAI N 0025H 0O00OEH

+ > ?C LI B_CODE

D: 0028H SYMBCOL t ex /! Execute's variabl es
no | onger

D: 0029H SYMBCOL arrex [/ overlaid with func4/
5 s

D: 0008H SYMBOL y

D: 0009H SYMBCOL arr4

D: 0013H SYMBCOL y5

D: 0014H SYMBOL arrb

*** \WARNI NG 16: UNCALLED SEGVENT, | GNORED FOR OVERLAY PROCESS

SEGMVENT: ?PR?FUNC4?MAI N

*** WARNI NG 16: UNCALLED SEGVENT, | GNORED FOR OVERLAY PROCESS
SEGVENT: ?PR?FUNC5?MAI N

Note: The WARNING 16's show that func4/5 have been removed from the overlay process to remove the hazard. See
section 8.4.2.6 on the "UNCALLED SEGMENT, IGNORED FOR OVERLAY

PROCESS' warning.
8.4.2.3 Function Jump Table Warning
(Non-hazardous)

Here two functions are called an array of function pointers. The array "jump_table" existsin a segment called
"?2CO?MAINL, i.e. the constant area assigned to module main. The problem arises that the two message string arguments
to the printf 's are also sited here. This|eads to arecursive definition of the function start addressesin the jump table.

Whilethisisnot in itself dangerous, it prevents the real function references from being established and hence the
overlaying processisinhibited.

kkhkkkhkkhkhkkhhkkhhkrhkhhkhhkhhkhhkhhkhhkhhkhhkhdhkhhkhdhkhhkkhkhkhkkhkhkhkkikkikkikkikkikkikk-
’

*ogeggggg<<<<<Recursive Call To Segnent Error >>>>>>>>>>>>>>%
EaR b b S b b b I b b b S b I I S b b I b b I b b S b b I S b b I S I P S b I S b I b b I I b b b B b b

#i ncl ude <stdio. h>
#i ncl ude <reg517. h>

void funcl(void) {
unsi gned char i1 ;
for(il =0; i1 <10 ; il++) {

printf("THIS IS FUNCTION 1\n") ; // String stored in

http://www.esacademy.com/automation/docs/c51primer/c08.htm (8 di 15) [09/11/01 11.03.37]

Linking Issues and Stack Placement

?CO?MAI N1 segnent

}
voi d func2(void) {

unsi gned char i2 ;
for(i2 =0; i2 <10 ; i2++) {

printf("THIS IS FUNCTION 2\n") ; // String stored in
?CO?MAI N1 segnent

}
}
code void(*junp_table[])()={funcl, func2}; //Junp table to
functi ons,
/]l table stored in
?CO?MAI N1

/'l segnent.
/[*** Cal ling Function ***/

mai n() {
(*junp_table[P1 & 0x01])() ; [/l Call function via junp
table in ?CO?NVAI N1
}

NANNNNNNNNNNNNNNNNNNNNNN End Of 'Vbdul e

The resulting link output is:

Note: No reference exists between main and funcl/2 so the overlay process cannot occur, resulting in wasted RAM.

OVERLAY NMAP OF MODULE: MAI N1 (MAI N1)

MCS-51 LINKER / LOCATER L51 V2.8

DATE 04/08/92 PAGE 2

SEGVENT Bl T- GROUP DATA- GROUP
+_> CALLED SEGQVENT START LENGTH START LENGTH

2C_C51STARTUP - - - -
+ > ?PR?MAI N?MAI N1

?PR?MAI N?MAI N1 - - - -
+ > ?2CO?MAI N1
+ > ?C LI B _CODE

2CO?MAI N1 - - - -
+ > ?PR?FUNCL?MAI N1
+ > ?PR?PFUNC2?MAI N1

?PR?FUNC1?MAI N1 - - 0008H 0001H
+_> ?PR?PRI NTF?PRI NTF

http://www.esacademy.com/automation/docs/c51primer/c08.htm (9 di 15) [09/11/01 11.03.37]

Linking Issues and Stack Placement

?PR?PRI NTF?PRI NTF 0020H.0 0001H. 1 0009H 0014H
+ > ?C LI B_CODE
+ > ?PR?PUTCHAR?PUTCHAR

2PR?FUNC2?MAI N1 - - 0008H 0001H
+ > ?PR?PRI NTF?PRI NTF

*** WARNI NG 13: RECURSI VE CALL TO SEGVENT
SEGVENT: ?CO?NAI N1
CALLER ?PR?FUNC17?MAI N1

*** WARNI NG 13: RECURSI VE CALL TO SEGVENT
SEGVENT: ?CO?NAI N1
CALLER: ?PR?FUNC27?MAI N1

8.4.2.4 Function Jump Table Warning Solution

The solution isto use the OVERLAY command when linking thus

mai nl. obj &
to mainl.abs &
OVERLAY(?CO?MAI N1 ~ (funcl, func2), main ! (funcl, func2))

This deletes the reference to funcl & 2 from the 2CO?MAIN1 segment and inserts the true reference from main to funcl
& func2.

The linker output is now thus:

OVERLAY MAP OF MODULE: MAI N1. ABS (VAl N1)

SEGVENT Bl T- GROUP DATA- GROUP
+ > CALLED SEGVENT START LENGTH START LENGTH

?2C_C51STARTUP - - - -
+ > ?PR?MAI N?MAI N1

2PR?MAI N?MAI N1 - - - -
+ > ?2CO?MAI N1

> ?C_LI B_CODE

> ?PR?FUNCL?MAI N1

> ?PR?FUNC2?MAI N1

+
+
+

?PR?FUNCL?MAI N1 - - 0008H 0001H
+ > ?CO?MAI N1
+ > ?PR?PRI NTF?PRI NTF

?PR?PRI NTF?PRI NTF 0020H. 0 O0001H.1 0009H 0014H
+ > ?C LI B_CODE
+ > ?PR?PUTCHAR?PUTCHAR

?PR?FUNC2?NMAI N1 - - 0008H 0001H

http://www.esacademy.com/automation/docs/c51primer/c08.htm (10 di 15) [09/11/01 11.03.37]

Linking Issues and Stack Placement

+ > 2C0?MAI N1
+ > ?PR?PRI NTF?PRI NTF

8.4.2.5 Multiple Call To Segment Warning
(Hazardous)

Thiswarning generally occurs when afunction is called from both the background and an interrupt. This means that
potentially the interrupt may call the function whilst it is still running, as aresult of a background level call. The result
could be the over-writing of the local datain the background. The fact that the offending function is also overlaid with
other background functions makes the chances of failure very high. The simplest solution isto declare the function as
REENTRANT so that the compiler will generate alocal stack for parameters and variables. Thus on each call to the
function, anew set of parameters and local variables are created without destroying any existing ones from the current
call.

Unfortunately this significantly increases the run time and code produced. Another possibility isto make a second and
renamed version of the function, one for background use and one for interrupt. Thisis somewhat wasteful and presents a
maintenance problem, as you now have effectively two versions of the same piece of code.

In many cases the situation is not a problem, as the user may have ensured that the reentrant use could never occur, but is
left with the linker warning. However this must be viewed as dangerous, particularly if more than one programmer is
involved.

#i ncl ude <stdi o. h>
#i ncl ude <regb517. h>

void funcl(void) {
unsi gned char i1, al[15] ;
for(il =0; il <10 ; il++) {
al[il] =1i1 ;
}
}

void func2(void) {
unsi gned char i2,a2[15] ;

for(i2 =0; 12 <10 ; i2++) {

a2[15] = i2 ;
}
}

mai n() {
funcl() ;
func2() ;

}

void tinmerO_int(void) interrupt 1 {
funcl() ;

http://www.esacademy.com/automation/docs/c51primer/c08.htm (11 di 15) [09/11/01 11.03.37]

Linking Issues and Stack Placement

} NNNNNNNNNNNNNNNNNNNNNNN End of Nbdul e

Thi s produces the |inker nap:

OVERLAY NMAP OF MODULE: MAI N2 (MAI N2)
SEGVENT DATA- GROUP
+_> CALLED SEGVENT START LENGTH

?PR?TI MERO_| NT?MAI N2
+ > ?PR?FUNCL?MAI N2

?PR?FUNC1?MAI N2 0017H OO0O0OFH

?2C_C51STARTUP
+ > ?PR?MAI N?MAI N2

2PR?MAI N?MAI N2
+ > ?PR?FUNCL?MAI N2
+ > ?PR?FUNC2?MAI N2

?PR?FUNC2?MAI N2 0017H 000FH
D: 0007H SYMBOL i1 // Danger!
D: 0017H SYMBCL al
D: 0007H SYMBCL i 2
D: 0017H SYMBOL a2

*** WARNI NG 15: MULTI PLE CALL TO SEGVENT
SEGMVENT: ?PR?FUNC1?MAI N2
CALLERL: ?PR?TI MERO_I NT?MAI N2
CALLER2: 7?C_C51STARTUP

8.4.2.6 Multiple Call To Segment Solution
The solution isto

(i) Declare funcl as REENTRANT thus:

void funcl(void) reentrant { }

(i) Use OVERLAY linker option thus:

mai n2. obj &
to main2.abs &
OVERLAY(main ~ funcl,timer0O_int ~ funcl)

to break connection between main and funcl and timerQ_int and funcl.

OVERLAY NMAP OF MODULE: MAI N2. ABS (VAl N2)

SEGVENT DATA- GROUP
+ > CALLED SEGVENT START LENGTH

http://www.esacademy.com/automation/docs/c51primer/c08.htm (12 di 15) [09/11/01 11.03.37]

Linking Issues and Stack Placement

?2C_C51STARTUP - -
+ > ?PR?MAI N?MAI N2

2PR?MAI N?MAI N2 - -
+ > ?PR?FUNC2?MAI N2

?PR?FUNC2?MAI N2 0017H 000FH

*** WARNI NG 16: UNCALLED SEGVENT, | GNORED FOR OVERLAY PROCESS
SEGMVENT: ?PR?FUNC1?MAI N2

This means that the safe overlaying of funcl with other background functions will not occur. Removing the link only
with the interrupt would solve this:

mai n2. obj &
to mai n2. abs &
OVERLAY(tinmerO_int ~ funcl)

Another route would be to disable all overlaying but thisislikely to eat up large amounts of RAM very quickly and is
thus a poor solution.

mai n2. obj & to mai n2. abs & NOOVERLAY

With the MULTIPLE CALL TO SEGMENT WARNING the only redlly "safe" solution isto declare funcl as
REENTRANT, with the duplicate function a good second. The danger of using the OVERLAY command isthat aless
experienced programmer new to the system might not realise that the interrupt is restricted as to when it can call the
function and hence system quality is degraded.

8.4.3 Overlaying Public Variables

All the preceding examples deal with the overlaying of locals and parameters at a function level. A case occurred
recently in which the program was split into two distinct halves; the divide taking place very early on. To al intentsa_nd
purposes the 8051 was able to run one of two completely different application programs, based on some user input
during initialisation.

Each program half had alarge number of public variables, some of which were known to both sides but the majority of

which were local to one side only. Thisis amost multitasking.

Thistype of program structure really needs a new storage class like "GLOBAL", with public meaning availableto a
certain number of modules only. GLOBAL would then be available to all modules. The new C166 supports this type of
task-based variable scope. Unfortunately C51 does not, so afix is required.

Thelinker's OVERLAY command does not help, asit only controls the overlaying of local and parameter data. One
possible solution uses special modules to declare the publics. Modulel declares the publics for program (taskl);
Module2 declares the publics for program?2 (task2). Finally, Module3 declares the publics which are avail able to both
sides.

Thetrick then isto use the linker to fix the data segments on Modulel and Module2 at the same physical address, whilst
allowing Module3's variables to be placed automatically by the linker.

This solution uses three special modules for declaring the publics:

http://www.esacademy.com/automation/docs/c51primer/c08.htm (13 di 15) [09/11/01 11.03.37]

Linking Issues and Stack Placement

/* Exanple of creating two sets of public data */
/*in sanme nenory space */

extern void mainl(void) ;
extern void mai nO(void) ;

/* Main nodul e where systemsplits into tw parts */

voi d mai n(void) {
bit flag ;

if(flag) {
mai n0() ; /1 Branch 0

}

el se {
mai n1() ; /1 Branch 1

}

} NANNNNNNNNNNNNNNNNNNNNNN End of I\/bdul e

/* Modul e that declares publics for branch 2 */
/* Publics for branch 2 */

unsi gned char x2,y2 ;
unsigned int z2
char a2[0x30] ;

/* A variable which is accessible fromboth branches */

extern int conmon

NNNNNNNNNNNNNNNNNNNNNNN End Of 'vbdul e

voi d mai nO(void) {

unsi gned char cO0 ; /* Local - gets overlaid with cl1 in*/
[*ot her branch */

x2 = 0x80 ;

y2 = X2 ;

cO =y2;

z2 = x2*y2 ;

az2[2] = x2 ;

NNNNNNNNNNNNNNNNNNNNNNN End Of I\/bdul e

/* Modul e that declares publics for branch 1 */

[* Publics for branch 1 */

http://www.esacademy.com/automation/docs/c51primer/c08.htm (14 di 15) [09/11/01 11.03.37]

Linking Issues and Stack Placement

unsi gned char x1,yl ;
unsigned int zl1 ;
char al[0x30] ;

/* A variable which is accessible fromboth branches */
extern int common ;

void mai n1(void) {

char cl ;
x1 = 0x80 ;
yl = x1 ;
cl =yl ,;
z1 = x1*y1l ;
al[2] = x1 ;

common = z1 ;

}

NANNNNNNNNNNNNNNNNNNNNNN End Of I\/bdul e

/* Modul e that decl ares vari ables that both */
/ *branches can access */

int conmmon ; /* A variable common to both branches */
NNNNNNNNNNNNNNNNNNNNNNN End Of 'Vbdul e
/* Linker Input */

| 51 t.obj,t1.0bj,t2.0bj,comobj to t.abs
DATA(?DT?T1(20H), ?DT?T2(20H))

The choice of "20H" for the location places the combined segments just above the register banks.

The main problem with this approach isthat a DATA overlay warning is produced. Thisis not dangerous but is
obviously undesirable.

http://www.esacademy.com/automation/docs/c51primer/c08.htm (15 di 15) [09/11/01 11.03.37]

http://www.esacademy.com/automation/docs/c51primer/c09.htm

Fatal Error - Not Enough Financial Resources Available [H[=] E3

Alert! Your Website Is Not Earning You Enough Money!
Would You Like To Fix This Problem Now? | ves [Mo |

LinkExchange

9 Other C51 Extensions

9.1 Special Function Bits

V.A frustration for assembler programmerswith the old C51 version wasthe need to use bit masks when testing
for specific bitswith charsand ints, despite there being a good set of bit-orientated assembler instructionswithin
the 8051. In version 3, however, it is possibleto for ce data into the bit-addressable ar ea (starting at 0x20) where the
8051's bit instructions can be used.

An exampleistesting the sign of a char by checking for bit = 1.

Herethechar isdeclared as" bdata" thus:

bdata char test _char ;
sign_bit is defined as:

shit sign_bit = test_char 7 ;
to usethis:

test _char = counter ;
if(sign_ bit) { /* test_char is negative */ }

the opcodes executed are:

MOV A counter ;
MOV test _char, A ;
JNB 0, DONE ;
/* Negative */

All of which isalot faster than using bit masksand &'s!

Theimportant pointsarethat the" bdata" tells C51 and L51 that thisvariableisto be placed in the bit-addr essable
RAM area and the " sbit sign_bit =test_char 7" tells C51 to assumethat a bit called sign_bit will be located at
position 7 in thetest_char byte.

http://www.esacademy.com/automation/docs/c51primer/c09.htm (1 di 4) [09/11/01 11.03.45]

http://leader.linkexchange.com/30/X1291923/clickle
http://leader.linkexchange.com/30/X1291923/clicklogo

http://www.esacademy.com/automation/docs/c51primer/c09.htm

Byte Nunber: test_char 20H Start O BDATA area
Bit Nunber: 0,1,2,3,4,5,6,7<_sign_bit

Byt e Nunber: 21H

Bit Number: 8,9,10,11,12,13, 14,15

Byt e Nunber: 22H

Bit Nunmber: 16,17,18, 19, 20, 21, 22, 23, 24.

The situation with intsis somewhat mor e complicated. The problem isthat the 8051 does not store things as you
first expect. The same sign test for an int would require bit 7 to betested. Thisis because the 8051 storesint's high
byte at the lower address. Thusbit 7 isthe highest bit of the higher byte and 15 isthe highest bit of the lower .

Byte Nunber: test_int(high) 20H
Bit Number: 0,1,2,3,4,5,6,7
Byte Nunber: test_int+1(low) 21H

Bit Number: 8,9,10,11, 12,13, 14, 15

Bit |locations in an integer

9.2 Support For 80C517/537 32-bit Maths Unit

The Siemens 80C537 and 80C517A group have a special hardwar e maths unit, the MDU, aimed at speeding-up
number -crunching applications.

9.2.1 The MDU - How To Use It

To allow the 8051 to cope with 16 and 32-bit (" int" and "long") multiplication and division, the Siemens 80C517
variant has a special maths co-processor (M DU) integrated on the cpu silicon. A 32-bit normalise and shift isalso
included for floating point number support. It also has 8 data pointersto make accessing external RAM more
efficient.

The compiler can take advantage of these enhancementsif the" MOD517" switch isused, either asa #pragmaor as
a command line extension. Thiswill result in the use of the MDU to perform > 8 bit multipliesand divides.
However a special set of runtimelibrariesisrequired from Keil for linking.

Using the MDU will typically yield a runtimeimprovement of 6 to 9 timesthe basic 8051 cpu for 32 bit unsigned
integer arithmetic.

Optionally the blanket use of the 80C517 enhancements after MOD517 can be selectively disabled by the NOM DU
and NODP pragmas. Predictably NOM DU will inhibit the use of the maths unit, while NODP will stop the eight
data pointersbeing used.

9.2.2 The 8 Datapointers

To speed up block data moves between external addresses, the 517A has 8 datapointers. These are only used by
C51in the memcpy() and strcpy() library functions.

Thegeneral "MOD517" switch will enabletheir use. Note that the strcat() routine does not use the additional data
pointers.

If the extra pointersareto be used both in background and interrupt functions, the DPSEL register is
automatically stacked on entry to theinterrupt and a new DPSEL value allocated for the duration of the function.

http://www.esacademy.com/automation/docs/c51primer/c09.htm (2 di 4) [09/11/01 11.03.45]

http://www.esacademy.com/automation/docs/c51primer/c09.htm

9.2.380C517 - Things To Be Aware Of

The 80C517 MDU isused effectively like a hardwar e subroutine, asit isnot actually part of the 8051 cpu. As such
it issubject to normal sub-routinerulesregarding re-entrancy. If, asan example, both a background program and
an interrupt routinetry to use the MDU simultaneously, the background calculation will be corrupted. Thisis
because the M DU input and output registersare fixed locations and the interrupt will smply overwritethe
background values.

To allow the background user to detect corruption of the MDU registers, the MDEF bit is provided within the
ARCON register. After any background use of the MDU, a check should be made for thisflag being set. If so, the
calculation must berepeated. Appropriate use of the NOMDU pragma could be used instead.

Note: the compiler does not do this - the user must add the following code to overcome the problem:

#pragma MOD517
#i ncl ude "reg517. h"

long X,y, 2z ;
func()
{
whi | e(1)
{
x =yl z; /* 32-bit calculation */
i f(MDEF == 0) /* 1f corruption has */
{ break ; } /* occurred then repeat */
} /* else exit loop */

}
9.3 87C751 Support

The Philips 87C751 differsfrom the normal 8051 CPU by having a 2k code space with no option for external ROM.
Thisrendersthelong LIMP and LCALL instructionsredundant. To cope with thisthe compiler must be forced to
not generate long branch instructions but to use AJMPsand ACALLsinstead

9.3.1 87C751 - Steps To Take

Invoke C51 with C51 myfile.c ROM(SMALL) NOINTVECTOR or use" #pragma ROM (SMALL)"
Usethe INIT751.A51 startup filein the LIB directory.

Do not use floating point arithmetic, integer or long divides, printf, scanf etc., asthey all use LCALLSs.

A special 87C751 library package is available which will contain short call versions of the standard library
routines.

E N

9.3.2 Integer Promotion

Automatic integer promotion within I F statementsisincorporated in version >= 3.40 to meet recent ANS|
stipulationsin thisarea. This makes porting code from Microsoft or Borland PC C compilers much easier. Thus
any char (s) within a conditional statement are pre-cast to int beforethe compareis performed. This makes some
sense on 16 bit machineswhereint isasefficient as char but, in the 8051, char isthe natural sizefor data and so
some loss of efficiency results. Fortunately Keil have provided " #pragma NOINTPROMOTE" to disablethis
feature! In thiscase explicit casts should be used if another data type might result from an oper ation.

To show why this #pragma is inportant, this C fragnent's code sizes are influenced
t hus:

http://www.esacademy.com/automation/docs/c51primer/c09.htm (3 di 4) [09/11/01 11.03.45]

http://www.esacademy.com/automation/docs/c51primer/c09.htm

char ¢ ; unsigned char cl1l, c2 ; int i ;
mai n() {
if((char)c == Oxff) ¢ =0 ;
if((char)c == -1) =1;

i = (char)c + 5 ;
if((char)cl < (char)c2 + 4) cl1l =0 ;

}

Code Sizes

47 bytes - C51 v3.20
49 bytes - C51 v3.40 (| NTPROMOTE)
63 bytes - C51 v3.40 (NO NTPROMOTE)

Again this goesto show that C portability compromises efficiency in 8051 programs...

http://www.esacademy.com/automation/docs/c51primer/c09.htm (4 di 4) [09/11/01 11.03.45]

Miscellaneous Points

10 Miscellaneous Points

10.1 Tying The C Program To The Restart Vector

Thisis achieved by the assembler file STARTUP.A51. This program ssimply placesa LIMP STARTUP at |ocation CO000
(Lowest EPROM location

The startup routine just clears the internal RAM and sets up the stack pointer. Finally it executesa LIMP to "main”,
(hopefully) the first function in the C program.

LIMP nai n
mai n()
{
}

In fact this need be the only assembler present in a C51 program.

10.2 Intrinsic Functions

There are anumber of special 8051 assembler instructions which are not normally used by C51. For the sake of speed it is
sometimes useful to get direct access to these.

Unlike the normal C51 '>>' functions, _cror__ allows direct usage of an 8051 instruction set feature, in this casethe"RR A"
(rotate accumulator). Thisyields a much faster result than would be obtained by writing one using bits and the normal >>
operator. Therearealso _iror_and _lror_intrinsic functions for integer and long data as well.

The _nop_ function smply adds an in-line NOP instruction to generate a short and predictable time delay. Another
function, _testbit_, makes use of the JBC instruction to allow a bit to be tested, a branch taken and the bit cleared if set.
The only extra step necessary isto include "intrins.h" in the C51 sourcefile.

Hereis an example of how the _testbit () intrinsic function is used to save a CLR instruction:

: #include <intrins. h>

; unsigned int shift _reg = 0 ;
; bit test flag ;

; void main(void) {
RSEG ?PR?mai n?T

http://www.esacademy.com/automation/docs/c51primer/c10.htm (1 di 4) [09/11/01 11.03.49]

Miscellaneous Points

USI NG 0
mai n:
: SOURCE LINE # 12

; /* Use Normal Approach */

; test flag = 1 ;
; SOURCE LINE # 14
SETB test _flag

; if(test flag == 1) {
; SOURCE LINE # 16
JNB test _flag, 7C0001
; test flag = 0 ;
; SOURCE LINE # 17

CLR test flag
; P1 = Oxff ;
; SOURCE LINE # 18
MOV P1, #OFFH
; }

; SOURCE LINE # 19
?C0001:

. /* Use Intrinsic Function */
; test flag = 1 ;
: SOURCE LINE # 21
SETB test flag

; i f(! _testbit_(test_flag)) {
; SOURCE LINE # 23

JBC test flag, 7C0003
X P1 = Oxff X
;. SOURCE LINE # 24
MOV P1, #OFFH
; }
: SOURCE LINE # 25
; }
: SOURCE LINE # 27
?C0003:
RET
: END OF main
END

See pages 9-17 in the C51 Manual

10.3 EA Bit Control #pragma

Whilst the interrupt modifier for function declarations remains unchanged a new directive, DISABLE, allows interrupts to
be disabled for the duration of afunction. Note that this can be individually applied to separate functions within a module
but is given as a#pragma rather than as part of the function declaration. Although not verified yet, DISABLE givesthe
user some control over the EA or EAL bit.

http://www.esacademy.com/automation/docs/c51primer/c10.htm (2 di 4) [09/11/01 11.03.49]

Miscellaneous Points

10.4 16 Bit sfr Support

Another new feature is the 16bit sfr type. Within expanded 8051 variants in particular, many 16 bit timer and capture
registers exist. Rather than having to load the upper and lower bytes individually with separate C statements, the sfr16
typeis provided. The actual address declared for a 16 bit sfr in the header file is always the low byte of the sfr. Now to
load a 16 bit sfr from C, only asingleint load is required. Be warned - 8-bit instructions are still used, so the 16 bit
load/read is not indivisible - odd things can happen if you load atimer and it overflows during the process! Note that
usually only timer 2 or above has the high/low bytes arranged sequentially.

10.5 Function Level Optimisation

Optimisation levels of 4 and above are essentially function optimisations and, as such, the whole function must be held in
PC memory for processing. If there isinsufficient memory for this, awarning isissued and the additional optimisation
abandoned. Code execution will still be correct however. See p1-8 in the C51 manual.

10.6 In-Line Functions In C51

One of the fundamentals of C isthat code with a well-defined input, output and job is placed into afunctioni.e. a
subroutine. Thisinvolves placing parameters into a passing area, whether a stack or aregister, and then executing a
CALL. It isunavoidable that the call instruction will use two bytes of stack.

In most 8051 applications this not a problem, as thereis generally 256 on-chip RAM potentially available as stack. Even
after allowing for afew registerbanks, there is normally sufficient stack space for deeply nested functions.

However in the case of the 8031 and reduced devices such asthe 87C751, every byte of RAM iscritical. In the latter case
there are only 64 bytes!

A trick which can both save stack and reduce run time is to use macros with parameters to act like "in-line" functions. The
ability to create macros with replaceable parameters is not commonly used but on limited RAM variantsit can be very
useful.

Here a strcpy() function created as a macro named "Inline_Strcpy", whilst it looks like a normal function, it does not
actually have any fixed addresses or local data of itsown. The'\' characters serve to allow the macro definition to continue
to anew line, in this case to preserve the function-like appearance.

Itis"called" like anormal function with the parameters to be passed enclosed in (). However no CALL isused and the
necessary code is created in-line. The end result is that a strcpy is performed but no new RAM or stack is required.

Please note however, the drawback with this very simple example is that the source and destination pointers are modified
by the copying process and so is rather suspect!

A further benefit in this exampleis that the notional pointers sl and s2 are automatically memory-specific and thus very
efficient. Thus in situations where the same function must operate on pointer datain a variety of memory spaces, slow
generic pointers are not required.

#define Inline_Strcpy(sl,s2) {\ while((*sl = *s2) = 0)}\
{*s1++ ; *s2++; }\

}
char xdata *out _buffx = { " "y
char xdata *in_buffx = { "Hello" } ;
char idata *in_buffi ={ "Hello" } ;
char idata *out_buffi = { " "y

http://www.esacademy.com/automation/docs/c51primer/c10.htm (3 di 4) [09/11/01 11.03.49]

Miscellaneous Points

char code *in_buffc ={ "Hello" } ;
voi d mai n(void) {

Inline_Strcpy(out_buffx,in_buffx) // In line functions
Inline_Strcpy(out_buffi,in_buffi)
I nline_Strcpy(out_buffx,in_buffc)

}

Another good example of how a macro with parameters can be used to aid source readability isin the optimisation feature
in Appendix D. Theinterpolation calculation that originally formed a subroutine could easily be redefined as a macro with
5 parameters, realising aram and run time saving at the expense of code size.

Note that 'r', the fifth parameter, represents the return value which has to be "passed" to the macro so that it has
somewhere to put the result!

#define interp_sub(x,y,n,d,r) y -=x; \
if('Cy) { r = (unsigned char) (x +(unsigned char) (((unsigned
int)(n > y))/d)) ;\

} else { r = (unsigned char) (x - (unsigned char)(((unsigned int)(n * -y))/d)) ; }
This is then called by:

[*Interpolate 2D Map Val ues */
[*Macro Wth Paraneters Used*/

interp_sub(map_x1yl, map_x2yl, x_tenpl, x_tenp2,result _yl)
and later it is reused with different paranmeters thus:

i nterp_sub(map_x1y2, mp_x2y2, x_tenpl, x_tenp2,result_y2)

To summarise, parameter macros are a good way of telling C51 about a generalised series of operations whose memory
spaces or input values change in programs where speed or RAM usage s critical.

http://www.esacademy.com/automation/docs/c51primer/c10.htm (4 di 4) [09/11/01 11.03.49]

Some C51 Programming Tricks

11 Some C51 Programming Tricks

11.1 Accessing RO etc. directly from C51

A C51 user was using existing assembler routines to perform a specific task. For historical reasons the
8 bit return value from the assembler was left in RO of register bank 3. Ordinarily C51 would return
charsin R7 and therefore simply equating a variable to the assembler function call would not work.

The solution was to declare an uncommitted memory specific pointer to the DATA area. At run time
the absolute address of the register (here 0x18) was assigned to the pointer. The return value was then
picked up viathe pointer after exiting the assembler section.

[*** Exanple O Accessing Specific Registers In C ***/
char data *dptr ; // Create pointer to DATA | ocation

/* Define Address O Register */

#defi ne RO_bank3 0x40018L /* Address of RO in */
/* bank 3, 4 => DATA space */
char x,y ;

/| * Execute */

mai n() {
dptr = (char*) RO _bank3 ; // Point at RO, bank3

x =10 ;

dptr[0] = x ; /Il Wite x into RO, bank3
y = *dptr ; /] Get value of RO, bank3
}

An dternative might have been to declare a variable to hold the return value in a separate module and
to use the linker to fix that module's DATA segment address at 0x18. This method is more robust and
code efficient but is considerably less flexible.

11.2 Making Use Of Unused Interrupt Sources

One problem with the 8051 is the lack of a TRAP or software interrupt instruction. While C166 users

http://www.esacademy.com/automation/docs/c51primer/c11.htm (1 di 5) [09/11/01 11.03.52]

Some C51 Programming Tricks

have the luxury of real hardware support for such things, 8051 programmers have to be more cunning.

A situation arose recently where the highest priority interrupt function in a system had to run until a
certain point, from which lesser interrupts could then come in. Unfortunately, changing the interrupt
priority registers part way through the interrupt function did not work, the lesser interrupts ssimply
waiting until the RETI. The solution wasto hijack the unused A/D converter interrupt, IADC, and
attach the second section of the interrupt function to it. Then by deliberately setting the IADC pending
flag just before the closing "}", the second section could be made to run immediately afterwards. As
the priority of the ADC interrupt had been set to alow levdl, it was interruptable.

[* Primary Interrupt Attached In CCO | nput Capture */
tdc_int() interrupt 8 {
/* High priority section - may not be interrupted */
/* Enable |l ower priority section attached to */

/* ADC interrupt */

| ADC
EADC

}

/* Lower priority section attached to ADC interrupt */

1 ; /1 Force ADC nterrupt
1 ; // Enable ADC interrupt

tdc_int low priority() interrupt 10

| ADC
EADC

O ;: /!l Prevent further calls
0 ;

/* Low priority section which nust be interruptable and */
/* guaranteed to follow high priority section above */

}
11.3 Code Memory Device Switching

This dodge was used during the development of a HEX file loader for a simple 8051 monitor. After
receiving ahexfileinto aRAM viathe seria port, the new file was to be executed in RAM starting
from O0O00H. A complication was that the memory map had to be switched immediately prior to
hitting OOOOH.

The solution was to place the map switching section at Oxfffd so that the next instruction would be
fetched from 0x0000, thus ssimulating areset. Idedlly all registers and flags should be cleared before
this.

http://www.esacademy.com/automation/docs/c51primer/c11.htm (2 di 5) [09/11/01 11.03.52]

Some C51 Programming Tricks

“reg. h"

#i ncl ude "cenbh537. h"

#i ncl ude <stdio. h>

unsi gned char tx_char,rx_char,i ;

mai n()
{
P4 = map2 ;
#i ncl ude
v24ini _537()

timerO_init _537() ;

hex| oad_i ni ()

EAL = 1 ;

whi | e(downl oad_conpl eted == 0)

{

whi | e(char _received fl == 0)

{

tx_byte
hexl| oad()

receive byte() ; }

rx_byte ; /* Echo */

send_byte(tx_byte) ;

char _received fl =0 ;

}

real tinme_count = 0 ;
whil e(real _tinme_count < 200)

{1}

i = ((unsigned char (code*)(void)) OXFFFD) ()

}

/1 Junp to absol ute address.

///\ End Of |\/bdu| e

NAME SW TCH

http://www.esacademy.com/automation/docs/c51primer/c11.htm (3 di 5) [09/11/01 11.03.52]

Some C51 Programming Tricks

; Cause PCto roll-over at FFFFH to sinul ate reset
P4 DATA OE8H
CSEG AT OFFFDH
MOV P4, #02Fh

END

///\ End Of I\/bdul e " I\/APCO\I"

There are other ways of doing this. For instance the code for the MAPCON module could be located
at link time thus; CODE(SWITCH(OFFFDH)), so dispensing with the "CSEG AT".

11.4 Simulating A Software Reset

In asimilar vein to the above, the 8051 does not possess a software reset instruction, unlike the
80C166 etc.. This method uses abstract pointersto create a call to address zero, thus simulating a
software reset.

However it should be remembered that al internal locations must be cleared before the CPU can be
considered properly reset! The return address must be reset as the stack still contains the return
address from the call.

; void main(void) {

RSEG ?PR?mai n?T1

USI NG 0

mai n:
; SOURCE LINE # 9

; ((void (code*) (void)) 0x0000) () ;
; SOURCE LINE # 11

LCALL OO0OH ; Junp to address ZERO
;)
; SOURCE LINE # 13
RET
: END OF nmin

11.5 The Compiler Preprocessor - #define

http://www.esacademy.com/automation/docs/c51primer/c11.htm (4 di 5) [09/11/01 11.03.52]

Some C51 Programming Tricks

Thisisredlly just atext replacement device.

It can be used to improve program readability by giving constants meaningful names, for example:
#define fuel _constant 100 * 2

so that the statement temp = fuel _constant will assign the value 200 to temp.

Note that the preprocessor only allows integer calculations.

Other more sophisticated examples are given in the C51 manual, pages 4-2.

http://www.esacademy.com/automation/docs/c51primer/c11.htm (5 di 5) [09/11/01 11.03.52]

C51 Library Functions

12 C51 Library Functions

One of the main characteristics of C isits ability to allow complex functions to be constructed from
the basic commands. To save programmer effort many common mathematical and string functions are
supplied ready compiled in the form of library files.

12.1 Library Function Calling

Library functions are called as per user-defined functions, i.e

#i ncl ude ctype. h

{

char test byte ;

result = isdigit(test byte) ;
}

where "isdigit()" isafunction that returnsvalue 1 (true) if thetest_byteisan ASCII character in the
range 0 to 9.

The declarations of the library functions are held in fileswith a".h" extension - see the above code
fragment.

Examplesare:

ctype. h,
stdi o. h,
string.h etc..

These are included at the top of the module which uses alibrary function.

Many common mathematical functions are available such as|n, log, exp, 10x, sin, cos, tan (and the
hyperbolic equivaents). These all operate on floating point numbers and should therefore be used
sparingly! The include file containing the mathematical function prototypesis "math.h".

Library files contain many discrete functions, each of which can be used by a C program. They are

actually retrieved by the linker utility covered in section 8. These files are treated as libraries by virtue
of their structure rather than their extension. The insertion or removal of functions from such afileis

http://www.esacademy.com/automation/docs/c51primer/c12.htm (1 di 2) [09/11/01 11.03.53]

C51 Library Functions

performed by alibrary manager called L1B51.

12.2 Memory-Model Specific Libraries

Each of the possible memory models requires a different run-time library file. Obvioudly if the
LARGE mode is used the code required will be different for aSMALL model program.

Thus with C51, 6 different library files are provided:

C51S. LI B - SMALL nodel
C51C. LI B - COVWPACT nodel
C51L. LI B - LARGE nodel

plus three additional files containing floating point routines as well as the integer variety.

C51 library functions are registerbank independent. This means that library functions can be used
freely without regard to the current REGISTERBANK() or USING status. Thisisamajor advantage
asit meansthat library functions can be used freely within interrupt routines and background
functions without regard to the current register bank.

http://www.esacademy.com/automation/docs/c51primer/c12.htm (2 di 2) [09/11/01 11.03.53]

Outputs from C51

13 Outputs From C51

13.1 Object Files

Being closely related to the original Intel tools, C51 defaults to the Intel object file format. Thisisa
binary file containing the symbolic information necessary for debugging with in-circuit emulators etc..
It may be linked with object files from either Intel PLM51 or ASM51 using the Keil L51 linker. The
final output is Intel OMF51.

Versions >2.3 of the compiler will produce an extended Intel OMF51 object fileif the DEBUG
OBJECTEXTEND command line switches are used. This passes type and scope information into the
OMF51 file which any debugger/in-circuit emulator should be able to use. The extensions to the
original Intel format are a proprietary Keil development but have been widely copied by IAR et al.

13.2 HEX Files For EPROM Blowing

To blow EPROMS an additional stageis usually necessary to get aHEX file. Thisisan ASCI|
representation of the final program without any symbol information. Almost every EPROM
programmer will understand Intel HEX. The OH51/OHS51 utility performs the conversion from the
linker's OMF51 file to the standard 8bit Intel HEX format.

13.3 Assembler Output

Optionally, avalid A51 assembler/C source listing file can be produced by C51 if the SRC command
line switch isused. This hasthe original C source lines interleaved with the assembler and is very
useful for getting to know how the compiler drives the 8051.

Do not be tempted to try hand-tweaking the compiler's efforts. Whilst you may be able to save the odd
instruction here and there, you will create atotally unmaintainable program! It is much better to
structure source code so that you write efficient code from the start. Simple, efficient C will produce
the best 8051 code.

http://www.esacademy.com/automation/docs/c51primer/c13.htm [09/11/01 11.03.54]

Assembler Interfacing to C Programs

14 Assembler Interfacing To C Programs

The calling of assembler routines from C51 is not difficult, provided that you read both this and the user manual.

14.1 Assembler Function Example

The example below is taken from areal application where an EEPROM was being written in a page mode. Because of
a 30us timeout of this mode, the 25us run time of the C51 code was viewed as being a bit marginal. It was therefore
decided to code it in assembler.

If an assembler-coded function is to receive no parameters then an ordinary assembler label at the beginning of the
function issimply called like any C function. Note that an extern function prototype must be given after the style of:

C51File

extern void asm func(void).

AS51 File:

ASM FUNC. MOV A #10 ; 8051 assenbler instructions

Should there be parameters to be passed, C51 will place the first few parametersinto registers. Exactly how it doesthis
isoutlined in section

The complication arises when there are more parameters to be passed than can be fitted into registers.

In this case the user must declare a memory area into which the extra parameters can be placed. Thus the assembler
function must have a DATA segment defined that conforms to the naming conventions expected by C51.

In the example below, the segment
?DT?_WRI TE_EE_PAGE?WRI TE_EE SEGVENT DATA OVERLAYABLE
doesjust that.

The best adviceisto write the C that calls the assembler and then compile with the SRC switch to produce an
assemblable equivalent. Then look at what C51 does when it calls your as yet unwritten assembler function. If you stick
to the parameter passing segment name generated by C51 you will have no problems.

Example Of Assembler Function With Many Parameters
C Calling Function

Within the C program that calls this function the following lines must be added to the calling modul e/source file:

http://www.esacademy.com/automation/docs/c51primer/c14.htm (1 di 4) [09/11/01 11.03.57]

Assembler Interfacing to C Programs

/* external reference to assenbler routine */

extern unsigned char wite_ee_page(char*, unsi gned
char, unsi gned char) ;

'du?ny()

unsi gned char nunber, eeprom page_buffer,
ee_page_length ;
char * current_ee_page

nunber = wite_ee_page (current_ee_page,
eeprom page_buffer, ee_page_ | ength) ;
} /* End dunmmy */

The assembler routineis:

NAVE EEPROM WRI TE ;

PUBLIC _WRI TE_EE PACE ; Essenti al
PUBLI C ?_WRI TE_EE_PAGE?END_ADDRESS ;

PUBLI C ?_WRI TE_EE_PAGE?END BUFFER ;
P6 EQU OFAH ;

Port 6 has wat chdog pin ;

ERE I R Rk kb kS Sk Sk Sk Sk Sk S Rk kS kS S S S S S b SRRk kS O S S S b b b b b S S R IRk S S S
k)

; ¥ <<<<<<<<< Decl are CODE And DATA Segnents For
Assenbl er Routi ne >>>>>>>>>>>%
CEE 3 I S0 S0 20 20 20 20 b S S I S S b 20 20 0 b I b S S S b b b I b b b S S b b b b I P I S b b b b I I S I b b b b I I b I I I S b I I I I b I b b b S
?PR?_VWRI TE_EE PAGE?WRI TE_EE SEGVENT CODE
?DT?_WRI TE_EE PAGE?WRI TE_EE SEGVENT DATA OVERLAYABLE ;

rhkkkhkhkkkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkhkhkhkhkhkhkkhkhkkhkhhkkhkhkhkkhkhkhkkhkhkhkkhkhkkhkkhkhkkkhhkkhhkkhkhkhkkhkhkhkkhkhkhkkhkhkkhkhkkkhhkkhkkhkhkkhkhhkkhkk
1

; ¥<<<<<< Decl are Menory Area In Internal RAM For Local

Vari abl es Etc. >>>>>>*

ERE S Rk kb kS kS Sk Sk S Rk kI b S S S S S S Rk Sk Sk Sk b I S I S b b R Rk Sk S I Ik S S b
k)

RSEG ?DT?_WRI TE_EE_PAGE?WRI TE;
? \\RI TE_EE_PAGE?END ADDRESS: DS 2 ;
? WRI TE_EE_PAGE?END BUFFER DS 1 ;

rhkkkhkhkkhkhkkhkhkhkkhkhkhkkhkhkhkhhkhkhhkkhkhkhkkhkhhkkhkhhkkhkhkhkkhkhkhkhhkkhhkkhkhkhkkhkhhkkhkhhkkhkhkhkkhhkkkhhkkhhkkhkhkhkkhkhkhkkhkhkhkkhkhkkkhhkhkhk*x
1

;¥ <K<K EEPROM Page Wite Function >>>>>>>>>>>>>>%

kkhkhkkhkkhhkkhkkhhkkhkhhkhhkhkhhkhkhhkhkkhhkhkhhkhkhhkhhhkhhkhkhhkhkkhhkhkkhhkhkhhkhhhkhkhhkhhkhkhhkikkihkhkk ki) kkhkhkkhkhkkhkkhkkhkkx*

RSEG ?PR?_WRI TE_EE_PAGE?WRI TE ;
WRI TE_EE PAGE:

CLR EA
MOV DPH R6 ; Address of EEPROM in R7/R6

http://www.esacademy.com/automation/docs/c51primer/c14.htm (2 di 4) [09/11/01 11.03.57]

Assembler Interfacing to C Programs

LOOP:

CHECK:

MOV

MOV
DEC
ADD
MOV

CLR
ADDC
MOV

MOV
MOV
ADD
MOV

MOV
MOVX
I NC
I NC
MOV
CINE

DEC
XRL
CLR
SUBB
JINZ

SETB
RET

END

DPL, R7

A, R3 ; Length of buffer in R3
A ;
A R7 ; Cal cul ate address of | ast
?_WRI TE_EE_PAGE?END_ADDRESS+01H, A ; byte
i n page in XDATA.

R6 ;
VRl TE_EE_PAGE?END ADDRESS, A :

A, R5 : Address of buffer in IDATAin R5

@PTR, A :
RO ;
DPTR ;
A, RO :
A ?_WRl TE_EE_PAGE?END BUFFER, LOCP

DPH, ? WRI TE_EE_PAGE?END ADDRESS :
DPL, ? WRI TE_EE_PAGE?END ADDRESS+01H
RO ;

P6, #08 ; Refresh watchdog on MAX691
A @PTR ;
C ;
A @0 ;
CHECK ;

EA ;
; Return to C calling program

14.2 Parameter Passing To Assembler Functions

In the assembler example the parameter current_ee page was received in R6 and R7. Notice that the high byteisin the
lower register, R6. The fact that the 8051 stores high bytes at the low address of any multiple byte object always causes

head scratching!

The" " prefix onthe WRITE_EE PAGE assembler function name is a convention to indicate that registers are used
for parameter passing. If you are converting from C51 version <3.00, please bear thisin mind.

Note that if you pass more parameters than the registers can cope with, additional space istaken in the default memory

space (SMALL-data, COMPACT-pdata, LARGE-xdata).

14.3 Parameter Passing In Registers

http://www.esacademy.com/automation/docs/c51primer/c14.htm (3 di 4) [09/11/01 11.03.57]

Assembler Interfacing to C Programs

Parameter passing is now possible via CPU registers (RO-R7). Coupled with register auto/local variables means that
function calls can be made very quickly. Up to three parameters may be passed this way although when using long
and/or float parameters only two may be passed, due to there being 4 bytes per variable and only 8 registers available!
To maintain compatibility with 2.5x the NOREGPARMS #pragma.is provided to force fixed memory locations to be
used. Those calling assembler coded functions must take note of this.

Par anet er Type Char I nt +Spaced ptr Long/ Fl oat Generic Ptr
Par anet er R7 R6/ R7 R4- R7 Rl, R2, R3
Par anmet er R5 R4/ R5 R4- R7 Rl, R2, R3
Par anet er R3 R2/ R3 Rl, R2, R3

http://www.esacademy.com/automation/docs/c51primer/c14.htm (4 di 4) [09/11/01 11.03.57]

General Thingsto be Aware of

15 General Things To Be Aware Of

Thefollowing rules will allow the compiler to make the best use of the processor's resources.
Generally, approaching C from an assembler programmer's viewpoint does no harm whatsoever!

15.1

Always use 8 bit variables the 8051 is strictly an 8 bit machine with no 16 bit instructions. char will
aways be more efficient than int's.

15.2

Always use unsigned variables where possible. The 8051 has no signed compares, multiplies etc.,
hence all sign management must be done by discrete 8051 instructions.

15.3

Try to avoid dividing anything but 8 bit numbers. Thereis only an 8 by 8 divide in the instruction set.
32 by 16 divides could be lengthy unless you are using an 80C537!

15.4

Try to avoid using bit structures. Until v2.30, C51 did not support these structures as defined by
ANSI. Having queried this omission with Kell, the explanation was that the code produced would be
very large and inefficient. Now that they have been added, this has proved to beright. An alternative
solution isto declare bitsindividually, using the "bit" storage class, and pass them to a user-written
function.

15.5

The ANSI standard says that the product of two 8 bit numbersis also an 8 bit number. This means that
any unsigned chars which might have to be multiplied must actually be declared as unsigned int's if
thereis any possibility that they may produce even an intermediate result over 255.

However it is very wasteful to use integer quantitiesin an 8051 if a char can do the job! The solution
Isto temporarily convert (cast) achar to an int. Here the numerator potentially could be 16 bits but the
result always 8 hits. The "(unsigned int)" casts ensure that a 16 bit multiply is used by C51.

http://www.esacademy.com/automation/docs/c51primer/c15.htm (1 di 2) [09/11/01 11.03.59]

General Thingsto be Aware of

{

unsi gned char z ;
unsi gned char x ;
unsi gned char y ;

Zz = ((unsigned int) y * (unsigned int) x) >> 8 ;

}

Here the two eight bit numbers x and y are multiplied and then divided by 256. The intermediate 16
bit (unsigned int) result is permissible because y and x have been loaded by the multiplier library
routine asint's.

15.6

Calculations which consist of integer operands but which always produce an 8 bit (char) dueto
careful scaling result thus:

unsigned int x, y ;
unsi gned char z ;
z = x*y/ 256 ;

will always work, as C51 will equate z to the upper byte (least significant) of the integer result. Thisis
not machine-dependant as ANSI dictates what should be done. Also note that C51 will access the
upper byte directly, thus saving code.

15.7 Floating Point Numbers

One operand is always pushed onto an arithmetic stack in the internal RAM. In the SMALL model the
8051 stack is used, but in other models afixed segment is created at the lowest available address
above the register bank area. In applications where on-chip RAM is at a premium, full floating point
maths really should not be used. Fixed point isafar more realistic aternative.

http://www.esacademy.com/automation/docs/c51primer/c15.htm (2 di 2) [09/11/01 11.03.59]

Conclusion

16 Conclusion

The foregoing should give afair idea how the C51 compiler can be used in real embedded program
development. Its great advantage is that it removes the necessity of being an expert in 8051 assembler
to produce effective programs. Really, for the 8051, C51 should be viewed as a universal low to
medium level language which both assembler and C programmers can move to very ssimply. Access to
on and off-chip peripheralsis painless and the need for assembler device-driversisremoved. It will
allow well structured programs devoid of the dreaded goto or LIMP. In fact most of the extra code
generated by C over an assembler is employed in ensuring good program structure rather than just
inefficient use of the 8051 instruction set. It offers true portability from the 8051 to other processors
and, unusually, the reverseis also true. Thus existing functions can be re-used, so reducing
development time.

http://www.esacademy.com/automation/docs/c51primer/c16.htm [09/11/01 11.04.00]

	esacademy.com
	C51 Primer
	Introduction
	Keil C51 Compiler Basics
	Declaring Variables and Constants
	Program Structure And Layout
	C Language Extensions For 8051
	Pointers in C51
	Accessing External Memory Mapped
	Linking Issues and Stack Placement
	http://www.esacademy.com/automation/docs/c51primer/c09.htm
	Miscellaneous Points
	Some C51 Programming Tricks
	C51 Library Functions
	Outputs from C51
	Assembler Interfacing to C Programs
	General Things to be Aware of
	Conclusion

